1
|
Orang A, Warnock NI, Migault M, Dredge BK, Bert AG, Bracken JM, Gregory PA, Pillman KA, Goodall GJ, Bracken CP. Chasing non-existent "microRNAs" in cancer. Oncogenesis 2025; 14:10. [PMID: 40251190 PMCID: PMC12008284 DOI: 10.1038/s41389-025-00550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/23/2025] [Accepted: 03/20/2025] [Indexed: 04/20/2025] Open
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression whose dysregulation is widely linked to tumourigenesis, tumour progression and Epithelial-Mesenchymal Transition (EMT), a developmental process that promotes metastasis when inappropriately activated. However, controversy has emerged regarding how many functional miRNAs are encoded in the genome, and to what extent non-regulatory products of RNA degradation have been mis-identified as miRNAs. Central to miRNA function is their capacity to associate with an Argonaute (AGO) protein and form an RNA-Induced Silencing Complex (RISC), which mediates target mRNA suppression. We report that numerous "miRNAs" previously reported in EMT and cancer contexts, are not incorporated into RISC and are not capable of endogenously silencing target genes, despite the fact that hundreds of publications in the cancer field describe their roles. Apparent function can be driven through the expression of artificial miRNA mimics which is not necessarily reflective of any endogenous gene regulatory function. We present biochemical and bioinformatic criteria that can be used to distinguish functional miRNAs from mistakenly annotated RNA fragments.
Collapse
Affiliation(s)
- Ayla Orang
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Nicholas I Warnock
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | - Melodie Migault
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - B Kate Dredge
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Julie M Bracken
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia
- School of Medicine, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia.
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia.
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia.
- School of Medicine, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| | - Cameron P Bracken
- Centre for Cancer Biology, an alliance of SA Pathology and University of South Australia, Adelaide, South Australia, Australia.
- School of Medicine, Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
2
|
Piergentili R, Sechi S. Targeting Regulatory Noncoding RNAs in Human Cancer: The State of the Art in Clinical Trials. Pharmaceutics 2025; 17:471. [PMID: 40284466 PMCID: PMC12030637 DOI: 10.3390/pharmaceutics17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/29/2025] Open
Abstract
Noncoding RNAs (ncRNAs) are a heterogeneous group of RNA molecules whose classification is mainly based on arbitrary criteria such as the molecule length, secondary structures, and cellular functions. A large fraction of these ncRNAs play a regulatory role regarding messenger RNAs (mRNAs) or other ncRNAs, creating an intracellular network of cross-interactions that allow the fine and complex regulation of gene expression. Altering the balance between these interactions may be sufficient to cause a transition from health to disease and vice versa. This leads to the possibility of intervening in these mechanisms to re-establish health in patients. The regulatory role of ncRNAs is associated with all cancer hallmarks, such as proliferation, apoptosis, invasion, metastasis, and genomic instability. Based on the function performed in carcinogenesis, ncRNAs may behave either as oncogenes or tumor suppressors. However, this distinction is not rigid; some ncRNAs can fall into both classes depending on the tissue considered or the target molecule. Furthermore, some of them are also involved in regulating the response to traditional cancer-therapeutic approaches. In general, the regulation of molecular mechanisms by ncRNAs is very complex and still largely unclear, but it has enormous potential both for the development of new therapies, especially in cases where traditional methods fail, and for their use as novel and more efficient biomarkers. Overall, this review will provide a brief overview of ncRNAs in human cancer biology, with a specific focus on describing the most recent ongoing clinical trials (CT) in which ncRNAs have been tested for their potential as therapeutic agents or evaluated as biomarkers.
Collapse
|
3
|
Qiu GH, Fu M, Zheng X, Huang C. Protection of the genome and the central exome by peripheral non-coding DNA against DNA damage in health, ageing and age-related diseases. Biol Rev Camb Philos Soc 2025; 100:508-529. [PMID: 39327815 DOI: 10.1111/brv.13151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
DNA in eukaryotic genomes is under constant assault from both exogenous and endogenous sources, leading to DNA damage, which is considered a major molecular driver of ageing. Fortunately, the genome and the central exome are safeguarded against these attacks by abundant peripheral non-coding DNA. Non-coding DNA codes for small non-coding RNAs that inactivate foreign nucleic acids in the cytoplasm and physically blocks these attacks in the nucleus. Damage to non-coding DNA produced during such blockage is removed in the form of extrachromosomal circular DNA (eccDNA) through nucleic pore complexes. Consequently, non-coding DNA serves as a line of defence for the exome against DNA damage. The total amount of non-coding DNA/heterochromatin declines with age, resulting in a decrease in both physical blockage and eccDNA exclusion, and thus an increase in the accumulation of DNA damage in the nucleus during ageing and in age-related diseases. Here, we summarize recent evidence supporting a protective role of non-coding DNA in healthy and pathological states and argue that DNA damage is the proximate cause of ageing and age-related genetic diseases. Strategies aimed at strengthening the protective role of non-coding DNA/heterochromatin could potentially offer better systematic protection for the dynamic genome and the exome against diverse assaults, reduce the burden of DNA damage to the exome, and thus slow ageing, counteract age-related genetic diseases and promote a healthier life for individuals.
Collapse
Affiliation(s)
- Guo-Hua Qiu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Mingjun Fu
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Xintian Zheng
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| | - Cuiqin Huang
- College of Life Sciences, Longyan University, Longyan, 364012, People's Republic of China
- Fujian Provincial Key Laboratory of Preventive Veterinary Medicine and Biotechnology, Engineering Research Center for the Prevention and Control of Animal-Origin Zoonosis, Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Province Universities, Longyan, People's Republic of China
| |
Collapse
|
4
|
Zhang W, Huang C, Yao H, Yang S, Jiapaer Z, Song J, Wang X. Retrotransposon: an insight into neurological disorders from perspectives of neurodevelopment and aging. Transl Neurodegener 2025; 14:14. [PMID: 40128823 PMCID: PMC11934714 DOI: 10.1186/s40035-025-00471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Neurological disorders present considerable challenges in diagnosis and treatment due to their complex and diverse etiology. Retrotransposons are a type of mobile genetic element that are increasingly revealed to play a role in these diseases. This review provides a detailed overview of recent developments in the study of retrotransposons in neurodevelopment, neuroaging, and neurological diseases. Retrotransposons, including long interspersed nuclear elements-1, Alu, SINE-VNTR-Alu, and endogenous retrovirus, play important regulatory roles in the development and aging of the nervous system. They have also been implicated in the pathological processes of several neurological diseases, including Alzheimer's disease, X-linked dystonia-parkinsonism, amyotrophic lateral sclerosis, autism spectrum disorder, and schizophrenia. Retrotransposons provide a new perspective for understanding the molecular mechanisms underlying neurological diseases and provide insights into diagnostic and therapeutic strategies of these diseases.
Collapse
Affiliation(s)
- Wenchuan Zhang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chenxuan Huang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyang Yao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zeyidan Jiapaer
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Xinjiang, China.
| | - Juan Song
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Brown T, Mishra K, Elewa A, Iarovenko S, Subramanian E, Araus AJ, Petzold A, Fromm B, Friedländer MR, Rikk L, Suzuki M, Suzuki KIT, Hayashi T, Toyoda A, Oliveira CR, Osipova E, Leigh ND, Yun MH, Simon A. Chromosome-scale genome assembly reveals how repeat elements shape non-coding RNA landscapes active during newt limb regeneration. CELL GENOMICS 2025; 5:100761. [PMID: 39874962 PMCID: PMC11872487 DOI: 10.1016/j.xgen.2025.100761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/04/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025]
Abstract
Newts have large genomes harboring many repeat elements. How these elements shape the genome and relate to newts' unique regeneration ability remains unknown. We present here the chromosome-scale assembly of the 20.3 Gb genome of the Iberian ribbed newt, Pleurodeles waltl, with a hitherto unprecedented contiguity and completeness among giant genomes. Utilizing this assembly, we demonstrate conserved synteny as well as genetic rearrangements, such as in the major histocompatibility complex locus. We provide evidence suggesting that intronic repeat elements drive newt-specific circular RNA (circRNA) biogenesis and show their regeneration-specific expression. We also present a comprehensive in-depth annotation and chromosomal mapping of microRNAs, highlighting genomic expansion profiles as well as a distinct regulatory pattern in the regenerating limb. These data reveal links between repeat elements, non-coding RNAs, and adult regeneration and provide key resources for addressing developmental, regenerative, and evolutionary principles.
