1
|
Kosmara D, Neofotistou-Themeli E, Semitekolou M, Bertsias G. The molecular underpinnings of female predominance in lupus. Trends Mol Med 2025; 31:438-451. [PMID: 39627079 DOI: 10.1016/j.molmed.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 05/17/2025]
Abstract
Most people affected by systemic lupus erythematosus (SLE) are women. Although the role of sex hormones has been appreciated, we discuss emerging evidence that links X-linked genes escaping from dosage compensation to female predisposition to lupus. This is exemplified by TLR7 and CXorf21 whose female-biased expression may converge to enhance interferon responses and promote autoantibody-producing B cells, which are hallmarks of SLE. Notably, autosomal transcription factors with female overexpression may regulate molecular programs in the skin that are sufficient to induce lupus. These findings indicate a multifactorial basis for female vulnerability; however, several areas remain elusive, including the epigenetic landscape of X-chromosome inactivation (XCI) in SLE, the interplay with environmental factors, and the role of male-specific factors such as Y-linked genes.
Collapse
Affiliation(s)
- Despoina Kosmara
- Rheumatology and Clinical Immunology, University of Crete Medical School, Heraklion, Greece; Division of Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Elpida Neofotistou-Themeli
- Rheumatology and Clinical Immunology, University of Crete Medical School, Heraklion, Greece; Division of Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece
| | - Maria Semitekolou
- Rheumatology and Clinical Immunology, University of Crete Medical School, Heraklion, Greece; Dendritic cells and Adaptive Immunity Unit, CNRS UMR 3738 Developmental Biology and Stem Cells, Institut Pasteur, Paris, France
| | - George Bertsias
- Rheumatology and Clinical Immunology, University of Crete Medical School, Heraklion, Greece; Division of Immunity, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (FORTH), Heraklion, Greece.
| |
Collapse
|
2
|
Lovell CD, Anguera MC. More X's, more problems: how contributions from the X chromosomes enhance female predisposition for autoimmunity. Curr Opin Immunol 2025; 93:102543. [PMID: 40020257 PMCID: PMC11909602 DOI: 10.1016/j.coi.2025.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/08/2025]
Abstract
Many autoimmune diseases exhibit a strong female bias. While sex hormones may influence sex bias in disease, recent studies suggest that the X chromosome itself directly contributes to female-biased susceptibility to autoimmunity. Females with two X chromosomes utilize X Chromosome Inactivation (XCI) to silence gene expression from one X chromosome, equalizing expression between the sexes. The X chromosome is highly enriched with immune-related genes, and recent work indicates that the fidelity of XCI maintenance in lymphocytes from female systemic lupus erythematosus patients is compromised, suggesting that aberrant X-linked gene expression contributes to autoimmune phenotypes. XCI is initiated and maintained by the long noncoding RNA XIST/Xist through its interactions with the inactive X chromosome and numerous interacting proteins, and recent studies also implicate XIST/Xist RNA in driving endosomal Toll-like receptor signaling and XIST/Xist RNA-protein complexes in serving as a source of autoantigens to respectively drive autoimmunity. Here, we will review these three distinct pathways that underscore the significance of X-linked genetics for understanding the origins of the female bias in autoimmune disease.
Collapse
Affiliation(s)
- Claudia D Lovell
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Montserrat C Anguera
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Sierra I, Toothacre NE, van der Weide RH, Lovell CD, Nguyen SC, Barnett RJ, Cook AL, Ryu HS, Pyfrom S, Wang H, Beiting D, Philips-Cremins JE, Joyce EF, Anguera MC. B cell stimulation changes the structure and higher-order organization of the inactive X chromosome. Cell Rep 2025; 44:115351. [PMID: 40014450 PMCID: PMC11998099 DOI: 10.1016/j.celrep.2025.115351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 03/01/2025] Open
Abstract
X chromosome inactivation (XCI) equalizes X-linked gene expression between sexes. B cells exhibit dynamic XCI, with Xist RNA/heterochromatic marks absent on the inactive X (Xi) in naive B cells but returning following mitogenic stimulation. The impact of dynamic XCI on Xi structure and maintenance was previously unknown. Here, we find dosage compensation of the Xi with state-specific XCI escape genes in naive and in vitro-activated B cells. Allele-specific OligoPaints indicate similar Xi and active X (Xa) territories in B cells that are less compact than in fibroblasts. Allele-specific Hi-C reveals a lack of TAD-like structures on the Xi of naive B cells and stimulation-induced alterations in TAD-like boundary strength independent of gene expression. Notably, Xist deletion in B cells changes TAD boundaries and large-scale Xi compaction. Altogether, our results uncover B cell-specific Xi plasticity, which could underlie sex-biased biological mechanisms.
Collapse
Affiliation(s)
- Isabel Sierra
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Natalie E Toothacre
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Robin H van der Weide
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands; Oncode Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Claudia D Lovell
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Son C Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - R Jordan Barnett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ashley L Cook
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Han-Seul Ryu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Pyfrom
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Harrison Wang
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer E Philips-Cremins
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Eric F Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Montserrat C Anguera
- Department of Biomedical Science, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.
| |
Collapse
|
4
|
Du Y, Faz-Lopez B, Ah Kioon MD, Cenac C, Pierides M, Lakin KS, Spiera RF, Chaumeil J, Truchetet ME, Gordon JK, Guéry JC, Barrat FJ. Altered X-chromosome inactivation of the TLR7/8 locus and heterogeneity of pDCs in systemic sclerosis. J Exp Med 2025; 222:e20231809. [PMID: 39670995 PMCID: PMC11639950 DOI: 10.1084/jem.20231809] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 09/26/2024] [Accepted: 11/21/2024] [Indexed: 12/14/2024] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disease that has a strong female predominance. Both the X-linked TLR7 and TLR8 can induce type I IFN (IFN-I) by plasmacytoid DCs (pDCs), which can promote fibrosis. We identified five subclusters of pDCs, including ISGhigh clusters that were over-represented in SSc patients. We observed that both TLR7 and TLR8 genes escape from X chromosome inactivation (XCI) at higher frequency in pDCs of SSc patients, which was associated with changes in TLR7 protein profile. Combined DNA/RNA FISH analysis revealed that the TLR7/8 locus is preferentially located outside of the inactive X (Xi) territory when TLR7 is expressed, suggesting that higher-order loop formation is linked to TLR7/8 expression from the Xi. Furthermore, the expression levels of XIST and the transcriptional repressor SPEN were reduced in SSc pDCs. Hence, our data revealed the heterogeneity of pDCs in SSc and suggested that altered XCI at the TLR7/8 locus may contribute to the chronic IFN-I activity of pDCs in female SSc patients.
Collapse
Affiliation(s)
- Yong Du
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| | - Bérénice Faz-Lopez
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Marie Dominique Ah Kioon
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Michael Pierides
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
| | - Kimberly S. Lakin
- Division of Rheumatology and Scleroderma and Vasculitis Center, Department of Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Robert F. Spiera
- Division of Rheumatology and Scleroderma and Vasculitis Center, Department of Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Julie Chaumeil
- Institut Cochin, Université Paris Cité, CNRS, INSERM, Paris, France
| | - Marie-Elise Truchetet
- ImmunoConcEpt, CNRS, UMR 5164, University of Bordeaux, Talence, France
- Rheumatology Department, CHU de Bordeaux, Bordeaux, France
| | - Jessica K. Gordon
- Division of Rheumatology and Scleroderma and Vasculitis Center, Department of Medicine, Hospital for Special Surgery, New York, NY, USA
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires, Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Franck J. Barrat
- HSS Research Institute and David Z. Rosensweig Genomics Research Center, Inflammation and Autoimmunity Program, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, USA
| |
Collapse
|
5
|
Sierra I, Toothacre NE, van der Weide RH, Lovell CD, Nguyen SC, Jordan Barnett R, Cook AL, Ryu HS, Pyfrom S, Wang H, Beiting D, Philips-Cremins JE, Joyce EF, Anguera MC. B cell stimulation changes the structure and higher-order organization of the inactive X chromosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635789. [PMID: 39975382 PMCID: PMC11838360 DOI: 10.1101/2025.01.30.635789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
X Chromosome Inactivation (XCI) equalizes X-linked gene expression between sexes. B cells exhibit dynamic XCI, with Xist RNA/heterochromatic marks absent on the inactive X (Xi) in naive B cells but returning following mitogenic stimulation. The impact of dynamic XCI on Xi structure and maintenance was previously unknown. Here, we find dosage compensation of the Xi with state-specific XCI escape genes in naive and in vitro activated B cells. Allele-specific OligoPaints indicate similar Xi and Xa territories in B cells that are less compact than in fibroblasts. Allele-specific Hi-C reveals a lack of TAD-like structures on the Xi of naive B cells, and stimulation-induced alterations in TAD-like boundary strength independent of gene expression. Notably, Xist deletion in B cells changes TAD boundaries and large-scale Xi compaction. Altogether, our results uncover B cell-specific Xi plasticity which could underlie sex-biased biological mechanisms.
Collapse
|
6
|
Tosic N, Tomic Vujovic K, Vukovic V, Kotur N, Stankovic B, Marjanovic I, Antic D, Sarac S, Bibic T, Ivanovic J, Zukic B, Karan-Djurasevic T. High Expression Levels of the Long Non-Coding RNAs Lnc-IRF2-3 and Lnc-KIAA1755-4 Are Markers of Poor Prognosis in Chronic Lymphocytic Leukemia. Int J Mol Sci 2025; 26:1153. [PMID: 39940921 PMCID: PMC11817519 DOI: 10.3390/ijms26031153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) play complex roles at multiple levels of gene regulation, thus modulating key cellular processes involved in the pathogenesis and progression of cancer. Aberrant expression of lncRNAs has been reported in various malignancies, including chronic lymphocytic leukemia (CLL). We investigated the expression of lnc-IRF2-3 and lnc-KIAA1755-4 in peripheral blood mononuclear cells of 112 previously untreated CLL patients by quantitative reverse-transcriptase polymerase chain reaction. Both lncRNAs were found to be overexpressed in CLL samples in comparison to healthy controls, and their high levels were associated with adverse clinico-biological characteristics of patients at diagnosis. High lnc-IRF2-3 expression was associated with high leukocyte and lymphocyte counts, high β2-microglobulin, advanced Binet stage, unfavorable cytogenetics, CD38-positivity and IGHV-unmutated status. Regarding lnc-KIAA1755-4, its high expression was associated with high leukocyte count, lymphocyte count, β2-microglobulin, lactate dehydrogenase and low hemoglobin, as well as with IGHV-unmutated status. In addition, we observed shorter time to first treatment and overall survival of patients expressing high levels of both lncRNAs in comparison to low-expressing patients. In summary, our study showed that high lnc-IRF2-3 and lnc-KIAA1755-4 expression at diagnosis predicts poor survival in CLL. The mechanisms of their upregulation, as well as their specific targets in CLL cells, remain to be elucidated.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Female
- Prognosis
- Middle Aged
- Aged
- Biomarkers, Tumor/genetics
- Gene Expression Regulation, Leukemic
- Aged, 80 and over
- Adult
- Leukocytes, Mononuclear/metabolism
- beta 2-Microglobulin
Collapse
Affiliation(s)
- Natasa Tosic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Kristina Tomic Vujovic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Vojin Vukovic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nikola Kotur
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Biljana Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Darko Antic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
- School of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Sofija Sarac
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Tamara Bibic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Jelena Ivanovic
- Clinic for Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (K.T.V.); (V.V.); (D.A.); (S.S.); (T.B.); (J.I.)
