1
|
Colaianni D, Virga F, Tisi A, Stefanelli C, Zaccagnini G, Cusumano P, Sales G, Preda MB, Martelli F, Taverna D, Mazzone M, Bertolucci C, Maccarone R, De Pittà C. miR-210 is essential to retinal homeostasis in fruit flies and mice. Biol Direct 2024; 19:90. [PMID: 39394614 PMCID: PMC11468086 DOI: 10.1186/s13062-024-00542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND miR-210 is one of the most evolutionarily conserved microRNAs. It is known to be involved in several physiological and pathological processes, including response to hypoxia, angiogenesis, cardiovascular diseases and cancer. Recently, new roles of this microRNA are emerging in the context of eye and visual system homeostasis. Recent studies in Drosophila melanogaster unveiled that the absence of miR-210 leads to a progressive retinal degeneration characterized by the accumulation of lipid droplets and disruptions in lipid metabolism. However, the possible conservation of miR-210 knock-out effect in the mammalian retina has yet to be explored. RESULTS We further investigated lipid anabolism and catabolism in miR-210 knock-out (KO) flies, uncovering significant alterations in gene expression within these pathways. Additionally, we characterized the retinal morphology of flies overexpressing (OE) miR-210, which was not affected by the increased levels of the microRNA. For the first time, we also characterized the retinal morphology of miR-210 KO and OE mice. Similar to flies, miR-210 OE did not affect retinal homeostasis, whereas miR-210 KO mice exhibited photoreceptor degeneration. To explore other potential parallels between miR-210 KO models in flies and mice, we examined lipid metabolism, circadian behaviour, and retinal transcriptome in mice, but found no similarities. Specifically, RNA-seq confirmed the lack of involvement of lipid metabolism in the mice's pathological phenotype, revealing that the differentially expressed genes were predominantly associated with chloride channel activity and extracellular matrix homeostasis. Simultaneously, transcriptome analysis of miR-210 KO fly brains indicated that the observed alterations extend beyond the eye and may be linked to neuronal deficiencies in signal detection and transduction. CONCLUSIONS We provide the first morphological characterization of the retina of miR-210 KO and OE mice, investigating the role of this microRNA in mammalian retinal physiology and exploring potential parallels with phenotypes observed in fly models. Although the lack of similarities in lipid metabolism, circadian behaviour, and retinal transcriptome in mice suggests divergent mechanisms of retinal degeneration between the two species, transcriptome analysis of miR-210 KO fly brains indicates the potential existence of a shared upstream mechanism contributing to retinal degeneration in both flies and mammals.
Collapse
Affiliation(s)
| | - Federico Virga
- Molecular Biotechnology Center (MBC) "Guido Tarone", Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
- Immunobiology Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milano, Italy
| | - Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Padova, Italy
| | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Milano, Italy
| | - Daniela Taverna
- Molecular Biotechnology Center (MBC) "Guido Tarone", Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | |
Collapse
|
2
|
Zhou H, Huang Y, Jia C, Pang Y, Liu L, Xu Y, Jin P, Qian J, Ma F. NF-κB factors cooperate with Su(Hw)/E4F1 to balance Drosophila/human immune responses via modulating dynamic expression of miR-210. Nucleic Acids Res 2024; 52:6906-6927. [PMID: 38742642 PMCID: PMC11229355 DOI: 10.1093/nar/gkae394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024] Open
Abstract
MicroRNAs (miRNAs) play crucial regulatory roles in controlling immune responses, but their dynamic expression mechanisms are poorly understood. Here, we firstly confirm that the conserved miRNA miR-210 negatively regulates innate immune responses of Drosophila and human via targeting Toll and TLR6, respectively. Secondly, our findings demonstrate that the expression of miR-210 is dynamically regulated by NF-κB factor Dorsal in immune response of Drosophila Toll pathway. Thirdly, we find that Dorsal-mediated transcriptional inhibition of miR-210 is dependent on the transcriptional repressor Su(Hw). Mechanistically, Dorsal interacts with Su(Hw) to modulate cooperatively the dynamic expression of miR-210 in a time- and dose-dependent manner, thereby controlling the strength of Drosophila Toll immune response and maintaining immune homeostasis. Fourthly, we reveal a similar mechanism in human cells, where NF-κB/RelA cooperates with E4F1 to regulate the dynamic expression of hsa-miR-210 in the TLR immune response. Overall, our study reveals a conservative regulatory mechanism that maintains animal innate immune homeostasis and provides new insights into the dynamic regulation of miRNA expression in immune response.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Institute of Laboratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Yu Huang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Chaolong Jia
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Yujia Pang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
- Institute of Laboratory Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 210002 Nanjing, Jiangsu, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Yina Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| | - Jinjun Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, Jiangsu, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
3
|
Anna G, John M, Kannan NN. miR-277 regulates the phase of circadian activity-rest rhythm in Drosophila melanogaster. Front Physiol 2023; 14:1082866. [PMID: 38089472 PMCID: PMC10714010 DOI: 10.3389/fphys.2023.1082866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/07/2023] [Indexed: 12/30/2023] Open
Abstract
Circadian clocks temporally organize behaviour and physiology of organisms with a rhythmicity of about 24 h. In Drosophila, the circadian clock is composed of mainly four clock genes: period (per), timeless (tim), Clock (Clk) and cycle (cyc) which constitutes the transcription-translation feedback loop. The circadian clock is further regulated via post-transcriptional and post-translational mechanisms among which microRNAs (miRNAs) are well known post-transcriptional regulatory molecules. Here, we identified and characterized the role of miRNA-277 (miR-277) expressed in the clock neurons in regulating the circadian rhythm. Downregulation of miR-277 in the pacemaker neurons expressing circadian neuropeptide, pigment dispersing factor (PDF) advanced the phase of the morning activity peak under 12 h light: 12 h dark cycles (LD) at lower light intensities and these flies exhibited less robust rhythms compared to the controls under constant darkness. In addition, downregulation of miR-277 in the PDF expressing neurons abolished the Clk gene transcript oscillation under LD. Our study points to the potential role of miR-277 in fine tuning the Clk expression and in maintaining the phase of the circadian rhythm in Drosophila.
