1
|
Lo Giudice A, Porcellato I, Giglia G, Sforna M, Lepri E, Mandara MT, Leonardi L, Mechelli L, Brachelente C. Exploring the Epidemiology of Melanocytic Tumors in Canine and Feline Populations: A Comprehensive Analysis of Diagnostic Records from a Single Pathology Institution in Italy. Vet Sci 2024; 11:435. [PMID: 39330814 PMCID: PMC11436034 DOI: 10.3390/vetsci11090435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
MTs are prevalent in dogs, representing the most frequent oral malignancy, compared to cats, in which ocular melanomas predominate. This study investigates the canine and feline MT epidemiology (2005-2024) of cases submitted to the Veterinary Pathology Service (University of Perugia). Among the canine neoplasms, 845 (4%) were melanocytic: 329 (39%) melanocytomas; 512 (61%) melanomas. Of these, 485 (57%) were cutaneous (4% of canine cutaneous neoplasms), 193 (23%) were oral (50% of oral canine neoplasms), and 104 (12%) were mucocutaneous. The average age of affected dogs was 10 years. Older dogs were more likely to have melanomas compared to melanocytomas (p < 0.001). There were 60 (1%) feline MTs: 6 (10%) melanocytomas; 53 (88%) melanomas. Of these, 29 (48%) were cutaneous (1% of feline cutaneous tumors), 18 (30%) were ocular, and 9 (15%) were oral (22% of feline oral tumors). The average age of affected cats was 11 years. In dogs, mucocutaneous melanomas were more common compared to cutaneous ones (p < 0.05); oral melanomas were more common compared to all other sites (p < 0.001). In cats, ocular melanomas were more common compared to cutaneous ones (p < 0.05). Our study provides the MT prevalence in a selected canine and feline population, revealing MT epidemiological patterns, highlighting species-specific differences in the tumor prevalence, localization, and age distribution.
Collapse
Affiliation(s)
| | - Ilaria Porcellato
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy; (A.L.G.); (G.G.); (M.S.); (E.L.); (M.T.M.); (L.L.); (L.M.); (C.B.)
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Fanelli A, Licenziato L, Mazzone E, Divari S, Rinaldi A, Marino M, Maga I, Bertoni F, Marconato L, Aresu L. The K9 lymphoma assay allows a genetic subgrouping of canine lymphomas with improved risk classification. Sci Rep 2024; 14:18687. [PMID: 39134766 PMCID: PMC11319785 DOI: 10.1038/s41598-024-69716-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
We present here the K9 lymphoma assay, a novel 31-gene targeted next-generation sequencing panel designed for genomic profiling of canine lymphoid neoplasms. Addressing the growing demand for advanced diagnostics in veterinary oncology, this assay enables sensitive identification of known and actionable mutations specific to canine lymphomas, while evaluating its prognostic potential to facilitate diagnosis and prognosis. Our analysis, spanning several B- and T-cell lymphoma histotypes, unveiled distinct mutational landscapes distinguishing tumors derived from immature versus mature lymphocytes. Clustering analysis revealed a shared genetic origin between diffuse large B-cell lymphoma and marginal zone lymphoma, aligning with findings in human lymphomas, with TRAF3 emerging as the most frequently mutated gene across B-cell lymphoma subtypes. Significantly, TP53 mutations demonstrated universal adverse prognostic implications across B-cell lymphomas. Additionally, SETD2 mutations contributed to shorter time-to-progression, underscoring the role of epigenetic dysregulation in B-cell tumors. In T-cell lymphomas, SATB1 and FBXW7 were frequently mutated, warranting further investigation in larger cohorts. Our findings advocate for tailored therapeutic approaches based on the genetic profile, impacting treatment decisions and outcomes in canine lymphoma management. This study provides pivotal insights bridging veterinary and human oncology, paving the way for comprehensive genomic diagnostics and therapeutic strategies in comparative oncology.
Collapse
Affiliation(s)
- Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Eugenio Mazzone
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Sara Divari
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Michele Marino
- MyLav Veterinary Diagnostic Laboratory, Passirana di Rho, Milan, Italy
| | - Ilaria Maga
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Laura Marconato
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna, Italy.
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy.
| |
Collapse
|
3
|
Cahill JA, Smith LA, Gottipati S, Torabi TS, Graim K. Bringing the Genomic Revolution to Comparative Oncology: Human and Dog Cancers. Annu Rev Biomed Data Sci 2024; 7:107-129. [PMID: 38648188 PMCID: PMC11343685 DOI: 10.1146/annurev-biodatasci-102423-111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Dogs are humanity's oldest friend, the first species we domesticated 20,000-40,000 years ago. In this unequaled collaboration, dogs have inadvertently but serendipitously been molded into a potent human cancer model. Unlike many common model species, dogs are raised in the same environment as humans and present with spontaneous tumors with human-like comorbidities, immunocompetency, and heterogeneity. In breast, bladder, blood, and several pediatric cancers, in-depth profiling of dog and human tumors has established the benefits of the dog model. In addition to this clinical and molecular similarity, veterinary studies indicate that domestic dogs have relatively high tumor incidence rates. As a result, there are a plethora of data for analysis, the statistical power of which is bolstered by substantial breed-specific variability. As such, dog tumors provide a unique opportunity to interrogate the molecular factors underpinning cancer and facilitate the modeling of new therapeutic targets. This review discusses the emerging field of comparative oncology, how it complements human and rodent cancer studies, and where challenges remain, given the rapid proliferation of genomic resources. Increasingly, it appears that human's best friend is becoming an irreplaceable component of oncology research.
Collapse
Affiliation(s)
- James A Cahill
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Leslie A Smith
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Soumya Gottipati
- Department of Computer Science, Princeton University, Princeton, New Jersey, USA
| | - Tina Salehi Torabi
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Kiley Graim
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
4
|
Li S, Liu Z, Lv J, Lv D, Xu H, Shi H, Liu G, Lin D, Jin Y. Establishment of Canine Oral Mucosal Melanoma Cell Lines and Their Xenogeneic Animal Models. Cells 2024; 13:992. [PMID: 38891124 PMCID: PMC11171988 DOI: 10.3390/cells13110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Canine oral melanoma is the most prevalent malignant tumor in dogs and has a poor prognosis due to its high aggressiveness and high metastasis and recurrence rates. More research is needed into its treatment and to understand its pathogenic factors. In this study, we isolated a canine oral mucosal melanoma (COMM) cell line designated as COMM6605, which has now been stably passaged for more than 100 generations, with a successful monoclonal assay and a cell multiplication time of 22.2 h. G-banded karyotype analysis of the COMM6605 cell line revealed an abnormal chromosome count ranging from 45 to 74, with the identification of a double-armed chromosome as the characteristic marker chromosome of this cell line. The oral intralingual and dorsal subcutaneous implantation models of BALB/c-nu mice were successfully established; Melan-A (MLANA), S100 beta protein (S100β), PNL2, tyrosinase-related protein 1 (TRP1), and tyrosinase-related protein 2 (TRP2) were stably expressed positively in the canine oral tumor sections, tumor cell lines, and tumor sections of tumor-bearing mice. Sublines COMM6605-Luc-EGFP and COMM6605-Cherry were established through lentiviral transfection, with COMM6605-Luc-EGFP co-expressing firefly luciferase (Luc) and enhanced green fluorescent protein (EGFP) and COMM6605-Cherry expressing the Cherry fluorescent protein gene. The COMM6605-Luc-EGFP fluorescent cell subline was injected via the tail vein and caused lung and lymph node metastasis, as detected by mouse live imaging, which can be used as an animal model to simulate the latter steps of hematogenous spread during tumor metastasis. The canine oral melanoma cell line COMM6605 and two sublines isolated and characterized in this study can offer a valuable model for studying mucosal melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yipeng Jin
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Rd, Haidian District, Beijing 100193, China; (S.L.); (Z.L.); (J.L.); (D.L.); (H.X.); (H.S.); (G.L.); (D.L.)
| |
Collapse
|
5
|
Contel IJ, Fonseca-Alves CE, Ferrari HF, Laufer-Amorim R, Xavier-Júnior JCC. Review of the comparative pathological and immunohistochemical features of human and canine cutaneous melanocytic neoplasms. J Comp Pathol 2024; 211:26-35. [PMID: 38761560 DOI: 10.1016/j.jcpa.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/10/2024] [Accepted: 04/14/2024] [Indexed: 05/20/2024]
Abstract
Melanocytic neoplasms originate from melanocytes and melanoma, the malignant form, is a common canine neoplasm and the most aggressive human skin cancer. Despite many similarities between these neoplasms in both species, only a limited number of studies have approached these entities in a comparative manner. Therefore, this review compares benign and malignant melanocytic neoplasms in dogs and humans, exclusively those arising in the haired skin, with regard to their clinicopathological, immunohistochemical and molecular aspects. Shared features include spontaneous occurrence, macroscopic features and microscopic findings when comparing human skin melanoma in the advanced/invasive stage and canine cutaneous melanoma, immunohistochemical markers and several histopathological prognostic factors. Differences include the apparent absence of active mutations in the BRAF gene in canine cutaneous melanoma and less aggressive clinical behaviour in dogs than in humans. Further studies are required to elucidate the aetiology and genetic development pathways of canine cutaneous melanocytic neoplasms. Evaluation of the applicability of histopathological prognostic parameters commonly used in humans for dogs are also needed. The similarities between the species and the recent findings regarding genetic mutations in canine cutaneous melanomas suggest the potential utility of dogs as a natural model for human melanomas that are not related to ultraviolet radiation.
Collapse
Affiliation(s)
- Isabeli J Contel
- Department of Pathology, Botucatu Medical School, São Paulo State University, Av. Prof. Mário R. Guimarães Montenegro, s/n, Campus Botucatu, 18618-687, Botucatu, SP, Brazil
| | - Carlos E Fonseca-Alves
- Institute of Health Sciences, Paulista University, Rua Luiz Levorato, 140, Jardim Marabá, 17048-290, Bauru, SP, Brazil
| | - Heitor F Ferrari
- University Center of Adamantina, Rua Nove de Julho, 730, Centro, 17800-057, Adamantina, SP, Brazil
| | - Renee Laufer-Amorim
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University, Rua Prof. Doutor Walter Mauricio Correa, s/n, Campus de Botucatu, 18618-681, Botucatu, SP, Brazil
| | - José C C Xavier-Júnior
- Department of Pathology, Botucatu Medical School, São Paulo State University, Av. Prof. Mário R. Guimarães Montenegro, s/n, Campus Botucatu, 18618-687, Botucatu, SP, Brazil; Salesian Catholic University Center Auxilium, Medical School, Rod. Sen. Teotônio Vilela, 3821, Jardim Alvorada, 16016-500, Araçatuba, SP, Brazil.
| |
Collapse
|
6
|
Polton G, Borrego JF, Clemente-Vicario F, Clifford CA, Jagielski D, Kessler M, Kobayashi T, Lanore D, Queiroga FL, Rowe AT, Vajdovich P, Bergman PJ. Melanoma of the dog and cat: consensus and guidelines. Front Vet Sci 2024; 11:1359426. [PMID: 38645640 PMCID: PMC11026649 DOI: 10.3389/fvets.2024.1359426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/12/2024] [Indexed: 04/23/2024] Open
Abstract
Melanoma of the dog and cat poses a clinical challenge to veterinary practitioners across the globe. As knowledge evolves, so too do clinical practices. However, there remain uncertainties and controversies. There is value for the veterinary community at large in the generation of a contemporary wide-ranging guideline document. The aim of this project was therefore to assimilate the available published knowledge into a single accessible referenced resource and to provide expert clinical guidance to support professional colleagues as they navigate current melanoma challenges and controversies. Melanocytic tumors are common in dogs but rare in cats. The history and clinical signs relate to the anatomic site of the melanoma. Oral and subungual malignant melanomas are the most common malignant types in dogs. While many melanocytic tumors are heavily pigmented, making diagnosis relatively straightforward, melanin pigmentation is variable. A validated clinical stage scheme has been defined for canine oral melanoma. For all other locations and for feline melanoma, TNM-based staging applies. Certain histological characteristics have been shown to bear prognostic significance and can thus prove instructive in clinical decision making. Surgical resection using wide margins is currently the mainstay of therapy for the local control of melanomas, regardless of primary location. Radiotherapy forms an integral part of the management of canine oral melanomas, both as a primary and an adjuvant therapy. Adjuvant immunotherapy or chemotherapy is offered to patients at high risk of developing distant metastasis. Location is the major prognostic factor, although it is not completely predictive of local invasiveness and metastatic potential. There are no specific guidelines regarding referral considerations for dogs with melanoma, as this is likely based on a multitude of factors. The ultimate goal is to provide the best options for patients to extend quality of life and survival, either within the primary care or referral hospital setting.