| | - Branka Zukic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| | - Teodora Karan-Djurasevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (N.T.); (N.K.); (B.S.); (I.M.); (B.Z.)
| |
Collapse
|
7
|
Toothacre NE, Rodríguez-Acevedo KL, Wiggins KJ, Scharer CD, Anguera MC. Xist RNA Dependent and Independent Mechanisms Regulate Dynamic X Chromosome Inactivation in B Lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635124. [PMID: 39975415 PMCID: PMC11838359 DOI: 10.1101/2025.01.27.635124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
X-Chromosome Inactivation (XCI) involves epigenetic pathways to equalize X-linked gene expression between female and male mammals. XCI is dynamic in female B cells, as cytological enrichment of Xist RNA and heterochromatic marks on the inactive X-chromosome (Xi) are absent in naïve B cells yet return following mitogenic stimulation. Here, we asked whether any heterochromatic histone marks are present on the Xi in naïve B cells, and whether Xist RNA is required for their deposition and retention following stimulation. We find that the Xi in naïve B cells is depleted for H2AK119Ub and H3K9me3 but enriched for DNA methylation and H3K27me3, which maintain an Xist RNA-dependent epigenetic memory of XCI. Upon stimulation, Xist-independent H3K27me3 and Xist-dependent H2AK119Ub modifications accumulate across the Xi with temporal and spatial specificity. Our findings reveal the importance of Xist RNA, H3K27me3, and H2AK119Ub marks for the epigenetic integrity of X-linked genes across the Xi following female B cell stimulation.
Collapse
|
8
|
Feng Z, Liao M, Zhang L. Sex differences in disease: sex chromosome and immunity. J Transl Med 2024; 22:1150. [PMID: 39731171 DOI: 10.1186/s12967-024-05990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024] Open
Abstract
Sex is a fundamental biological variable that influences immune system function, with sex chromosomes (X and Y) playing a central role in these differences. Despite substantial evidence of disparities in immune responses between males and females, biomedical research has historically overlooked sex as a critical factor. This oversight has contributed to the observed disparities in susceptibility to autoimmune diseases, infectious diseases, and malignancies between the sexes. In this review, we address the phenomena and mechanisms through which aberrant expression of sex chromosome-linked genes contributes to sex-based differences in immune responses. We specifically focus on the implications of X chromosome inactivation (XCI) escape and loss of Y chromosome (LOY). Our review aims to elucidate the molecular mechanisms driving these sex-based differences, with particular emphasis on the interactions between sex chromosome genes and immune cells in both males and females. Additionally, we discuss the potential impact of these differences on disease susceptibility and identify prospective therapeutic targets. As personalized and precision medicine advances, it is crucial to integrate sex differences into immunological research and clinical trials. We advocate for an increased focus on sex-based considerations in fundamental, translational, and clinical research to promote personalized, sex-specific healthcare.
Collapse
Affiliation(s)
- Zuxi Feng
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Medical Research Center for Blood Diseases, Lanzhou, 730000, China
| | - Minjing Liao
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, 730000, China
| | - Liansheng Zhang
- The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, 730000, China.
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Clinical Medical Research Center for Blood Diseases, Lanzhou, 730000, China.
| |
Collapse
|
9
|
Predescu DN, Mokhlesi B, Predescu SA. X-inactive-specific transcript: a long noncoding RNA with a complex role in sex differences in human disease. Biol Sex Differ 2024; 15:101. [PMID: 39639337 PMCID: PMC11619133 DOI: 10.1186/s13293-024-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024] Open
Abstract
In humans, the X and Y chromosomes determine the biological sex, XX specifying for females and XY for males. The long noncoding RNA X-inactive specific transcript (lncRNA XIST) plays a crucial role in the process of X chromosome inactivation (XCI) in cells of the female, a process that ensures the balanced expression of X-linked genes between sexes. Initially, it was believed that XIST can be expressed only from the inactive X chromosome (Xi) and is considered a typically female-specific transcript. However, accumulating evidence suggests that XIST can be detected in male cells as well, and it participates in the development of cancers and other human diseases by regulating gene expression at epigenetic, chromatin remodeling, transcriptional, and translational levels. XIST is abnormally expressed in many sexually dimorphic diseases, including autoimmune and neurological diseases, pulmonary arterial hypertension (PAH), and some types of cancers. However, the underlying mechanisms are not fully understood. Escape from XCI and skewed XCI also contributes to sex-biased diseases and their severity. Interestingly, in humans, similar to experimental animal models of human disease, the males with the XIST gene activated display the sex-biased disease condition at a rate close to females, and significantly greater than males who had not been genetically modified. For instance, the men with supernumerary X chromosomes, such as men with Klinefelter syndrome (47, XXY), are predisposed toward autoimmunity similar to females (46, XX), and have increased risk for strongly female biased diseases, compared to 46, XY males. Interestingly, chromosome X content has been linked to a longer life span, and the presence of two chromosome X contributes to increased longevity regardless of the hormonal status. In this review, we summarize recent knowledge about XIST structure/function correlation and involvement in human disease with focus on XIST abnormal expression in males. Many human diseases show differences between males and females in penetrance, presentation, progression, and survival. In humans, the X and Y sex chromosomes determine the biological sex, XX specifying for females and XY for males. This numeric imbalance, two X chromosomes in females and only one in males, known as sex chromosome dosage inequality, is corrected in the first days of embryonic development by inactivating one of the X chromosomes in females. While this "dosage compensation" should in theory solve the difference in the number of genes between sexes, the expressed doses of X genes are incompletely compensated by X chromosome inactivation in females. In this review we try to highlight how abnormal expression and function of XIST, a gene on the X chromosome responsible for this inactivation process, may explain the sex differences in human health and disease. A better understanding of the molecular mechanisms of XIST participation in the male-female differences in disease is highly relevant since it would allow for improving the personalization of diagnosis and sex-specific treatment of patients.
Collapse
Affiliation(s)
- Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Babak Mokhlesi
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
10
|
Lu J, Ma H, Wang Q, Song Z, Wang J. Chemotherapy-mediated lncRNA-induced immune cell plasticity in cancer immunopathogenesis. Int Immunopharmacol 2024; 141:112967. [PMID: 39181018 DOI: 10.1016/j.intimp.2024.112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Tumor cells engage with the immune system in a complex manner, utilizing evasion and adaptability mechanisms. The development of cancer and resistance to treatment relies on the ability of immune cells to adjust their phenotype and function in response to cues from the tumor microenvironment, known as immunological cell plasticity. This study delves into the role of long non-coding RNAs (lncRNAs) in enhancing immune cell flexibility in cancer, focusing on their regulatory actions in the tumor microenvironment and potential therapeutic implications. Through a comprehensive review of existing literature, the study analyzes the impact of lncRNAs on macrophages, T-cells, and MDSCs, as well as the influence of cytokines and growth factors like TNF, IL-6, HGF, and TGFβ on immunological cell plasticity and tumor immunoediting. LncRNAs exert a strong influence on immune cell plasticity through mechanisms such as transcriptional regulation, post-transcriptional modifications, and chromatin remodeling. These RNA molecules intricately modulate gene expression networks, acting as scaffolding, decoys, guides, and sponges. Moreover, both direct cell-cell interactions and soluble chemicals in the tumor microenvironment contribute to enhancing immune cell activation and survival. Understanding the influence of lncRNAs on immune cell flexibility sheds light on the biological pathways of immune evasion and cancer progression. Targeting long non-coding RNAs holds promise for amplifying anti-tumor immunity and overcoming drug resistance in cancer treatment. However, further research is necessary to determine the therapeutic potential of manipulating lncRNAs in the tumor microenvironment.
Collapse
Affiliation(s)
- Jingyuan Lu
- Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China.
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Qian Wang
- Division of Hematology and Solid Tumor Oncology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Zhiheng Song
- Plasma Applied Physics Lab, C&J Nyheim Plasma Institute, Drexel University, 200 Federal St, Suite 500, Camden, NJ 08103.
| | - Jinli Wang
- School of Medicine, Department of Epidemiology and Biochemistry and Molecular & Cellular Biology, Georgetown University, 3700 O ST NW, Washington, DC 20057.
| |
Collapse
|
11
|
Chang KJ, Shiau LY, Lin SC, Cheong HP, Wang CY, Ma C, Liang YW, Yang YP, Ko PS, Hsu CH, Chiou SH. N 6-methyladenosine and its epitranscriptomic effects on hematopoietic stem cell regulation and leukemogenesis. Mol Med 2024; 30:196. [PMID: 39497033 PMCID: PMC11536562 DOI: 10.1186/s10020-024-00965-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
N6-methyladenosine (m6A) RNA modification orchestrates cellular epitranscriptome through tuning the homeostasis of transcript stability, translation efficiency, and the transcript affinity toward RNA-binding proteins (RBPs). An aberrant m6A deposition on RNA can lead toward oncogenic expression profile (mRNA), impaired mitochondrial metabolism (mtRNA), and translational suppression (rRNA) of tumor suppressor genes. In addition, non-coding RNAs (ncRNAs), such as X-inactive specific transcript (XIST), miRNAs, and α-ketoglutarate-centric metabolic transcripts are also regulated by the m6A epitranscriptome. Notably, recent studies had uncovered a myriad of m6A-modified transcripts the center of hematopoietic stem cell (HSC) regulation, in which m6A modification act as a context dependent switch to the on and off of hematopoietic stem cell (HSC) maintenance, lineage commitment and terminal differentiation. In this review, we sequentially unfold the m6A mediated epithelial-to-hematopoietic transition in progenitor blood cell production, lymphocytic lineage expansion (T cells, B cells, NK cells, and non-NK ILCs), and the m6A crosstalk with the onco-metabolic prospects of leukemogenesis. Together, an encompassing body of evidence highlighted the emerging m6A significance in the regulation of HSC biology and leukemogenesis.
Collapse
Affiliation(s)
- Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Yang Shiau
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shiuan-Chen Lin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Han-Ping Cheong
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Yun Wang
- Department of Medical Education, Taichung Veterans General Hospital, Taipei, Taiwan
| | - Chun Ma
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yan-Wen Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Life Sciences and Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Shen Ko
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Hematology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Hung Hsu
- The Fourth Affiliated Hospital, and Department of Environmental Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Genetics, International School of Medicine, Zhejiang University, Hangzhou, China
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
12
|
Gui B, Wang Q, Wang J, Li X, Wu Q, Chen H. Cross-species comparison of airway epithelium transcriptomics. Heliyon 2024; 10:e38259. [PMID: 39391497 PMCID: PMC11466595 DOI: 10.1016/j.heliyon.2024.e38259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
Studies of lung transcriptomics across species are essential for understanding the complex biology and disease mechanisms of this vital organ. Single-cell RNA sequencing (scRNA-seq) has emerged as a key tool for understanding cell dynamics across various species. However, comprehensive cross-species comparisons are limited. Therefore, the aims of this study was to investigate the transcriptomic similarities and differences in lung cells across four species-humans, monkeys, mice, and rats-in healthy and asthma conditions using scRNA-seq. The results revealed significant transcriptomic similarities between monkeys and humans and significant cross-species conservation of cell-specific marker genes, transcription factors (TFs), and biological pathways. Additionally, we explored sex differences, identifying distinct sex-specific expression patterns that may influence disease susceptibility. These insights refine our understanding of the mechanism underlying airway cell biology across species and have important implications for studying lung diseases, particularly the mechanisms of mucus clearance in asthma.