Collapse
Affiliation(s)
| | | | - Nisha N. Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala, India
| |
Collapse
|
4
|
Liu J, Jin T, Ran L, Zhao Z, Zhu R, Xie G, Bi X. Profiling ATM regulated genes in Drosophila at physiological condition and after ionizing radiation. Hereditas 2022; 159:41. [PMID: 36271387 PMCID: PMC9587650 DOI: 10.1186/s41065-022-00254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background ATM (ataxia-telangiectasia mutated) protein kinase is highly conserved in metazoan, and plays a critical role at DNA damage response, oxidative stress, metabolic stress, immunity, RNA biogenesis etc. Systemic profiling of ATM regulated genes, including protein-coding genes, miRNAs, and long non-coding RNAs, will greatly improve our understanding of ATM functions and its regulation. Results 1) differentially expressed protein-coding genes, miRNAs, and long non-coding RNAs in atm mutated flies were identified at physiological condition and after X-ray irradiation. 2) functions of differentially expressed genes in atm mutated flies, regardless of protein-coding genes or non-coding RNAs, are closely related with metabolic process, immune response, DNA damage response or oxidative stress. 3) these phenomena are persistent after irradiation. 4) there is a cross-talk regulation towards miRNAs by ATM, E2f1, and p53 during development and after irradiation. 5) knock-out flies or knock-down flies of most irradiation-induced miRNAs were sensitive to ionizing radiation. Conclusions We provide a valuable resource of protein-coding genes, miRNAs, and long non-coding RNAs, for understanding ATM functions and regulations. Our work provides the new evidence of inter-dependence among ATM-E2F1-p53 for the regulation of miRNAs. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00254-9.
Collapse
Affiliation(s)
- Jun Liu
- School of Medicine, Nantong University, Nantong, 226001, China
| | - Tianyu Jin
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Lanxi Ran
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Ze Zhao
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Rui Zhu
- College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China
| | - Gangcai Xie
- School of Medicine, Nantong University, Nantong, 226001, China.
| | - Xiaolin Bi
- School of Medicine, Nantong University, Nantong, 226001, China. .,College of Basic Medical Medicine, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
5
|
Damulewicz M, Doktór B, Baster Z, Pyza E. The Role of Glia Clocks in the Regulation of Sleep in Drosophila melanogaster. J Neurosci 2022; 42:6848-6860. [PMID: 35906073 PMCID: PMC9463985 DOI: 10.1523/jneurosci.2340-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/08/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
In Drosophila melanogaster, the pacemaker located in the brain plays the main role in maintaining circadian rhythms; however, peripheral oscillators including glial cells, are also crucial components of the circadian network. In the present study, we investigated an impact of oscillators located in astrocyte-like glia, the chiasm giant glia of the optic lobe, epithelial and subperineurial glia on sleep of Drosophila males. We described that oscillators located in astrocyte-like glia and chiasm giant glia are necessary to maintain daily changes in clock neurons arborizations, while those located in epithelial glia regulate amplitude of these changes. Finally, we showed that communication between glia and neurons through tripartite synapses formed by epithelial glia and, in effect, neurotransmission regulation plays important role in wake-promoting during the day.SIGNIFICANCE STATEMENT Circadian clock or pacemaker regulates many aspects of animals' physiology and behavior. The pacemaker is located in the brain and is composed of neurons. However, there are also additional oscillators, called peripheral clocks, which synchronize the main clock. Despite the critical role of glia in the clock machinery, little is known which type of glia houses peripheral oscillators and how they affect neuronal clocks. This study using Drosophila shows that oscillators in specific glia types maintain awakeness during the day by regulating the daily plasticity of clock neurons.
Collapse
Affiliation(s)
- Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Bartosz Doktór
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| | - Zbigniew Baster
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Krakow 30-387, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow 30-387, Poland
| |
Collapse
|
6
|
Colaianni D, De Pittà C. The Role of microRNAs in the Drosophila Melanogaster Visual System. Front Cell Dev Biol 2022; 10:889677. [PMID: 35493095 PMCID: PMC9053400 DOI: 10.3389/fcell.2022.889677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs (∼22 nucleotides in length) that negatively regulate protein-coding gene expression post-transcriptionally by targeting mRNAs and triggering either translational repression or RNA degradation. MiRNA genes represent approximately 1% of the genome of different species and it has been estimated that every miRNA can interact with an average of 200 mRNA transcripts, with peaks of 1,500 mRNA targets per miRNA molecule. As a result, miRNAs potentially play a fundamental role in several biological processes including development, metabolism, proliferation, and apoptotic cell death, both in physiological and pathological conditions. Since miRNAs were discovered, Drosophila melanogaster has been used as a model organism to shed light on their functions and their molecular mechanisms in the regulation of many biological and behavioral processes. In this review we focus on the roles of miRNAs in the fruit fly brain, at the level of the visual system that is composed by the compound eyes, each containing ∼800 independent unit eyes called ommatidia, and each ommatidium is composed of eight photoreceptor neurons that project into the optic lobes. We describe the roles of a set of miRNAs in the development and in the proper function of the optic lobes (bantam, miR-7, miR-8, miR-210) and of the compound eyes (bantam, miR-7, miR-9a, miR-210, miR-263a/b, miR-279/996), summarizing also the pleiotropic effects that some miRNAs exert on circadian behavior.