Collapse
Affiliation(s)
- Gerry Polton
- North Downs Specialist Referrals, Bletchingley, United Kingdom
| | - Juan F. Borrego
- Hospital Aúna Especialidades Veterinarias IVC Evidensia, Paterna, Spain
| | | | | | - Dariusz Jagielski
- Veterinary Institute, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Martin Kessler
- Department of Clinical Oncology, Tierklinik Hofheim, Hofheim, Germany
| | | | | | | | | | - Péter Vajdovich
- Department of Physiology and Oncology, University of Veterinary Medicine, Budapest, Hungary
| | - Philip J. Bergman
- VCA Clinical Studies, Katonah-Bedford Veterinary Center, Bedford Hills, NY, United States
| |
Collapse
|
7
|
Sakthikumar S, Warrier M, Whitley D, Facista S, Adkins J, Aman S, Tsinajinnie D, Duran N, Siravegna G, Ahmed Z, Day K, Jenkins B, Patel N, Ryden K, Nadai J, Banovich K, Powers B, Edwards J, Steinberg J, Fielder S, Wong S, Byron SA, Izatt T, Zismann V, Boateng M, Zhu Z, Chuang HY, Trent JM, Haworth D, Chon E, Hendricks W, Wang G. Genomic analysis across 53 canine cancer types reveals novel mutations and high clinical actionability potential. Vet Comp Oncol 2024; 22:30-41. [PMID: 38053317 DOI: 10.1111/vco.12944] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
A genomic understanding of the oncogenic processes and individual variability of human cancer has steadily fueled improvement in patient outcomes over the past 20 years. Mutations within tumour tissues are routinely assessed through clinical genomic diagnostic assays by academic and commercial laboratories to facilitate diagnosis, prognosis and effective treatment stratification. The application of genomics has unveiled a wealth of mutation-based biomarkers in canine cancers, suggesting that the transformative principles that have revolutionized human cancer medicine can be brought to bear in veterinary oncology. To advance clinical genomics and genomics-guided medicine in canine oncology, we have developed and validated a canine cancer next-generation sequencing gene panel for the identification of multiple mutation types in clinical specimens. With this panel, we examined the genomic landscapes of 828 tumours from 813 dogs, spanning 53 cancer types. We identified 7856 alterations, encompassing copy number variants, single nucleotide variants, indels and internal tandem duplications. Additionally, we evaluated the clinical utility of these alterations by incorporating a biomarker framework from comprehensive curation of primary canine literature and inferences from human cancer genomic biomarker literature and clinical diagnostics. Remarkably, nearly 90% of the cases exhibited mutations with diagnostic, prognostic or therapeutic implications. Our work represents a thorough assessment of genomic landscapes in a large cohort of canine cancers, the first of its kind for its comprehensive inclusion of multiple mutation types and structured annotation of biomarkers, demonstrating the clinical potential of leveraging mutation-based biomarkers in veterinary oncology.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara Aman
- Vidium Animal Health, Phoenix, Arizona, USA
| | | | | | | | | | | | | | | | - Kirk Ryden
- Vidium Animal Health, Phoenix, Arizona, USA
| | - Joe Nadai
- Vidium Animal Health, Phoenix, Arizona, USA
| | | | | | | | - Jennifer Steinberg
- Center for Cancer Research at the National Cancer Institute, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Shukmei Wong
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Sara A Byron
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Tyler Izatt
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Victoria Zismann
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | | | | | - Jeffrey M Trent
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | | | | | | |
Collapse
|
8
|
Gao Y, Packeiser EM, Wendt S, Sekora A, Cavalleri JMV, Pratscher B, Alammar M, Hühns M, Brenig B, Junghanss C, Nolte I, Murua Escobar H. Cross-Species Comparison of the Pan-RAF Inhibitor LY3009120's Anti-Tumor Effects in Equine, Canine, and Human Malignant Melanoma Cell Lines. Genes (Basel) 2024; 15:202. [PMID: 38397192 PMCID: PMC10887541 DOI: 10.3390/genes15020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Malignant melanomas (MMs) are the abnormal proliferation of melanocytes and are one of the lethal skin cancers in humans, equines, and canines. Accordingly, MMs in companion animals can serve as naturally occurring animal models, completing conventional cancer models. The common constitutive activation of the MAPK and PI3K pathways in MMs has been described in all three species. Targeting the related pathways is considered a potential option in comparative oncologic approaches. Herein, we present a cross-species comparative analysis exposing a set of ten melanoma cell lines (one human, three equine, and six canine) derived from primary tumors or metastasis to a pan-RAF and RAF dimer inhibitor (LY3009120). Cellular response (proliferation, biomass, metabolism, early and late apoptosis/necrosis, and morphology) and the presence of pathogenic single-nucleotide variants (SNVs) within the mutational hotspot genes BRAF exon 11 and 15, NRAS exon 2 and 3, KRAS exon 2, and KIT exon 11 were analyzed. This study showed that equine malignant melanoma (EMM) cells (MelDuWi) harbor the KRAS p.Q61H mutation, while canine malignant melanoma (CMM) cells (cRGO1 and cRGO1.2) carry NRAS p.G13R. Except for EMM metastasis cells eRGO6 (wild type of the above-mentioned hotspot genes), all melanoma cell lines exhibited a decrease in dose dependence after 48 and 72 h of exposure to LY3009120, independent of the mutation hotspot landscape. Furthermore, LY3009120 caused significant early apoptosis and late apoptosis/necrosis in all melanoma cell lines except for eRGO6. The anti-tumor effects of LY3009120 were observed in nine melanoma cell lines, indicating the potential feasibility of experimental trials with LY3009120. The present study reveals that the irradiation-resistant canine metastasis cells (cRGO1.2) harboring the NRAS p.G13R mutation are significantly LY3009120-sensitive, while the equine metastases-derived eRGO6 cells show significant resistance to LY3009120, which make them both valuable tools for studying resistance mechanisms in comparative oncology.
Collapse
Affiliation(s)
- Yu Gao
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Eva-Maria Packeiser
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Sophia Wendt
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Anett Sekora
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Jessika-Maximiliane V. Cavalleri
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Barbara Pratscher
- Clinical Unit of Equine Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Clinical Unit of Small Animal Internal Medicine, Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Moosheer Alammar
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Maja Hühns
- Institute of Pathology, University Medicine of Rostock, Strempelstrasse, 18055 Rostock, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, Division of Molecular Biology of Livestock and Molecular Diagnostics, Georg-August-University of Göttingen, 37077 Göttingen, Germany
| | - Christian Junghanss
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| | - Ingo Nolte
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology and Palliative Medicine, University Medical Center Rostock, 18057 Rostock, Germany
| |
Collapse
|
9
|
Pisamai S, Edwards SW, Cheng CW, Chaivichit P, Sooksiri M, Yanakam S, Maneewong S, Suriyaphol G. Tissue transcriptome profiling and pathway analyses revealed novel potential biomarkers in the tumor progression of canine oral melanoma. Res Vet Sci 2023; 165:105036. [PMID: 37856944 DOI: 10.1016/j.rvsc.2023.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
Canine oral melanoma (COM) is an aggressive oral malignancy in dogs, mostly with metastasis. However, the understanding of total gene expression of oral melanoma (OM) at different clinical stages has been limited. The objective of this study was to identify novel mRNA biomarkers of early-stage OM (EOM) and late-stage OM (LOM). Transcriptome sequencing of 3 EOM, 5 LOM and 4 normal gingival tissues (controls) was performed. Selected transcriptome results were validated by quantitative reverse transcription-PCR (qRT-PCR) using 12 LOM and 10 controls. We found 534 differentially expressed in EOM compared with controls, whereas 696 genes in LOM were differentially expressed compared with controls (P < 0.05). Moreover, 27 genes were differentially expressed in LOM compared with EOM (P < 0.05). The genes expressed in COM were involved in the molecular mechanism of cancer and melanocyte development pathways, promoting melanoma progression. qRT-PCR confirmed an increased expression of genes encoding an important protein in chemotherapy resistance (dopachrome tautomerase, DCT) and tumor progression (forkhead box M1, FOXM1), and decreased expression of a tumor suppression gene (N-myc downstream-regulated gene 2, NDRG2) in LOM, concordant with transcriptome results. In conclusion, this study revealed the comprehensive transcriptome from COM tissues, and increased DCT and FOXM1 and decreased NDRG2 gene expression indicated the potential candidate biomarkers in COM progression.
Collapse
Affiliation(s)
- Sirinun Pisamai
- Department of Veterinary Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Steven W Edwards
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Chew Weng Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Phannita Chaivichit
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mokhapoom Sooksiri
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sujittra Yanakam
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sattabongkoch Maneewong
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Gunnaporn Suriyaphol
- Center of Excellence for Companion Animal Cancer, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Shinada M, Kato D, Motegi T, Tsuboi M, Ikeda N, Aoki S, Iguchi T, Li T, Kodera Y, Ota R, Hashimoto Y, Takahashi Y, Chambers J, Uchida K, Kato Y, Nishimura R, Nakagawa T. Podoplanin Drives Amoeboid Invasion in Canine and Human Mucosal Melanoma. Mol Cancer Res 2023; 21:1205-1219. [PMID: 37493578 DOI: 10.1158/1541-7786.mcr-22-0929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Mucosal melanoma metastasizes at an early stage of the disease in human and dog. We revealed that overexpression of podoplanin in tumor invasion fronts (IF) was related to poor prognosis of dogs with mucosal melanoma. Moreover, podoplanin expressed in canine mucosal melanoma cells promotes proliferation and aggressive amoeboid invasion by activating Rho-associated kinase (ROCK)-myosin light chain 2 (MLC2) signaling. PDPN-ROCK-MLC2 signaling plays a role in cell-cycle arrest and cellular senescence escape as a mechanism for regulating proliferation. Podoplanin induces amoeboid invasion in the IFs of mouse xenografted tumor tissues, similar to canine mucosal melanoma clinical samples. We further identified that podoplanin expression was related to poor prognosis of human patients with mucosal melanoma, and human mucosal melanoma with podoplanin-high expression enriched gene signatures related to amoeboid invasion, similar to canine mucosal melanoma. Overall, we propose that podoplanin promotes canine and human mucosal melanoma metastasis by inducing aggressive amoeboid invasion and naturally occurring canine mucosal melanoma can be a novel research model for podoplanin expressing human mucosal melanoma. IMPLICATIONS Podoplanin could be a new therapeutic target to restrict the metastatic dissemination of canine and human mucosal melanoma.
Collapse
Affiliation(s)
- Masahiro Shinada
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daiki Kato
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoki Motegi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Masaya Tsuboi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Namiko Ikeda
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Susumu Aoki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takaaki Iguchi
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toshio Li
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuka Kodera
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Ota
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuko Hashimoto
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - Yosuke Takahashi
- Veterinary Medical Center, The University of Tokyo, Tokyo, Japan
| | - James Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Satthathum C, Srisampane S, Jariyarangsrirattana P, Anusorn P, Sattasathuchana P, Thengchaisri N. Characteristics of canine oral tumors: Insights into prevalence, types, and lesion distribution. J Adv Vet Anim Res 2023; 10:554-562. [PMID: 37969809 PMCID: PMC10636079 DOI: 10.5455/javar.2023.j709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 11/17/2023] Open
Abstract
Objective The escalating prevalence of canine oral tumors has emerged as a considerable health concern. This study examined the prevalence, types, and distributions of lesions linked to canine oral tumors. Material and Methods The medical records of 526 dogs diagnosed with oral tumors were analyzed to determine the prevalence, types, and distributions. Tumor stages were classified into four categories using the tumor node metastasis system. Results Among the 526 dogs, there were 118 cases of benign tumors and 408 cases of malignant tumors. Acanthomatous ameloblastoma was the most common benign tumor (43.22%), while melanoma was the most common malignant tumor (51.23%). The gingiva was the most common site for both benign and malignant lesions, accounting for 89.83% and 63.73% of cases, respectively. Melanoma, squamous cell carcinoma, and fibrosarcoma were primarily located in the gingiva, whereas osteosarcoma was commonly found in the mandible. Most tumors were classified as stage III (ranging from 46.84% to 74.58%). Of the reported cases, 56.08% were males and 43.92% were females, and the most common breed was mixed at 30.41%, followed by Poodle at 14.25% and Shih Tzu at 11.40%. Moreover, patients with malignant oral tumors (11.6 ± 3.1 years) were significantly older than those with benign tumors (8.9 ± 3.4 years, p < 0.0001). Conclusion Gingiva was the primary site for oral tumors, and mainly classified as stage III. These findings emphasize the increasing occurrence of oral tumors in senior and geriatric dogs and provide insights into the prevalent types and distribution.