Collapse
Affiliation(s)
- Thomas Brown
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Ketan Mishra
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Ahmed Elewa
- Department of Biology, Augsburg University, Minneapolis, MN 55454, USA
| | - Svetlana Iarovenko
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Elaiyaraja Subramanian
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Alberto Joven Araus
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden
| | - Andreas Petzold
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, 9006 Tromsø, Norway
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 114 18 Stockholm, Sweden
| | - Lennart Rikk
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden
| | - Miyuki Suzuki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ken-Ichi T Suzuki
- Emerging Model Organisms Facility, Trans-scale Biology Center, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Toshinori Hayashi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8511, Japan; Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8511, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-0801, Japan
| | - Catarina R Oliveira
- CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Ekaterina Osipova
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Nicholas D Leigh
- Molecular Medicine and Gene Therapy, Wallenberg Centre for Molecular Medicine, Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Maximina H Yun
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; CRTD Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany; Physics of Life Excellence Cluster Dresden, 01307 Dresden, Germany.
| | - András Simon
- Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden.
| |
Collapse
|
6
|
Ye Z, Zhu S, Li G, Lu J, Huang S, Du J, Shao Y, Ji Z, Li P. Early matrix softening contributes to vascular smooth muscle cell phenotype switching and aortic dissection through down-regulation of microRNA-143/145. J Mol Cell Cardiol 2024; 192:1-12. [PMID: 38718921 DOI: 10.1016/j.yjmcc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
Thoracic aortic dissection (TAD) is characterized by extracellular matrix (ECM) dysregulation. Aberrations in the ECM stiffness can lead to changes in cellular functions. However, the mechanism by which ECM softening regulates vascular smooth muscle cell (VSMCs) phenotype switching remains unclear. To understand this mechanism, we cultured VSMCs in a soft extracellular matrix and discovered that the expression of microRNA (miR)-143/145, mediated by activation of the AKT signalling pathway, decreased significantly. Furthermore, overexpression of miR-143/145 reduced BAPN-induced aortic softening, switching the VSMC synthetic phenotype and the incidence of TAD in mice. Additionally, high-throughput sequencing of immunoprecipitated RNA indicated that the TEA domain transcription factor 1 (TEAD1) is a common target gene of miR-143/145, which was subsequently verified using a luciferase reporter assay. TEAD1 is upregulated in soft ECM hydrogels in vitro, whereas the switch to a synthetic phenotype in VSMCs decreases after TEAD1 knockdown. Finally, we verified that miR-143/145 levels are associated with disease severity and prognosis in patients with thoracic aortic dissection. ECM softening, as a result of promoting the VSMCs switch to a synthetic phenotype by downregulating miR-143/145, is an early trigger of TAD and provides a therapeutic target for this fatal disease. miR-143/145 plays a role in the early detection of aortic dissection and its severity and prognosis, which can offer information for future risk stratification of patients with dissection.
Collapse
Affiliation(s)
- Zhaofei Ye
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Guoqi Li
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jie Lu
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Shan Huang
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Jie Du
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China
| | - Yihui Shao
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China.
| | - Zhili Ji
- Beijing Chaoyang Hospital of Capital Medical University, China.
| | - Ping Li
- Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, China.
| |
Collapse
|
7
|
Matsushima W, Planet E, Trono D. Ancestral genome reconstruction enhances transposable element annotation by identifying degenerate integrants. CELL GENOMICS 2024; 4:100497. [PMID: 38295789 PMCID: PMC10879028 DOI: 10.1016/j.xgen.2024.100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 01/06/2024] [Indexed: 02/17/2024]
Abstract
Growing evidence indicates that transposable elements (TEs) play important roles in evolution by providing genomes with coding and non-coding sequences. Identification of TE-derived functional elements, however, has relied on TE annotations in individual species, which limits its scope to relatively intact TE sequences. Here, we report a novel approach to uncover previously unannotated degenerate TEs (degTEs) by probing multiple ancestral genomes reconstructed from hundreds of species. We applied this method to the human genome and achieved a 10.8% increase in coverage over the most recent annotation. Further, we discovered that degTEs contribute to various cis-regulatory elements and transcription factor binding sites, including those of a known TE-controlling family, the KRAB zinc-finger proteins. We also report unannotated chimeric transcripts between degTEs and human genes expressed in embryos. This study provides a novel methodology and a freely available resource that will facilitate the investigation of TE co-option events on a full scale.
Collapse
Affiliation(s)
- Wayo Matsushima
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Evarist Planet
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
8
|
Fafard-Couture É, Labialle S, Scott MS. The regulatory roles of small nucleolar RNAs within their host locus. RNA Biol 2024; 21:1-11. [PMID: 38626213 PMCID: PMC11028025 DOI: 10.1080/15476286.2024.2342685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) are a class of conserved noncoding RNAs forming complexes with proteins to catalyse site-specific modifications on ribosomal RNA. Besides this canonical role, several snoRNAs are now known to regulate diverse levels of gene expression. While these functions are carried out in trans by mature snoRNAs, evidence has also been emerging of regulatory roles of snoRNAs in cis, either within their genomic locus or as longer transcription intermediates during their maturation. Herein, we review recent findings that snoRNAs can interact in cis with their intron to regulate the expression of their host gene. We also explore the ever-growing diversity of longer host-derived snoRNA extensions and their functional impact across the transcriptome. Finally, we discuss the role of snoRNA duplications into forging these new layers of snoRNA-mediated regulation, as well as their involvement in the genomic imprinting of their host locus.
Collapse
Affiliation(s)
- Étienne Fafard-Couture
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Michelle S Scott
- Département de biochimie et de génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
9
|
Fourreau CJL, Kise H, Santander MD, Pirro S, Maronna MM, Poliseno A, Santos ME, Reimer JD. Genome sizes and repeatome evolution in zoantharians (Cnidaria: Hexacorallia: Zoantharia). PeerJ 2023; 11:e16188. [PMID: 37868064 PMCID: PMC10586311 DOI: 10.7717/peerj.16188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Across eukaryotes, large variations of genome sizes have been observed even between closely related species. Transposable elements as part of the repeated DNA have been proposed and confirmed as one of the most important contributors to genome size variation. However, the evolutionary implications of genome size variation and transposable element dynamics are not well understood. Together with phenotypic traits, they are commonly referred to as the "C-value enigma". The order Zoantharia are benthic cnidarians found from intertidal zones to the deep sea, and some species are particularly abundant in coral reefs. Despite their high ecological relevance, zoantharians have yet to be largely studied from the genomic point of view. This study aims at investigating the role of the repeatome (total content of repeated elements) in genome size variations across the order Zoantharia. To this end, whole-genomes of 32 zoantharian species representing five families were sequenced. Genome sizes were estimated and the abundances of different repeat classes were assessed. In addition, the repeat overlap between species was assessed by a sequence clustering method. The genome sizes in the dataset varied up to 2.4 fold magnitude. Significant correlations between genome size, repeated DNA content and transposable elements, respectively (Pearson's correlation test R2 = 0.47, p = 0.0016; R2 = 0.22, p = 0.05) were found, suggesting their involvement in the dynamics of genome expansion and reduction. In all species, long interspersed nuclear elements and DNA transposons were the most abundant identified elements. These transposable elements also appeared to have had a recent expansion event. This was in contrast to the comparative clustering analysis which revealed species-specific patterns of satellite elements' amplification. In summary, the genome sizes of zoantharians likely result from the complex dynamics of repeated elements. Finally, the majority of repeated elements (up to 70%) could not be annotated to a known repeat class, highlighting the need to further investigate non-model cnidarian genomes. More research is needed to understand how repeated DNA dynamics relate to zoantharian evolution and their biology.