Collapse
|
7
|
Pegoraro M, Fishman B, Zonato V, Zouganelis G, Francis A, Kyriacou CP, Tauber E. Photoperiod-Dependent Expression of MicroRNA in Drosophila. Int J Mol Sci 2022; 23:ijms23094935. [PMID: 35563325 PMCID: PMC9100521 DOI: 10.3390/ijms23094935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/07/2022] Open
Abstract
Like many other insects in temperate regions, Drosophila melanogaster exploits the photoperiod shortening that occurs during the autumn as an important cue to trigger a seasonal response. Flies survive the winter by entering a state of reproductive arrest (diapause), which drives the relocation of resources from reproduction to survival. Here, we profiled the expression of microRNA (miRNA) in long and short photoperiods and identified seven differentially expressed miRNAs (dme-mir-2b, dme-mir-11, dme-mir-34, dme-mir-274, dme-mir-184, dme-mir-184*, and dme-mir-285). Misexpression of dme-mir-2b, dme-mir-184, and dme-mir-274 in pigment-dispersing, factor-expressing neurons largely disrupted the normal photoperiodic response, suggesting that these miRNAs play functional roles in photoperiodic timing. We also analyzed the targets of photoperiodic miRNA by both computational predication and by Argonaute-1-mediated immunoprecipitation of long- and short-day RNA samples. Together with global transcriptome profiling, our results expand existing data on other Drosophila species, identifying genes and pathways that are differentially regulated in different photoperiods and reproductive status. Our data suggest that post-transcriptional regulation by miRNA is an important facet of photoperiodic timing.
Collapse
Affiliation(s)
- Mirko Pegoraro
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (M.P.); (A.F.)
| | - Bettina Fishman
- Department of Evolutionary & Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
| | - Valeria Zonato
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (V.Z.); (C.P.K.)
| | | | - Amanda Francis
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (M.P.); (A.F.)
| | - Charalambos P. Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (V.Z.); (C.P.K.)
| | - Eran Tauber
- Department of Evolutionary & Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
- Correspondence:
| |
Collapse
|
8
|
Watson OT, Buchmann G, Young P, Lo K, Remnant EJ, Yagound B, Shambrook M, Hill AF, Oldroyd BP, Ashe A. Abundant small RNAs in the reproductive tissues and eggs of the honey bee, Apis mellifera. BMC Genomics 2022; 23:257. [PMID: 35379185 PMCID: PMC8978429 DOI: 10.1186/s12864-022-08478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background Polyandrous social insects such as the honey bee are prime candidates for parental manipulation of gene expression in offspring. Although there is good evidence for parent-of-origin effects in honey bees the epigenetic mechanisms that underlie these effects remain a mystery. Small RNA molecules such as miRNAs, piRNAs and siRNAs play important roles in transgenerational epigenetic inheritance and in the regulation of gene expression during development. Results Here we present the first characterisation of small RNAs present in honey bee reproductive tissues: ovaries, spermatheca, semen, fertilised and unfertilised eggs, and testes. We show that semen contains fewer piRNAs relative to eggs and ovaries, and that piRNAs and miRNAs which map antisense to genes involved in DNA regulation and developmental processes are differentially expressed between tissues. tRNA fragments are highly abundant in semen and have a similar profile to those seen in the semen of other animals. Intriguingly we also find abundant piRNAs that target the sex determination locus, suggesting that piRNAs may play a role in honey bee sex determination. Conclusions We conclude that small RNAs may play a fundamental role in honey bee gametogenesis and reproduction and provide a plausible mechanism for parent-of-origin effects on gene expression and reproductive physiology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08478-9.
Collapse
Affiliation(s)
- Owen T Watson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gabriele Buchmann
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul Young
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute NSW 2010, Darlinghurst, Australia
| | - Kitty Lo
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Emily J Remnant
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Boris Yagound
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mitch Shambrook
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia.,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Benjamin P Oldroyd
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia. .,Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193, Berlin, Germany.