Collapse
Affiliation(s)
- Chakkarin Satthathum
- Faculty of Veterinary Medicine, Surgery Unit, Kasetsart University Veterinary Teaching Hospital, Kasetsart University, Bangkok, Thailand
| | - Supreeya Srisampane
- Faculty of Veterinary Medicine, Veterinary Diagnostic Center, Kasetsart University, Bangkok, Thailand
| | - Pollawat Jariyarangsrirattana
- Faculty of Veterinary Medicine, Surgery Unit, Kasetsart University Veterinary Teaching Hospital, Kasetsart University, Bangkok, Thailand
| | - Pitak Anusorn
- Faculty of Veterinary Medicine, Surgery Unit, Kasetsart University Veterinary Teaching Hospital, Kasetsart University, Bangkok, Thailand
| | - Panpicha Sattasathuchana
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Naris Thengchaisri
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
12
|
Rodrigues L, Watson J, Feng Y, Lewis B, Harvey G, Post G, Megquier K, White ME, Lambert L, Miller A, Lopes C, Zhao S. Shared hotspot mutations in oncogenes position dogs as an unparalleled comparative model for precision therapeutics. Sci Rep 2023; 13:10935. [PMID: 37414794 PMCID: PMC10325973 DOI: 10.1038/s41598-023-37505-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Naturally occurring canine cancers have remarkable similarities to their human counterparts. To better understand these similarities, we investigated 671 client-owned dogs from 96 breeds with 23 common tumor types, including those whose mutation profile are unknown (anal sac carcinoma and neuroendocrine carcinoma) or understudied (thyroid carcinoma, soft tissue sarcoma and hepatocellular carcinoma). We discovered mutations in 50 well-established oncogenes and tumor suppressors, and compared them to those reported in human cancers. As in human cancer, TP53 is the most commonly mutated gene, detected in 22.5% of canine tumors overall. Canine tumors share mutational hotspots with human tumors in oncogenes including PIK3CA, KRAS, NRAS, BRAF, KIT and EGFR. Hotspot mutations with significant association to tumor type include NRAS G61R and PIK3CA H1047R in hemangiosarcoma, ERBB2 V659E in pulmonary carcinoma, and BRAF V588E (equivalent of V600E in humans) in urothelial carcinoma. Our findings better position canines as a translational model of human cancer to investigate a wide spectrum of targeted therapies.
Collapse
Affiliation(s)
- Lucas Rodrigues
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA.
| | - Joshua Watson
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA
| | - Yuan Feng
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA
| | - Benjamin Lewis
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Garrett Harvey
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Gerald Post
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Kate Megquier
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michelle E White
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Lindsay Lambert
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Aubrey Miller
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Christina Lopes
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA.
| |
Collapse
|
13
|
Tagawa M, Aoki M. Clinical utility of liquid biopsy in canine oral malignant melanoma using cell-free DNA. Front Vet Sci 2023; 10:1182093. [PMID: 37408834 PMCID: PMC10319414 DOI: 10.3389/fvets.2023.1182093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Cell-free DNA (cfDNA), an extracellular free DNA released into the bloodstream by cells, is a potentially useful noninvasive marker to detect human malignancies and monitor response to treatment. In the present study, we evaluated the utility of circulating cfDNA in canine patients with oral malignant melanoma (OMM) in assessing therapeutic response and clinical outcomes. Methods Plasma samples were collected from 12 dogs with OMM and 9 healthy controls. cfDNA concentration was quantified by real-time PCR resulting in short (99bp) and long (218bp) fragments of long interspersed nuclear element-1 (LINE-1), and the DNA integrity index (DII) was then calculated (218/99). A follow-up study was conducted on 6 dogs with OMM, and the plasma cfDNA and DII were quantified throughout disease progression. Results Although cfDNA levels obtained from dogs with OMM were not significantly different compared to those obtained from healthy controls, the DII was significantly lower in dogs with OMM than in healthy controls. The DII tended to decrease as the disease stage progressed. Moreover, changes in cfDNA concentration and DII along the clinical course were observed when major changes, such as metastasis or apparent tumor progression, were observed. Discussion The results of our study suggest that measurements of serum cfDNA and DII using LINE-1 might be valuable new biomarkers for monitoring OMM progression in dogs. This preliminary study demonstrated the potential clinical utility of monitoring plasma cfDNA in canine patients with OMM.
Collapse
Affiliation(s)
- Michihito Tagawa
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Veterinary Associated Science, Okayama University of Science, Imabari, Japan
| | - Minori Aoki
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| |
Collapse
|
14
|
Pinto C, Aluai-Cunha C, Santos A. The human and animals' malignant melanoma: comparative tumor models and the role of microbiome in dogs and humans. Melanoma Res 2023; 33:87-103. [PMID: 36662668 DOI: 10.1097/cmr.0000000000000880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Currently, the most progressively occurring incident cancer is melanoma. The mouse is the most popular model in human melanoma research given its various benefits as a laboratory animal. Nevertheless, unlike humans, mice do not develop melanoma spontaneously, so they need to be genetically manipulated. In opposition, there are several reports of other animals, ranging from wild to domesticated animals, that spontaneously develop melanoma and that have cancer pathways that are similar to those of humans. The influence of the gut microbiome on health and disease is being the aim of many recent studies. It has been proven that the microbiome is a determinant of the host's immune status and disease prevention. In human medicine, there is increasing evidence that changes in the microbiome influences malignant melanoma progression and response to therapy. There are several similarities between some animals and human melanoma, especially between canine and human oral malignant melanoma as well as between the gut microbiome of both species. However, microbiome studies are scarce in veterinary medicine, especially in the oncology field. Future studies need to address the relevance of gut and tissue microbiome for canine malignant melanoma development, which results will certainly benefit both species in the context of translational medicine.
Collapse
Affiliation(s)
- Catarina Pinto
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Catarina Aluai-Cunha
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
| | - Andreia Santos
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar of the University of Porto (ICBAS-UP)
- Animal Science and Study Centre (CECA), Food and Agragrian Sciences and Technologies Institute (ICETA), Apartado, Porto, Portugal
| |
Collapse
|
15
|
Oh JH, Cho JY. Comparative oncology: overcoming human cancer through companion animal studies. Exp Mol Med 2023; 55:725-734. [PMID: 37009802 PMCID: PMC10167357 DOI: 10.1038/s12276-023-00977-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 04/04/2023] Open
Abstract
Comparative oncology is a field of study that has been recently adopted for studying cancer and developing cancer therapies. Companion animals such as dogs can be used to evaluate novel biomarkers or anticancer targets before clinical translation. Thus, the value of canine models is increasing, and numerous studies have been conducted to analyze similarities and differences between many types of spontaneously occurring cancers in canines and humans. A growing number of canine cancer models as well as research-grade reagents for these models are becoming available, leading to substantial growth in comparative oncology research spanning from basic science to clinical trials. In this review, we summarize comparative oncology studies that have been conducted on the molecular landscape of various canine cancers and highlight the importance of the integration of comparative biology into cancer research.
Collapse
Affiliation(s)
- Ji Hoon Oh
- Department of Biochemistry, Brain Korea 21 Project and Research Institute for Veterinary Science, Seoul National University College of Veterinary Medicine, Seoul, 08826, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, Brain Korea 21 Project and Research Institute for Veterinary Science, Seoul National University College of Veterinary Medicine, Seoul, 08826, Republic of Korea.
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Wu K, Rodrigues L, Post G, Harvey G, White M, Miller A, Lambert L, Lewis B, Lopes C, Zou J. Analyses of canine cancer mutations and treatment outcomes using real-world clinico-genomics data of 2119 dogs. NPJ Precis Oncol 2023; 7:8. [PMID: 36658200 PMCID: PMC9852553 DOI: 10.1038/s41698-023-00346-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Spontaneous tumors in canines share significant genetic and histological similarities with human tumors, positioning them as valuable models to guide drug development. However, current translational studies have limited real world evidence as cancer outcomes are dispersed across veterinary clinics and genomic tests are rarely performed on dogs. In this study, we aim to expand the value of canine models by systematically characterizing genetic mutations in tumors and their response to targeted treatments. In total, we collect and analyze survival outcomes for 2119 tumor-bearing dogs and the prognostic effect of genomic alterations in a subset of 1108 dogs. Our analysis identifies prognostic concordance between canines and humans in several key oncogenes, including TP53 and PIK3CA. We also find that several targeted treatments designed for humans are associated with a positive prognosis when used to treat canine tumors with specific genomic alterations, underscoring the value of canine models in advancing drug discovery for personalized oncology.
Collapse
Affiliation(s)
- Kevin Wu
- One Health Company, Palo Alto, CA, US
- Department of Biomedical Data Science, Stanford University, Stanford, US
| | | | | | | | | | | | | | | | | | - James Zou
- One Health Company, Palo Alto, CA, US
- Department of Biomedical Data Science, Stanford University, Stanford, US
| |
Collapse
|
17
|
Giannuzzi D, Marconato L, Fanelli A, Licenziato L, De Maria R, Rinaldi A, Rotta L, Rouquet N, Birolo G, Fariselli P, Mensah AA, Bertoni F, Aresu L. The genomic landscape of canine diffuse large B-cell lymphoma identifies distinct subtypes with clinical and therapeutic implications. Lab Anim (NY) 2022; 51:191-202. [PMID: 35726023 DOI: 10.1038/s41684-022-00998-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/13/2022] [Indexed: 12/13/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid neoplasm in dogs and in humans. It is characterized by a remarkable degree of clinical heterogeneity that is not completely elucidated by molecular data. This poses a major barrier to understanding the disease and its response to therapy, or when treating dogs with DLBCL within clinical trials. We performed an integrated analysis of exome (n = 77) and RNA sequencing (n = 43) data in a cohort of canine DLBCL to define the genetic landscape of this tumor. A wide range of signaling pathways and cellular processes were found in common with human DLBCL, but the frequencies of the most recurrently mutated genes (TRAF3, SETD2, POT1, TP53, MYC, FBXW7, DDX3X and TBL1XR1) differed. We developed a prognostic model integrating exonic variants and clinical and transcriptomic features to predict the outcome in dogs with DLBCL. These results comprehensively define the genetic drivers of canine DLBCL and can be prospectively utilized to identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Laura Marconato
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luca Rotta
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | | | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Afua A Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland. .,Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy.
| |
Collapse
|
18
|
Wang M, Banik I, Shain AH, Yeh I, Bastian BC. Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes. Genome Med 2022; 14:65. [PMID: 35706047 PMCID: PMC9202124 DOI: 10.1186/s13073-022-01068-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/03/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Acral and mucosal melanomas are aggressive subtypes of melanoma, which have a significantly lower burden of somatic mutations than cutaneous melanomas, but more frequent copy number variations, focused gene amplifications, and structural alterations. The landscapes of their genomic alterations remain to be fully characterized. METHODS We compiled sequencing data of 240 human acral and mucosal melanoma samples from 11 previously published studies and applied a uniform pipeline to call tumor cell content, ploidy, somatic and germline mutations, as well as CNVs, LOH, and SVs. We identified genes that are significantly mutated or recurrently affected by CNVs and implicated in oncogenesis. We further examined the difference in the frequency of recurrent pathogenic alterations between the two melanoma subtypes, correlation between pathogenic alterations, and their association with clinical features. RESULTS We nominated PTPRJ, mutated and homozygously deleted in 3.8% (9/240) and 0.8% (2/240) of samples, respectively, as a probable tumor suppressor gene, and FER and SKP2, amplified in 3.8% and 11.7% of samples, respectively, as probable oncogenes. We further identified a long tail of infrequent pathogenic alterations, involving genes such as CIC and LZTR1. Pathogenic germline mutations were observed on MITF, PTEN, ATM, and PRKN. We found BRAF V600E mutations in acral melanomas with fewer structural variations, suggesting that they are distinct and related to cutaneous melanomas. Amplifications of PAK1 and GAB2 were more commonly observed in acral melanomas, whereas SF3B1 R625 codon mutations were unique to mucosal melanomas (12.9%). Amplifications at 11q13-14 were frequently accompanied by fusion to a region on chromosome 6q12, revealing a recurrent novel structural rearrangement whose role remains to be elucidated. CONCLUSIONS Our meta-analysis expands the catalog of driver mutations in acral and mucosal melanomas, sheds new light on their pathogenesis and broadens the catalog of therapeutic targets for these difficult-to-treat cancers.
Collapse
Affiliation(s)
- Meng Wang
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Ishani Banik
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - A Hunter Shain
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Iwei Yeh
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| | - Boris C Bastian
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA.
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Tarone L, Giacobino D, Camerino M, Ferrone S, Buracco P, Cavallo F, Riccardo F. Canine Melanoma Immunology and Immunotherapy: Relevance of Translational Research. Front Vet Sci 2022; 9:803093. [PMID: 35224082 PMCID: PMC8873926 DOI: 10.3389/fvets.2022.803093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/10/2022] [Indexed: 11/17/2022] Open
Abstract
In veterinary oncology, canine melanoma is still a fatal disease for which innovative and long-lasting curative treatments are urgently required. Considering the similarities between canine and human melanoma and the clinical revolution that immunotherapy has instigated in the treatment of human melanoma patients, special attention must be paid to advancements in tumor immunology research in the veterinary field. Herein, we aim to discuss the most relevant knowledge on the immune landscape of canine melanoma and the most promising immunotherapeutic approaches under investigation. Particular attention will be dedicated to anti-cancer vaccination, and, especially, to the encouraging clinical results that we have obtained with DNA vaccines directed against chondroitin sulfate proteoglycan 4 (CSPG4), which is an appealing tumor-associated antigen with a key oncogenic role in both canine and human melanoma. In parallel with advances in therapeutic options, progress in the identification of easily accessible biomarkers to improve the diagnosis and the prognosis of melanoma should be sought, with circulating small extracellular vesicles emerging as strategically relevant players. Translational advances in melanoma management, whether achieved in the human or veterinary fields, may drive improvements with mutual clinical benefits for both human and canine patients; this is where the strength of comparative oncology lies.