Collapse
Affiliation(s)
- Biyu Gui
- Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Qi Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Department of Stomatology, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
| | - Qi Wu
- Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
| | - Huaiyong Chen
- Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, 300350, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Tianjin Institute of Respiratory Diseases, 300350, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
13
|
Vieira AA, Almada-Correia I, Inácio J, Costa-Reis P, da Rocha ST. Female-bias in systemic lupus erythematosus: How much is the X chromosome to blame? Biol Sex Differ 2024; 15:76. [PMID: 39375734 PMCID: PMC11460073 DOI: 10.1186/s13293-024-00650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Systemic lupus erythematosus (SLE or lupus) is an immune-mediated disease associated with substantial medical burden. Notably, lupus exhibits a striking female bias, with women having significantly higher susceptibility compared to men, up to 14-fold higher in some ethnicities. Supernumerary X chromosome syndromes, like Klinefelter (XXY) and Triple X syndrome (XXX), also present higher SLE prevalence, whereas Turner syndrome (XO) displays lower prevalence. Taken together, SLE prevalence in different X chromosome dosage sceneries denotes a relationship between the number of X chromosomes and the risk of developing lupus. The dosage of X-linked genes, many of which play roles in the immune system, is compensated between males and females through the inactivation of one of the two X chromosomes in female cells. X-chromosome inactivation (XCI) initiates early in development with a random selection of which X chromosome to inactivate, a choice that is then epigenetically maintained in the daughter cells. This process is regulated by the X-Inactive-Specific Transcript (XIST), encoding for a long non-coding RNA, exclusively expressed from the inactive X chromosome (Xi). XIST interacts with various RNA binding proteins and chromatin modifiers to form a ribonucleoprotein (RNP) complex responsible for the transcriptional silencing and heterochromatinization of the Xi. This ensures stable silencing of most genes on the X chromosome, with only a few genes able to escape this process. Recent findings suggest that the molecular components involved in XCI, or their dysregulation, contribute to the pathogenesis of lupus. Indeed, nonrandom XCI, elevated gene escape from XCI, and the autoimmune potential of the XIST RNP complex have been suggested to contribute to auto-immune diseases, such as lupus. This review examines these current hypotheses concerning how this dosage compensation mechanism might impact the development of lupus, shedding light on potential mechanisms underlying the pathogenesis of the disease.
Collapse
Affiliation(s)
- Adriana A Vieira
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
| | - Inês Almada-Correia
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Inácio
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Patrícia Costa-Reis
- Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Pediatric Rheumatology Unit, Pediatrics Department, Hospital de Santa Maria, Lisbon, Portugal
| | - S T da Rocha
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
14
|
Forsyth KS, Toothacre NE, Jiwrajka N, Driscoll AM, Shallberg LA, Cunningham-Rundles C, Barmettler S, Farmer J, Verbsky J, Routes J, Beiting DP, Romberg N, May MJ, Anguera MC. Maintenance of X chromosome inactivation after T cell activation requires NF-κB signaling. Sci Immunol 2024; 9:eado0398. [PMID: 39365876 DOI: 10.1126/sciimmunol.ado0398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
X chromosome inactivation (XCI) balances X-linked gene dosage between sexes. Unstimulated T cells lack cytological enrichment of X-inactive specific transcript (Xist) RNA and heterochromatic modifications on the inactive X chromosome (Xi), which are involved in maintenance of XCI, and these modifications return to the Xi after stimulation. Here, we examined allele-specific gene expression and epigenomic profiles of the Xi in T cells. We found that the Xi in unstimulated T cells is largely dosage compensated and enriched with the repressive H3K27me3 modification but not the H2AK119-ubiquitin (Ub) mark. Upon T cell stimulation mediated by both CD3 and CD28, the Xi accumulated H2AK119-Ub at gene regions of previous H3K27me3 enrichment. T cell receptor (TCR) engagement, specifically NF-κB signaling downstream of the TCR, was required for Xist RNA localization to the Xi. Disruption of NF-κB signaling in mouse and human T cells using genetic deletion, chemical inhibitors, and patients with immunodeficiencies prevented Xist/XIST RNA accumulation at the Xi and altered X-linked gene expression. Our findings reveal a previously undescribed connection between NF-κB signaling pathways, which affects XCI maintenance in T cells in females.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalie E Toothacre
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Rheumatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda M Driscoll
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsey A Shallberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mt. Sinai, New York City, NY 10029, USA
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Massachusetts General Hospital, Boston MA 02114, USA
| | - Jocelyn Farmer
- Allergy and Clinical Immunology Unit, Massachusetts General Hospital, Boston MA 02114, USA
| | - James Verbsky
- Allergy and Clinical Immunology Division, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - John Routes
- Allergy and Clinical Immunology Division, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J May
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Chen J, Li M, Shang S, Cheng L, Tang Z, Huang C. LncRNA XIST/miR-381-3P/STAT1 axis as a potential biomarker for lupus nephritis. Lupus 2024; 33:1176-1191. [PMID: 39126180 DOI: 10.1177/09612033241273072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
OBJECTIVE We aim to investigate the potential roles of key genes in the development of lupus nephritis (LN), screen key biomarkers, and construct the lncRNA XIST/miR-381-3P/STAT1 axis by using bioinformatic prediction combined with clinical validation, thereby providing new targets and insights for clinical research. METHODS Gene expression microarrays GSE157293 and GSE112943 were downloaded from the GEO database to obtain differentially expressed genes (DEGs), followed by enrichment analyses on these DEGs, which were enriched and analyzed to construct a protein-protein interaction (PPI) network to screen core genes. The lncRNA-miRNA-mRNA regulatory network was predicted and constructed based on the miRNA database. 37 female patients with systemic lupus erythematosus (SLE) were recruited to validate the bioinformatics results by exploring the diagnostic value of the target ceRNA axis in LN by dual luciferase and real-time fluorescence quantitative PCR (RT-qPCR) and receiver operating characteristic (ROC). RESULTS The data represented that a total of 133 differential genes were screened in the GSE157293 dataset and 2869 differential genes in the GSE112943 dataset, yielding a total of 26 differentially co-expressed genes. Six core genes (STAT1, OAS2, OAS3, IFI44, DDX60, and IFI44L) were screened. Biological functional analysis identified key relevant pathways in LN. ROC curve analysis suggested that lncRNA XIST, miR-381-3P, and STAT1 could be used as potential molecular markers to assist in the diagnosis of LN. CONCLUSION STAT1 is a key gene in the development of LN. In conclusion, lncRNA XIST, miR-381-3P, and STAT1 can be used as new molecular markers to assist in the diagnosis of LN, and the lncRNA XIST/miR-381-3P/STAT1 axis may be a potential therapeutic target for LN.
Collapse
Affiliation(s)
- Junjie Chen
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Ming Li
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shuangshuang Shang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lili Cheng
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Zhongfu Tang
- The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Chuanbing Huang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
16
|
Roberts AL, Morea A, Amar A, West M, Karrar S, Lehane R, Tombleson P, Cunningham Grahman D, Reynolds JA, Wong CCY, Morris DL, Small KS, Vyse TJ. Haematopoietic stem cell-derived immune cells have reduced X chromosome inactivation skewing in systemic lupus erythematosus. Ann Rheum Dis 2024; 83:1315-1321. [PMID: 38937070 PMCID: PMC11503196 DOI: 10.1136/ard-2024-225585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/29/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVES Systemic lupus erythematosus (SLE) shows a marked female bias in prevalence. X chromosome inactivation (XCI) is the mechanism which randomly silences one X chromosome to equalise gene expression between 46, XX females and 46, XY males. Though XCI is expected to result in a random pattern of mosaicism across tissues, some females display a significantly skewed ratio in immune cells, termed XCI-skew. We tested whether XCI was abnormal in females with SLE and hence contributes to sexual dimorphism. METHODS We assayed XCI in whole blood DNA in 181 female SLE cases, 796 female healthy controls and 10 twin pairs discordant for SLE. Using regression modelling and intra-twin comparisons, we assessed the effect of SLE on XCI and combined clinical, cellular and genetic data via a polygenic score to explore underlying mechanisms. RESULTS Accommodating the powerful confounder of age, XCI-skew was reduced in females with SLE compared with controls (p=1.3×10-5), with the greatest effect seen in those with more severe disease. Applying an XCI threshold of >80%, we observed XCI-skew in 6.6% of SLE cases compared with 22% of controls. This difference was not explained by differential white cell counts, medication or genetic susceptibility to SLE. Instead, XCI-skew correlated with a biomarker for type I interferon-regulated gene expression. CONCLUSIONS These results refute current views on XCI-skew in autoimmunity and suggest, in lupus, XCI patterns of immune cells reflect the impact of disease state, specifically interferon signalling, on the haematopoietic stem cells from which they derive.
Collapse
Affiliation(s)
- Amy L Roberts
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Alessandro Morea
- Twin Research and Genetic Epidemiology, King's College London, London, UK
- Foundation Institute of Molecular Oncology, IFOM, Milano, Italy
| | - Ariella Amar
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Magdalena West
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Sarah Karrar
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Rhiannon Lehane
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Philip Tombleson
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | | | - John A Reynolds
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Chloe C Y Wong
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - David L Morris
- Medical and Molecular Genetics, King's College London, London, UK
| | - Kerrin S Small
- Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | |
Collapse
|
17
|
Forsyth KS, Jiwrajka N, Lovell CD, Toothacre NE, Anguera MC. The conneXion between sex and immune responses. Nat Rev Immunol 2024; 24:487-502. [PMID: 38383754 PMCID: PMC11216897 DOI: 10.1038/s41577-024-00996-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
There are notable sex-based differences in immune responses to pathogens and self-antigens, with female individuals exhibiting increased susceptibility to various autoimmune diseases, and male individuals displaying preferential susceptibility to some viral, bacterial, parasitic and fungal infections. Although sex hormones clearly contribute to sex differences in immune cell composition and function, the presence of two X chromosomes in female individuals suggests that differential gene expression of numerous X chromosome-linked immune-related genes may also influence sex-biased innate and adaptive immune cell function in health and disease. Here, we review the sex differences in immune system composition and function, examining how hormones and genetics influence the immune system. We focus on the genetic and epigenetic contributions responsible for altered X chromosome-linked gene expression, and how this impacts sex-biased immune responses in the context of pathogen infection and systemic autoimmunity.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nikhil Jiwrajka
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Claudia D Lovell
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie E Toothacre
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Lu Z, Wang Y, Assumpção ALFV, Liu P, Kopp A, Saka S, Mcilwain SJ, Viny AD, Brand M, Pan X. Yin Yang 1 regulates cohesin complex protein SMC3 in mouse hematopoietic stem cells. Blood Adv 2024; 8:3076-3091. [PMID: 38531064 PMCID: PMC11222949 DOI: 10.1182/bloodadvances.2023011411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
ABSTRACT Yin Yang 1 (YY1) and structural maintenance of chromosomes 3 (SMC3) are 2 critical chromatin structural factors that mediate long-distance enhancer-promoter interactions and promote developmentally regulated changes in chromatin architecture in hematopoietic stem/progenitor cells (HSPCs). Although YY1 has critical functions in promoting hematopoietic stem cell (HSC) self-renewal and maintaining HSC quiescence, SMC3 is required for proper myeloid lineage differentiation. However, many questions remain unanswered regarding how YY1 and SMC3 interact with each other and affect hematopoiesis. We found that YY1 physically interacts with SMC3 and cooccupies with SMC3 at a large cohort of promoters genome wide, and YY1 deficiency deregulates the genetic network governing cell metabolism. YY1 occupies the Smc3 promoter and represses SMC3 expression in HSPCs. Although deletion of 1 Smc3 allele partially restores HSC numbers and quiescence in YY1 knockout mice, Yy1-/-Smc3+/- HSCs fail to reconstitute blood after bone marrow transplant. YY1 regulates HSC metabolic pathways and maintains proper intracellular reactive oxygen species levels in HSCs, and this regulation is independent of the YY1-SMC3 axis. Our results establish a distinct YY1-SMC3 axis and its impact on HSC quiescence and metabolism.