Collapse
Affiliation(s)
- Chloé Julie Loïs Fourreau
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Hiroki Kise
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- AIST Tsukuba Central, Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Mylena Daiana Santander
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Stacy Pirro
- Iridian Genomes, Bethesda, United States of America
| | - Maximiliano M. Maronna
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Faculdade de Ciências, Universidade Estadual Paulista (UNESP), Bauru, Brazil
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Maria E.A. Santos
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Okinawa Institute of Science and Technology, Onna, Okinawa, Japan
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Lab, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, United States of America
| |
Collapse
|
10
|
Eom S, Peak J, Park J, Ahn SH, Cho YK, Jeong Y, Lee HS, Lee J, Ignatova E, Lee SE, Hong Y, Gu D, Kim GWD, Lee DC, Hahm JY, Jeong J, Choi D, Jang ES, Chi SW. Widespread 8-oxoguanine modifications of miRNA seeds differentially regulate redox-dependent cancer development. Nat Cell Biol 2023; 25:1369-1383. [PMID: 37696949 DOI: 10.1038/s41556-023-01209-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023]
Abstract
Oxidative stress contributes to tumourigenesis by altering gene expression. One accompanying modification, 8-oxoguanine (o8G) can change RNA-RNA interactions via o8G•A base pairing, but its regulatory roles remain elusive. Here, on the basis of o8G-induced guanine-to-thymine (o8G > T) variations featured in sequencing, we discovered widespread position-specific o8Gs in tumour microRNAs, preferentially oxidized towards 5' end seed regions (positions 2-8) with clustered sequence patterns and clinically associated with patients in lower-grade gliomas and liver hepatocellular carcinoma. We validated that o8G at position 4 of miR-124 (4o8G-miR-124) and 4o8G-let-7 suppress lower-grade gliomas, whereas 3o8G-miR-122 and 4o8G-let-7 promote malignancy of liver hepatocellular carcinoma by redirecting the target transcriptome to oncogenic regulatory pathways. Stepwise oxidation from tumour-promoting 3o8G-miR-122 to tumour-suppressing 2,3o8G-miR-122 occurs and its specific modulation in mouse liver effectively attenuates diethylnitrosamine-induced hepatocarcinogenesis. These findings provide resources and insights into epitranscriptional o8G regulation of microRNA functions, reprogrammed by redox changes, implicating its control for cancer treatment.
Collapse
Affiliation(s)
- Sangkyeong Eom
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jongjin Peak
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jongyeun Park
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Seung Hyun Ahn
- Department of Life Sciences, Korea University, Seoul, Korea
| | - You Kyung Cho
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Yeahji Jeong
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hye-Sook Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jung Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | | | - Sung Eun Lee
- Department of Life Sciences, Korea University, Seoul, Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Yunji Hong
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Dowoon Gu
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Geun-Woo D Kim
- Department of Life Sciences, Korea University, Seoul, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | - Dong Chan Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Ja Young Hahm
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Eun-Sook Jang
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul, Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea.
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Korea.
| |
Collapse
|
11
|
Cornec A, Poirier EZ. Interplay between RNA interference and transposable elements in mammals. Front Immunol 2023; 14:1212086. [PMID: 37475864 PMCID: PMC10354258 DOI: 10.3389/fimmu.2023.1212086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
RNA interference (RNAi) plays pleiotropic roles in animal cells, from the post-transcriptional control of gene expression via the production of micro-RNAs, to the inhibition of RNA virus infection. We discuss here the role of RNAi in regulating the expression of self RNAs, and particularly transposable elements (TEs), which are genomic sequences capable of influencing gene expression and disrupting genome architecture. Dicer proteins act as the entry point of the RNAi pathway by detecting and degrading RNA of TE origin, ultimately leading to TE silencing. RNAi similarly targets cellular RNAs such as repeats transcribed from centrosomes. Dicer proteins are thus nucleic acid sensors that recognize self RNA in the form of double-stranded RNA, and trigger a silencing RNA interference response.
Collapse
Affiliation(s)
| | - Enzo Z. Poirier
- Stem Cell Immunity Team, Institut Curie, PSL Research University, INSERM U932, Paris, France
| |
Collapse
|
12
|
Liu X, Zhang Y, Pu Y, Ma Y, Jiang L. Whole-genome identification of transposable elements reveals the equine repetitive element insertion polymorphism in Chinese horses. Anim Genet 2023; 54:144-154. [PMID: 36464985 DOI: 10.1111/age.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
Transposable elements (TEs) are diverse, abundant, and complicated in genomes. They not only can drive the genome evolution process but can also act as special resources for adaptation. However, little is known about the evolutionary processes that shaped horses. In this work, 126 horse assemblages involved in most horse breeds in China were used to investigate the patterns of TE variation for the first time. By using RepeatMasker and melt software, we found that the horse-specific short interspersed repetitive elements family, equine repetitive elements (ERE1), exhibited polymorphisms in horse genomes. Phylogenetic analysis based on these ERE1 loci (minor allele frequency ≥0.05) revealed three major horse groups, namely, those in northern China, southern China, and Qinghai-Tibetan, which mirrors the result determined by SNPs to some extent. The present ERE1 family emerged ~0.26 to 1.77 Mya ago, with an activity peak at ~0.49 Mya, which matches the early stage of the horse lineage and decreases after the divergence of Equus caballus and Equus ferus przewalskii. To detect the functional ERE1(s) associated with adaptation, locus-specific branch length, genome-wide association study, and absolute allele frequency difference analyses were conducted and resulted in two common protein-coding genes annotated by candidate ERE1s. They were clustered into the vascular smooth muscle contraction (p = 0.01, EDNRA) and apelin signalling pathways (p = 0.02, NRF1). Notably, ERE1 insertion into the EDNRA gene showed a higher association with adaptation among southern China horses and other horses in 15 populations and 451 individuals (p = 4.55 e-8). Our results provide a comprehensive understanding of TE variations to analyse the phylogenetic relationships and traits relevant to adaptive evolution in horses.
Collapse
Affiliation(s)
- Xuexue Liu
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Yanli Zhang
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yabin Pu
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lin Jiang
- National Germplasm Centre of Domestic Animal Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.,CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|
13
|
Villegas-Mirón P, Gallego A, Bertranpetit J, Laayouni H, Espinosa-Parrilla Y. Signatures of genetic variation in human microRNAs point to processes of positive selection and population-specific disease risks. Hum Genet 2022; 141:1673-1693. [PMID: 35249174 PMCID: PMC9522702 DOI: 10.1007/s00439-021-02423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022]
Abstract
The occurrence of natural variation in human microRNAs has been the focus of numerous studies during the last 20 years. Most of them have been focused on the role of specific mutations in disease, while a minor proportion seek to analyse microRNA diversity in the genomes of human populations. We analyse the latest human microRNA annotations in the light of the most updated catalogue of genetic variation provided by the 1000 Genomes Project. By means of the in silico analysis of microRNA genetic variation we show that the level of evolutionary constraint of these sequences is governed by the interplay of different factors, like their evolutionary age or genomic location. The role of mutations in the shaping of microRNA-driven regulatory interactions is emphasized with the acknowledgement that, while the whole microRNA sequence is highly conserved, the seed region shows a pattern of higher genetic diversity that appears to be caused by the dramatic frequency shifts of a fraction of human microRNAs. We highlight the participation of these microRNAs in population-specific processes by identifying that not only the seed, but also the loop, are particularly differentiated regions among human populations. The quantitative computational comparison of signatures of population differentiation showed that candidate microRNAs with the largest differences are enriched in variants implicated in gene expression levels (eQTLs), selective sweeps and pathological processes. We explore the implication of these evolutionary-driven microRNAs and their SNPs in human diseases, such as different types of cancer, and discuss their role in population-specific disease risk.
Collapse
Affiliation(s)
- Pablo Villegas-Mirón
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Alicia Gallego
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Barcelona, Catalonia, Spain.
- Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003, Barcelona, Spain.
| | - Yolanda Espinosa-Parrilla
- Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
- Laboratorio de Medicina Molecular-LMM, Centro Asistencial, Docente Y de Investigación-CADI, Universidad de Magallanes, Punta Arenas, Chile.