Collapse
Affiliation(s)
- Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Conrad D, Kehl A, Beitzinger C, Metzler T, Steiger K, Pfarr N, Fischer K, Klopfleisch R, Aupperle-Lellbach H. Molecular Genetic Investigation of Digital Melanoma in Dogs. Vet Sci 2022; 9:vetsci9020056. [PMID: 35202309 PMCID: PMC8874500 DOI: 10.3390/vetsci9020056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
Canine digital melanoma, in contrast to canine oral melanoma, is still largely unexplored at the molecular genetic level. The aim of this study was to detect mutant genes in digital melanoma. Paraffin-embedded samples from 86 canine digital melanomas were examined for the BRAF V595E variant by digital droplet PCR (ddPCR), and for exon 11 mutations in c-kit. Furthermore, exons 2 and 3 of KRAS and NRAS were analysed by Sanger sequencing. Copy number variations (CNV) of KITLG in genomic DNA were analysed from nine dogs. The BRAF V595E variant was absent and in c-kit, a single nucleotide polymorphism was found in 16/70 tumours (23%). The number of copies of KITLG varied between 4 and 6. KRAS exon 2 codons 12 and 13 were mutated in 22/86 (25.6%) of the melanomas examined. Other mutually exclusive RAS mutations were found within the hotspot loci, i.e., KRAS exon 3 codon 61: 2/55 (3.6%); NRAS exon 2 codons 12 and 13: 2/83 (2.4%); and NRAS exon 3 codon 61: 9/86 (10.5%). However, no correlation could be established between histological malignancy criteria, survival times and the presence of RAS mutations. In summary, canine digital melanoma differs from molecular genetic data of canine oral melanoma and human melanoma, especially regarding the proportion of RAS mutations.
Collapse
Affiliation(s)
- David Conrad
- Department of Pathology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany;
- Correspondence:
| | - Alexandra Kehl
- Department of Molecular Biology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.K.); (C.B.)
| | - Christoph Beitzinger
- Department of Molecular Biology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.K.); (C.B.)
| | - Thomas Metzler
- Institute of Pathology, School of Medicine, Technische Universität München, 81675 München, Germany; (T.M.); (K.S.); (N.P.)
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technische Universität München, 81675 München, Germany; (T.M.); (K.S.); (N.P.)
| | - Nicole Pfarr
- Institute of Pathology, School of Medicine, Technische Universität München, 81675 München, Germany; (T.M.); (K.S.); (N.P.)
| | - Konrad Fischer
- School of Life Sciences Weihenstephan, Technische Universität München, 85354 Freising, Germany;
| | - Robert Klopfleisch
- Department of Pathology, Freie Universität Berlin, 14163 Berlin, Germany;
| | | |
Collapse
|
21
|
Prouteau A, Mottier S, Primot A, Cadieu E, Bachelot L, Botherel N, Cabillic F, Houel A, Cornevin L, Kergal C, Corre S, Abadie J, Hitte C, Gilot D, Lindblad-Toh K, André C, Derrien T, Hedan B. Canine Oral Melanoma Genomic and Transcriptomic Study Defines Two Molecular Subgroups with Different Therapeutical Targets. Cancers (Basel) 2022; 14:cancers14020276. [PMID: 35053440 PMCID: PMC8774001 DOI: 10.3390/cancers14020276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Simple Summary In humans, mucosal melanoma (MM) is a rare and aggressive cancer. The canine model is frequently and spontaneously affected by MM, thus facilitating the collection of samples and the study of its genetic bases. Thanks to an integrative genomic and transcriptomic analysis of 32 canine MM samples, we identified two molecular subgroups of MM with a different microenvironment and structural variant (SV) content. We demonstrated that SVs are associated with recurrently amplified regions, and identified new candidate oncogenes (TRPM7, GABPB1, and SPPL2A) for MM. Our findings suggest the existence of two MM molecular subgroups that could benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine. Abstract Mucosal melanoma (MM) is a rare, aggressive clinical cancer. Despite recent advances in genetics and treatment, the prognosis of MM remains poor. Canine MM offers a relevant spontaneous and immunocompetent model to decipher the genetic bases and explore treatments for MM. We performed an integrative genomic and transcriptomic analysis of 32 canine MM samples, which identified two molecular subgroups with a different microenvironment and structural variant (SV) content. The overexpression of genes related to the microenvironment and T-cell response was associated with tumors harboring a lower content of SVs, whereas the overexpression of pigmentation-related pathways and oncogenes, such as TERT, was associated with a high SV burden. Using whole-genome sequencing, we showed that focal amplifications characterized complex chromosomal rearrangements targeting oncogenes, such as MDM2 or CDK4, and a recurrently amplified region on canine chromosome 30. We also demonstrated that the genes TRPM7, GABPB1, and SPPL2A, located in this CFA30 region, play a role in cell proliferation, and thus, may be considered as new candidate oncogenes for human MM. Our findings suggest the existence of two MM molecular subgroups that may benefit from dedicated therapies, such as immune checkpoint inhibitors or targeted therapies, for both human and veterinary medicine.
Collapse
Affiliation(s)
- Anais Prouteau
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Stephanie Mottier
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Aline Primot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Edouard Cadieu
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Laura Bachelot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Nadine Botherel
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Florian Cabillic
- Laboratoire de Cytogénétique et Biologie Cellulaire, CHU de Rennes, INSERM, INRA, University of Rennes 1, Nutrition Metabolisms and Cancer, 35000 Rennes, France; (F.C.); (L.C.)
| | - Armel Houel
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Laurence Cornevin
- Laboratoire de Cytogénétique et Biologie Cellulaire, CHU de Rennes, INSERM, INRA, University of Rennes 1, Nutrition Metabolisms and Cancer, 35000 Rennes, France; (F.C.); (L.C.)
| | - Camille Kergal
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Sébastien Corre
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Jérôme Abadie
- Laboniris, Department of Biology, Pathology and Food Sciences, Oniris, 44300 Nantes, France;
| | - Christophe Hitte
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - David Gilot
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA;
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Catherine André
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
| | - Thomas Derrien
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
- Correspondence: (T.D.); (B.H.); Tel.: +33-2-23-23-43-19 (B.H.)
| | - Benoit Hedan
- IGDR—UMR 6290, CNRS, University of Rennes 1, 35000 Rennes, France; (A.P.); (S.M.); (A.P.); (E.C.); (L.B.); (N.B.); (A.H.); (C.K.); (S.C.); (C.H.); (D.G.); (C.A.)
- Correspondence: (T.D.); (B.H.); Tel.: +33-2-23-23-43-19 (B.H.)
| |
Collapse
|
22
|
A Comparative View on Molecular Alterations and Potential Therapeutic Strategies for Canine Oral Melanoma. Vet Sci 2021; 8:vetsci8110286. [PMID: 34822659 PMCID: PMC8619620 DOI: 10.3390/vetsci8110286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Canine oral melanoma (COM) is a highly aggressive tumour associated with poor prognosis due to metastasis and resistance to conventional anti-cancer therapies. As with human mucosal melanoma, the mutational landscape is predominated by copy number aberrations and chromosomal structural variants, but differences in study cohorts and/or tumour heterogeneity can lead to discordant results regarding the nature of specific genes affected. This review discusses somatic molecular alterations in COM that result from single nucleotide variations, copy number changes, chromosomal rearrangements, and/or dysregulation of small non-coding RNAs. A cross-species comparison highlights notable recurrent aberrations, and functionally grouping dysregulated proteins reveals unifying biological pathways that may be critical for oncogenesis and metastasis. Finally, potential therapeutic strategies are considered to target these pathways in canine patients, and the benefits of collaboration between science, medical, and veterinary communities are emphasised.
Collapse
|
23
|
He L, Takahashi K, Pasic L, Narui C, Ellinger P, Grundmann M, Takahashi T. The effects of CD148 Q276P/R326Q polymorphisms in A431D epidermoid cancer cell proliferation and epidermal growth factor receptor signaling. Cancer Rep (Hoboken) 2021; 5:e1566. [PMID: 34791835 PMCID: PMC9458507 DOI: 10.1002/cnr2.1566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND CD148 is a transmembrane protein tyrosine phosphatase that is expressed in multiple cell types. Previous studies have shown that CD148 dephosphorylates growth factor receptors and their signaling molecules, including EGFR and ERK1/2, and negatively regulates cancer cell growth. Furthermore, research of clinical patients has shown that highly linked CD148 gene polymorphisms, Gln276Pro (Q276P) and Arg326Gln (R326Q), are associated with an increased risk of several types of cancer. However, the biological effects of these missense mutations have not been studied. AIM We aimed to determine the biological effects of CD148 Q276P/R326Q mutations in cancer cell proliferation and growth factor signaling, with emphasis on EGFR signaling. METHODS CD148 forms, wild-type (WT) or Q276P/R326Q, were retrovirally introduced into A431D epidermoid carcinoma cells that lacks CD148 expression. The stable cells that express comparable levels of CD148 were sorted by flow cytometry. A431D cells infected with empty retrovirus was used as a control. CD148 localization, cell proliferation rate, EGFR signaling, and the response to thrombospondin-1 (TSP1), a CD148 ligand, were assessed by immunostaining, cell proliferation assay, enzyme-linked immunosorbent assay, and Western blotting. RESULTS Both CD148 forms (WT, Q276P/R326Q) were distributed to cell surface and all three cell lines expressed same level of EGFR. Compared to control cells, the A431D cells that express CD148 forms showed significantly lower cell proliferation rates. EGF-induced EGFR and ERK1/2 phosphorylation as well as cell proliferation were also significantly reduced in these cells. Furthermore, TSP1 inhibited cell proliferation in CD148 (WT, Q276P/R326Q)-expressing A431D cells, while it showed no effects in control cells. However, significant differences were not observed between CD148 WT and Q276P/R326Q cells. CONCLUSION Our data demonstrates that Q276P/R326Q mutations do not have major effects on TSP1-CD148 interaction as well as on CD148's cellular localization and activity to inhibit EGFR signaling and cell proliferation.
Collapse
Affiliation(s)
- Lilly He
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Keiko Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lejla Pasic
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Chikage Narui
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Philipp Ellinger
- Bayer AG Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Manuel Grundmann
- Bayer AG Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Alsaihati BA, Ho KL, Watson J, Feng Y, Wang T, Dobbin KK, Zhao S. Canine tumor mutational burden is correlated with TP53 mutation across tumor types and breeds. Nat Commun 2021; 12:4670. [PMID: 34344882 PMCID: PMC8333103 DOI: 10.1038/s41467-021-24836-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Spontaneous canine cancers are valuable but relatively understudied and underutilized models. To enhance their usage, we reanalyze whole exome and genome sequencing data published for 684 cases of >7 common tumor types and >35 breeds, with rigorous quality control and breed validation. Our results indicate that canine tumor alteration landscape is tumor type-dependent, but likely breed-independent. Each tumor type harbors major pathway alterations also found in its human counterpart (e.g., PI3K in mammary tumor and p53 in osteosarcoma). Mammary tumor and glioma have lower tumor mutational burden (TMB) (median < 0.5 mutations per Mb), whereas oral melanoma, osteosarcoma and hemangiosarcoma have higher TMB (median ≥ 1 mutations per Mb). Across tumor types and breeds, TMB is associated with mutation of TP53 but not PIK3CA, the most mutated genes. Golden Retrievers harbor a TMB-associated and osteosarcoma-enriched mutation signature. Here, we provide a snapshot of canine mutations across major tumor types and breeds.