Collapse
Affiliation(s)
- Zhanping Lu
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Yinghua Wang
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Anna L. F. V. Assumpção
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Peng Liu
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Audrey Kopp
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Sahitya Saka
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| | - Sean J. Mcilwain
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Aaron D. Viny
- Division of Hematology & Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY
| | - Marjorie Brand
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Xuan Pan
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI
- Carbone Cancer Center, University of Wisconsin, Madison, WI
- Wisconsin Blood Cancer Research Institute, University of Wisconsin, Madison, WI
| |
Collapse
|
19
|
Lovell CD, Jiwrajka N, Amerman HK, Cancro MP, Anguera MC. Xist Deletion in B Cells Results in Systemic Lupus Erythematosus Phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594175. [PMID: 38798403 PMCID: PMC11118349 DOI: 10.1101/2024.05.15.594175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease preferentially observed in females. X-linked gene expression in XX females is normalized to that of XY males by X-Chromosome Inactivation (XCI). However, B cells from female SLE patients and mouse models of SLE exhibit mislocalization of Xist RNA, a critical regulator of XCI, and aberrant expression of X-linked genes, suggesting that impairment of XCI may contribute to disease. Here, we find that a subset of female mice harboring a conditional deletion of Xis t in B cells ("Xist cKO") spontaneously develop SLE phenotypes, including expanded activated B cell subsets, disease-specific autoantibodies, and glomerulonephritis. Moreover, pristane-induced SLE-like disease is more severe in Xist cKO mice. Activated B cells from Xist cKO mice with SLE phenotypes have increased expression of proinflammatory X-linked genes implicated in SLE. Together, this work indicates that impaired XCI maintenance in B cells directly contributes to the female-bias of SLE.
Collapse
|
20
|
Ferrer J, Dimitrova N. Transcription regulation by long non-coding RNAs: mechanisms and disease relevance. Nat Rev Mol Cell Biol 2024; 25:396-415. [PMID: 38242953 PMCID: PMC11045326 DOI: 10.1038/s41580-023-00694-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) outnumber protein-coding transcripts, but their functions remain largely unknown. In this Review, we discuss the emerging roles of lncRNAs in the control of gene transcription. Some of the best characterized lncRNAs have essential transcription cis-regulatory functions that cannot be easily accomplished by DNA-interacting transcription factors, such as XIST, which controls X-chromosome inactivation, or imprinted lncRNAs that direct allele-specific repression. A growing number of lncRNA transcription units, including CHASERR, PVT1 and HASTER (also known as HNF1A-AS1) act as transcription-stabilizing elements that fine-tune the activity of dosage-sensitive genes that encode transcription factors. Genetic experiments have shown that defects in such transcription stabilizers often cause severe phenotypes. Other lncRNAs, such as lincRNA-p21 (also known as Trp53cor1) and Maenli (Gm29348) contribute to local activation of gene transcription, whereas distinct lncRNAs influence gene transcription in trans. We discuss findings of lncRNAs that elicit a function through either activation of their transcription, transcript elongation and processing or the lncRNA molecule itself. We also discuss emerging evidence of lncRNA involvement in human diseases, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
21
|
Anger JT, Case LK, Baranowski AP, Berger A, Craft RM, Damitz LA, Gabriel R, Harrison T, Kaptein K, Lee S, Murphy AZ, Said E, Smith SA, Thomas DA, Valdés Hernández MDC, Trasvina V, Wesselmann U, Yaksh TL. Pain mechanisms in the transgender individual: a review. FRONTIERS IN PAIN RESEARCH 2024; 5:1241015. [PMID: 38601924 PMCID: PMC11004280 DOI: 10.3389/fpain.2024.1241015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/25/2024] [Indexed: 04/12/2024] Open
Abstract
Specific Aim Provide an overview of the literature addressing major areas pertinent to pain in transgender persons and to identify areas of primary relevance for future research. Methods A team of scholars that have previously published on different areas of related research met periodically though zoom conferencing between April 2021 and February 2023 to discuss relevant literature with the goal of providing an overview on the incidence, phenotype, and mechanisms of pain in transgender patients. Review sections were written after gathering information from systematic literature searches of published or publicly available electronic literature to be compiled for publication as part of a topical series on gender and pain in the Frontiers in Pain Research. Results While transgender individuals represent a significant and increasingly visible component of the population, many researchers and clinicians are not well informed about the diversity in gender identity, physiology, hormonal status, and gender-affirming medical procedures utilized by transgender and other gender diverse patients. Transgender and cisgender people present with many of the same medical concerns, but research and treatment of these medical needs must reflect an appreciation of how differences in sex, gender, gender-affirming medical procedures, and minoritized status impact pain. Conclusions While significant advances have occurred in our appreciation of pain, the review indicates the need to support more targeted research on treatment and prevention of pain in transgender individuals. This is particularly relevant both for gender-affirming medical interventions and related medical care. Of particular importance is the need for large long-term follow-up studies to ascertain best practices for such procedures. A multi-disciplinary approach with personalized interventions is of particular importance to move forward.
Collapse
Affiliation(s)
- Jennifer T. Anger
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Laura K. Case
- Department of Anesthesiology, University of California San Diego, San Diego, CA, United States
| | - Andrew P. Baranowski
- Pelvic Pain Medicine and Neuromodulation, University College Hospital Foundation Trust, University College London, London, United Kingdom
| | - Ardin Berger
- Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Rebecca M. Craft
- Department of Psychology, Washington State University, Pullman, WA, United States
| | - Lyn Ann Damitz
- Division of Plastic and Reconstructive Surgery, University of North Carolina, Chapel Hill, NC, United States
| | - Rodney Gabriel
- Division of Regional Anesthesia, University of California San Diego, San Diego, CA, United States
| | - Tracy Harrison
- Department of OB/GYN & Reproductive Sciences, University of California San Diego, San Diego, CA, United States
| | - Kirsten Kaptein
- Division of Plastic Surgery, University of California San Diego, San Diego, CA, United States
| | - Sanghee Lee
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Anne Z. Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Engy Said
- Division of Regional Anesthesia, University of California San Diego, San Diego, CA, United States
| | - Stacey Abigail Smith
- Division of Infection Disease, The Hope Clinic of Emory University, Atlanta, GA, United States
| | - David A. Thomas
- Office of Research on Women's Health, National Institutes of Health, Bethesda, MD, United States
| | - Maria del C. Valdés Hernández
- Department of Neuroimaging Sciences, Center for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Victor Trasvina
- Department of Urology, University of California San Diego, San Diego, CA, United States
| | - Ursula Wesselmann
- Departments of Anesthesiology and Perioperative Medicine/Division of Pain Medicine, Neurology and Psychology, and Consortium for Neuroengineering and Brain-Computer Interfaces, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
22
|
Amato-Menker CJ, Hopen Q, Pettit A, Gandhi J, Hu G, Schafer R, Franko J. XX sex chromosome complement modulates immune responses to heat-killed Streptococcus pneumoniae immunization in a microbiome-dependent manner. Biol Sex Differ 2024; 15:21. [PMID: 38486287 PMCID: PMC10938708 DOI: 10.1186/s13293-024-00597-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/21/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Differences in male vs. female immune responses are well-documented and have significant clinical implications. While the immunomodulatory effects of sex hormones are well established, the contributions of sex chromosome complement (XX vs. XY) and gut microbiome diversity on immune sexual dimorphisms have only recently become appreciated. Here we investigate the individual and collaborative influences of sex chromosome complements and gut microbiota on humoral immune activation. METHODS Male and female Four Core Genotype (FCG) mice were immunized with heat-killed Streptococcus pneumoniae (HKSP). Humoral immune responses were assessed, and X-linked immune-related gene expression was evaluated to explain the identified XX-dependent phenotype. The functional role of Kdm6a, an X-linked epigenetic regulatory gene of interest, was evaluated ex vivo using mitogen stimulation of B cells. Additional influences of the gut microbiome on sex chromosome-dependent B cell activation was also evaluated by antibiotically depleting gut microbiota prior to HKSP immunization. Reconstitution of the depleted microbiome with short-chain fatty acid (SCFA)-producing bacteria tested the impact of SCFAs on XX-dependent immune activation. RESULTS XX mice exhibited higher HKSP-specific IgM-secreting B cells and plasma cell frequencies than XY mice, regardless of gonadal sex. Although Kdm6a was identified as an X-linked gene overexpressed in XX B cells, inhibition of its enzymatic activity did not affect mitogen-induced plasma cell differentiation or antibody production in a sex chromosome-dependent manner ex vivo. Enhanced humoral responses in XX vs. XY immunized FCG mice were eliminated after microbiome depletion, indicating that the microbiome contributes to the identified XX-dependent immune enhancement. Reconstituting microbiota-depleted mice with select SCFA-producing bacteria enhanced fecal SCFA concentrations and increased humoral responses in XX, but not XY, FCG mice. However, exposure to the SCFA propionate alone did not enhance mitogenic B cell stimulation in ex vivo studies. CONCLUSIONS FCG mice have been used to assess sex hormone and sex chromosome complement influences on various sexually dimorphic traits. The current study indicates that the gut microbiome impacts humoral responses in an XX-dependent manner, suggesting that the collaborative influence of gut bacteria and other sex-specific factors should be considered when interpreting data aimed at delineating the mechanisms that promote sexual dimorphism.