| | - Alyson Ashe
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
9
|
Naitore C, Villinger J, Kibet CK, Kalayou S, Bargul JL, Christoffels A, Masiga DK. The developmentally dynamic microRNA transcriptome of Glossina pallidipes tsetse flies, vectors of animal trypanosomiasis. BIOINFORMATICS ADVANCES 2021; 2:vbab047. [PMID: 36699416 PMCID: PMC9710702 DOI: 10.1093/bioadv/vbab047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/25/2021] [Accepted: 12/24/2021] [Indexed: 01/28/2023]
Abstract
Summary MicroRNAs (miRNAs) are single stranded gene regulators of 18-25 bp in length. They play a crucial role in regulating several biological processes in insects. However, the functions of miRNA in Glossina pallidipes, one of the biological vectors of African animal trypanosomosis in sub-Saharan Africa, remain poorly characterized. We used a combination of both molecular biology and bioinformatics techniques to identify miRNA genes at different developmental stages (larvae, pupae, teneral and reproductive unmated adults, gravid females) and sexes of G. pallidipes. We identified 157 mature miRNA genes, including 12 novel miRNAs unique to G. pallidipes. Moreover, we identified 93 miRNA genes that were differentially expressed by sex and/or in specific developmental stages. By combining both miRanda and RNAhybrid algorithms, we identified 5550 of their target genes. Further analyses with the Gene Ontology term and KEGG pathways for these predicted target genes suggested that the miRNAs may be involved in key developmental biological processes. Our results provide the first repository of G. pallidipes miRNAs across developmental stages, some of which appear to play crucial roles in tsetse fly development. Hence, our findings provide a better understanding of tsetse biology and a baseline for exploring miRNA genes in tsetse flies. Availability and implementation Raw sequence data are available from NCBI Sequence Read Archives (SRA) under Bioproject accession number PRJNA590626. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Careen Naitore
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,To whom correspondence should be addressed. or
| | - Caleb K Kibet
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| | - Shewit Kalayou
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya
| | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000, Nairobi 00200, Kenya
| | - Alan Christoffels
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute (SANBI), University of the Western Cape, Bellville 7530, South Africa
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772, Nairobi 00100, Kenya,To whom correspondence should be addressed. or
| |
Collapse
|
10
|
Vieira J, Freitas FCP, Cristino AS, Moda LMR, Martins JR, Bitondi MMG, Simões ZLP, Barchuk AR. miRNA-34 and miRNA-210 target hexamerin genes enhancing their differential expression during early brain development of honeybee (Apis mellifera) castes. INSECT MOLECULAR BIOLOGY 2021; 30:594-604. [PMID: 34309096 DOI: 10.1111/imb.12728] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
During the honeybee larval stage, queens develop larger brains than workers, with morphological differentiation appearing at the fourth larval phase (L4), just after a boost in nutritional difference both prospective females experience. The molecular promoters of this caste-specific brain development are already ongoing in previous larval phases. Transcriptomic analyses revealed a set of differentially expressed genes in the L3 brains of queens and workers, which represents the early molecular response to differential feeding females receive during larval development. Three genes of this set, hex70b, hex70c and hex110, are more highly transcribed in the brain of workers than in queens. The microRNAs miR-34, miR-210 and miR-317 are in higher levels in the queens' brain at the same phase of larval development. Here, we tested the hypothesis that the brain of workers expresses higher levels of hexamerins than that of queens during key phases of larval development and that this differential hexamerin genes expression is further enhanced by the repressing activity of miR-34, miR-210 and miR-317. Our transcriptional analyses showed that hex70b, hex70c and hex110 genes are differentially expressed in the brain of L3 and L4 larval phases of honeybee queens and workers. In silico reconstructed miRNA-mRNA interaction networks were validated using luciferase assays, which showed miR-34 and miR-210 negatively regulate hex70b and hex110 genes by directly and redundantly binding their 3'UTR (untranslated region) sequences. Taken together, our results suggest that miR-34 and miR-210 act together promoting differential brain development in honeybee castes by downregulating the expression of the putative antineurogenic hexamerin genes hex70b and hex110.
Collapse
Affiliation(s)
- J Vieira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - F C P Freitas
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A S Cristino
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - L M R Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - J R Martins
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| | - M M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Z L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - A R Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, UNIFAL-MG, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
11
|
Krzeptowski W, Walkowicz L, Krzeptowska E, Motta E, Witek K, Szramel J, Al Abaquita T, Baster Z, Rajfur Z, Rosato E, Stratoulias V, Heino TI, Pyza EM. Mesencephalic Astrocyte-Derived Neurotrophic Factor Regulates Morphology of Pigment-Dispersing Factor-Positive Clock Neurons and Circadian Neuronal Plasticity in Drosophila melanogaster. Front Physiol 2021; 12:705183. [PMID: 34646147 PMCID: PMC8502870 DOI: 10.3389/fphys.2021.705183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is one of a few neurotrophic factors described in Drosophila melanogaster (DmMANF) but its function is still poorly characterized. In the present study we found that DmMANF is expressed in different clusters of clock neurons. In particular, the PDF-positive large (l-LNv) and small (s-LNv) ventral lateral neurons, the CRYPTOCHROME-positive dorsal lateral neurons (LNd), the group 1 dorsal neurons posterior (DN1p) and different tim-positive cells in the fly's visual system. Importantly, DmMANF expression in the ventral lateral neurons is not controlled by the clock nor it affects its molecular mechanism. However, silencing DmMANF expression in clock neurons affects the rhythm of locomotor activity in light:dark and constant darkness conditions. Such phenotypes correlate with abnormal morphology of the dorsal projections of the s-LNv and with reduced arborizations of the l-LNv in the medulla of the optic lobe. Additionally, we show that DmMANF is important for normal morphology of the L2 interneurons in the visual system and for the circadian rhythm in the topology of their dendritic tree. Our results indicate that DmMANF is important not only for the development of neurites but also for maintaining circadian plasticity of neurons.