Collapse
Affiliation(s)
- Burair A Alsaihati
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- National Center for Genomics Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Kun-Lin Ho
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Joshua Watson
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Yuan Feng
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Tianfang Wang
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Kevin K Dobbin
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
25
|
Wang G, Wu M, Durham AC, Mason NJ, Roth DB. Canine Oncopanel: A capture-based, NGS platform for evaluating the mutational landscape and detecting putative driver mutations in canine cancers. Vet Comp Oncol 2021; 20:91-101. [PMID: 34286913 DOI: 10.1111/vco.12746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/17/2022]
Abstract
Canine cancer, a significant cause of mortality in domestic dogs, is a powerful comparative model for human cancers. Revealing genetic alterations driving the oncogenesis of canine cancers holds great potential to deepen our understanding of the cancer biology, guide therapeutic development, and improve cancer management in both dogs and people. Next generation sequencing (NGS) based-diagnostic panels have been routinely used in human oncology for the identification of clinically-actionable mutations, enabling tailored treatments based on the individual's unique mutation profiles. Here, we report the development of a comprehensive canine cancer gene panel, the Canine Oncopanel, using a hybridization capture-based targeted NGS method. The Canine Oncopanel allows deep sequencing of 283 cancer genes and the detection of somatic mutations within these genes. Vigorous optimization was performed to achieve robust, high-standard performance using metrics of similar cancer panels in human oncology as benchmarks. Validation of the Canine Oncopanel on reference tumour samples with known mutations demonstrated that it can detect variants previously identified by alternative methods, with high accuracy and sensitivity. Putative drivers were detected in over 90% of clinical samples, showing high sensitivity. The Canine Oncopanel is suitable to map mutation profiles and identify putative driver mutations across common and rare cancer types in dogs. The data generated by the Canine Oncopanel presents a rich resource of putative oncogenic driver mutations and potential clinically relevant markers, paving the way for personalized diagnostics and precision medicine in canine oncology.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ming Wu
- Service and Support, Illumina, San Diego, California, USA
| | - Amy C Durham
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicola J Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David B Roth
- Department of Pathology and Laboratory Medicine, Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Penn Vet Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Grassinger JM, Floren A, Müller T, Cerezo-Echevarria A, Beitzinger C, Conrad D, Törner K, Staudacher M, Aupperle-Lellbach H. Digital Lesions in Dogs: A Statistical Breed Analysis of 2912 Cases. Vet Sci 2021; 8:vetsci8070136. [PMID: 34357928 PMCID: PMC8310350 DOI: 10.3390/vetsci8070136] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/06/2021] [Accepted: 07/14/2021] [Indexed: 01/19/2023] Open
Abstract
Breed predispositions to canine digital neoplasms are well known. However, there is currently no statistical analysis identifying the least affected breeds. To this end, 2912 canine amputated digits submitted from 2014–2019 to the Laboklin GmbH & Co. KG for routine diagnostics were statistically analyzed. The study population consisted of 155 different breeds (most common: 634 Mongrels, 411 Schnauzers, 197 Labrador Retrievers, 93 Golden Retrievers). Non-neoplastic processes were present in 1246 (43%), tumor-like lesions in 138 (5%), and neoplasms in 1528 cases (52%). Benign tumors (n = 335) were characterized by 217 subungual keratoacanthomas, 36 histiocytomas, 35 plasmacytomas, 16 papillomas, 12 melanocytomas, 9 sebaceous gland tumors, 6 lipomas, and 4 bone tumors. Malignant neoplasms (n = 1193) included 758 squamous cell carcinomas (SCC), 196 malignant melanomas (MM), 76 soft tissue sarcomas, 52 mast cell tumors, 37 non-specified sarcomas, 29 anaplastic neoplasms, 24 carcinomas, 20 bone tumors, and 1 histiocytic sarcoma. Predisposed breeds for SCC included the Schnauzer (log OR = 2.61), Briard (log OR = 1.78), Rottweiler (log OR = 1.54), Poodle (log OR = 1.40), and Dachshund (log OR = 1.30). Jack Russell Terriers (log OR = −2.95) were significantly less affected by SCC than Mongrels. Acral MM were significantly more frequent in Rottweilers (log OR = 1.88) and Labrador Retrievers (log OR = 1.09). In contrast, Dachshunds (log OR = −2.17), Jack Russell Terriers (log OR = −1.88), and Rhodesian Ridgebacks (log OR = −1.88) were rarely affected. This contrasted with the well-known predisposition of Dachshunds and Rhodesian Ridgebacks to oral and cutaneous melanocytic neoplasms. Further studies are needed to explain the underlying reasons for breed predisposition or “resistance” to the development of specific acral tumors and/or other sites.
Collapse
Affiliation(s)
- Julia Maria Grassinger
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
- Correspondence:
| | - Andreas Floren
- Institut für Tierökologie und Tropenbiologie, Universität Würzburg, 97070 Würzburg, Germany;
| | - Tobias Müller
- Institut für Bioinformatik, Universität Würzburg, 97070 Würzburg, Germany;
| | - Argiñe Cerezo-Echevarria
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | - Christoph Beitzinger
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | - David Conrad
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | - Katrin Törner
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| | | | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, 97688 Bad Kissingen, Germany; (A.C.-E.); (C.B.); (D.C.); (K.T.); (H.A.-L.)
| |
Collapse
|
27
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
28
|
Palma SD, McConnell A, Verganti S, Starkey M. Review on Canine Oral Melanoma: An Undervalued Authentic Genetic Model of Human Oral Melanoma? Vet Pathol 2021; 58:881-889. [PMID: 33685309 DOI: 10.1177/0300985821996658] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oral melanoma (OM) is a highly aggressive tumor of the oral cavity in humans and dogs. Here we review the phenotypic similarities between the disease in these 2 species as the basis for the view that canine OM is a good model for the corresponding human disease. Utility of the "canine model" has likely been hindered by a paucity of information about the extent of the molecular genetic similarities between human and canine OMs. Current knowledge of the somatic alterations that underpin human tumorigenesis and metastatic progression is relatively limited, primarily due to the rarity of the disease in humans and consequent lack of opportunity for large-scale molecular analysis. The molecular genetic comparisons between human and canine OMs that have been completed indicate some overlap between the somatic mutation profiles of canine OMs and a subset of human OMs. However, further comparative studies featuring, in particular, larger numbers of human OMs are required to provide substantive evidence that canine OMs share mechanisms of tumorigenesis with at least a subset of human OMs. Future molecular genetic investigations of both human and canine OMs should investigate how primary tumors develop a metastatic gene expression signature and the genetic and epigenetic alterations specific to metastatic sites. Such studies may identify genetic alterations and pathways specific to the metastatic disease which could be targetable by new drugs.
Collapse
Affiliation(s)
| | | | - Sara Verganti
- 170851Dick White Referrals, Station Farm, Cambridgeshire, UK
| | - Mike Starkey
- 11661Animal Health Trust, Newmarket, Suffolk, UK
| |
Collapse
|
29
|
PD-L1 immunohistochemistry for canine cancers and clinical benefit of anti-PD-L1 antibody in dogs with pulmonary metastatic oral malignant melanoma. NPJ Precis Oncol 2021; 5:10. [PMID: 33580183 PMCID: PMC7881100 DOI: 10.1038/s41698-021-00147-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy targeting programmed cell death 1 (PD-1) and PD-ligand 1 (PD-L1) represents promising treatments for human cancers. Our previous studies demonstrated PD-L1 overexpression in some canine cancers, and suggested the therapeutic potential of a canine chimeric anti-PD-L1 monoclonal antibody (c4G12). However, such evidence is scarce, limiting the clinical application in dogs. In the present report, canine PD-L1 expression was assessed in various cancer types, using a new anti-PD-L1 mAb, 6C11-3A11, and the safety and efficacy of c4G12 were explored in 29 dogs with pulmonary metastatic oral malignant melanoma (OMM). PD-L1 expression was detected in most canine malignant cancers including OMM, and survival was significantly longer in the c4G12 treatment group (median 143 days) when compared to a historical control group (n = 15, median 54 days). In dogs with measurable disease (n = 13), one dog (7.7%) experienced a complete response. Treatment-related adverse events of any grade were observed in 15 dogs (51.7%). Here we show that PD-L1 is a promising target for cancer immunotherapy in dogs, and dogs could be a useful large animal model for human cancer research.
Collapse
|
30
|
Prouteau A, Denis JA, De Fornel P, Cadieu E, Derrien T, Kergal C, Botherel N, Ulvé R, Rault M, Bouzidi A, François R, Dorso L, Lespagnol A, Devauchelle P, Abadie J, André C, Hédan B. Circulating tumor DNA is detectable in canine histiocytic sarcoma, oral malignant melanoma, and multicentric lymphoma. Sci Rep 2021; 11:877. [PMID: 33441840 PMCID: PMC7806858 DOI: 10.1038/s41598-020-80332-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor DNA (ctDNA) has become an attractive biomarker in human oncology, and its use may be informative in canine cancer. Thus, we used droplet digital PCR or PCR for antigen receptor rearrangement, to explore tumor-specific point mutations, copy number alterations, and chromosomal rearrangements in the plasma of cancer-affected dogs. We detected ctDNA in 21/23 (91.3%) of histiocytic sarcoma (HS), 2/8 (25%) of oral melanoma, and 12/13 (92.3%) of lymphoma cases. The utility of ctDNA in diagnosing HS was explored in 133 dogs, including 49 with HS, and the screening of recurrent PTPN11 mutations in plasma had a specificity of 98.8% and a sensitivity between 42.8 and 77% according to the clinical presentation of HS. Sensitivity was greater in visceral forms and especially related to pulmonary location. Follow-up of four dogs by targeting lymphoma-specific antigen receptor rearrangement in plasma showed that minimal residual disease detection was concordant with clinical evaluation and treatment response. Thus, our study shows that ctDNA is detectable in the plasma of cancer-affected dogs and is a promising biomarker for diagnosis and clinical follow-up. ctDNA detection appears to be useful in comparative oncology research due to growing interest in the study of natural canine tumors and exploration of new therapies.
Collapse
Affiliation(s)
- Anaïs Prouteau
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Jérôme Alexandre Denis
- Sorbonne University, Paris, France.,INSERM UMR_S 938, Endocrinology and Oncology Biochemistry Department, APHP Pitié-Salpêtrière Hospital, Paris, France
| | | | - Edouard Cadieu
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Thomas Derrien
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Camille Kergal
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Nadine Botherel
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Ronan Ulvé
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Mélanie Rault
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | | | | | - Laetitia Dorso
- Department of Biology, Pathology and Food Sciences, Oniris, Laboniris, Nantes, France
| | - Alexandra Lespagnol
- Laboratory of Somatic Genetic of Cancers, Hospital of Rennes, Rennes, France
| | | | - Jérôme Abadie
- Department of Biology, Pathology and Food Sciences, Oniris, Laboniris, Nantes, France
| | - Catherine André
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France
| | - Benoît Hédan
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) UMR6290, 35000, Rennes, France.
| |
Collapse
|
31
|
KIT Somatic Mutations and Immunohistochemical Expression in Canine Oral Melanoma. Animals (Basel) 2020; 10:ani10122370. [PMID: 33321993 PMCID: PMC7764140 DOI: 10.3390/ani10122370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Malignant melanomas arising from mucosal sites are very aggressive neoplastic entities which affect both humans and dogs. The family of tyrosine kinase receptors has been increasingly studied in humans for this type of neoplasm, especially the gene coding for the proto-oncogene KIT, and tyrosine kinase inhibitors are actually available as treatment. However, KIT alteration status in canine oral melanoma still lacks characterization. In this study, we investigated the mutational status and the tissue expression of KIT through DNA sequencing and immunohistochemical analysis, respectively. A homogeneous cohort of 14 canine oral melanomas has been collected, and while tissue expression of the protein was detected, no mutations were identifiable, most likely attributing the dysregulation of this oncogene to a more complex pattern of genomic aberration. Abstract Canine oral melanoma (COM) is an aggressive neoplasm with a low response to therapies, sharing similarities with human mucosal melanomas. In the latter, significant alterations of the proto-oncogene KIT have been shown, while in COMs only its exon 11 has been adequately investigated. In this study, 14 formalin-fixed, paraffin-embedded COMs were selected considering the following inclusion criteria: unequivocal diagnosis, presence of healthy tissue, and a known amplification status of the gene KIT (seven samples affected and seven non-affected by amplification). The DNA was extracted and KIT target exons 13, 17, and 18 were amplified by PCR and sequenced. Immunohistochemistry (IHC) for KIT and Ki67 was performed, and a quantitative index was calculated for each protein. PCR amplification and sequencing was successful in 97.62% of cases, and no single nucleotide polymorphism (SNP) was detected in any of the exons examined, similarly to exon 11 in other studies. The immunolabeling of KIT was positive in 84.6% of the samples with a mean value of 3.1 cells in positive cases, yet there was no correlation with aberration status. Our findings confirm the hypothesis that SNPs are not a frequent event in KIT activation in COMs, with the pathway activation relying mainly on amplification.
Collapse
|
32
|
Ishizaki T, Yamazaki J, Meagawa S, Yokoyama N, Aoshima K, Takiguchi M, Kimura T. Long interspersed nucleotide element-1 hypomethylation in canine malignant mucosal melanoma. Vet Comp Oncol 2020; 18:854-860. [PMID: 32187810 DOI: 10.1111/vco.12591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 01/01/2023]
Abstract
Canine malignant melanoma is a common cancer with a high mortality rate and is a clinically important disease. DNA methylation has been considered to be a potential tumorigenic mechanism through aberrant DNA methylation at promoter region which represses gene transcription. Global hypomethylation could also facilitate chromosome instability. There are few reports regarding DNA methylation in canine malignant melanoma; therefore, the purpose of this study was to examine DNA methylation status of long interspersed nucleotide element-1 (LINE-1) to be a surrogate marker of genome-wide methylation changes in this disease. We measured levels of DNA methylation of two adjacent cytosine-guanine sites on CpG island (CGI) at the putative promoter of canine LINE-1 sequence by bisulphite-pyrosequencing in 41 canine melanoma patient samples as well as six cell lines compared with normal mucosae. The survival rates were obtained from owners or medical records. We found DNA methylation levels of LINE-1 in normal mucosae were methylated. Interestingly, both melanoma cell lines and clinical melanoma samples showed remarkable hypomethylation. In addition, patients with lower LINE-1 methylation showed worse prognosis than those with higher LINE-1 methylation, though the difference did not reach statistical significance (P = .09). Here, we demonstrate that hypomethylation of LINE-1 is an epigenetically aberrant feature in canine melanoma with possible prognostic value.
Collapse
Affiliation(s)
- Teita Ishizaki
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Jumpei Yamazaki
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Shinji Meagawa
- Department of Pediatrics, MD Anderson Cancer Center, Houston, Texas, USA
| | - Nozomu Yokoyama
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Keisuke Aoshima
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Mitsuyoshi Takiguchi
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
33
|
Abstract
Comparative oncology clinical trials play an important and growing role in cancer research and drug development efforts. These trials, typically conducted in companion (pet) dogs, allow assessment of novel anticancer agents and combination therapies in a veterinary clinical setting that supports serial biologic sample collections and exploration of dose, schedule and corresponding pharmacokinetic/pharmacodynamic relationships. Further, an intact immune system and natural co-evolution of tumour and microenvironment support exploration of novel immunotherapeutic strategies. Substantial improvements in our collective understanding of the molecular landscape of canine cancers have occurred in the past 10 years, facilitating translational research and supporting the inclusion of comparative studies in drug development. The value of the approach is demonstrated in various clinical trial settings, including single-agent or combination response rates, inhibition of metastatic progression and randomized comparison of multiple agents in a head-to-head fashion. Such comparative oncology studies have been purposefully included in the developmental plan for several US FDA-approved and up-and-coming anticancer drugs. Challenges for this field include keeping pace with technology and data dissemination/harmonization, improving annotation of the canine genome and immune system, and generation of canine-specific validated reagents to support integration of correlative biology within clinical trial efforts.