Collapse
Affiliation(s)
- Carly J Amato-Menker
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Research, West Virginia University School of Dentistry, Morgantown, WV, USA
| | - Quinn Hopen
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
- Department of Research, West Virginia University School of Dentistry, Morgantown, WV, USA
| | - Andrea Pettit
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jasleen Gandhi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rosana Schafer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jennifer Franko
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Research, West Virginia University School of Dentistry, Morgantown, WV, USA.
| |
Collapse
|
23
|
Forsyth KS, Toothacre NE, Jiwrajka N, Driscoll AM, Shallberg LA, Cunningham-Rundles C, Barmettler S, Farmer J, Verbsky J, Routes J, Beiting DP, Romberg N, May MJ, Anguera MC. NF-κB Signaling is Required for X-Chromosome Inactivation Maintenance Following T cell Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579505. [PMID: 38405871 PMCID: PMC10888971 DOI: 10.1101/2024.02.08.579505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
X Chromosome Inactivation (XCI) is a female-specific process which balances X-linked gene dosage between sexes. Unstimulated T cells lack cytological enrichment of Xist RNA and heterochromatic modifications on the inactive X chromosome (Xi), and these modifications become enriched at the Xi after cell stimulation. Here, we examined allele-specific gene expression and the epigenomic profiles of the Xi following T cell stimulation. We found that the Xi in unstimulated T cells is largely dosage compensated and is enriched with the repressive H3K27me3 modification, but not the H2AK119-ubiquitin (Ub) mark, even at promoters of XCI escape genes. Upon CD3/CD28-mediated T cell stimulation, the Xi accumulates H2AK119-Ub and H3K27me3 across the Xi. Next, we examined the T cell signaling pathways responsible for Xist RNA localization to the Xi and found that T cell receptor (TCR) engagement, specifically NF-κB signaling downstream of TCR, is required. Disruption of NF-κB signaling, using inhibitors or genetic deletions, in mice and patients with immunodeficiencies prevents Xist/XIST RNA accumulation at the Xi and alters expression of some X-linked genes. Our findings reveal a novel connection between NF-κB signaling pathways which impact XCI maintenance in female T cells.
Collapse
|
24
|
Keniry A, Blewitt ME. Chromatin-mediated silencing on the inactive X chromosome. Development 2023; 150:dev201742. [PMID: 37991053 DOI: 10.1242/dev.201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.
Collapse
Affiliation(s)
- Andrew Keniry
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
25
|
Amato-Menker C, Hopen Q, Pettit A, Gandhi J, Hu G, Schafer R, Franko J. XX sex chromosome complement modulates immune responses to heat-killed Streptococcus pneumoniae immunization in a microbiome-dependent manner. RESEARCH SQUARE 2023:rs.3.rs-3429829. [PMID: 37961596 PMCID: PMC10635377 DOI: 10.21203/rs.3.rs-3429829/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Differences in male vs. female immune responses are well-documented and have significant clinical implications. While the immunomodulatory effects of sex hormones are well established, the contributions of sex chromosome complement (XX vs. XY) and gut microbiome diversity on immune sexual dimorphisms have only recently become appreciated. Here we investigate the individual and collaborative influences of sex chromosome complements and gut microbiome bacteria on humoral immune activation. Methods Sham-operated and gonadectomized male and female Four Core Genotype (FCG) mice were immunized with heat-killed Streptococcus pneumoniae (HKSP). Humoral immune responses were assessed, and X-linked immune-related gene expression was evaluated to explain the identified XX-dependent phenotypes. Ex vivo studies investigated the functional role of Kdm6a, an X-linked epigenetic regulatory gene of interest, in mitogenic B cell activation. Additionally, we examined whether gut microbiome communities, or their metabolites, differentially influence immune cell activation in a sex chromosome-dependent manner. Endogenous gut microbiomes were antibiotically depleted and reconstituted with select short-chain fatty acid (SCFA)-producing bacteria prior to HKSP immunization and immune responses assessed. Results XX mice exhibited higher HKSP-specific IgM-secreting B cells and plasma cell frequencies than XY mice, regardless of gonadal sex. Although Kdm6a was identified as an X-linked gene overexpressed in XX B cells, inhibition of its enzymatic activity did not affect mitogen-induced plasma cell differentiation or antibody production in a sex chromosome-dependent manner ex vivo. Enhanced humoral responses in XX vs. XY immunized FCG mice were eliminated after microbiome depletion, indicating that the microbiome contributes to the identified XX-dependent immune enhancement. Reconstituting microbiota-depleted mice with select SCFA-producing bacteria increased humoral responses in XX, but not XY, FCG mice. This XX-dependent enhancement appears to be independent of SCFA production in males, while female XX-dependent responses relied on SCFAs. Conclusions FCG mice have been used to assess the influence of sex hormones and sex chromosome complements on various sexually dimorphic traits. The current study indicates that the gut microbiome impacts humoral responses in an XX-dependent manner, suggesting that the collaborative influence of gut bacteria and other sex-specific factors should be considered when interpreting data aimed at delineating the mechanisms that promote sexual dimorphism.
Collapse
|
26
|
Youness A, Cenac C, Faz-López B, Grunenwald S, Barrat FJ, Chaumeil J, Mejía JE, Guéry JC. TLR8 escapes X chromosome inactivation in human monocytes and CD4 + T cells. Biol Sex Differ 2023; 14:60. [PMID: 37723501 PMCID: PMC10506212 DOI: 10.1186/s13293-023-00544-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Human endosomal Toll-like receptors TLR7 and TLR8 recognize self and non-self RNA ligands, and are important mediators of innate immunity and autoimmune pathogenesis. TLR7 and TLR8 are, respectively, encoded by adjacent X-linked genes. We previously established that TLR7 evades X chromosome inactivation (XCI) in female immune cells. Whether TLR8 also evades XCI, however, has not yet been explored. METHOD In the current study, we used RNA fluorescence in situ hybridization (RNA FISH) to directly visualize, on a single-cell basis, primary transcripts of TLR7 and TLR8 relative to X chromosome territories in CD14+ monocytes and CD4+ T lymphocytes from women, Klinefelter syndrome (KS) men, and euploid men. To assign X chromosome territories in cells lacking robust expression of a XIST compartment, we designed probes specific for X-linked genes that do not escape XCI and therefore robustly label the active X chromosome. We also assessed whether XCI escape of TLR8 was associated with sexual dimorphism in TLR8 protein expression by western blot and flow cytometry. RESULTS Using RNA FISH, we show that TLR8, like TLR7, evades XCI in immune cells, and that cells harboring simultaneously TLR7 and TLR8 transcript foci are more frequent in women and KS men than in euploid men, resulting in a sevenfold difference in frequency. This transcriptional bias was again observable when comparing the single X of XY males with the active X of cells from females or KS males. Interestingly, TLR8 protein expression was significantly higher in female mononuclear blood cells, including all monocyte subsets, than in male cells. CONCLUSIONS TLR8, mirroring TLR7, escapes XCI in human monocytes and CD4+ T cells. Co-dependent transcription from the active X chromosome and escape from XCI could both contribute to higher TLR8 protein abundance in female cells, which may have implications for the response to viruses and bacteria, and the risk of developing inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Ali Youness
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France
| | - Berenice Faz-López
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France
| | - Solange Grunenwald
- Service d'Endocrinologie, Maladies Métaboliques et Nutrition, Hôpital Larrey, Centre Hospitalier Universitaire (CHU) de Toulouse, 31059, Toulouse, France
| | - Franck J Barrat
- Hospital for Special Surgery, HSS Research Institute and David Z. Rosensweig Genomics Research Center, New York, NY, 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College of Cornell University, New York, NY, 10021, USA
| | - Julie Chaumeil
- INSERM, CNRS, Université Paris Cité, Institut Cochin, 75014, Paris, France
| | - José Enrique Mejía
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France.
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), UMR 1291 INSERM, CNRS, Hôpital Purpan, Université de Toulouse, 31024, Toulouse, France.
| |
Collapse
|
27
|
Jiwrajka N, Toothacre NE, Beethem ZT, Sting S, Forsyth KS, Dubin AH, Driscoll A, Stohl W, Anguera MC. Impaired dynamic X-chromosome inactivation maintenance in T cells is a feature of spontaneous murine SLE that is exacerbated in female-biased models. J Autoimmun 2023; 139:103084. [PMID: 37399593 PMCID: PMC11140471 DOI: 10.1016/j.jaut.2023.103084] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a highly female-biased systemic autoimmune disease, but the molecular basis for this female bias remains incompletely elucidated. B and T lymphocytes from patients with SLE and female-biased mouse models of SLE exhibit features of epigenetic dysregulation on the X chromosome which may contribute to this strong female bias. We therefore examined the fidelity of dynamic X-chromosome inactivation maintenance (dXCIm) in the pathogenesis of two murine models of spontaneous lupus-NZM2328 and MRL/lpr-with disparate levels of female-bias to determine whether impaired dXCIm contributes to the female bias of disease. METHODS CD23+ B cells and CD3+ T cells were purified from age-matched C57BL/6 (B6), MRL/lpr, and NZM2328 male and female mice, activated in vitro, and processed for Xist RNA fluorescence in situ hybridization, H3K27me3 immunofluorescence imaging, qPCR, and RNA sequencing analyses. RESULTS The dynamic relocalization of Xist RNA and the canonical heterochromatin mark, H3K27me3, to the inactive X chromosome was preserved in CD23+ B cells, but impaired in activated CD3+ T cells from the MRL/lpr model (p < 0.01 vs. B6), and even more impaired in the heavily female-biased NZM2328 model (p < 0.001 vs. B6; p < 0.05 vs. MRL/lpr). RNAseq of activated T cells from NZM2328 mice revealed the female-biased upregulation of 32 X-linked genes distributed broadly across the X chromosome, many of which have roles in immune function. Many genes encoding Xist RNA-interacting proteins were also differentially expressed and predominantly downregulated, which may account for the observed mislocalization of Xist RNA to the inactive X chromosome. CONCLUSIONS Although evident in T cells from both the MRL/lpr and NZM2328 models of spontaneous SLE, impaired dXCIm is more severe in the heavily female-biased NZM2328 model. The aberrant X-linked gene dosage in female NZM2328 mice may contribute towards the development of female-biased immune responses in SLE-prone hosts. These findings provide important insights into the epigenetic mechanisms contributing to female-biased autoimmunity.
Collapse
Affiliation(s)
- Nikhil Jiwrajka
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA; Division of Rheumatology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Natalie E Toothacre
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Zachary T Beethem
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Sarah Sting
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Katherine S Forsyth
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Aimee H Dubin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Amanda Driscoll
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - William Stohl
- Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Montserrat C Anguera
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
28
|
Baghdadi H, Heidari R, Zavvar M, Ahmadi N, Shakouri Khomartash M, Vahidi M, Mohammadimehr M, Bashash D, Ghorbani M. Long Non-Coding RNA Signatures in Lymphopoiesis and Lymphoid Malignancies. Noncoding RNA 2023; 9:44. [PMID: 37624036 PMCID: PMC10458434 DOI: 10.3390/ncrna9040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Lymphoid cells play a critical role in the immune system, which includes three subgroups of T, B, and NK cells. Recognition of the complexity of the human genetics transcriptome in lymphopoiesis has revolutionized our understanding of the regulatory potential of RNA in normal lymphopoiesis and lymphoid malignancies. Long non-coding RNAs (lncRNAs) are a class of RNA molecules greater than 200 nucleotides in length. LncRNAs have recently attracted much attention due to their critical roles in various biological processes, including gene regulation, chromatin organization, and cell cycle control. LncRNAs can also be used for cell differentiation and cell fate, as their expression patterns are often specific to particular cell types or developmental stages. Additionally, lncRNAs have been implicated in lymphoid differentiation, such as regulating T-cell and B-cell development, and their expression has been linked to immune-associated diseases such as leukemia and lymphoma. In addition, lncRNAs have been investigated as potential biomarkers for diagnosis, prognosis, and therapeutic response to disease management. In this review, we provide an overview of the current knowledge about the regulatory role of lncRNAs in physiopathology processes during normal lymphopoiesis and lymphoid leukemia.
