1
|
Chun S, Bang SY, Kwon A, Kim CY, Cha S, Kwon YC, Joo YB, Cho SK, Choi CB, Sung YK, Han JY, Kim TH, Jun JB, Yoo DH, Lee HS, Kim K, Bae SC. Genetic burden of lupus increases the risk of transition from normal to preclinical autoimmune conditions via antinuclear antibody development. Ann Rheum Dis 2025; 84:789-797. [PMID: 39893101 DOI: 10.1016/j.ard.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 02/04/2025]
Abstract
OBJECTIVES This study aimed to investigate the association between the genetic burden of systemic lupus erythematosus (SLE) and the loss of tolerance to self-nuclear antigens in the preclinical stage. METHODS We analysed genetic data from 349 Korean individuals who tested positive for autoantibodies in the preclinical stage, along with 33,596 healthy controls and 2057 patients with SLE. Genome-wide and pathway-specific polygenic risk scores (PRSs) of SLE were calculated based on 180 known non-human leukocyte antigen (non-HLA) SLE loci, HLA-DRB1 classical alleles, and predefined immune-related pathways to subsequently correlate with clinical phenotypes, particularly the presence of antinuclear antibodies (ANAs) at various titre thresholds. RESULTS Individuals with preclinical autoimmune conditions exhibited significantly higher SLE PRSs than healthy controls (P = 2.99 × 10-5), with a significantly upward trend between ANA titres and PRS (P = 1.12 × 10-3). Stratification analysis revealed that preclinical-stage individuals with PRSs exceeding the means of age- and sex-matched PRSs among patients with SLE were at a significantly higher risk of ANA development (odds ratio = 2.25; P = 8.12 × 10-3 at a dilution factor of 1:80). Pathway-specific PRS analysis identified the significant enrichment of SLE-risk effects in nine pathways, such as signalling related to reactive oxygen species production, T cell receptor, B cell receptor, and cytokines, in ANA-positive preclinical individuals (Padjusted < 0.05). CONCLUSIONS Our findings illustrate that the genetic burden of SLE may lead to a crucial transition from normal to preclinical autoimmune conditions prior to the pathogenic stage by increasing the susceptibility to and levels of ANAs.
Collapse
Affiliation(s)
- Sehwan Chun
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| | - Ayeong Kwon
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Chan Young Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Soojin Cha
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| | - Young-Chang Kwon
- Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| | - Young Bin Joo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Soo-Kyung Cho
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Chan-Bum Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Yoon-Kyoung Sung
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Ji-Young Han
- Department of Periodontology, Division of Dentistry, Hanyang University, College of Medicine, Seoul, Republic of Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Jae-Bum Jun
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Dae Hyun Yoo
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Seoul, Republic of Korea
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea; Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Noguchi E, Morii W, Kitazawa H, Hirota T, Sonehara K, Masuko H, Okada Y, Hizawa N. A genome-wide meta-analysis reveals shared and population-specific variants for allergic sensitization. J Allergy Clin Immunol 2025; 155:1321-1332. [PMID: 39644933 DOI: 10.1016/j.jaci.2024.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Allergic diseases are major causes of morbidity in both developed and developing countries and represent a global burden on health care systems. Allergic sensitization is defined as the production of IgE specific to common environmental allergens and is an important indicator in the assessment of allergic diseases. OBJECTIVE We sought to clarify the genetic basis of allergic sensitization. METHODS We performed a genome-wide association study (GWAS) of allergic sensitization in the Japanese population followed by a cross-ancestry meta-analysis with a European population including 20,492 cases and 23,342 controls for Japanese and 8,246 cases and 16,786 controls for Europeans. We also performed a polysensitization GWAS of a Japanese population including 4,923 cases and 17,009 controls. RESULTS Allergic sensitization GWAS identified 18 susceptibility loci for Japanese only and 23 loci for the cross-ancestry population, among which 4 loci were novel. Polysensitization GWAS identified 8 significant loci. Expression quantitative trait locus colocalization analysis revealed polysensitization GWAS significant variants affecting both the phenotype and the expression of the CD28, LPP, and LRCC32 genes. Cross-population genetic correlation analysis of allergic sensitization suggested that heterogeneity exists in allergic sensitization between Europeans and Japanese, indicating that more genetic heterogeneity may exist in allergic sensitization than allergic diseases. CONCLUSIONS Our investigation provides new insights into the molecular mechanism of allergic sensitization that could enhance current understanding of allergy and allergic diseases.
Collapse
Affiliation(s)
- Emiko Noguchi
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| | - Wataru Morii
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruna Kitazawa
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics, Jikei University School of Medicine, Research Center for Medical Science, Tokyo, Japan
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hironori Masuko
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan; Department of Genome Informatics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
4
|
Ates I, Terzi U, Suzen S, Irham LM. An overview on Sjögren's syndrome and systemic lupus erythematosus' genetics. Toxicol Res (Camb) 2025; 14:tfae194. [PMID: 39991010 PMCID: PMC11847510 DOI: 10.1093/toxres/tfae194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/13/2024] [Accepted: 02/14/2025] [Indexed: 02/25/2025] Open
Abstract
Major autoimmune rheumatic disorders, such as systemic lupus erythematosus and Sjögren's syndrome, are defined by the presence of autoantibodies. These diseases are brought on by immune system dysregulation, which can present clinically in a wide range of ways. The etiologies of these illnesses are complex and heavily impacted by a variety of genetic and environmental variables. The most powerful susceptibility element for each of these disorders is still the human leukocyte antigen (HLA) area, that was the initial locus found to be associated. This region is primarily responsible for the HLA class II genes, such as DQA1, DQB1, and DRB1, however class I genes have also been linked. Numerous genetic variants that do not pose a risk to HLA have been found as a result of intensive research into the genetic component of these diseases conducted over the last 20 years. Furthermore, it is generally acknowledged that autoimmune rheumatic illnesses have similar genetic backgrounds and share molecular pathways of disease, including the interferon (IFN) type I routes. Pleiotropic sites for autoimmune rheumatic illnesses comprise TNIP1, DNASEL13, IRF5, the HLA region, and others. It remains a challenge to determine the causative biological mechanisms beneath the genetic connections. Nonetheless, functional analyses of the loci and mouse models have produced recent advancements. With an emphasis on the HLA region, we present an updated summary of the structure of genes underpinning both of these autoimmune rheumatic illnesses here.