- Interuniversity Center on Healthy Aging, Punta Arenas, Chile.
| |
Collapse
|
14
|
First Genome of Rock Lizard Darevskia valentini Involved in Formation of Several Parthenogenetic Species. Genes (Basel) 2022; 13:genes13091569. [PMID: 36140737 PMCID: PMC9498476 DOI: 10.3390/genes13091569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 11/22/2022] Open
Abstract
The extant reptiles are one of the most diverse clades among terrestrial vertebrates and one of a few groups with instances of parthenogenesis. Due to the hybrid origin of parthenogenetic species, reference genomes of the parental species as well as of the parthenogenetic progeny are indispensable to explore the genetic foundations of parthenogenetic reproduction. Here, we report on the first genome assembly of rock lizard Darevskia valentini, a paternal species for several parthenogenetic lineages. The novel genome was used in the reconstruction of the comprehensive phylogeny of Squamata inferred independently from 7369 trees of single-copy orthologs and a supermatrix of 378 conserved proteins. We also investigated Hox clusters, the loci that are often regarded as playing an important role in the speciation of animal groups with drastically diverse morphology. We demonstrated that Hox clusters of D. valentini are invaded with transposons and contain the HoxC1 gene that has been considered to be lost in the amniote ancestor. This study provides confirmation for previous works and releases new genomic data that will contribute to future discoveries on the mechanisms of parthenogenesis as well as support comparative studies among reptiles.
Collapse
|
15
|
Playfoot CJ, Sheppard S, Planet E, Trono D. Transposable elements contribute to the spatiotemporal microRNA landscape in human brain development. RNA (NEW YORK, N.Y.) 2022; 28:1157-1171. [PMID: 35732404 PMCID: PMC9380744 DOI: 10.1261/rna.079100.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Transposable elements (TEs) contribute to the evolution of gene regulatory networks and are dynamically expressed throughout human brain development and disease. One gene regulatory mechanism influenced by TEs is the miRNA system of post-transcriptional control. miRNA sequences frequently overlap TE loci and this miRNA expression landscape is crucial for control of gene expression in adult brain and different cellular contexts. Despite this, a thorough investigation of the spatiotemporal expression of TE-embedded miRNAs in human brain development is lacking. Here, we identify a spatiotemporally dynamic TE-embedded miRNA expression landscape between childhood and adolescent stages of human brain development. These miRNAs sometimes arise from two apposed TEs of the same subfamily, such as for L2 or MIR elements, but in the majority of cases stem from solo TEs. They give rise to in silico predicted high-confidence pre-miRNA hairpin structures, likely represent functional miRNAs, and have predicted genic targets associated with neurogenesis. TE-embedded miRNA expression is distinct in the cerebellum when compared to other brain regions, as has previously been described for gene and TE expression. Furthermore, we detect expression of previously nonannotated TE-embedded miRNAs throughout human brain development, suggestive of a previously undetected miRNA control network. Together, as with non-TE-embedded miRNAs, TE-embedded sequences give rise to spatiotemporally dynamic miRNA expression networks, the implications of which for human brain development constitute extensive avenues of future experimental research. To facilitate interactive exploration of these spatiotemporal miRNA expression dynamics, we provide the "Brain miRTExplorer" web application freely accessible for the community.
Collapse
Affiliation(s)
- Christopher J Playfoot
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Shaoline Sheppard
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Evarist Planet
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Bhat A, Ghatage T, Bhan S, Lahane GP, Dhar A, Kumar R, Pandita RK, Bhat KM, Ramos KS, Pandita TK. Role of Transposable Elements in Genome Stability: Implications for Health and Disease. Int J Mol Sci 2022; 23:7802. [PMID: 35887150 PMCID: PMC9319628 DOI: 10.3390/ijms23147802] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/11/2022] Open
Abstract
Most living organisms have in their genome a sizable proportion of DNA sequences capable of mobilization; these sequences are commonly referred to as transposons, transposable elements (TEs), or jumping genes. Although long thought to have no biological significance, advances in DNA sequencing and analytical technologies have enabled precise characterization of TEs and confirmed their ubiquitous presence across all forms of life. These findings have ignited intense debates over their biological significance. The available evidence now supports the notion that TEs exert major influence over many biological aspects of organismal life. Transposable elements contribute significantly to the evolution of the genome by giving rise to genetic variations in both active and passive modes. Due to their intrinsic nature of mobility within the genome, TEs primarily cause gene disruption and large-scale genomic alterations including inversions, deletions, and duplications. Besides genomic instability, growing evidence also points to many physiologically important functions of TEs, such as gene regulation through cis-acting control elements and modulation of the transcriptome through epigenetic control. In this review, we discuss the latest evidence demonstrating the impact of TEs on genome stability and the underling mechanisms, including those developed to mitigate the deleterious impact of TEs on genomic stability and human health. We have also highlighted the potential therapeutic application of TEs.
Collapse
Affiliation(s)
- Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Jammu 181143, India;
| | - Trupti Ghatage
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India; (T.G.); (G.P.L.); (A.D.)
| | - Sonali Bhan
- Centre for Molecular Biology, Central University of Jammu, Jammu 181143, India;
| | - Ganesh P. Lahane
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India; (T.G.); (G.P.L.); (A.D.)
| | - Arti Dhar
- Department of Pharmacy, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India; (T.G.); (G.P.L.); (A.D.)
| | - Rakesh Kumar
- Department of Biotechnology, Shri Mata Vaishnav Devi University, Katra 182320, India;
| | - Raj K. Pandita
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA;
| | - Tej K. Pandita
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA;
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
17
|
Chang NC, Rovira Q, Wells J, Feschotte C, Vaquerizas JM. Zebrafish transposable elements show extensive diversification in age, genomic distribution, and developmental expression. Genome Res 2022; 32:1408-1423. [PMID: 34987056 PMCID: PMC9341512 DOI: 10.1101/gr.275655.121] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/30/2021] [Indexed: 12/02/2022]
Abstract
There is considerable interest in understanding the effect of transposable elements (TEs) on embryonic development. Studies in humans and mice are limited by the difficulty of working with mammalian embryos and by the relative scarcity of active TEs in these organisms. The zebrafish is an outstanding model for the study of vertebrate development, and over half of its genome consists of diverse TEs. However, zebrafish TEs remain poorly characterized. Here we describe the demography and genomic distribution of zebrafish TEs and their expression throughout embryogenesis using bulk and single-cell RNA sequencing data. These results reveal a highly dynamic genomic ecosystem comprising nearly 2000 distinct TE families, which vary in copy number by four orders of magnitude and span a wide range of ages. Longer retroelements tend to be retained in intergenic regions, whereas short interspersed nuclear elements (SINEs) and DNA transposons are more frequently found nearby or within genes. Locus-specific mapping of TE expression reveals extensive TE transcription during development. Although two-thirds of TE transcripts are likely driven by nearby gene promoters, we still observe stage- and tissue-specific expression patterns in self-regulated TEs. Long terminal repeat (LTR) retroelements are most transcriptionally active immediately following zygotic genome activation, whereas DNA transposons are enriched among transcripts expressed in later stages of development. Single-cell analysis reveals several endogenous retroviruses expressed in specific somatic cell lineages. Overall, our study provides a valuable resource for using zebrafish as a model to study the impact of TEs on vertebrate development.
Collapse
Affiliation(s)
- Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Quirze Rovira
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
| | - Jonathan Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Juan M Vaquerizas
- Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- MRC London Institute of Medical Sciences, London W12 0NN, United Kingdom
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
18
|
Pinto A, Cunha C, Chaves R, Butchbach MER, Adega F. Comprehensive In Silico Analysis of Retrotransposon Insertions within the Survival Motor Neuron Genes Involved in Spinal Muscular Atrophy. BIOLOGY 2022; 11:824. [PMID: 35741345 PMCID: PMC9219815 DOI: 10.3390/biology11060824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are interspersed repetitive and mobile DNA sequences within the genome. Better tools for evaluating TE-derived sequences have provided insights into the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene but retention of its nearly perfect orthologue SMN2. Both genes are highly enriched in TEs. To establish a link between TEs and SMA, we conducted a comprehensive, in silico analysis of TE insertions within the SMN1/2 loci of SMA, carrier and healthy genomes. We found an Alu insertion in the promoter region and one L1 element in the 3'UTR that may play an important role in alternative promoter as well as in alternative transcriptional termination. Additionally, several intronic Alu repeats may influence alternative splicing via RNA circularization and causes the presence of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that could lead to SMN1 exons deletions and, ultimately, SMA. TE characterization of the SMA genomic region could provide for a better understanding of the implications of TEs on human disease and genomic evolution.