Collapse
Affiliation(s)
- Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Lucyna Walkowicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Ewelina Krzeptowska
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Edyta Motta
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Kacper Witek
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Joanna Szramel
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Terence Al Abaquita
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Zbigniew Baster
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Zenon Rajfur
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.,Jagiellonian Center of Biomedical Imaging, Jagiellonian University, Kraków, Poland
| | - Ezio Rosato
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Vassilis Stratoulias
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tapio I Heino
- Molecular and Integrative Biosciences Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Elżbieta M Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.,Jagiellonian Center of Biomedical Imaging, Jagiellonian University, Kraków, Poland
| |
Collapse
|
12
|
Anna G, Kannan NN. Post-transcriptional modulators and mediators of the circadian clock. Chronobiol Int 2021; 38:1244-1261. [PMID: 34056966 PMCID: PMC7611477 DOI: 10.1080/07420528.2021.1928159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 01/04/2023]
Abstract
The endogenous circadian timekeeping system drives ~24-h rhythms in gene expression and rhythmically coordinates the physiology, metabolism and behavior in a wide range of organisms. Regulation at various levels is important for the accurate functioning of this circadian timing system. The core circadian oscillator consists of an interlocked transcriptional-translational negative feedback loop (TTFL) that imposes a substantial delay between the accumulation of clock gene mRNA and its protein to generate 24-h oscillations. This TTFL mediated daily oscillation of clock proteins is further fine-tuned by post-translational modifications that regulate the clock protein stability, interaction with other proteins and subcellular localization. Emerging evidence from various studies indicates that besides TTFL and post-translational modifications, post-transcriptional regulation plays a key role in shaping the rhythmicity of mRNAs and to delay the accumulation of clock proteins in relation to their mRNAs. In this review, we summarize the current knowledge on the importance of post-transcriptional regulatory mechanisms such as splicing, polyadenylation, the role of RNA-binding proteins, RNA methylation and microRNAs in the context of shaping the circadian rhythmicity in Drosophila and mammals. In particular, we discuss microRNAs, an important player in post-transcriptional regulation of core-clock machinery, circadian neural circuit, clock input, and output pathways. Furthermore, we provide an overview of the microRNAs that exhibit diurnal rhythm in expression and their role in mediating rhythmic physiological processes.
Collapse
Affiliation(s)
- Geo Anna
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala 695551, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
13
|
Watts M, Williams G, Lu J, Nithianantharajah J, Claudianos C. MicroRNA-210 Regulates Dendritic Morphology and Behavioural Flexibility in Mice. Mol Neurobiol 2021; 58:1330-1344. [PMID: 33165828 DOI: 10.1007/s12035-020-02197-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/30/2020] [Indexed: 01/05/2023]
Abstract
MicroRNAs are known to be critical regulators of neuronal plasticity. The highly conserved, hypoxia-regulated microRNA-210 (miR-210) has been shown to be associated with long-term memory in invertebrates and dysregulated in neurodevelopmental and neurodegenerative disease models. However, the role of miR-210 in mammalian neuronal function and cognitive behaviour remains unexplored. Here we generated Nestin-cre-driven miR-210 neuronal knockout mice to characterise miR-210 regulation and function using in vitro and in vivo methods. We identified miR-210 localisation throughout neuronal somas and dendritic processes and increased levels of mature miR-210 in response to neural activity in vitro. Loss of miR-210 in neurons resulted in higher oxidative phosphorylation and ROS production following hypoxia and increased dendritic arbour density in hippocampal cultures. Additionally, miR-210 knockout mice displayed altered behavioural flexibility in rodent touchscreen tests, particularly during early reversal learning suggesting processes underlying updating of information and feedback were impacted. Our findings support a conserved, activity-dependent role for miR-210 in neuroplasticity and cognitive function.
Collapse
Affiliation(s)
- Michelle Watts
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Gabrielle Williams
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Jing Lu
- School of Psychological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience & Mental Health, Melbourne, VIC, 3052, Australia.
- Florey Department of Neuroscience, University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Centre for Mental Health Research, The Australian National University, Canberra, ACT, 0200, Australia.
| |
Collapse
|
14
|
Zhang R, Du J, Zhao X, Wei L, Zhao Z. Regulation of circadian behavioural output via clock-responsive miR-276b. INSECT MOLECULAR BIOLOGY 2021; 30:81-89. [PMID: 33131172 DOI: 10.1111/imb.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Growing evidence indicates that microRNAs play numerous important roles. However, the roles of some microRNAs involved in regulation of circadian rhythm and sleep are still not well understood. In this study, we show that the miR-276b is essential for maintaining both sleep and circadian rhythm by targeting tim, npfr1 and DopR1 genes, with miR-276b deleted mutant flies sleeping more, and vice versa in miR-276b overexpressing flies. Through analysing its promoter, we found that mir-276b is responsive to CLOCK and regulates circadian rhythm through the negative feedback loop of the CLK/CYC-TIM/PER. Furthermore, miR-276b is broadly expressed in the clock neurons and the central complexes such as the mushroom body and the fan-shape body of Drosophila brain, in which up-regulation of miR-276b in tim, npfr1 and DopR1 expressing tissues significantly causes sleep decreases. This study clarifies that the mir-276b is very important for participating in regulation of circadian rhythm and sleep.
Collapse
Affiliation(s)
- R Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - X Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - L Wei
- College of Life Sciences, Hebei University, Baoding, China
| | - Z Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Ma Q, Mo G, Tan Y. Micro RNAs and the biological clock: a target for diseases associated with a loss of circadian regulation. Afr Health Sci 2020; 20:1887-1894. [PMID: 34394254 PMCID: PMC8351835 DOI: 10.4314/ahs.v20i4.46] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Circadian clocks are self-sustaining oscillators that coordinate behavior and physiology over a 24 hour period, achieving time-dependent homeostasis with the external environment. The molecular clocks driving circadian rhythmic changes are based on intertwined transcriptional/translational feedback loops that combine with a range of environmental and metabolic stimuli to generate daily internal programing. Understanding how biological rhythms are generated throughout the body and the reasons for their dysregulation can provide avenues for temporally directed therapeutics. Summary In recent years, microRNAs have been shown to play important roles in the regulation of the circadian clock, particularly in Drosophila, but also in some small animal and human studies. This review will summarize our current understanding of the role of miRNAs during clock regulation, with a particular focus on the control of clock regulated gene expression.