Collapse
Affiliation(s)
- Hamed Baghdadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
| | - Reza Heidari
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran 1411718541, Iran;
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 443614177, Iran;
| | - Nazanin Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | | | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mojgan Mohammadimehr
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Mahdi Ghorbani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| |
Collapse
|
29
|
Elazazy O, Midan HM, Shahin RK, Elesawy AE, Elballal MS, Sallam AAM, Elbadry AMM, Elrebehy MA, Bhnsawy A, Doghish AS. Long non-coding RNAs and rheumatoid arthritis: Pathogenesis and clinical implications. Pathol Res Pract 2023; 246:154512. [PMID: 37172525 DOI: 10.1016/j.prp.2023.154512] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a class of noncoding RNAs with a length larger than 200 nucleotides that participate in various diseases and biological processes as they can control gene expression by different mechanisms. Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder characterized by symmetrical destructive destruction of distal joints as well as extra-articular involvement. Different studies have documented and proven the abnormal expression of lncRNAs in RA patients. Various lncRNAs have proven potential as biomarkers and targets for diagnosing, prognosis and treating RA. This review will focus on RA pathogenesis, clinical implications, and related lncRNA expressions that help to identify new biomarkers and treatment targets.
Collapse
Affiliation(s)
- Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Abdullah M M Elbadry
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt.
| | - Abdelmenem Bhnsawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| |
Collapse
|
30
|
Miquel CH, Faz-Lopez B, Guéry JC. Influence of X chromosome in sex-biased autoimmune diseases. J Autoimmun 2023; 137:102992. [PMID: 36641351 DOI: 10.1016/j.jaut.2023.102992] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Females have better ability to resolve infections, compared to males, but also, a greater susceptibility to develop autoimmunity. Besides the initial interest on the contribution of sex-steroid hormone signaling, the role of genetic factors linked to X chromosome has recently focused much attention. In human and mouse, the number of X chromosomes, rather than sex-steroid hormones, have been found associated with higher risk or susceptibility to develop autoimmunity, particularly rheumatic diseases, such as SLE, Sjögren's syndrome or Scleroderma. For all of these diseases, the Toll-like receptor TLR7 and TLR8, encoded on the same locus in the human Xp, have been demonstrated to be causal in disease development through gene dosage effect or gain of function mutations. During embryonic development in female mammals, one X chromosome is stochastically inactivated to balance X-linked gene expression between males and females, a process known as X chromosome inactivation (XCI). Nevertheless, some genes including immune related genes can escape XCI to variable degree and penetrance, resulting in a bi-allelic expression in some immune cells, such as TLR7. Because tight regulation of TLR expression is necessary for a healthy, self-tolerant immune environment, XCI escape has been proposed as a mechanism contributing to this sexual dimorphism. In this review, we will summarize general mechanisms of XCI, and describe the known escapee's genes in immune cells, the cellular diversity created by such mechanisms and its potential implication in autoimmune diseases, with a particular focus on the X-linked genes and immune cell populations involved in SLE. Whether dysregulated expression of X-linked genes could contribute to the enhanced susceptibility of females to develop such diseases remains to be proven. Shedding lights onto the X-linked genetic mechanisms contributing to modulation of immune cell functions will undoubtedly provide new insights into the intricate mechanisms underlying sex differences in immunity and autoimmunity.
Collapse
Affiliation(s)
- Charles-Henry Miquel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, France; Arthritis R&D, Neuilly-Sur-Seine, France
| | - Berenice Faz-Lopez
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, France.
| |
Collapse
|
31
|
Sierra I, Pyfrom S, Weiner A, Zhao G, Driscoll A, Yu X, Gregory BD, Vaughan AE, Anguera MC. Unusual X chromosome inactivation maintenance in female alveolar type 2 cells is correlated with increased numbers of X-linked escape genes and sex-biased gene expression. Stem Cell Reports 2023; 18:489-502. [PMID: 36638790 PMCID: PMC9968984 DOI: 10.1016/j.stemcr.2022.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Sex differences exist for many lung pathologies, including COVID-19 and pulmonary fibrosis, but the mechanistic basis for this remains unclear. Alveolar type 2 cells (AT2s), which play a key role in alveolar lung regeneration, express the X-linked Ace2 gene that has roles in lung repair and SARS-CoV-2 pathogenesis, suggesting that X chromosome inactivation (XCI) in AT2s might impact sex-biased lung pathology. Here we investigate XCI maintenance and sex-specific gene expression profiles using male and female AT2s. Remarkably, the inactive X chromosome (Xi) lacks robust canonical Xist RNA "clouds" and less enrichment of heterochromatic modifications in human and mouse AT2s. We demonstrate that about 68% of expressed X-linked genes in mouse AT2s, including Ace2, escape XCI. There are genome-wide expression differences between male and female AT2s, likely influencing both lung physiology and pathophysiologic responses. These studies support a renewed focus on AT2s as a potential contributor to sex-biased differences in lung disease.
Collapse
Affiliation(s)
- Isabel Sierra
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah Pyfrom
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aaron Weiner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda Driscoll
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Gibbs LC, Oviedo JM, Ondigo BN, Fairfax KC. Maternal infection causes dysfunctional BCR signaling in male offspring due to aberrant Xist expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528357. [PMID: 36824836 PMCID: PMC9948949 DOI: 10.1101/2023.02.13.528357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Infections during pregnancy with pathogens such as helminths correlate with altered immune responses to common childhood immunizations. However, the molecular mechanisms that underlie this remain unknown. Using our murine model of maternal schistosomiasis, when immunized, males from infected mothers had a lower frequency of antigen-specific germinal center B cells and downregulation of transcripts downstream of BCR signaling compared to males from uninfected mothers. This is driven by a reduction in developing B cell populations within the bone marrow of pups from infected mothers. Males from infected mothers were impacted to a greater extent than their female littermate counterparts. We found this defect to be caused by aberrant expression of the long non-coding RNA Xist in males leading to dysregulated Igα expression on developing B cells. This, for the first time, links dysfunctional BCR signaling with Xist expression, while also proposing a detrimental function for Xist expression in males.
Collapse
Affiliation(s)
- Lisa C. Gibbs
- Department of Pathology, University of Utah; Salt Lake City, UT, United States
| | - Juan M. Oviedo
- Department of Pathology, University of Utah; Salt Lake City, UT, United States
| | | | - Keke C. Fairfax
- Department of Pathology, University of Utah; Salt Lake City, UT, United States
| |
Collapse
|
33
|
Anesi N, Miquel CH, Laffont S, Guéry JC. The Influence of Sex Hormones and X Chromosome in Immune Responses. Curr Top Microbiol Immunol 2023; 441:21-59. [PMID: 37695424 DOI: 10.1007/978-3-031-35139-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Males and females differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections and cancers. Cellular targets and molecular pathways underlying sexual dimorphism in immunity have started to emerge and appeared multifactorial. It became increasingly clear that sex-linked biological factors have important impact on the development, tissue maintenance and effector function acquisition of distinct immune cell populations, thereby regulating multiple layers of innate or adaptive immunity through distinct mechanisms. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in susceptibility to autoimmune diseases and allergies, and the sex-biased responses in natural immunity and cancer.
Collapse
Affiliation(s)
- Nina Anesi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Charles-Henry Miquel
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Sophie Laffont
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France
| | - Jean-Charles Guéry
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, 31300, Toulouse, France.
- INSERM UMR1291, Centre Hospitalier Universitaire Purpan, Place du Dr. Baylac, 31024, Toulouse Cedex 3, France.
| |
Collapse
|
34
|
Knockdown of YY1 Inhibits XIST Expression and Enhances Cloned Pig Embryo Development. Int J Mol Sci 2022; 23:ijms232314572. [PMID: 36498896 PMCID: PMC9739934 DOI: 10.3390/ijms232314572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The technique of cloning has wide applications in animal husbandry and human biomedicine. However, the very low developmental efficiency of cloned embryos limits the application of cloning. Ectopic XIST-expression-induced abnormal X chromosome inactivation (XCI) is a primary cause of the low developmental competence of cloned mouse and pig embryos. Knockout or knockdown of XIST improves cloning efficiency in both pigs and mice. The transcription factor Yin yang 1(YY1) plays a critical role in XCI by triggering the transcription of X-inactive specific transcript (XIST) and facilitating the localization of XIST RNA on the X chromosome. This study aimed to investigate whether RNA interference to suppress the expression of YY1 can inhibit erroneous XIST expression, rescue abnormal XCI, and improve the developmental ability of cloned pig embryos. The results showed that YY1 binds to the 5' regulatory region of the porcine XIST gene in pig cells. The microinjection of YY1 siRNA into cloned pig embryos reduced the transcript abundance of XIST and upregulated the mRNA level of X-linked genes at the 4-cell and blastocyst stages. The siRNA-mediated knockdown of YY1 altered the transcriptome and enhanced the in vitro and in vivo developmental efficiency of cloned porcine embryos. These results suggested that YY1 participates in regulating XIST expression and XCI in cloned pig embryos and that the suppression of YY1 expression can increase the developmental rate of cloned pig embryos. The present study established a new method for improving the efficiency of pig cloning.
Collapse
|
35
|
Xiao F, Rui K, Shi X, Wu H, Cai X, Lui KO, Lu Q, Ballestar E, Tian J, Zou H, Lu L. Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
Affiliation(s)
- Fan Xiao
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China
| | - Ke Rui
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital and School of Medicine, Henan University of Science and Technology, Luoyang, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Xiaoyan Cai
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Kathy O Lui
- Department of Chemical Pathology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute, Badalona, 08916, Barcelona, Spain
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center, East China Normal University, Shanghai, China
| | - Jie Tian
- Institute of Medical Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Hejian Zou
- Department of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Liwei Lu
- Department of Pathology, Shenzhen Institute of Research and Innovation and Shenzhen Hospital, The University of Hong Kong, Hong Kong; Chongqing International Institute for Immunology, Chongqing, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
36
|
Pujantell M, Altfeld M. Consequences of sex differences in Type I IFN responses for the regulation of antiviral immunity. Front Immunol 2022; 13:986840. [PMID: 36189206 PMCID: PMC9522975 DOI: 10.3389/fimmu.2022.986840] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The immune system protects us from pathogens, such as viruses. Antiviral immune mechanisms aim to limit viral replication, and must maintain immunological homeostasis to avoid excessive inflammation and damage to the host. Sex differences in the manifestation and progression of immune-mediated disease point to sex-specific factors modulating antiviral immunity. The exact mechanisms regulating these immunological differences between females and males are still insufficiently understood. Females are known to display stronger Type I IFN responses and are less susceptible to viral infections compared to males, indicating that Type I IFN responses might contribute to the sexual dimorphisms observed in antiviral responses. Here, we review the impact of sex hormones and X chromosome-encoded genes on differences in Type I IFN responses between females and males; and discuss the consequences of sex differences in Type I IFN responses for the regulation of antiviral immune responses.