Collapse
Affiliation(s)
- Albano Pinto
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Catarina Cunha
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Raquel Chaves
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| | - Matthew E. R. Butchbach
- Division of Neurology, Nemours Children’s Hospital Delaware, Wilmington, DE 19803, USA;
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Filomena Adega
- Laboratory of Cytogenomics and Animal Genomics (CAG), Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal; (A.P.); (C.C.); (R.C.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
19
|
Shridharan RV, Kalakuntla N, Chirmule N, Tiwari B. The Happy Hopping of Transposons: The Origins of V(D)J Recombination in Adaptive Immunity. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.836066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nearly 50% of the human genome is derived from transposable elements (TEs). Though dysregulated transposons are deleterious to humans and can lead to diseases, co-opted transposons play an important role in generating alternative or new DNA sequence combinations to perform novel cellular functions. The appearance of an adaptive immune system in jawed vertebrates, wherein the somatic rearrangement of T and B cells generates a repertoire of antibodies and receptors, is underpinned by Class II TEs. This review follows the evolution of recombination activation genes (RAGs), components of adaptive immunity, from TEs, focusing on the structural and mechanistic similarities between RAG recombinases and DNA transposases. As evolution occurred from a transposon precursor, DNA transposases developed a more targeted and constrained mechanism of mobilization. As DNA repair is integral to transposition and recombination, we note key similarities and differences in the choice of DNA repair pathways following these processes. Understanding the regulation of V(D)J recombination from its evolutionary origins may help future research to specifically target RAG proteins to rectify diseases associated with immune dysregulation.
Collapse
|
20
|
Chesnokova E, Beletskiy A, Kolosov P. The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. Int J Mol Sci 2022; 23:5847. [PMID: 35628657 PMCID: PMC9148063 DOI: 10.3390/ijms23105847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) have been extensively studied for decades. In recent years, the introduction of whole-genome and whole-transcriptome approaches, as well as single-cell resolution techniques, provided a breakthrough that uncovered TE involvement in host gene expression regulation underlying multiple normal and pathological processes. Of particular interest is increased TE activity in neuronal tissue, and specifically in the hippocampus, that was repeatedly demonstrated in multiple experiments. On the other hand, numerous neuropathologies are associated with TE dysregulation. Here, we provide a comprehensive review of literature about the role of TEs in neurons published over the last three decades. The first chapter of the present review describes known mechanisms of TE interaction with host genomes in general, with the focus on mammalian and human TEs; the second chapter provides examples of TE exaptation in normal neuronal tissue, including TE involvement in neuronal differentiation and plasticity; and the last chapter lists TE-related neuropathologies. We sought to provide specific molecular mechanisms of TE involvement in neuron-specific processes whenever possible; however, in many cases, only phenomenological reports were available. This underscores the importance of further studies in this area.
Collapse
Affiliation(s)
- Ekaterina Chesnokova
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia; (A.B.); (P.K.)
| | | | | |
Collapse
|
21
|
Zeng C, Takeda A, Sekine K, Osato N, Fukunaga T, Hamada M. Bioinformatics Approaches for Determining the Functional Impact of Repetitive Elements on Non-coding RNAs. Methods Mol Biol 2022; 2509:315-340. [PMID: 35796972 DOI: 10.1007/978-1-0716-2380-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With a large number of annotated non-coding RNAs (ncRNAs), repetitive sequences are found to constitute functional components (termed as repetitive elements) in ncRNAs that perform specific biological functions. Bioinformatics analysis is a powerful tool for improving our understanding of the role of repetitive elements in ncRNAs. This chapter summarizes recent findings that reveal the role of repetitive elements in ncRNAs. Furthermore, relevant bioinformatics approaches are systematically reviewed, which promises to provide valuable resources for studying the functional impact of repetitive elements on ncRNAs.
Collapse
Affiliation(s)
- Chao Zeng
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan.
| | - Atsushi Takeda
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Kotaro Sekine
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Naoki Osato
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Tsukasa Fukunaga
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| | - Michiaki Hamada
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), Tokyo, Japan.
| |
Collapse
|
22
|
Martin MD, Brown DN, Ramos KS. Computational modeling of RNase, antisense ORF0 RNA, and intracellular compartmentation and their impact on the life cycle of the line retrotransposon. Comput Struct Biotechnol J 2021; 19:5667-5677. [PMID: 34765087 PMCID: PMC8554170 DOI: 10.1016/j.csbj.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/10/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022] Open
Abstract
Nearly half of the human genome is occupied by repetitive sequences of ancient virus-like genetic elements. The largest class, comprising 17% of the genome, belong to the type 1 Long INterspersed Elements (LINE-1) and are the only class capable of autonomous propagation in the genome. When epigenetic silencing mechanisms of LINE-1 fail, the proteins encoded by LINE-1 engage in reverse transcription to make new copies of their own or other DNAs that are pasted back into the genome. To elucidate how LINE-1 is dysregulated as a result of carcinogen exposure, we developed a computational model of key elements in the LINE-1 lifecycle, namely, the role of cytosolic ribonuclease (RNase), RNA interference (RNAi) by the antisense ORF0 RNA, and sequestration of LINE-1 products into stress granules and multivesicular structures. The model showed that when carcinogen exposure is represented as either a sudden increase in LINE-1 mRNA count, or as an increase in mRNA transcription rate, the retrotransposon copy number exhibits a distinct threshold behavior above which LINE-1 enters a positive feedback loop that allows the cDNA copy number to grow exponentially. We also found that most of the LINE-1 RNA was degraded via the RNAase pathway and that neither ORF0 RNAi, nor the sequestration of LINE-1 products into granules and multivesicular structures, played a significant role in regulating the retrotransposon’s life cycle. Several aspects of the prediction agree with experimental results and indicate that the model has significant potential to inform future experiments related to LINE-1 activation.
Collapse
Affiliation(s)
| | - David N Brown
- Western Kentucky University, 1906 College Heights Blvd, Bowling Green, Kentucky 42101, United States
| | - Kenneth S Ramos
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, United States
| |
Collapse
|
23
|
Valdebenito-Maturana B, Arancibia E, Riadi G, Tapia JC, Carrasco M. Locus-specific analysis of Transposable Elements during the progression of ALS in the SOD1G93A mouse model. PLoS One 2021; 16:e0258291. [PMID: 34614020 PMCID: PMC8494334 DOI: 10.1371/journal.pone.0258291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
Transposable Elements (TEs) are ubiquitous genetic elements with the ability to move within a genome. TEs contribute to a large fraction of the repetitive elements of a genome, and because of their nature, they are not routinely analyzed in RNA-Seq gene expression studies. Amyotrophic Lateral Sclerosis (ALS) is a lethal neurodegenerative disease, and a well-accepted model for its study is the mouse harboring the human SOD1G93A mutant. In this model, landmark stages of the disease can be recapitulated at specific time points, making possible to understand changes in gene expression across time. While there are several works reporting TE activity in ALS models, they have not explored their activity through the disease progression. Moreover, they have done it at the expense of losing their locus of expression. Depending on their genomic location, TEs can regulate genes in cis and in trans, making locus-specific analysis of TEs of importance in order to understand their role in modulating gene expression. Particularly, the locus-specific role of TEs in ALS has not been fully elucidated. In this work, we analyzed publicly available RNA-Seq datasets of the SOD1G93A mouse model, to understand the locus-specific role of TEs. We show that TEs become up-regulated at the early stages of the disease, and via statistical associations, we speculate that they can regulate several genes, which in turn might be contributing to the genetic dysfunction observed in ALS.