Collapse
Affiliation(s)
- Amy K LeBlanc
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Christina N Mazcko
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Wei BR, Hoover SB, Peer CJ, Dwyer JE, Adissu HA, Shankarappa P, Yang H, Lee M, Peat TJ, Figg WD, Simpson RM. Efficacy, Tolerability, and Pharmacokinetics of Combined Targeted MEK and Dual mTORC1/2 Inhibition in a Preclinical Model of Mucosal Melanoma. Mol Cancer Ther 2020; 19:2308-2318. [PMID: 32943547 DOI: 10.1158/1535-7163.mct-19-0858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/26/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Melanomas arising in the mucous membranes are a rare and aggressive subtype. New treatment approaches are needed, yet accumulating sufficient evidence to improve patient outcomes is difficult. Clinical and pathological correlates between human and canine mucosal melanomas are substantial, and the relatively greater incidence of spontaneous naturally occurring mucosal melanoma in dogs represents a promising opportunity for predictive modeling. The genomic landscapes of human and canine mucosal melanoma appear highly diverse and generally lack recurring hotspot mutations associated with cutaneous melanomas. Although much remains to be determined, evidence indicates that Ras/MAPK and/or PI3K/AKT/mTOR signaling pathway activations are common in both species and may represent targets for therapeutic intervention. Sapanisertib, an mTORC1/2 inhibitor, was selected from a PI3K/mTOR inhibitor library to collaborate with MEK inhibition; the latter preclinical efficacy was demonstrated previously for canine mucosal melanoma. Combined inhibition of MEK and mTORC1/2, using trametinib and sapanisertib, produced apoptosis and cell-cycle alteration, synergistically reducing cell survival in canine mucosal melanoma cell lines with varying basal signaling activation levels. Compared with individual inhibitors, a staggered sapanisertib dose, coupled with daily trametinib, was optimal for limiting primary mucosal melanoma xenograft growth in mice, and tumor dissemination in a metastasis model, while minimizing hematologic and renal side effects. Inhibitors downmodulated respective signaling targets and the combination additionally suppressed pathway reciprocal crosstalk. The combination did not significantly change plasma sapanisertib pharmacokinetics; however, trametinib area under the curve was increased in the presence of sapanisertib. Targeting Ras/MAPK and PI3K/AKT/mTOR signal transduction pathways appear rational therapies for canine and human mucosal melanoma.
Collapse
Affiliation(s)
- Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Shelley B Hoover
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Cody J Peer
- Clinical Pharmacology Program and the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jennifer E Dwyer
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hibret A Adissu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Priya Shankarappa
- Clinical Pharmacology Program and the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Tyler J Peat
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - William D Figg
- Clinical Pharmacology Program and the Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
35
|
van der Weyden L, Brenn T, Patton EE, Wood GA, Adams DJ. Spontaneously occurring melanoma in animals and their relevance to human melanoma. J Pathol 2020; 252:4-21. [PMID: 32652526 PMCID: PMC7497193 DOI: 10.1002/path.5505] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
In contrast to other cancer types, melanoma incidence has been increasing over the last 50 years, and while it still represents less than 5% of all cutaneous malignancies, melanoma accounts for the majority of skin cancer deaths, due to its propensity to metastasise. Whilst melanoma most commonly affects the skin, it can also arise in mucosal surfaces, the eye, and the brain. For new therapies to be developed, a better understanding of the genetic landscape, signalling pathways, and tumour-microenvironmental interactions is needed. This is where animal models are of critical importance. The mouse is the foremost used model of human melanoma. Arguably this is due to its plethora of benefits as a laboratory animal; however, it is important to note that unlike humans, melanocytes are not present at the dermal-epidermal junction in mice and mice do not develop melanoma without genetic manipulation. In contrast, there are numerous reports of animals that spontaneously develop melanoma, ranging from sharks and parrots to hippos and monkeys. In addition, several domesticated and laboratory-bred animals spontaneously develop melanoma or UV-induced melanoma, specifically, fish, opossums, pigs, horses, cats, and dogs. In this review, we look at spontaneously occurring animal 'models' of melanoma and discuss their relevance to the different types of melanoma found in humans. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland..
Collapse
Affiliation(s)
| | - Thomas Brenn
- Arnie Charbonneau Cancer InstituteUniversity of CalgaryCalgaryALCanada
| | - E Elizabeth Patton
- MRC Human Genetics UnitThe MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General HospitalEdinburghUK
| | - Geoffrey A Wood
- Ontario Veterinary CollegeUniversity of GuelphGuelphONCanada
| | - David J Adams
- Wellcome Sanger InstituteWellcome Genome CampusCambridgeUK
| |
Collapse
|
36
|
Ishizaki T, Yamazaki J, Jelinek J, Aoshima K, Kimura T. Genome-wide DNA methylation analysis identifies promoter hypermethylation in canine malignant melanoma. Res Vet Sci 2020; 132:521-526. [PMID: 32810831 DOI: 10.1016/j.rvsc.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Canine malignant melanoma is a common cancer with a high mortality rate. Although previous studies have evaluated various aspects of this tumour, the exact mechanism of tumourigenesis remains unknown. Epigenetic mechanisms, such as DNA methylation, have recently gained attention as aetiological factors for neoplasia in humans. This study aimed to analyse genome-wide DNA methylation patterns in canine malignant melanoma based on next-generation sequencing data. A total of 76,213 CpG sites, including 29,482 sites in CpG islands (CGIs), were analysed using next-generation sequencing of methylation-specific signatures, obtained by sequential digestion with enzymes, to compare normal oral mucosal samples from four healthy dogs, four canine melanoma cell lines (3 oral cavity and 1 skin), and five clinical samples of oral canine melanoma. Malignant melanoma showed increased methylation at thousands of normally unmethylated CpG sites in CGIs and decreased methylation at normally methylated CpG sites in non-CGIs. Interestingly, the promoter regions of 81-393 genes were hypermethylated; 23 of these genes were present in all melanoma cell lines and melanoma clinical samples. Among these 23 genes, six genes with "sequence-specific DNA binding" annotation were significantly enriched, including three Homeobox genes-HMX2, TLX2, and HOXA9-that may be involved in the tumourigenesis of canine malignant melanoma. This study revealed widespread alterations in DNA methylation and a large number of hypermethylated genes in canine malignant melanoma.
Collapse
Affiliation(s)
- T Ishizaki
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - J Yamazaki
- Translational Research Unit, Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan.
| | - J Jelinek
- Coriell Institute for Medical Research, 403 Haddon Avenue, Camden, NJ 08103, USA; Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA 19140, USA
| | - K Aoshima
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - T Kimura
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| |
Collapse
|
37
|
Giannuzzi D, Aresu L. A First NGS Investigation Suggests No Association Between Viruses and Canine Cancers. Front Vet Sci 2020; 7:365. [PMID: 32766289 PMCID: PMC7380080 DOI: 10.3389/fvets.2020.00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022] Open
Abstract
Approximately 10–15% of worldwide human cancers are attributable to viral infection. When operating as carcinogenic elements, viruses may act with various mechanisms, but the most important is represented by viral integration into the host genome, causing chromosome instability, genomic mutations, and aberrations. In canine species, few reports have described an association between viral integration and canine cancers, but more comprehensive studies are needed. The advancement of next-generation sequencing and the cost reduction have resulted in a progressive increasing of sequencing data in veterinary oncology offering an opportunity to study virome in canine cancers. In this study, we have performed viral detection and integration analyses using VirusFinder2 software tool on available whole-genome and whole-exome sequencing data of different canine cancers. Several viral sequences were detected in lymphomas, hemangiosarcomas, melanomas, and osteosarcomas, but no reliable integration sites were identified. Even if with some limitations such as the depth and type of sequencing, a restricted number of available nonhuman genomes software, and a limited knowledge on endogenous retroviruses in the canine genome, results are compelling. However, further experiments are needed, and similarly to feline species, dedicated analysis tools for the identification of viral integration sites in canine cancers are required.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Luca Aresu
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| |
Collapse
|
38
|
Amin SB, Anderson KJ, Boudreau CE, Martinez-Ledesma E, Kocakavuk E, Johnson KC, Barthel FP, Varn FS, Kassab C, Ling X, Kim H, Barter M, Lau CC, Ngan CY, Chapman M, Koehler JW, Long JP, Miller AD, Miller CR, Porter BF, Rissi DR, Mazcko C, LeBlanc AK, Dickinson PJ, Packer RA, Taylor AR, Rossmeisl JH, Woolard KD, Heimberger AB, Levine JM, Verhaak RGW. Comparative Molecular Life History of Spontaneous Canine and Human Gliomas. Cancer Cell 2020; 37:243-257.e7. [PMID: 32049048 PMCID: PMC7132629 DOI: 10.1016/j.ccell.2020.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/15/2019] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
Sporadic gliomas in companion dogs provide a window on the interaction between tumorigenic mechanisms and host environment. We compared the molecular profiles of canine gliomas with those of human pediatric and adult gliomas to characterize evolutionarily conserved mammalian mutational processes in gliomagenesis. Employing whole-genome, exome, transcriptome, and methylation sequencing of 83 canine gliomas, we found alterations shared between canine and human gliomas such as the receptor tyrosine kinases, TP53 and cell-cycle pathways, and IDH1 R132. Canine gliomas showed high similarity with human pediatric gliomas per robust aneuploidy, mutational rates, relative timing of mutations, and DNA-methylation patterns. Our cross-species comparative genomic analysis provides unique insights into glioma etiology and the chronology of glioma-causing somatic alterations.
Collapse
Affiliation(s)
- Samirkumar B Amin
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Kevin J Anderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - C Elizabeth Boudreau
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Emmanuel Martinez-Ledesma
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Avenue Morones Prieto 3000, Monterrey, Nuevo Leon 64710, Mexico; Department of Neuro-Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emre Kocakavuk
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; DKFZ Division of Translational Neurooncology at the West German Cancer Center (WTZ), German Cancer Consortium (DKTK) Partner Site & Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Kevin C Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Frederick S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Cynthia Kassab
- Department of Neurosurgery, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoyang Ling
- Department of Neurosurgery, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hoon Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Mary Barter
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Ching C Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Connecticut Children's Medical Center, Hartford, CT 06106, USA; University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Chew Yee Ngan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Margaret Chapman
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Jennifer W Koehler
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - James P Long
- Department of Neurosurgery, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew D Miller
- Department of Biomedical Sciences, Section of Anatomic Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - C Ryan Miller
- Departments of Pathology and Laboratory Medicine, Neurology, and Pharmacology, Lineberger Comprehensive Cancer Center and Neuroscience Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Brian F Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Daniel R Rissi
- Department of Pathology and Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Christina Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy K LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter J Dickinson
- Department of Surgical and Radiological Sciences, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Rebecca A Packer
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amanda R Taylor
- Auburn University College of Veterinary Medicine, Auburn, AL, USA
| | | | - Kevin D Woolard
- Department of Surgical and Radiological Sciences, UC Davis School of Veterinary Medicine, Davis, CA, USA
| | - Amy B Heimberger
- Department of Neurosurgery, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan M Levine
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
39
|
Brocca G, Ferraresso S, Zamboni C, Martinez-Merlo EM, Ferro S, Goldschmidt MH, Castagnaro M. Array Comparative Genomic Hybridization Analysis Reveals Significantly Enriched Pathways in Canine Oral Melanoma. Front Oncol 2019; 9:1397. [PMID: 31921654 PMCID: PMC6920211 DOI: 10.3389/fonc.2019.01397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022] Open
Abstract
Human Mucosal Melanoma (hMM) is an aggressive neoplasm of neuroectodermal origin with distinctive features from the more common cutaneous form of malignant melanoma (cMM). At the molecular level, hMMs are characterized by large chromosomal aberrations rather than single-nucleotide mutations, typically observed in cMM. Given the scarcity of available cases, there have been many attempts to establish a reliable animal model. In pet dogs, Canine Oral Melanoma (COM) is the most common malignant tumor of the oral cavity, sharing clinical and histological aspects with hMM. To improve the knowledge about COM's genomic DNA alterations, in the present work, formalin-fixed, paraffin-embedded (FFPE) samples of COM from different European archives were collected to set up an array Comparative Genomic Hybridization (aCGH) analysis to estimate recurrent Copy Number Aberrations (CNAs). DNA was extracted in parallel from tumor and healthy fractions and 19 specimens were successfully submitted to labeling and competitive hybridization. Data were statistically analyzed through GISTIC2.0 and a pathway-enrichment analysis was performed with ClueGO. Recurrent gained regions were detected, affecting chromosomes CFA 10, 13 and 30, while lost regions involved chromosomes CFA 10, 11, 22, and 30. In particular, CFA 13 showed a whole-chromosome gain in 37% of the samples, while CFA 22 showed a whole-chromosome loss in 25%. A distinctive sigmoidal trend was observed in CFA 10 and 30 in 25 and 30% of the samples, respectively. Comparative analysis revealed that COM and hMM share common chromosomal changes in 32 regions. MAPK- and PI3K-related genes were the most frequently involved, while pathway analysis revealed statistically significant perturbation of cancer-related biological processes such as immune response, drug metabolism, melanocytes homeostasis, and neo-angiogenesis. The latter is a new evidence of a significant involvement of neovascularization-related pathways in COMs and can provide the rationale for future application in anti-cancer targeted therapies.