Collapse
Affiliation(s)
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
37
|
Lovell CD, Anguera MC. Long Noncoding RNAs That Function in Nutrition: Lnc-ing Nutritional Cues to Metabolic Pathways. Annu Rev Nutr 2022; 42:251-274. [PMID: 35436418 DOI: 10.1146/annurev-nutr-062220-030244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long noncoding RNAs (lncRNAs) are sensitive to changing environments and play key roles in health and disease. Emerging evidence indicates that lncRNAs regulate gene expression to shape metabolic processes in response to changing nutritional cues. Here we review various lncRNAs sensitive to fasting, feeding, and high-fat diet in key metabolic tissues (liver, adipose, and muscle), highlighting regulatory mechanisms that trigger expression changes of lncRNAs themselves, and how these lncRNAs regulate gene expression of key metabolic genes in specific cell types or across tissues. Determining how lncRNAs respond to changes in nutrition is critical for our understanding of the complex downstream cascades following dietary changes and can shape how we treat metabolic disease. Furthermore, investigating sex biases that might influence lncRNA-regulated responses will likely reveal contributions toward the observed disparities between the sexes in metabolic diseases.
Collapse
Affiliation(s)
- Claudia D Lovell
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | - Montserrat C Anguera
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
38
|
Yang T, Ou J, Yildirim E. Xist exerts gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis. Nat Commun 2022; 13:4464. [PMID: 35915095 PMCID: PMC9343370 DOI: 10.1038/s41467-022-32273-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/21/2022] [Indexed: 11/12/2022] Open
Abstract
X chromosome inactivation (XCI) is a dosage compensation phenomenon that occurs in females. Initiation of XCI depends on Xist RNA, which triggers silencing of one of the two X chromosomes, except for XCI escape genes that continue to be biallelically expressed. In the soma XCI is stably maintained with continuous Xist expression. How Xist impacts XCI maintenance remains an open question. Here we conditionally delete Xist in hematopoietic system of mice and report differentiation and cell cycle defects in female hematopoietic stem and progenitor cells (HSPCs). By utilizing female HSPCs and mouse embryonic fibroblasts, we find that X-linked genes show variable tolerance to Xist loss. Specifically, XCI escape genes exhibit preferential transcriptional upregulation, which associates with low H3K27me3 occupancy and high chromatin accessibility that accommodates preexisting binding of transcription factors such as Yin Yang 1 (YY1) at the basal state. We conclude that Xist is necessary for gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis. Here the authors investigate the functional relevance of X-chromosome inactivation (XCI) regulator Xist in hematopoiesis. They find that Xist loss leads to changes in the ratio of hematopoietic progenitor cells and results in chromatin accessibility and transcriptional upregulation on the inactive X chromosome, including XCI escape genes known to be associated with cell cycle and immune response.
Collapse
Affiliation(s)
- Tianqi Yang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Duke Regeneration Center, Duke University, Durham, NC, 27710, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Duke Regeneration Center, Duke University, Durham, NC, 27710, USA
| | - Eda Yildirim
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA. .,Duke Regeneration Center, Duke University, Durham, NC, 27710, USA. .,Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
39
|
Epigenetic modifier SMCHD1 maintains a normal pool of long-term hematopoietic stem cells. iScience 2022; 25:104684. [PMID: 35856023 PMCID: PMC9287190 DOI: 10.1016/j.isci.2022.104684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/16/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022] Open
Abstract
SMCHD1 (structural maintenance of chromosomes hinge domain containing 1) is a noncanonical SMC protein that mediates long-range repressive chromatin structures. SMCHD1 is required for X chromosome inactivation in female cells and repression of imprinted and clustered autosomal genes, with SMCHD1 mutations linked to human diseases facioscapulohumeral muscular dystrophy (FSHD) and bosma arhinia and micropthalmia syndrome (BAMS). We used a conditional mouse model to investigate SMCHD1 in hematopoiesis. Smchd1-deleted mice maintained steady-state hematopoiesis despite showing an impaired reconstitution capacity in competitive bone marrow transplantations and age-related hematopoietic stem cell (HSC) loss. This phenotype was more pronounced in Smchd1-deleted females, which showed a loss of quiescent HSCs and fewer B cells. Gene expression profiling of Smchd1-deficient HSCs and B cells revealed known and cell-type-specific SMCHD1-sensitive genes and significant disruption to X-linked gene expression in female cells. These data show SMCHD1 is a regulator of HSCs whose effects are more profound in females. SMCHD1 is not required to maintain steady-state hematopoiesis Smchd1-deletion leads to loss of adult hematopoietic stem cells Smchd1-deleted female mice are more severely affected than males SMCHD1 maintains cellular quiescence in female hematopoietic stem cells
Collapse
|
40
|
A lifelong duty: how Xist maintains the inactive X chromosome. Curr Opin Genet Dev 2022; 75:101927. [PMID: 35717799 PMCID: PMC9472561 DOI: 10.1016/j.gde.2022.101927] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022]
Abstract
Female eutherians transcriptionally silence one X chromosome to balance gene dosage between the sexes. X-chromosome inactivation (XCI) is initiated by the lncRNA Xist, which assembles many proteins within the inactive X chromosome (Xi) to trigger gene silencing and heterochromatin formation. It is well established that gene silencing on the Xi is maintained through repressive epigenetic processes, including histone deacetylation and DNA methylation. Recent studies revealed a new mechanism where RNA-binding proteins that interact directly with the RNA contribute to the maintenance of Xist localization and gene silencing. In addition, a surprising plasticity of the Xi was uncovered with many genes becoming upregulated upon experimental deletion of Xist. Intriguingly, immune cells normally lose Xist from the Xi, suggesting that thisXist dependence is utilized in vivo to dynamically regulate gene expression from the Xi. These new studies expose fundamental regulatory mechanisms for the chromatin association of RNAs, highlight the need for studying the maintenance of XCI and Xist localization in a gene- and cell-type-specific manner, and are likely to have clinical impact.
Collapse
|
41
|
He JY, Cheng M, Ye JL, Peng CH, Chen J, Luo B, Zhang XY, Fu Q. YY1-induced lncRNA XIST inhibits cartilage differentiation of BMSCs by binding with TAF15 to stabilizing FUT1 expression. Regen Ther 2022; 20:41-50. [PMID: 35402663 PMCID: PMC8968204 DOI: 10.1016/j.reth.2022.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Introduction The functional roles and mechanism of the XIST in osteoarthritis and the chondrogenic differentiation of BMSCs were clarified. Methods The expression levels of XIST, TAF15, FUT1 and YY1 were detected through quantitative RT-PCR. The protein expression of Sox9, ACAN, COL2A1 and FUT1 were detected by western blot and immunohistochemistry. The damage of cartilage tissue was detected by HE staining, and Safranin O-fast green. Alcian-Blue and Alizarin red S staining were performed to evaluate BMSCs chondrogenic differentiation. The relationship between XIST and TAF15, XIST and TAF15 were analyzed by RNA immunoprecipitation assay. Luciferase reporter assays and chromatin immunoprecipitation were performed to detect the interaction relationship between XIST and YY1. In addition, osteoarthritis mice were built to assess the function of XIST in vivo. Results The levels of XIST, TAF15 and FUT1 were upregulated in cartilage tissues from osteoarthritis patient. The level of XIST was decreased in BMSCs during chondrogenic differentiation. XIST overexpression inhibited the chondrogenic differentiation of BMSCs. Moreover, silencing of FUT1 reversed the effects of XIST overexpression on BMSCs chondrogenic differentiation. Mechanistically, in BMSCs, YY1 induced the expression of XIST in BMSCs, and XIST regulated FUT1 mRNA stability through targeting TAF15. Furthermore, silencing of XIST alleviated the symptoms of cartilage injury in OA mice. Conclusion Taken together, these results suggested that YY1 induced XIST was closely related to the chondrogenic differentiation of BMSCs and the progression of osteoarthritis by TAF15/FUT1 axis, and may be a new OA therapeutic target. XIST and TAF15 expression were upregulated in osteoarthritis. Overexpression of XIST suppressed the chondrogenic differentiation of BMSCs. XIST regulated BMSCs chondrogenic differentiation through enhancing FUT1 mRNA stability via TAF15. XIST silencing relieved cartilage damage in OA mice.
Collapse
Affiliation(s)
- Jian-Ying He
- Orthopedics Department, JiangXi Provinvcial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
| | - Min Cheng
- Orthopedics Department, People's Hospital of Poyang County, Shangrao, 333100, Jiangxi Province, PR China
| | - Jia-Lian Ye
- Orthopedics Department, People's Hospital of Poyang County, Shangrao, 333100, Jiangxi Province, PR China
| | - Chuan-Hua Peng
- Orthopedics Department, People's Hospital of Poyang County, Shangrao, 333100, Jiangxi Province, PR China
| | - Jian Chen
- Orthopedics Department, People's Hospital of Poyang County, Shangrao, 333100, Jiangxi Province, PR China
| | - Bin Luo
- Orthopedics Department, People's Hospital of Poyang County, Shangrao, 333100, Jiangxi Province, PR China
| | - Xian-Yu Zhang
- Orthopedics Department, Shangrao People's Hospital, Shangrao, 333400, Jiangxi Province, PR China
| | - Qiang Fu
- Department of Rheumatology, JiangXi Provinvcial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330006, Jiangxi Province, PR China
- Corresponding author. Department of Rheumatology, JiangXi Provinvcial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, No. 92, Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi Province, PR China.
| |
Collapse
|
42
|
Li J, Ming Z, Yang L, Wang T, Liu G, Ma Q. Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes Dis 2022; 9:1478-1492. [PMID: 36157489 PMCID: PMC9485286 DOI: 10.1016/j.gendis.2022.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual dimorphism has been reported in various human diseases including autoimmune diseases, neurological diseases, pulmonary arterial hypertension, and some types of cancers, although the underlying mechanisms remain poorly understood. The long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in X chromosome inactivation (XCI) in female placental mammals, a process that ensures the balanced expression dosage of X-linked genes between sexes. XIST is abnormally expressed in many sex-biased diseases. In addition, escape from XIST-mediated XCI and skewed XCI also contribute to sex-biased diseases. Therefore, its expression or modification can be regarded as a biomarker for the diagnosis and prognosis of many sex-biased diseases. Genetic manipulation of XIST expression can inhibit the progression of some of these diseases in animal models, and therefore XIST has been proposed as a potential therapeutic target. In this manuscript, we summarize the current knowledge about the mechanisms for XIST-mediated XCI and the roles of XIST in sex-biased diseases, and discuss potential therapeutic strategies targeting XIST.
Collapse
|
43
|
Gerussi A, Caime C, Binatti E, Cristoferi L, Asselta R, Gershwin EM, Invernizzi P. X marks the spot in autoimmunity. Expert Rev Clin Immunol 2022; 18:429-437. [PMID: 35349778 DOI: 10.1080/1744666x.2022.2060203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Autoimmune diseases mostly affect females. Besides hormones, several factors related to chromosome X have been called in action to explain this sex predominance. AREAS COVERED This paper provides an overview on the role of chromosome X (chrX) in explaining why females have higher susceptibility to autoimmunity. The work outlines some essential concepts regarding chrX inactivation, escape from chrX inactivation and the evolutionary history of chrX. In addition, we will discuss the concept of gene escape in immune cells, with examples related to specific X-linked genes and autoimmune diseases. EXPERT OPINION There is growing evidence that many genes present on chrX escape inactivation, and some of them have significant immune-mediated functions. In immune cells of female individuals the escape of these genes is not constant, but the knowledge of the mechanisms controlling this plasticity are not completely understood. Future studies aimed at the characterization of these modifications at single-cell resolution, together with conformational 3D studies of the inactive X chromosome, will hopefully help to fill this gap of knowledge.