Collapse
Affiliation(s)
| | - Esteban Arancibia
- Centre for Bioinformatics, Simulation and Modelling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Talca, Chile
| | - Gonzalo Riadi
- ANID – Millennium Science Initiative Program Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Centre for Bioinformatics, Simulation and Modelling, CBSM, Department of Bioinformatics, Faculty of Engineering, University of Talca, Talca, Chile
| | - Juan Carlos Tapia
- School of Medicine, Universidad de Talca, Talca, Chile
- * E-mail: (JCT); (MC)
| | - Mónica Carrasco
- School of Medicine, Universidad de Talca, Talca, Chile
- * E-mail: (JCT); (MC)
| |
Collapse
|
24
|
Bioinformatics and Machine Learning Approaches to Understand the Regulation of Mobile Genetic Elements. BIOLOGY 2021; 10:biology10090896. [PMID: 34571773 PMCID: PMC8465862 DOI: 10.3390/biology10090896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary Transposable elements (TEs) are DNA sequences that are, or were, able to move (transpose) within the genome of a single cell. They were first discovered by Barbara McClintock while working on maize, and they make up a large fraction of the genome. Transpositions can result in mutations and they can alter the genome size. Cells regulate the activity of TEs using a variety of mechanisms, such as chemical modifications of DNA and small RNAs. Machine learning (ML) is an interdisciplinary subject that studies computer algorithms that can improve through experience and by the use of data. ML has been successfully applied to a variety of problems in bioinformatics and has exhibited favorable precision and speed. Here, we provide a systematic and guided review on the ML and bioinformatic methods and tools that are used for the analysis of the regulation of TEs. Abstract Transposable elements (TEs, or mobile genetic elements, MGEs) are ubiquitous genetic elements that make up a substantial proportion of the genome of many species. The recent growing interest in understanding the evolution and function of TEs has revealed that TEs play a dual role in genome evolution, development, disease, and drug resistance. Cells regulate TE expression against uncontrolled activity that can lead to developmental defects and disease, using multiple strategies, such as DNA chemical modification, small RNA (sRNA) silencing, chromatin modification, as well as sequence-specific repressors. Advancements in bioinformatics and machine learning approaches are increasingly contributing to the analysis of the regulation mechanisms. A plethora of tools and machine learning approaches have been developed for prediction, annotation, and expression profiling of sRNAs, for methylation analysis of TEs, as well as for genome-wide methylation analysis through bisulfite sequencing data. In this review, we provide a guided overview of the bioinformatic and machine learning state of the art of fields closely associated with TE regulation and function.
Collapse
|
25
|
Vierl F, Kaur M, Götz M. Non-codon Optimized PiggyBac Transposase Induces Developmental Brain Aberrations: A Call for in vivo Analysis. Front Cell Dev Biol 2021; 9:698002. [PMID: 34414186 PMCID: PMC8369470 DOI: 10.3389/fcell.2021.698002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
In this perspective article, we briefly review tools for stable gain-of-function expression to explore key fate determinants in embryonic brain development. As the piggyBac transposon system has the highest insert size, a seamless integration of the transposed sequence into the host genome, and can be delivered by transfection avoiding viral vectors causing an immune response, we explored its use in the murine developing forebrain. The original piggyBac transposase PBase or the mouse codon-optimized version mPB and the construct to insert, contained in the piggyBac transposon, were introduced by in utero electroporation at embryonic day 13 into radial glia, the neural stem cells, in the developing dorsal telencephalon, and analyzed 3 or 5 days later. When using PBase, we observed an increase in basal progenitor cells, often accompanied by folding aberrations. These effects were considerably ameliorated when using the piggyBac plasmid together with mPB. While size and strength of the electroporated region was not correlated to the aberrations, integration was essential and the positive correlation to the insert size implicates the frequency of transposition as a possible mechanism. We discuss this in light of the increase in transposing endogenous viral vectors during mammalian phylogeny and their role in neurogenesis and radial glial cells. Most importantly, we aim to alert the users of this system to the phenotypes caused by non-codon optimized PBase application in vivo.
Collapse
Affiliation(s)
- Franziska Vierl
- Institute for Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Manpreet Kaur
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Physiological Genomics, Biomedical Center, Ludwig-Maximilians-Universität, Munich, Germany.,SyNergy, Munich Cluster for Systems Neurology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
26
|
Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, Song NY, Yau LC, Lin SP. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci 2021; 28:58. [PMID: 34364371 PMCID: PMC8349491 DOI: 10.1186/s12929-021-00754-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Transposable elements (TEs) initially attracted attention because they comprise a major portion of the genomic sequences in plants and animals. TEs may jump around the genome and disrupt both coding genes as well as regulatory sequences to cause disease. Host cells have therefore evolved various epigenetic and functional RNA-mediated mechanisms to mitigate the disruption of genomic integrity by TEs. TE associated sequences therefore acquire the tendencies of attracting various epigenetic modifiers to induce epigenetic alterations that may spread to the neighboring genes. In addition to posting threats for (epi)genome integrity, emerging evidence suggested the physiological importance of endogenous TEs either as cis-acting control elements for controlling gene regulation or as TE-containing functional transcripts that modulate the transcriptome of the host cells. Recent advances in long-reads sequence analysis technologies, bioinformatics and genetic editing tools have enabled the profiling, precise annotation and functional characterization of TEs despite their challenging repetitive nature. The importance of specific TEs in preimplantation embryonic development, germ cell differentiation and meiosis, cell fate determination and in driving species specific differences in mammals will be discussed.
Collapse
Affiliation(s)
- Pu-Sheng Hsu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Tzang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Jen-Yun Chang
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Li-Kuang Tsai
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Ning-Yu Song
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.,Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Lih-Chiao Yau
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan. .,Center of Systems Biology, National Taiwan University, Taipei, Taiwan. .,The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Mangiavacchi A, Liu P, Della Valle F, Orlando V. New insights into the functional role of retrotransposon dynamics in mammalian somatic cells. Cell Mol Life Sci 2021; 78:5245-5256. [PMID: 33990851 PMCID: PMC8257530 DOI: 10.1007/s00018-021-03851-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/31/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Retrotransposons are genetic elements present across all eukaryotic genomes. While their role in evolution is considered as a potentially beneficial natural source of genetic variation, their activity is classically considered detrimental due to their potentially harmful effects on genome stability. However, studies are increasingly shedding light on the regulatory function and beneficial role of somatic retroelement reactivation in non-pathological contexts. Here, we review recent findings unveiling the regulatory potential of retrotransposons, including their role in noncoding RNA transcription, as modulators of mammalian transcriptional and epigenome landscapes. We also discuss technical challenges in deciphering the multifaceted activity of retrotransposable elements, highlighting an unforeseen central role of this neglected portion of the genome both in early development and in adult life.
Collapse
Affiliation(s)
- Arianna Mangiavacchi
- Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Peng Liu
- Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Francesco Della Valle
- Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Valerio Orlando
- Biological Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
28
|
Chen D, Cremona MA, Qi Z, Mitra RD, Chiaromonte F, Makova KD. Human L1 Transposition Dynamics Unraveled with Functional Data Analysis. Mol Biol Evol 2021; 37:3576-3600. [PMID: 32722770 DOI: 10.1093/molbev/msaa194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from public databases). We characterized 49 genomic features-proxying chromatin accessibility, transcriptional activity, replication, recombination, etc.-in the ±50 kb flanks of these elements. These features were contrasted between the three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1 transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection-depleted of genes and noncoding most conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate understanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and inform their use as mutagenesis tools in genetic studies.
Collapse
Affiliation(s)
- Di Chen
- Intercollege Graduate Degree Program in Genetics, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Marzia A Cremona
- Department of Statistics, The Pennsylvania State University, University Park, PA.,Department of Operations and Decision Systems, Université Laval, Québec, Canada
| | - Zongtai Qi
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Robi D Mitra
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO
| | - Francesca Chiaromonte
- Department of Statistics, The Pennsylvania State University, University Park, PA.,EMbeDS, Sant'Anna School of Advanced Studies, Pisa, Italy.,The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA
| | - Kateryna D Makova
- The Huck Institutes of the Life Sciences, Center for Medical Genomics, The Pennsylvania State University, University Park, PA.,Department of Biology, The Pennsylvania State University, University Park, PA
| |
Collapse
|
29
|
Ukadike KC, Mustelin T. Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. J Clin Med 2021; 10:856. [PMID: 33669709 PMCID: PMC7922054 DOI: 10.3390/jcm10040856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. While its etiology remains elusive, current understanding suggests a multifactorial process with contributions by genetic, immunologic, hormonal, and environmental factors. A hypothesis that combines several of these factors proposes that genomic elements, the L1 retrotransposons, are instrumental in SLE pathogenesis. L1 retroelements are transcriptionally activated in SLE and produce two proteins, ORF1p and ORF2p, which are immunogenic and can drive type I interferon (IFN) production by producing DNA species that activate cytosolic DNA sensors. In addition, these two proteins reside in RNA-rich macromolecular assemblies that also contain well-known SLE autoantigens like Ro60. We surmise that cells expressing L1 will exhibit all the hallmarks of cells infected by a virus, resulting in a cellular and humoral immune response similar to those in chronic viral infections. However, unlike exogenous viruses, L1 retroelements cannot be eliminated from the host genome. Hence, dysregulated L1 will cause a chronic, but perhaps episodic, challenge for the immune system. The clinical and immunological features of SLE can be at least partly explained by this model. Here we review the support for, and the gaps in, this hypothesis of SLE and its potential for new diagnostic, prognostic, and therapeutic options in SLE.