Collapse
Affiliation(s)
- Ginevra Brocca
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Clarissa Zamboni
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | | | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Michael H Goldschmidt
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
40
|
Horak V, Palanova A, Cizkova J, Miltrova V, Vodicka P, Kupcova Skalnikova H. Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma. Genes (Basel) 2019; 10:E915. [PMID: 31717496 PMCID: PMC6895830 DOI: 10.3390/genes10110915] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
National cancer databases document that melanoma is the most aggressive and deadly cutaneous malignancy with worldwide increasing incidence in the Caucasian population. Around 10% of melanomas occur in families. Several germline mutations were identified that might help to indicate individuals at risk for preventive interventions and early disease detection. More than 50% of sporadic melanomas carry mutations in Ras/Raf/mitogen-activated protein kinase (MAPK/MEK) pathway, which may represent aims of novel targeted therapies. Despite advances in targeted therapies and immunotherapies, the outcomes in metastatic tumor are still unsatisfactory. Here, we review animal models that help our understanding of melanoma development and treatment, including non-vertebrate, mouse, swine, and other mammal models, with an emphasis on those with spontaneously developing melanoma. Special attention is paid to the melanoma-bearing Libechov minipig (MeLiM). This original swine model of hereditary metastatic melanoma enables studying biological processes underlying melanoma progression, as well as spontaneous regression. Current histological, immunohistochemical, biochemical, genetic, hematological, immunological, and skin microbiome findings in the MeLiM model are summarized, together with development of new therapeutic approaches based on tumor devitalization. The ongoing study of molecular and immunological base of spontaneous regression in MeLiM model has potential to bring new knowledge of clinical importance.
Collapse
Affiliation(s)
| | | | | | | | | | - Helena Kupcova Skalnikova
- Czech Academy of Sciences, Institute of Animal Physiology and Genetics, Laboratory of Applied Proteome Analyses and Research Center PIGMOD, 277 21 Libechov, Czech Republic; (V.H.); (A.P.); (J.C.); (V.M.); (P.V.)
| |
Collapse
|
41
|
Rahman MM, Lai YC, Husna AA, Chen HW, Tanaka Y, Kawaguchi H, Hatai H, Miyoshi N, Nakagawa T, Fukushima R, Miura N. Transcriptome analysis of dog oral melanoma and its oncogenic analogy with human melanoma. Oncol Rep 2019; 43:16-30. [PMID: 31661138 PMCID: PMC6908934 DOI: 10.3892/or.2019.7391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022] Open
Abstract
Dogs have been considered as an excellent immunocompetent model for human melanoma due to the same tumor location and the common clinical and pathological features with human melanoma. However, the differences in the melanoma transcriptome between the two species have not been yet fully determined. Considering the role of oncogenes in melanoma development, in this study, we first characterized the transcriptome in canine oral melanoma and then compared the transcriptome with that of human melanoma. The global transcriptome from 8 canine oral melanoma samples and 3 healthy oral tissues were compared by RNA-Seq followed by RT-qPCR validation. The results revealed 2,555 annotated differentially expressed genes, as well as 364 novel differentially expressed genes. Dog chromosomes 1 and 9 were enriched with downregulated and upregulated genes, respectively. Along with 10 significant transcription site binding motifs; the NF-κB and ATF1 binding motifs were the most significant and 4 significant unknown motifs were indentified among the upregulated differentially expressed genes. Moreover, it was found that canine oral melanoma shared >80% significant oncogenes (upregulated genes) with human melanoma, and JAK-STAT was the most common significant pathway between the species. The results identified a 429 gene signature in melanoma, which was up-regulated in both species; these genes may be good candidates for therapeutic development. Furthermore, this study demonstrates that as regards oncogene expression, human melanoma contains an oncogene group that bears similarities with dog oral melanoma, which supports the use of dogs as a model for the development of novel therapeutics and experimental trials before human application.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Yu-Chang Lai
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Al Asmaul Husna
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Hui-Wen Chen
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Yuiko Tanaka
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113‑8657, Japan
| | - Hiroaki Kawaguchi
- Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medicine and Dental Science, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Hitoshi Hatai
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| | - Takayuki Nakagawa
- Department of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113‑8657, Japan
| | - Ryuji Fukushima
- Animal Medical Center, Tokyo University of Agriculture and Technology, Tokyo 183‑8538, Japan
| | - Naoki Miura
- Veterinary Teaching Hospital, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890‑0065, Japan
| |
Collapse
|
42
|
Zamboni C, Brocca G, Ferraresso S, Ferro S, Sammarco A, Dal Corso C, Iussich S, de Andres PJ, Martìnez de Merlo EM, Cavicchioli L, Zappulli V, Castagnaro M. Cyclin D1 immunohistochemical expression and somatic mutations in canine oral melanoma. Vet Comp Oncol 2019; 18:231-238. [PMID: 31503380 DOI: 10.1111/vco.12539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022]
Abstract
Canine oral melanoma (COM) is the most frequent tumour with oral localization in dogs. Copy number gains and amplifications of CCND1, a gene coding for Cyclin D1, are the most frequent chromosomal aberrations described in human non-UV induced melanomas. Twenty-eight cases of COM were retrieved from paraffin-blocks archives. A total of 4 μm thick sections were immunostained with an antibody against human Cyclin D1 and Ki-67. Cyclin D1 and Ki-67 expressions were scored through two counting methods. DNA was extracted from 20 μm thick sections of formalin-fixed paraffin-embedded blocks. Pathological and surrounding healthy tissue was extracted independently. Cyclin D1 immunolabelling was detected in 69% (18/26) while Ki-67 was present in 88.5% (23/26) of cases. Statistical analysis revealed correlation between two counting methods for Cyclin D1 (r = 0.54; P = .004) and Ki-67 (r = 0.56; P = .003). The correlation found between Ki-67 and Cyclin D1 indexes in 16/26 cases labelled by both antibodies (r = 0.7947; P = .0002) suggests a possible use of Cyclin D1 index as prognostic marker. Polymerase chain reaction analysis on CCND1 coding sequence revealed the presence of nine somatic mutations in seven samples producing synonymous, missense and stop codons. Since none of the single-nucleotide polymorphisms was found to be recurrent, it is suggested that overexpression of Cyclin D1 may be the consequence of alterations of CCND1 upstream regions or other genetic aberrations not detectable with the methodology used in this study. Future studies are needed to verify the potential use of Cyclin D1 index as prognostic indicator and to highlight the molecular events responsible for Cyclin D1 overexpression in COMs.
Collapse
Affiliation(s)
- Clarissa Zamboni
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Ginevra Brocca
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Chiara Dal Corso
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Paloma J de Andres
- Department of Animal Medicine Surgery and Pathology, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Elena M Martìnez de Merlo
- Department of Animal Medicine Surgery and Pathology, School of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| |
Collapse
|
43
|
Prouteau A, Chocteau F, de Brito C, Cadieu E, Primot A, Botherel N, Degorce F, Cornevin L, Lagadic MA, Cabillic F, de Fornel-Thibaud P, Devauchelle P, Derrien T, Abadie J, André C, Hédan B. Prognostic value of somatic focal amplifications on chromosome 30 in canine oral melanoma. Vet Comp Oncol 2019; 18:214-223. [PMID: 31461207 DOI: 10.1111/vco.12536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/02/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Canine oral melanoma is the first malignancy of the oral cavity in dogs and is characterized by a local invasiveness and a high metastatic propensity. A better knowledge of genetic alterations is expected to improve management of this tumour. Copy number alterations are known characteristics of mucosal melanomas both in dogs and humans. The goal of this study was to explore the prognostic value of somatic focal amplifications on chromosomes (Canis Familiaris [CFA]) 10 and 30 in canine oral melanoma. The cohort included 73 dogs with oral melanoma confirmed by histology, removed surgically without adjuvant therapy and with a minimal follow-up of 6 months. Epidemiological, clinical and histological data were collected and quantitative-PCR were performed on formalin-fixed paraffin-embedded (FFPE) samples to identify specific focal amplifications. The 73 dogs included in the study had a median survival time of 220 days. Focal amplifications on CFA 10 and 30 were recurrent (49.3% and 50.7% of cases, respectively) and CFA 30 amplification was significantly associated with the amelanotic phenotype (P = .046) and high mitotic index (MI; P = .0039). CFA 30 amplification was also linked to poor prognosis (P = .0005). Other negative prognostic factors included gingiva location (P = .003), lymphadenomegaly (P = .026), tumour ulceration at diagnosis (P = .003), MI superior to 6 mitoses over 10 fields (P = .001) and amelanotic tumour (P = .029). In multivariate analyses using Cox proportional hazards regression, CFA 30 amplification (Hazard ratio [HR] = 2.08; P = .011), tumour location (HR = 2.20; P = .005) and histological pigmentation (HR = 1.87; P = .036) were significantly associated with shorter survival time. Focal amplification of CFA 30 is linked to an aggressive subset and constitutes a new prognostic factor.
Collapse
Affiliation(s)
- Anais Prouteau
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Florian Chocteau
- Oniris, Laboniris - Department of Biology, Pathology and Food Sciences, Nantes, France
| | - Clotilde de Brito
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Edouard Cadieu
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Aline Primot
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Nadine Botherel
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | | | - Laurence Cornevin
- Department of Cytogenetics and Cell Biology, Hospital of Rennes, INSERM, University of Rennes, INRA, Institut NuMeCan (Nutrition, Metabolisms and Cancer), Rennes, France
| | | | - Florian Cabillic
- Department of Cytogenetics and Cell Biology, Hospital of Rennes, INSERM, University of Rennes, INRA, Institut NuMeCan (Nutrition, Metabolisms and Cancer), Rennes, France
| | | | | | - Thomas Derrien
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Jerome Abadie
- Oniris, Laboniris - Department of Biology, Pathology and Food Sciences, Nantes, France
| | - Catherine André
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| | - Benoît Hédan
- CNRS-University of Rennes 1, UMR6290, Institute of Genetics and Development of Rennes, Faculty of Medicine, Rennes, France
| |
Collapse
|
44
|
DeLong RK, Cheng YH, Pearson P, Lin Z, Coffee C, Mathew EN, Hoffman A, Wouda RM, Higginbotham ML. Translating Nanomedicine to Comparative Oncology-the Case for Combining Zinc Oxide Nanomaterials with Nucleic Acid Therapeutic and Protein Delivery for Treating Metastatic Cancer. J Pharmacol Exp Ther 2019; 370:671-681. [PMID: 31040175 PMCID: PMC6806346 DOI: 10.1124/jpet.118.256230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/04/2019] [Indexed: 01/16/2023] Open
Abstract
The unique anticancer, biochemical, and immunologic properties of nanomaterials are becoming a new tool in biomedical research. Their translation into the clinic promises a new wave of targeted therapies. One nanomaterial of particular interest are zinc oxide (ZnO) nanoparticles (NPs), which has distinct mechanisms of anticancer activity including unique surface, induction of reactive oxygen species, lipid oxidation, pH, and also ionic gradients within cancer cells and the tumor microenvironment. It is recognized that ZnO NPs can serve as a direct enzyme inhibitor. Significantly, ZnO NPs inhibit extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) associated with melanoma progression, drug resistance, and metastasis. Indeed, direct intratumoral injection of ZnO NPs or a complex of ZnO with RNA significantly suppresses ERK and AKT phosphorylation. These data suggest ZnO NPs and their complexes or conjugates with nucleic acid therapeutic or anticancer protein may represent a potential new strategy for the treatment of metastatic melanoma, and potentially other cancers. This review focuses on the anticancer mechanisms of ZnO NPs and what is currently known about its biochemical effects on melanoma, biologic activity, and pharmacokinetics in rodents and its potential for translation into large animal, spontaneously developing models of melanoma and other cancers, which represent models of comparative oncology.