Collapse
Affiliation(s)
- Qianwen Ma
- Gynecology department, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, China
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Genlin Mo
- Advanced manufacturing institution, Jiangsu University, Zhenjiang, China
| | - Yong Tan
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Xia X, Fu X, Du J, Wu B, Zhao X, Zhu J, Zhao Z. Regulation of circadian rhythm and sleep by miR-375-timeless interaction in Drosophila. FASEB J 2020; 34:16536-16551. [PMID: 33078445 DOI: 10.1096/fj.202001107r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/30/2020] [Accepted: 10/12/2020] [Indexed: 01/14/2023]
Abstract
MicroRNAs are important coordinators of circadian regulation that mediate the fine-tuning of gene expression. Although many studies have shown the effects of individual miRNAs on the circadian clock, the global functional miRNA-mRNA interaction network involved in the circadian system remains poorly understood. Here, we used CLEAR (Covalent Ligation of Endogenous Argonaute-bound RNAs)-CLIP (Cross-Linking and Immuno-Precipitation) to explore the regulatory functions of miRNAs in the circadian system by comparing the miRNA-mRNA interactions between Drosophila wild-type strain W1118 and a mutant of the key circadian transcriptional regulator Clock (Clkjrk ). This experimental approach unambiguously identified tens of thousands of miRNA-mRNA interactions in both the head and body. The miRNA-mRNA interactome showed dramatic changes in the Clkjrk flies. Particularly, among ~300 miRNA-mRNA circadian relevant interactions, multiple interactions involving core clock genes pdp1, tim, and vri displayed distinct changes as a result of the Clk mutation. Based on the CLEAR-CLIP analysis, we found a novel regulation of the circadian rhythm and sleep by the miR-375-timeless interaction. The results indicated that Clk disruption abolished normal rhythmic expression of miR-375 and the functional regulation occurred in the l-LNv neurons, where miR-375 modulated the circadian rhythm and sleep via targeting timeless. This work provides the first global view of miRNA regulation in the circadian rhythm.
Collapse
Affiliation(s)
- Xiju Xia
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaonan Fu
- The Interdisciplinary Ph.D. Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Binbin Wu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xianguo Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jinsong Zhu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
The conserved microRNA miR-210 regulates lipid metabolism and photoreceptor maintenance in the Drosophila retina. Cell Death Differ 2020; 28:764-779. [PMID: 32913227 DOI: 10.1038/s41418-020-00622-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022] Open
Abstract
Increasing evidence suggests that miRNAs play important regulatory roles in the nervous system. However, the molecular mechanisms of how specific miRNAs affect neuronal development and functions remain less well understood. In the present study, we provide evidence that the conserved microRNA miR-210 regulates lipid metabolism and prevents neurodegeneration in the Drosophila retina. miR-210 is specifically expressed in the photoreceptor neurons and other sensory organs. Genetic deletion of miR-210 leads to lipid droplet accumulation and photoreceptor degeneration in the retina. These effects are associated with abnormal activation of the Drosophila sterol regulatory element-binding protein signaling. We further identify the acetyl-coenzyme A synthetase (ACS) as one functionally important target of miR-210 in this context. Reduction of ACS in the miR-210 mutant background suppresses the neurodegeneration defects, suggesting that miR-210 acts through regulation of the ACS transcript. Together, these results reveal an unexpected role of miR-210 in controlling lipid metabolism and neuronal functions.
Collapse
|
18
|
Mazzotta GM, Damulewicz M, Cusumano P. Better Sleep at Night: How Light Influences Sleep in Drosophila. Front Physiol 2020; 11:997. [PMID: 33013437 PMCID: PMC7498665 DOI: 10.3389/fphys.2020.00997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/25/2023] Open
Abstract
Sleep-like states have been described in Drosophila and the mechanisms and factors that generate and define sleep-wake profiles in this model organism are being thoroughly investigated. Sleep is controlled by both circadian and homeostatic mechanisms, and environmental factors such as light, temperature, and social stimuli are fundamental in shaping and confining sleep episodes into the correct time of the day. Among environmental cues, light seems to have a prominent function in modulating the timing of sleep during the 24 h and, in this review, we will discuss the role of light inputs in modulating the distribution of the fly sleep-wake cycles. This phenomenon is of growing interest in the modern society, where artificial light exposure during the night is a common trait, opening the possibility to study Drosophila as a model organism for investigating shift-work disorders.