Collapse
Affiliation(s)
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA;
| |
Collapse
|
30
|
Roller M, Stamper E, Villar D, Izuogu O, Martin F, Redmond AM, Ramachanderan R, Harewood L, Odom DT, Flicek P. LINE retrotransposons characterize mammalian tissue-specific and evolutionarily dynamic regulatory regions. Genome Biol 2021; 22:62. [PMID: 33602314 PMCID: PMC7890895 DOI: 10.1186/s13059-021-02260-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND To investigate the mechanisms driving regulatory evolution across tissues, we experimentally mapped promoters, enhancers, and gene expression in the liver, brain, muscle, and testis from ten diverse mammals. RESULTS The regulatory landscape around genes included both tissue-shared and tissue-specific regulatory regions, where tissue-specific promoters and enhancers evolved most rapidly. Genomic regions switching between promoters and enhancers were more common across species, and less common across tissues within a single species. Long Interspersed Nuclear Elements (LINEs) played recurrent evolutionary roles: LINE L1s were associated with tissue-specific regulatory regions, whereas more ancient LINE L2s were associated with tissue-shared regulatory regions and with those switching between promoter and enhancer signatures across species. CONCLUSIONS Our analyses of the tissue-specificity and evolutionary stability among promoters and enhancers reveal how specific LINE families have helped shape the dynamic mammalian regulome.
Collapse
Affiliation(s)
- Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Ericca Stamper
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Present address: Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Diego Villar
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Present address: Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Osagie Izuogu
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Aisling M Redmond
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Present address: MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, CB2 0XZ, UK
| | - Raghavendra Ramachanderan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Louise Harewood
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
- Present address: Precision Medicine Centre of Excellence, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
- German Cancer Research Center (DKFZ), Division of Regulatory Genomics and Cancer Evolution, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| |
Collapse
|
31
|
Ali A, Han K, Liang P. Role of Transposable Elements in Gene Regulation in the Human Genome. Life (Basel) 2021; 11:118. [PMID: 33557056 PMCID: PMC7913837 DOI: 10.3390/life11020118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs), also known as mobile elements (MEs), are interspersed repeats that constitute a major fraction of the genomes of higher organisms. As one of their important functional impacts on gene function and genome evolution, TEs participate in regulating the expression of genes nearby and even far away at transcriptional and post-transcriptional levels. There are two known principal ways by which TEs regulate the expression of genes. First, TEs provide cis-regulatory sequences in the genome with their intrinsic regulatory properties for their own expression, making them potential factors for regulating the expression of the host genes. TE-derived cis-regulatory sites are found in promoter and enhancer elements, providing binding sites for a wide range of trans-acting factors. Second, TEs encode for regulatory RNAs with their sequences showed to be present in a substantial fraction of miRNAs and long non-coding RNAs (lncRNAs), indicating the TE origin of these RNAs. Furthermore, TEs sequences were found to be critical for regulatory functions of these RNAs, including binding to the target mRNA. TEs thus provide crucial regulatory roles by being part of cis-regulatory and regulatory RNA sequences. Moreover, both TE-derived cis-regulatory sequences and TE-derived regulatory RNAs have been implicated in providing evolutionary novelty to gene regulation. These TE-derived regulatory mechanisms also tend to function in a tissue-specific fashion. In this review, we aim to comprehensively cover the studies regarding these two aspects of TE-mediated gene regulation, mainly focusing on the mechanisms, contribution of different types of TEs, differential roles among tissue types, and lineage-specificity, based on data mostly in humans.
Collapse
Affiliation(s)
- Arsala Ali
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
| | - Kyudong Han
- Department of Microbiology, Dankook University, Cheonan 31116, Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Korea
| | - Ping Liang
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada;
- Centre of Biotechnologies, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
32
|
Lee HE, Park SJ, Huh JW, Imai H, Kim HS. The enhancer activity of long interspersed nuclear element derived microRNA 625 induced by NF-κB. Sci Rep 2021; 11:3139. [PMID: 33542430 PMCID: PMC7862687 DOI: 10.1038/s41598-021-82735-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Transposable elements (TEs) are DNA sequences that cut or introduced into the genome, and they represent a massive portion of the human genome. TEs generate a considerable number of microRNAs (miRNAs) are derived from TEs (MDTEs). Numerous miRNAs are related to cancer, and hsa-miRNA-625 is a well-known oncomiR derived from long interspersed nuclear elements (LINEs). The relative expression of hsa-miRNA-625-5p differs in humans, chimpanzees, crab-eating monkeys, and mice, and four primers were designed against the 3'UTR of GATAD2B to analyze the different quantities of canonical binding sites and the location of miRNA binding sites. Luciferase assay was performed to score for the interaction between hsa-miRNA-625 and the 3'UTR of GATAD2B, while blocking NF-κB. In summary, the different numbers of canonical binding sites and the locations of miRNA binding sites affect gene expression, and NF-κB induces the enhancer activity of hsa-miRNA-625-5p by sharing the binding sites.
Collapse
Affiliation(s)
- Hee-Eun Lee
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea. .,Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
33
|
Lee HE, Park SJ, Huh JW, Imai H, Kim HS. Enhancer Function of MicroRNA-3681 Derived from Long Terminal Repeats Represses the Activity of Variable Number Tandem Repeats in the 3' UTR of SHISA7. Mol Cells 2020; 43:607-618. [PMID: 32655015 PMCID: PMC7398795 DOI: 10.14348/molcells.2020.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
microRNAs (miRNAs) are non-coding RNA molecules involved in the regulation of gene expression. miRNAs inhibit gene expression by binding to the 3' untranslated region (UTR) of their target gene. miRNAs can originate from transposable elements (TEs), which comprise approximately half of the eukaryotic genome and one type of TE, called the long terminal repeat (LTR) is found in class of retrotransposons. Amongst the miRNAs derived from LTR, hsa-miR-3681 was chosen and analyzed using bioinformatics tools and experimental analysis. Studies on hsa-miR-3681 have been scarce and this study provides the relative expression analysis of hsa-miR-3681-5p from humans, chimpanzees, crab-eating monkeys, and mice. Luciferase assay for hsa-miR-3681-5p and its target gene SHISA7 supports our hypothesis that the number of miRNA binding sites affects target gene expression. Especially, the variable number tandem repeat (VNTR) and hsa-miR-3681-5p share the binding sites in the 3' UTR of SHISA7, which leads the enhancer function of hsa-miR-3681-5p to inhibit the activity of VNTR. In conclusion, hsa-miR-3681-5p acts as a super-enhancer and the enhancer function of hsa-miR-3681-5p acts as a repressor of VNTR activity in the 3' UTR of SHISA7.
Collapse
Affiliation(s)
- Hee-Eun Lee
- Department of Integrated Biological Science, Pusan National University, Busan 4624, Korea
- Institute of Systems Biology, Pusan National University, Busan 4641, Korea
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Sang-Je Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
- Department of Functional Genomics, Korea Research Institute of Bioscience and Biotechnology (KRIBB) School of Bioscience, Korea University of Science and Technology (UST), Daejeon 3113, Korea
| | - Hiroo Imai
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama 484-806, Japan
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 4641, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 4241, Korea
| |
Collapse
|
34
|
Wang J, Lu N, Yi F, Xiao Y. Identification of Transposable Elements in Conifer and Their Potential Application in Breeding. Evol Bioinform Online 2020; 16:1176934320930263. [PMID: 32595272 PMCID: PMC7297469 DOI: 10.1177/1176934320930263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Transposable elements (TEs) are known to play a role in genome evolution, gene regulation, and epigenetics, representing potential tools for genetics research in and breeding of conifers. Recently, thanks to the development of high-throughput sequencing, more conifer genomes have been reported. Using bioinformatics tools, the TEs of 3 important conifers (Picea abies, Picea glauce, and Pinus taeda) were identified in our previous study, which provided a foundation for accelerating the use of TEs in conifer breeding and genetic study. Here, we review recent studies on the functional biology of TEs and discuss the potential applications for TEs in conifers.