Collapse
Affiliation(s)
- R K DeLong
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Yi-Hsien Cheng
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Paige Pearson
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Zhoumeng Lin
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Calli Coffee
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Elza Neelima Mathew
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Amanda Hoffman
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Raelene M Wouda
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Mary Lynn Higginbotham
- Department of Anatomy and Physiology, Nanotechnology Innovation Center (R.K.D., P.P., E.N.M., A.H.), Department of Anatomy and Physiology, Institute for Computational Comparative Medicine (Y.-H.C., Z.L.), and Department of Clinical Sciences (C.C., R.M.W., M.L.H.), College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| |
Collapse
|
45
|
Canine Melanomas as Models for Human Melanomas: Clinical, Histological, and Genetic Comparison. Genes (Basel) 2019; 10:genes10070501. [PMID: 31262050 PMCID: PMC6678806 DOI: 10.3390/genes10070501] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 12/18/2022] Open
Abstract
Despite recent genetic advances and numerous ongoing therapeutic trials, malignant melanoma remains fatal, and prognostic factors as well as more efficient treatments are needed. The development of such research strongly depends on the availability of appropriate models recapitulating all the features of human melanoma. The concept of comparative oncology, with the use of spontaneous canine models has recently acquired a unique value as a translational model. Canine malignant melanomas are naturally occurring cancers presenting striking homologies with human melanomas. As for many other cancers, dogs present surprising breed predispositions and higher frequency of certain subtypes per breed. Oral melanomas, which are much more frequent and highly severe in dogs and cutaneous melanomas with severe digital forms or uveal subtypes are subtypes presenting relevant homologies with their human counterparts, thus constituting close models for these human melanoma subtypes. This review addresses how canine and human melanoma subtypes compare based on their epidemiological, clinical, histological, and genetic characteristics, and how comparative oncology approaches can provide insights into rare and poorly characterized melanoma subtypes in humans that are frequent and breed-specific in dogs. We propose canine malignant melanomas as models for rare non-UV-induced human melanomas, especially mucosal melanomas. Naturally affected dogs offer the opportunity to decipher the genetics at both germline and somatic levels and to explore therapeutic options, with the dog entering preclinical trials as human patients, benefiting both dogs and humans.
Collapse
|
46
|
Hitte C, Le Béguec C, Cadieu E, Wucher V, Primot A, Prouteau A, Botherel N, Hédan B, Lindblad-Toh K, André C, Derrien T. Genome-Wide Analysis of Long Non-Coding RNA Profiles in Canine Oral Melanomas. Genes (Basel) 2019; 10:genes10060477. [PMID: 31234577 PMCID: PMC6628375 DOI: 10.3390/genes10060477] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/25/2022] Open
Abstract
Mucosal melanomas (MM) are rare aggressive cancers in humans, and one of the most common forms of oral cancers in dogs. Similar biological and histological features are shared between MM in both species, making dogs a powerful model for comparative oncology studies of melanomas. Although exome sequencing recently identified recurrent coding mutations in canine MM, little is known about changes in non-coding gene expression, and more particularly, in canine long non-coding RNAs (lncRNAs), which are commonly dysregulated in human cancers. Here, we sampled a large cohort (n = 52) of canine normal/tumor oral MM from three predisposed breeds (poodles, Labrador retrievers, and golden retrievers), and used deep transcriptome sequencing to identify more than 400 differentially expressed (DE) lncRNAs. We further prioritized candidate lncRNAs by comparative genomic analysis to pinpoint 26 dog–human conserved DE lncRNAs, including SOX21-AS, ZEB2-AS, and CASC15 lncRNAs. Using unsupervised co-expression network analysis with coding genes, we inferred the potential functions of the DE lncRNAs, suggesting associations with cancer-related genes, cell cycle, and carbohydrate metabolism Gene Ontology (GO) terms. Finally, we exploited our multi-breed design to identify DE lncRNAs within breeds. This study provides a unique transcriptomic resource for studying oral melanoma in dogs, and highlights lncRNAs that may potentially be diagnostic or therapeutic targets for human and veterinary medicine.
Collapse
Affiliation(s)
- Christophe Hitte
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Céline Le Béguec
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Edouard Cadieu
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Valentin Wucher
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Aline Primot
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Anaïs Prouteau
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Nadine Botherel
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Benoît Hédan
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 24 Uppsala, Sweden.
| | - Catherine André
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| | - Thomas Derrien
- University of Rennes, CNRS, IGDR-UMR 6290, F-35000 Rennes, France.
| |
Collapse
|
47
|
Das S, Idate R, Cronise KE, Gustafson DL, Duval DL. Identifying Candidate Druggable Targets in Canine Cancer Cell Lines Using Whole-Exome Sequencing. Mol Cancer Ther 2019; 18:1460-1471. [PMID: 31175136 DOI: 10.1158/1535-7163.mct-18-1346] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/15/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022]
Abstract
Cancer cell culture has been a backbone in cancer research, in which analysis of human cell line mutational profiles often correlates with oncogene addiction and drug sensitivity. We have conducted whole-exome sequence analyses on 33 canine cancer cell lines from 10 cancer types to identify somatic variants that contribute to pathogenesis and therapeutic sensitivity. A total of 66,344 somatic variants were identified. Mutational load ranged from 15.79 to 129.37 per Mb, and 13.2% of variants were located in protein-coding regions (PCR) of 5,085 genes. PCR somatic variants were identified in 232 genes listed in the Cancer Gene Census (COSMIC). Cross-referencing variants with human driving mutations on cBioPortal identified 61 variants as candidate cancer drivers in 30 cell lines. The most frequently mutated cancer driver was TP53 (15 mutations in 12 cell lines). No drivers were identified in three cell lines. We identified 501 non-COSMIC genes with PCR variants that functionally annotate with COSMIC genes. These genes frequently mapped to the KEGG MAPK and PI3K-AKT pathways. We evaluated the cell lines for ERK1/2 and AKT(S473) phosphorylation and sensitivity to the MEK1/2 inhibitor, trametinib. Twelve of the 33 cell lines were trametinib-sensitive (IC50 < 32 nmol/L), all 12 exhibited constitutive or serum-activated ERK1/2 phosphorylation, and 8 carried MAPK pathway cancer driver variants: NF1(2), BRAF(3), N/KRAS(3). This functionally annotated database of canine cell line variants will inform hypothesis-driven preclinical research to support the use of companion animals in clinical trials to test novel combination therapies.
Collapse
Affiliation(s)
- Sunetra Das
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado. .,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Rupa Idate
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Kathryn E Cronise
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, Colorado
| | - Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| | - Dawn L Duval
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado.,University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
48
|
Megquier K, Genereux DP, Hekman J, Swofford R, Turner-Maier J, Johnson J, Alonso J, Li X, Morrill K, Anguish LJ, Koltookian M, Logan B, Sharp CR, Ferrer L, Lindblad-Toh K, Meyers-Wallen VN, Hoffman A, Karlsson EK. BarkBase: Epigenomic Annotation of Canine Genomes. Genes (Basel) 2019; 10:E433. [PMID: 31181663 PMCID: PMC6627511 DOI: 10.3390/genes10060433] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Dogs are an unparalleled natural model for investigating the genetics of health and disease, particularly for complex diseases like cancer. Comprehensive genomic annotation of regulatory elements active in healthy canine tissues is crucial both for identifying candidate causal variants and for designing functional studies needed to translate genetic associations into disease insight. Currently, canine geneticists rely primarily on annotations of the human or mouse genome that have been remapped to dog, an approach that misses dog-specific features. Here, we describe BarkBase, a canine epigenomic resource available at barkbase.org. BarkBase hosts data for 27 adult tissue types, with biological replicates, and for one sample of up to five tissues sampled at each of four carefully staged embryonic time points. RNA sequencing is complemented with whole genome sequencing and with assay for transposase-accessible chromatin using sequencing (ATAC-seq), which identifies open chromatin regions. By including replicates, we can more confidently discern tissue-specific transcripts and assess differential gene expression between tissues and timepoints. By offering data in easy-to-use file formats, through a visual browser modeled on similar genomic resources for human, BarkBase introduces a powerful new resource to support comparative studies in dogs and humans.
Collapse
Affiliation(s)
- Kate Megquier
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Diane P Genereux
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jessica Hekman
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ross Swofford
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jason Turner-Maier
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jeremy Johnson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jacob Alonso
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Xue Li
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Kathleen Morrill
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Lynne J Anguish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Michele Koltookian
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Brittney Logan
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Claire R Sharp
- School of Veterinary and Life Sciences, College of Veterinary Medicine, Murdoch University, Perth, Murdoch, WA 6150, Australia.
| | - Lluis Ferrer
- Departament de Medicina i Cirurgia Animals Veterinary School, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain.
| | - Kerstin Lindblad-Toh
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Science for Life Laboratory, Department of Medical Biochemistry & Microbiology, Uppsala University, 751 23 Uppsala, Sweden.
| | - Vicki N Meyers-Wallen
- Baker Institute for Animal Health and Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Andrew Hoffman
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536, USA.
| | - Elinor K Karlsson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
49
|
Giannuzzi D, Marconato L, Elgendy R, Ferraresso S, Scarselli E, Fariselli P, Nicosia A, Pegolo S, Leoni G, Laganga P, Leone VF, Giantin M, Troise F, Dacasto M, Aresu L. Longitudinal transcriptomic and genetic landscape of radiotherapy response in canine melanoma. Vet Comp Oncol 2019; 17:308-316. [PMID: 30805995 DOI: 10.1111/vco.12473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022]
Abstract
Canine malignant melanoma (MM) is a highly aggressive tumour with a low survival rate and represents an ideal spontaneous model for the human counterpart. Considerable progress has been recently obtained, but the therapeutic success for canine melanoma is still challenging. Little is known about the mechanisms beyond pathogenesis and melanoma development, and the molecular response to radiotherapy has never been explored before. A faster and deeper understanding of cancer mutational processes and developing mechanisms are now possible through next generation sequencing technologies. In this study, we matched whole exome and transcriptome sequencing in four dogs affected by MM at diagnosis and at disease progression to identify possible genetic mechanisms associated with therapy failure. According to previous studies, a genetic similarity between canine MM and its human counterpart was observed. Several somatic mutations were functionally related to MAPK, PI3K/AKT and p53 signalling pathways, but located in genes other than BRAF, RAS and KIT. At disease progression, several mutations were related to therapy effects. Natural killer cell-mediated cytotoxicity and several immune-system-related pathways resulted activated opening a new scenario on the microenvironment in this tumour. In conclusion, this study suggests a potential role of the immune system associated to radiotherapy in canine melanoma, but a larger sample size associated with functional studies are needed.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Laura Marconato
- Centro Oncologico Veterinario, Sasso Marconi, Bologna, Italy
| | - Ramy Elgendy
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | | | - Piero Fariselli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Alfredo Nicosia
- Nouscom AG, Basel, Switzerland.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c. a.r.l., Naples, Italy
| | - Sara Pegolo
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padua, Legnaro, Padua, Italy
| | | | - Paola Laganga
- Centro Oncologico Veterinario, Sasso Marconi, Bologna, Italy
| | - Vito F Leone
- Centro Oncologico Veterinario, Sasso Marconi, Bologna, Italy
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | | | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Padua, Italy
| | - Luca Aresu
- Department of Veterinary Science, University of Turin, Grugliasco, Turin, Italy
| |
Collapse
|
50
|
Wong K, van der Weyden L, Schott CR, Foote A, Constantino-Casas F, Smith S, Dobson JM, Murchison EP, Wu H, Yeh I, Fullen DR, Joseph N, Bastian BC, Patel RM, Martincorena I, Robles-Espinoza CD, Iyer V, Kuijjer ML, Arends MJ, Brenn T, Harms PW, Wood GA, Adams DJ. Cross-species genomic landscape comparison of human mucosal melanoma with canine oral and equine melanoma. Nat Commun 2019; 10:353. [PMID: 30664638 PMCID: PMC6341101 DOI: 10.1038/s41467-018-08081-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/07/2018] [Indexed: 02/08/2023] Open
Abstract
Mucosal melanoma is a rare and poorly characterized subtype of human melanoma. Here we perform a cross-species analysis by sequencing tumor-germline pairs from 46 primary human muscosal, 65 primary canine oral and 28 primary equine melanoma cases from mucosal sites. Analysis of these data reveals recurrently mutated driver genes shared between species such as NRAS, FAT4, PTPRJ, TP53 and PTEN, and pathogenic germline alleles of BRCA1, BRCA2 and TP53. We identify a UV mutation signature in a small number of samples, including human cases from the lip and nasal mucosa. A cross-species comparative analysis of recurrent copy number alterations identifies several candidate drivers including MDM2, B2M, KNSTRN and BUB1B. Comparison of somatic mutations in recurrences and metastases to those in the primary tumor suggests pervasive intra-tumor heterogeneity. Collectively, these studies suggest a convergence of some genetic changes in mucosal melanomas between species but also distinctly different paths to tumorigenesis.
Collapse
Affiliation(s)
- Kim Wong
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Louise van der Weyden
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Courtney R Schott
- Department of Pathobiology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - Alastair Foote
- Rossdales Equine Hospital and Diagnostic Centre, High Street, Newmarket, Suffolk, CB8 8JS, UK
| | - Fernando Constantino-Casas
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Sionagh Smith
- The Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Jane M Dobson
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Elizabeth P Murchison
- Department of Veterinary Medicine, Cambridge Veterinary School, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Hong Wu
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Douglas R Fullen
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Nancy Joseph
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Boris C Bastian
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, 94143, USA
| | - Rajiv M Patel
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Inigo Martincorena
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Carla Daniela Robles-Espinoza
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Blvd Juriquilla 3001, Santiago de Querétaro, 76230, Mexico
| | - Vivek Iyer
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Marieke L Kuijjer
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, 0349, Oslo, Norway
| | - Mark J Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Thomas Brenn
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine and Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, T2L 2K8, Canada
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan Medical School, 3261 Medical Science I, 1301 Catherine, Ann Arbor, MI, 48109-5602, USA
| | - Geoffrey A Wood
- Department of Pathobiology, University of Guelph, 50 Stone Road E., Guelph, ON, N1G 2W1, Canada
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|