Collapse
Affiliation(s)
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Paola Cusumano
- Department of Biology, University of Padova, Padua, Italy
| |
Collapse
|
19
|
Fernandez MP, Pettibone HL, Bogart JT, Roell CJ, Davey CE, Pranevicius A, Huynh KV, Lennox SM, Kostadinov BS, Shafer OT. Sites of Circadian Clock Neuron Plasticity Mediate Sensory Integration and Entrainment. Curr Biol 2020; 30:2225-2237.e5. [PMID: 32386535 DOI: 10.1016/j.cub.2020.04.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/09/2020] [Accepted: 04/09/2020] [Indexed: 01/22/2023]
Abstract
Networks of circadian timekeeping in the brain display marked daily changes in neuronal morphology. In Drosophila melanogaster, the striking daily structural remodeling of the dorsal medial termini of the small ventral lateral neurons has long been hypothesized to mediate endogenous circadian timekeeping. To test this model, we have specifically abrogated these sites of daily neuronal remodeling through the reprogramming of neural development and assessed the effects on circadian timekeeping and clock outputs. Remarkably, the loss of these sites has no measurable effects on endogenous circadian timekeeping or on any of the major output functions of the small ventral lateral neurons. Rather, their loss reduces sites of glutamatergic sensory neurotransmission that normally encodes naturalistic time cues from the environment. These results support an alternative model: structural plasticity in critical clock neurons is the basis for proper integration of light and temperature and gates sensory inputs into circadian clock neuron networks.
Collapse
Affiliation(s)
- Maria P Fernandez
- Advanced Science Research Center, The Graduate Center, City University of New York, New York City, NY 10031, USA; Department of Neuroscience and Behavior, Barnard College of Columbia University, New York City, NY 10027, USA.
| | - Hannah L Pettibone
- Advanced Science Research Center, The Graduate Center, City University of New York, New York City, NY 10031, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph T Bogart
- Advanced Science Research Center, The Graduate Center, City University of New York, New York City, NY 10031, USA
| | - Casey J Roell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Charles E Davey
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ausra Pranevicius
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York City, NY 10027, USA
| | - Khang V Huynh
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara M Lennox
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Boyan S Kostadinov
- Mathematics Department, NYC College of Technology, City University of New York, Brooklyn, NY 11201, USA
| | - Orie T Shafer
- Advanced Science Research Center, The Graduate Center, City University of New York, New York City, NY 10031, USA; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Nian X, Chen W, Bai W, Zhao Z. Regulation of circadian locomotor rhythm by miR-263a. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1726049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xiaoge Nian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - Weiwei Bai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Brischigliaro M, Corrà S, Tregnago C, Fernandez-Vizarra E, Zeviani M, Costa R, De Pittà C. Knockdown of APOPT1/COA8 Causes Cytochrome c Oxidase Deficiency, Neuromuscular Impairment, and Reduced Resistance to Oxidative Stress in Drosophila melanogaster. Front Physiol 2019; 10:1143. [PMID: 31555154 PMCID: PMC6742693 DOI: 10.3389/fphys.2019.01143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Cytochrome c oxidase (COX) deficiency is the biochemical hallmark of several mitochondrial disorders, including subjects affected by mutations in apoptogenic-1 (APOPT1), recently renamed as COA8 (HGNC:20492). Loss-of-function mutations are responsible for a specific infantile or childhood-onset mitochondrial leukoencephalopathy with a chronic clinical course. Patients deficient in COA8 show specific COX deficiency with distinctive neuroimaging features, i.e., cavitating leukodystrophy. In human cells, COA8 is rapidly degraded by the ubiquitin-proteasome system, but oxidative stress stabilizes the protein, which is then involved in COX assembly, possibly by protecting the complex from oxidative damage. However, its precise function remains unknown. The CG14806 gene (dCOA8) is the Drosophila melanogaster ortholog of human COA8 encoding a highly conserved COA8 protein. We report that dCOA8 knockdown (KD) flies show locomotor defects, and other signs of neurological impairment, reduced COX enzymatic activity, and reduced lifespan under oxidative stress conditions. Our data indicate that KD of dCOA8 in Drosophila phenocopies several features of the human disease, thus being a suitable model to characterize the molecular function/s of this protein in vivo and the pathogenic mechanisms associated with its defects.
Collapse
Affiliation(s)
| | - Samantha Corrà
- Department of Biology, University of Padova, Padua, Italy
| | - Claudia Tregnago
- Department of Women and Children's Health, University of Padova, Padua, Italy
| | | | - Massimo Zeviani
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom.,Department of Neurosciences, University of Padova, Padua, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padua, Italy
| | | |
Collapse
|
22
|
Liu L, Zhang KJ, Rong X, Li YY, Liu H. Identification of Wolbachia-Responsive miRNAs in the Small Brown Planthopper, Laodelphax striatellus. Front Physiol 2019; 10:928. [PMID: 31396100 PMCID: PMC6668040 DOI: 10.3389/fphys.2019.00928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/09/2019] [Indexed: 11/13/2022] Open
Abstract
Laodelphax striatellus is naturally infected with the Wolbachia strain wStri, which induces strong cytoplasmic incompatibility of its host. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that play a critical role in the regulation of gene expression at post-transcriptional level in various biological processes. Despite various studies reporting that Wolbachia affects the miRNA expression of their hosts, the molecular mechanism underlying interactions between Wolbachia and their host miRNAs has not been well understood. In order to better understand the impact of Wolbachia infection on its host, we investigated the differentially expressed miRNAs between Wolbachia-infected and Wolbachia-uninfected strains of L. striatellus. Compared with uninfected strains, Wolbachia infection resulted in up-regulation of 18 miRNAs and down-regulation of 6 miRNAs in male, while 25 miRNAs were up-regulated and 15 miRNAs were down-regulated in female. The target genes of these differentially expressed miRNAs involved in immune response regulation, reproduction, redox homeostasis and ecdysteroidogenesis were also annotated in both sexes. We further verified the expression of several significantly differentially expressed miRNAs and their predicted target genes by qRT-PCR method. The results suggested that Wolbachia appears to reduce the expression of genes related to fertility in males and increase the expression of genes related to fecundity in females. At the same time, Wolbachia may enhance the expression of immune-related genes in both sexes. All of the results in this study may be helpful in further exploration of the molecular mechanisms by which Wolbachia affects on its hosts.