Collapse
Affiliation(s)
- Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Fei Yi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yao Xiao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
35
|
Lanciano S, Cristofari G. Measuring and interpreting transposable element expression. Nat Rev Genet 2020; 21:721-736. [PMID: 32576954 DOI: 10.1038/s41576-020-0251-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/21/2022]
Abstract
Transposable elements (TEs) are insertional mutagens that contribute greatly to the plasticity of eukaryotic genomes, influencing the evolution and adaptation of species as well as physiology or disease in individuals. Measuring TE expression helps to understand not only when and where TE mobilization can occur but also how this process alters gene expression, chromatin accessibility or cellular signalling pathways. Although genome-wide gene expression assays such as RNA sequencing include transposon-derived transcripts, most computational analytical tools discard or misinterpret TE-derived reads. Emerging approaches are improving the identification of expressed TE loci and helping to discriminate TE transcripts that permit TE mobilization from chimeric gene-TE transcripts or pervasive transcription. Here we review the main challenges associated with the detection of TE expression, including mappability, insertional and internal sequence polymorphisms, and the diversity of the TE transcriptional landscape, as well as the different experimental and computational strategies to solve them.
Collapse
|
36
|
Jönsson ME, Garza R, Johansson PA, Jakobsson J. Transposable Elements: A Common Feature of Neurodevelopmental and Neurodegenerative Disorders. Trends Genet 2020; 36:610-623. [PMID: 32499105 DOI: 10.1016/j.tig.2020.05.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/30/2022]
Abstract
The etiology of most neurological disorders is poorly understood and current treatments are largely ineffective. New ideas and concepts are therefore vitally important for future research in this area. This review explores the concept that dysregulation of transposable elements (TEs) contributes to the appearance and pathology of neurodevelopmental and neurodegenerative disorders. Despite TEs making up at least half of the human genome, they are vastly understudied in relation to brain disorders. However, recent advances in sequencing technologies and gene editing approaches are now starting to unravel the pathological role of TEs. Aberrant activation of TEs has been found in many neurological disorders; the resulting pathogenic effects, which include alterations of gene expression, neuroinflammation, and direct neurotoxicity, are starting to be resolved. An increased understanding of the relationship between TEs and pathological processes in the brain improves the potential for novel diagnostics and interventions for brain disorders.
Collapse
Affiliation(s)
- Marie E Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Pia A Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
37
|
Sznarkowska A, Mikac S, Pilch M. MHC Class I Regulation: The Origin Perspective. Cancers (Basel) 2020; 12:cancers12051155. [PMID: 32375397 PMCID: PMC7281430 DOI: 10.3390/cancers12051155] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
Viral-derived elements and non-coding RNAs that build up “junk DNA” allow for flexible and context-dependent gene expression. They are extremely dense in the MHC region, accounting for flexible expression of the MHC I, II, and III genes and adjusting the level of immune response to the environmental stimuli. This review brings forward the viral-mediated aspects of the origin and evolution of adaptive immunity and aims to link this perspective with the MHC class I regulation. The complex regulatory network behind MHC expression is largely controlled by virus-derived elements, both as binding sites for immune transcription factors and as sources of regulatory non-coding RNAs. These regulatory RNAs are imbalanced in cancer and associate with different tumor types, making them promising targets for diagnostic and therapeutic interventions.
Collapse
|
38
|
Li X, Wang X, Cheng Z, Zhu Q. AGO2 and its partners: a silencing complex, a chromatin modulator, and new features. Crit Rev Biochem Mol Biol 2020; 55:33-53. [DOI: 10.1080/10409238.2020.1738331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaojing Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Xueying Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Macchietto MG, Langlois RA, Shen SS. Virus-induced transposable element expression up-regulation in human and mouse host cells. Life Sci Alliance 2020; 3:3/2/e201900536. [PMID: 31964680 PMCID: PMC6977392 DOI: 10.26508/lsa.201900536] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/18/2022] Open
Abstract
Genome-wide transposon expression up-regulation in host cells regardless of virus, species, and host cell tissue types occurs early during viral infection and likely contributes to promoting the host innate immune response. Virus–host cell interactions initiate a host cell–defensive response during virus infection. How transposable elements in the host cell respond to viral stress at the molecular level remains largely unclear. By reanalyzing next generation sequencing data sets from dozens of virus infection studies from the Gene Expression Omnibus database, we found that genome-wide transposon expression up-regulation in host cells occurs near antiviral response genes and exists in all studies regardless of virus, species, and host cell tissue types. Some transposons were found to be up-regulated almost immediately upon infection and before increases in virus replication and significant increases in interferon β expression. These findings indicate that transposon up-regulation is a common phenomenon during virus infection in human and mouse and that early up-regulated transposons are part of the first wave response during virus infection.
Collapse
Affiliation(s)
| | - Ryan A Langlois
- Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Steven S Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA .,Clinical Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
40
|
Im J, Kim WR, Lee HE, Kim A, Kim DH, Choi YH, Cha HJ, Kim S, Kim HS. Expression analysis of LTR-derived miR-1269a and target gene, KSR2 in Sebastes schlegelii. Genes Genomics 2019; 42:55-65. [PMID: 31721105 DOI: 10.1007/s13258-019-00880-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND Sebastes schlegelii are an important species of fish found in the coastal areas of the Korea with significant commercial importance. Most studies thus far have been primarily focused on environmental factors; behavioural patterns, aquaculture, diseases and limited genetic studies with little to none related to either microRNAs (miRNAs) or transposable elements (TE). OBJECTIVES In order to understand biological roles of TE-derived miR-1269a, we examined expression pattern for miR-1269a and its target gene, KSR2, in various tissues of Sebastes schlegelii. Also, we performed luciferase reporter assay in HINAE cells. METHODS UCSC Genome Browser (https://genome.ucsc.edu/) was used to examine which TE is associated with miR-1269a. For the target genes for miR-1269a, the target genes associated with the miRNA were identified using miRDB (http://www.mirdb.org/) and TargetScan 7.1 (http://www.targetscan.org/vert_71/). A two-step miRNA kit, HB miR Multi Assay Kit™ System. I was used for the analysis of TE-derived miRNA expression patterns. The 3'UTR of KSR2 gene was cloned into the psiCHECK-2 vector. Subsequently co-transfected with miR-1269a mimics to HINAE cells for luciferase reporter assay. RESULTS MiR-1269a was found to be derived from LTR retrotransposon, MLT2B. LTR-derived miR-1269a was highly expressed in the muscle, liver and gonad tissues of Sebastes schlegelii, but KSR2 revealed high expression in the brain. Co-transfection of KSR2 and miR-1269a mimic to HINAE cells showed high activity of miR-1269a in relation to KSR2. CONCLUSION LTR-derived miR-1269a showed enhancer activity with relation to KSR2 in Sebastes schlegelii. The data may be used as a foundation for further investigation regarding correlation of miRNA and target genes in addition to other functional studies of biological significance in Sebastes schlegelii.
Collapse
Affiliation(s)
- Jennifer Im
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Woo Ryung Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ahran Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Sciences, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Korean Medicine, Dong-eui University, Busan, 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan, 49267, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea. .,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
41
|
Marakli S. In silico determination of transposon-derived miRNAs and targets in Aegilops species. J Biomol Struct Dyn 2019; 38:3098-3109. [PMID: 31402758 DOI: 10.1080/07391102.2019.1654409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transposable elements (TEs) are found almost in all living organism, shaping organisms' genomes. miRNAs are noncoding RNA types which are especially important in gene expression regulations. Many previously determined plant miRNAs are identical/homologous to transposons (TE-MIR). The aim of this study was computational characterization of novel TE-related miRNAs and their targets in Aegilops genome by using stringent criteria. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed by BLAST2GO. Seventeen novel TE-related miRNAs in Aegilops genome were identified for the first time. GO analyses indicated that 40 targets played different roles in biological processes, cellular components and molecular functions. Moreover, these genes were involved in 10 metabolic pathways such as purine metabolism, nitrogen metabolism, oxidative phosphorylation, etc. as a result of KEGG analyses. Identification of miRNAs and their targets are significant to understand miRNA-TEs relationships and even how TEs affect plant growth and development. Obtaining results of this study are expected to provide possible new insight into Aegilops and its related species, wheat, with respect to miRNAs evolution and domestication.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevgi Marakli
- Department of Medical Services and Techniques, Amasya University, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya, Turkey.,Amasya University, Central Research Laboratory, Amasya, Turkey
| |
Collapse
|