Collapse
Affiliation(s)
- Alessio Gerussi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Chiara Caime
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Eleonora Binatti
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Laura Cristoferi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Humanitas Clinical and Research Center, IRCCS, Rozzano, Italy
| | - Eric M Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, USA
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Monza, Italy
| |
Collapse
|
44
|
Harley ITW, Sawalha AH. Systemic lupus erythematosus as a genetic disease. Clin Immunol 2022; 236:108953. [PMID: 35149194 PMCID: PMC9167620 DOI: 10.1016/j.clim.2022.108953] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus is the prototypical systemic autoimmune disease, as it is characterized both by protean multi-organ system manifestations and by the uniform presence of pathogenic autoantibodies directed against components of the nucleus. Prior to the modern genetic era, the diverse clinical manifestations of SLE suggested to many that SLE patients were unlikely to share a common genetic risk basis. However, modern genetic studies have revealed that SLE usually arises when an environmental exposure occurs in an individual with a collection of genetic risk variants passing a liability threshold. Here, we summarize the current state of the field aimed at: (1) understanding the genetic architecture of this complex disease, (2) synthesizing how this genetic risk architecture impacts cellular and molecular disease pathophysiology, (3) providing illustrative examples that highlight the rich complexity of the pathobiology of this prototypical autoimmune disease and (4) communicating this complex etiopathogenesis to patients.
Collapse
Affiliation(s)
- Isaac T W Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA; Human Immunology and Immunotherapy Initiative (HI(3)), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, USA; Rocky Mountain Regional Veteran's Administration Medical Center (VAMC), Medicine Service, Rheumatology Section, Aurora, CO, USA.
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Long non-coding RNA Xist contribution in systemic lupus erythematosus and rheumatoid arthritis. Clin Immunol 2022; 236:108937. [PMID: 35114365 DOI: 10.1016/j.clim.2022.108937] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Growing evidence points towards the role of the long non-coding (lnc)-RNA Xist expressed in female cells as a predominant key actor for the sex bias observed in systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Indeed, in female cells, lnc-Xist controls transcription directly by spreading across the inactivated X chromosome (Xi) and indirectly by sequestring miRNAs as a sponge. The inactivation process at Xi is altered in lymphocytes from SLE women and associated with important variations in ribonucleoproteins (RNP) associated with lnc-Xist. In fibroblast-like synoviocytes (FLS) and osteoclasts from RA women, proinflammatory and proliferative pathways are upregulated due to the sequestration effect exerted by lnc-Xist overexpression on miRNAs. The key role played by lnc-Xist in SLE and RA is further supported by it's knock down that recapitulates the SLE B cell extrafollicular profile and controls RA associated FLS proinflammatory cytokine production and proliferation.
Collapse
|
46
|
Morrison TA, Hudson WH, Chisolm DA, Kanno Y, Shih HY, Ahmed R, Henao-Mejia J, Hafner M, O'Shea JJ. Evolving Views of Long Noncoding RNAs and Epigenomic Control of Lymphocyte State and Memory. Cold Spring Harb Perspect Biol 2022; 14:a037952. [PMID: 34001528 PMCID: PMC8725624 DOI: 10.1101/cshperspect.a037952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Not simply an attribute of the adaptive immune system, immunological memory can be viewed on multiple levels. Accordingly, the molecular basis of memory comprises multiple mechanisms. The advent of new sequencing technologies has greatly enhanced the understanding of gene regulation and lymphocyte specification, and improved measurement of chromatin states affords new insights into the epigenomic and transcriptomic programs that underlie memory. Beyond canonical genes, the involvement of long noncoding RNAs (lncRNAs) is becoming increasingly apparent, and it appears that there are more than two to three times as many lncRNAs as protein-coding genes. lncRNAs can directly interact with DNA, RNA, and proteins, and a single lncRNA can contain multiple modular domains and thus interact with different classes of molecules. Yet, most lncRNAs have not been tested for function, and even fewer knockout mice have been generated. It is therefore timely to consider new potential mechanisms that may contribute to immune memory.
Collapse
Affiliation(s)
- Tasha A Morrison
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William H Hudson
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Danielle A Chisolm
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Han-Yu Shih
- Neuro-Immune Regulome Unit, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Jorge Henao-Mejia
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
47
|
Chernov AV, Shubayev VI. Sexual Dimorphism of Early Transcriptional Reprogramming in Dorsal Root Ganglia After Peripheral Nerve Injury. Front Mol Neurosci 2021; 14:779024. [PMID: 34966260 PMCID: PMC8710713 DOI: 10.3389/fnmol.2021.779024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/19/2021] [Indexed: 01/18/2023] Open
Abstract
Peripheral nerve injury induces genome-wide transcriptional reprogramming of first-order neurons and auxiliary cells of dorsal root ganglia (DRG). Accumulating experimental evidence suggests that onset and mechanistic principles of post-nerve injury processes are sexually dimorphic. We examined largely understudied aspects of early transcriptional events in DRG within 24 h after sciatic nerve axotomy in mice of both sexes. Using high-depth RNA sequencing (>50 million reads/sample) to pinpoint sexually dimorphic changes related to regeneration, immune response, bioenergy, and sensory functions, we identified a higher number of transcriptional changes in male relative to female DRG. In males, the decline in ion channel transcripts was accompanied by the induction of innate immune cascades via TLR, chemokine, and Csf1-receptor axis and robust regenerative programs driven by Sox, Twist1/2, and Pax5/9 transcription factors. Females demonstrated nerve injury-specific transcriptional co-activation of the actinin 2 network. The predicted upstream regulators and interactive networks highlighted the role of novel epigenetic factors and genetic linkage to sex chromosomes as hallmarks of gene regulation post-axotomy. We implicated epigenetic X chromosome inactivation in the regulation of immune response activity uniquely in females. Sexually dimorphic regulation of MMP/ADAMTS metalloproteinases and their intrinsic X-linked regulator Timp1 contributes to extracellular matrix remodeling integrated with pro-regenerative and immune functions. Lexis1 non-coding RNA involved in LXR-mediated lipid metabolism was identified as a novel nerve injury marker. Together, our data identified unique early response triggers of sex-specific peripheral nerve injury regulation to gain mechanistic insights into the origin of female- and male-prevalent sensory neuropathies.
Collapse
Affiliation(s)
- Andrei V Chernov
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| | - Veronica I Shubayev
- Department of Anesthesiology, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
48
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. Competitive Endogenous RNA Network Involving miRNA and lncRNA in Non-Hodgkin Lymphoma: Current Advances and Clinical Perspectives. Biomedicines 2021; 9:1934. [PMID: 34944752 PMCID: PMC8698845 DOI: 10.3390/biomedicines9121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous malignancy with variable patient outcomes. There is still a lack of understanding about the different players involved in lymphomagenesis, and the identification of new diagnostic and prognostic biomarkers is urgent. MicroRNAs and long non-coding RNAs emerged as master regulators of B-cell development, and their deregulation has been associated with the initiation and progression of lymphomagenesis. They can function by acting alone or, as recently proposed, by creating competing endogenous RNA (ceRNA) networks. Most studies have focused on individual miRNAs/lncRNAs function in lymphoma, and there is still limited data regarding their interactions in lymphoma progression. The study of miRNAs' and lncRNAs' deregulation in NHL, either alone or as ceRNAs networks, offers new insights into the molecular mechanisms underlying lymphoma pathogenesis and opens a window of opportunity to identify potential diagnostic and prognostic biomarkers. In this review, we summarized the current knowledge regarding the role of miRNAs and lncRNAs in B-cell lymphoma, including their interactions and regulatory networks. Finally, we summarized the studies investigating the potential of miRNAs and lncRNAs as clinical biomarkers, with a special focus on the circulating profiles, to be applied as a non-invasive, easy-to-obtain, and reproducible liquid biopsy for dynamic management of NHL patients.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
| |
Collapse
|
49
|
Zhang Y, Li X, Gibson A, Edberg J, Kimberly RP, Absher DM. Skewed allelic expression on X chromosome associated with aberrant expression of XIST on systemic lupus erythematosus lymphocytes. Hum Mol Genet 2021; 29:2523-2534. [PMID: 32628254 DOI: 10.1093/hmg/ddaa131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/27/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
A common feature of autoimmune diseases, including systemic lupus erythematosus (SLE), is an increased prevalence in women. However, the molecular basis for sex disparity in SLE remains poorly understood. To examine the role of X-linked transcription in SLE adaptive immune cells, we performed RNA-seq in T cell and B cell subsets from either healthy donors or patients with SLE. Analyses of allelic expression (AE) profiles identified a pattern of increased allelic imbalance across the entire X chromosome in SLE lymphocytes. X-linked genes exhibiting AE in SLE had an extensive overlap with genes known to escape X chromosome inactivation (XCI). XIST RNA was overexpressed in SLE patients. Differential XIST expression correlated with AE profiles more positively at X-linked genes than the genome-wide background. Analysis of three independent RNA-seq data verified the XIST-associated skewed AE on X chromosome in SLE. Integrative analyses of DNA methylation profiles showed an increased variability of DNA methylation levels at these AE-related X-linked genes. In cultured lymphoblastic cells, knockdown of XIST specifically altered allelic imbalance patterns between X chromosomes. Our study provides genetic evidence that upregulation of XIST accompanied with more skewed allelic expression on X chromosome is associated with the pathogenesis of SLE and may provide mechanistic insights into the increased incidence of SLE in females.
Collapse
Affiliation(s)
- Yanfeng Zhang
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Xinrui Li
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrew Gibson
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey Edberg
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert P Kimberly
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Devin M Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
50
|
Fang H, Deng X, Disteche CM. X-factors in human disease: Impact of gene content and dosage regulation. Hum Mol Genet 2021; 30:R285-R295. [PMID: 34387327 DOI: 10.1093/hmg/ddab221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The gene content of the X and Y chromosomes has dramatically diverged during evolution. The ensuing dosage imbalance within the genome of males and females has led to unique chromosome-wide regulatory mechanisms with significant and sex-specific impacts on X-linked gene expression. X inactivation or silencing of most genes on one X chromosome chosen at random in females profoundly affects the manifestation of X-linked diseases, as males inherit a single maternal allele, while females express maternal and paternal alleles in a mosaic manner. An additional complication is the existence of genes that escape X inactivation and thus are ubiquitously expressed from both alleles in females. The mosaic nature of X-linked gene expression and the potential for escape can vary between individuals, tissues, cell types, and stages of life. Our understanding of the specialized nature of X-linked genes and of the multilayer epigenetic regulation that influence their expression throughout the organism has been helped by molecular studies conducted by tissue-specific and single-cell-specific approaches. In turn, the definition of molecular events that control X silencing has helped develop new approaches for the treatment of some X-linked disorders. This review focuses on the peculiarities of the X chromosome genetic content and epigenetic regulation in shaping the manifestation of congenital and acquired X-linked disorders in a sex-specific manner.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology
| | | | - Christine M Disteche
- Department of Laboratory Medicine and Pathology.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|