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Kai-Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xia Rong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Ya-Ying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Niu Y, Liu Z, Nian X, Xu X, Zhang Y. miR-210 controls the evening phase of circadian locomotor rhythms through repression of Fasciclin 2. PLoS Genet 2019; 15:e1007655. [PMID: 31356596 PMCID: PMC6687186 DOI: 10.1371/journal.pgen.1007655] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/08/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Circadian clocks control the timing of animal behavioral and physiological rhythms. Fruit flies anticipate daily environmental changes and exhibit two peaks of locomotor activity around dawn and dusk. microRNAs are small non-coding RNAs that play important roles in post-transcriptional regulation. Here we identify Drosophila miR-210 as a critical regulator of circadian rhythms. Under light-dark conditions, flies lacking miR-210 (miR-210KO) exhibit a dramatic 2 hrs phase advance of evening anticipatory behavior. However, circadian rhythms and molecular pacemaker function are intact in miR-210KO flies under constant darkness. Furthermore, we identify that miR-210 determines the evening phase of activity through repression of the cell adhesion molecule Fasciclin 2 (Fas2). Ablation of the miR-210 binding site within the 3' UTR of Fas2 (Fas2ΔmiR-210) by CRISPR-Cas9 advances the evening phase as in miR-210KO. Indeed, miR-210 genetically interacts with Fas2. Moreover, Fas2 abundance is significantly increased in the optic lobe of miR-210KO. In addition, overexpression of Fas2 in the miR-210 expressing cells recapitulates the phase advance behavior phenotype of miR-210KO. Together, these results reveal a novel mechanism by which miR-210 regulates circadian locomotor behavior.
Collapse
Affiliation(s)
- Ye Niu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Zhenxing Liu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Xiaoge Nian
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuehan Xu
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| | - Yong Zhang
- Department of Biology, University of Nevada Reno, Reno, NV, United States of America
| |
Collapse
|
24
|
Matsuo N, Nagao K, Suito T, Juni N, Kato U, Hara Y, Umeda M. Different mechanisms for selective transport of fatty acids using a single class of lipoprotein in Drosophila. J Lipid Res 2019; 60:1199-1211. [PMID: 31085629 DOI: 10.1194/jlr.m090779] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 05/10/2019] [Indexed: 12/16/2022] Open
Abstract
In mammals, lipids are selectively transported to specific sites using multiple classes of lipoproteins. However, in Drosophila, a single class of lipoproteins, lipophorin, carries more than 95% of the lipids in the hemolymph. Although a unique ability of the insect lipoprotein system for cargo transport has been demonstrated, it remains unclear how this single class of lipoproteins selectively transports lipids. In this study, we carried out a comparative analysis of the fatty-acid composition among lipophorin, the CNS, and CNS-derived cell lines and investigated the transport mechanism of fatty acids, particularly focusing on the transport of PUFAs in Drosophila We showed that PUFAs are selectively incorporated into the acyl chains of lipophorin phospholipids and effectively transported to CNS through lipophorin receptor-mediated endocytosis of lipophorin. In addition, we demonstrated that C14 fatty acids are selectively incorporated into the diacylglycerols (DAGs) of lipophorin and that C14 fatty-acid-containing DAGs are spontaneously transferred from lipophorin to the phospholipid bilayer. These results suggest that PUFA-containing phospholipids and C14 fatty-acid-containing DAGs in lipophorin could be transferred to different sites by different mechanisms to selectively transport fatty acids using a single class of lipoproteins.
Collapse
Affiliation(s)
- Naoya Matsuo
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kohjiro Nagao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takuto Suito
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Naoto Juni
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Utako Kato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yuji Hara
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,AMED-PRIME Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan
| | - Masato Umeda
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
25
|
Weigelt CM, Hahn O, Arlt K, Gruhn M, Jahn AJ, Eßer J, Werner JA, Klein C, Büschges A, Grönke S, Partridge L. Loss of miR-210 leads to progressive retinal degeneration in Drosophila melanogaster. Life Sci Alliance 2019; 2:2/1/e201800149. [PMID: 30670478 PMCID: PMC6343102 DOI: 10.26508/lsa.201800149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
Depletion of miRNA-210 disrupts photoreceptor integrity and visual function in Drosophila melanogaster. miRNAs are small, non-coding RNAs that regulate gene expression post-transcriptionally. We used small RNA sequencing to identify tissue-specific miRNAs in the adult brain, thorax, gut, and fat body of Drosophila melanogaster. One of the most brain-specific miRNAs that we identified was miR-210, an evolutionarily highly conserved miRNA implicated in the regulation of hypoxia in mammals. In Drosophila, we show that miR-210 is specifically expressed in sensory organs, including photoreceptors. miR-210 knockout mutants are not sensitive toward hypoxia but show progressive degradation of photoreceptor cells, accompanied by decreased photoreceptor potential, demonstrating an important function of miR-210 in photoreceptor maintenance and survival.
Collapse
Affiliation(s)
| | - Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Katharina Arlt
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Biocenter Cologne, Institute of Zoology, Cologne, Germany
| | - Annika J Jahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jacqueline Eßer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Corinna Klein
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases Research Centre, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department for Animal Physiology, Biocenter Cologne, Institute of Zoology, Cologne, Germany
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany .,Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|