Collapse
Affiliation(s)
- Ilker Ates
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Ulku Terzi
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Sinan Suzen
- Department of Toxicology, Ankara University, Faculty of Pharmacy, Emniyet Distr, Degol Str, No. 4, 06560 Yenimahalle, Ankara, Turkey
| | - Lalu Muhammad Irham
- Department of Toxicology, Ahmad Dahlan University, Faculty of Pharmacy, Prof. Dr. Soepomo, S.H., Street, Warungboto, 55164, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Shirizadeh A, Razavi Z, Saeedi V, Behzad M, Faradmal J, Solgi G. Potential contribution of gut microbiota in the development of autoantibodies in T1D children carrying HLA-DRB1/DQB1 risk alleles: an experimental and in silico analysis. Immunogenetics 2024; 76:335-349. [PMID: 39276210 DOI: 10.1007/s00251-024-01354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
This study aimed to investigate the prevalence of insulin autoantibody (IAA), glutamic acid decarboxylase antibody (GADA), and insulinoma-associated antigen-2 antibody (IA-2A) in type 1 diabetes (T1D) children based on the presence of predisposing HLA-II alleles. Additionally, to assess the sequence homology between autoantigens of islet cells and selected proteins derived from gut bacteria in terms of their binding capacities to HLA risk alleles, HLA-DRB1/DQB1 alleles were determined by PCR-SSOP in 111 T1D children (probands) along with 222 parents and 133 siblings. Autoantibodies were measured by ELISA, and in silico analysis was run as follows: protein extraction, homology and epitope prediction, peptide alignment, and HLA-peptide docking. Higher significant frequencies of DRB1*03:01, DQB1*02:01, and DQB1*03:02 alleles and DRB1*03:01 ~ DQB1*02:01 haplotype and lower frequencies of DRB1*11:01, DRB1*14:01, and DQB1*03:01 alleles were found in probands compared to parents and siblings. DRB1*11:01 ~ DQB1*03:01, DRB1*14:01 ~ DQB1*05:03, and DRB1*15:01-DQB1*06:02 haplotypes were significantly less frequent in the probands compared to parents. Out of 111 probands, 21 were seronegative, 90 tested positive for one autoantibody, and 15 showed the concurrent presence of three autoantibodies. Logistic regression analysis revealed that DRB1*04 ~ DQB1*03:02 haplotype was associated with the induction of GADA and IA-2A, while DRB1*11:01 ~ DQB1*03:01 was associated with seronegativity. Epitopes derived from GAD and gut bacteria showed strong binding capacities to HLA risk alleles. Due to the sequence similarities between gut bacteria-derived proteins and islet cell autoantigens and their potential for binding to HLA risk alleles, dysbiosis of gut microbiota can be considered another risk factor for the development of T1D, especially in genetically susceptible individuals.
Collapse
Affiliation(s)
- Ata Shirizadeh
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box: 6517838736, Hamadan, Iran
| | - Zahra Razavi
- Pediatrics Department, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Vahid Saeedi
- Pediatric Endocrinology and Metabolism Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Behzad
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box: 6517838736, Hamadan, Iran
| | - Javad Faradmal
- Biostatistics Department, Health School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Shahid Fahmideh Blvd, Opposite to Lona Park, P.O. Box: 6517838736, Hamadan, Iran.
- Cancer Research Center, Institute of Cancer, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
6
|
Ghodke-Puranik Y, Olferiev M, Crow MK. Systemic lupus erythematosus genetics: insights into pathogenesis and implications for therapy. Nat Rev Rheumatol 2024; 20:635-648. [PMID: 39232240 DOI: 10.1038/s41584-024-01152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prime example of how the interplay between genetic and environmental factors can trigger systemic autoimmunity, particularly in young women. Although clinical disease can take years to manifest, risk is established by the unique genetic makeup of an individual. Genome-wide association studies have identified almost 200 SLE-associated risk loci, yet unravelling the functional effect of these loci remains a challenge. New analytic tools have enabled researchers to delve deeper, leveraging DNA sequencing and cell-specific and immune pathway analysis to elucidate the immunopathogenic mechanisms. Both common genetic variants and rare non-synonymous mutations can interact to increase SLE risk. Notably, variants strongly associated with SLE are often located in genome super-enhancers that regulate MHC class II gene expression. Additionally, the 3D conformations of DNA and RNA contribute to genome regulation and innate immune system activation. Improved therapies for SLE are urgently needed and current and future knowledge from genetic and genomic research should provide new tools to facilitate patient diagnosis, enhance the identification of therapeutic targets and optimize testing of agents.
Collapse
Affiliation(s)
- Yogita Ghodke-Puranik
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery and Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Bang SY, Shim SC. Early human migration determines the risk of being attacked by wolves: ethnic gene diversity on the development of systemic lupus erythematosus. JOURNAL OF RHEUMATIC DISEASES 2024; 31:200-211. [PMID: 39355544 PMCID: PMC11439634 DOI: 10.4078/jrd.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/05/2024] [Indexed: 10/03/2024]
Abstract
The prevalence of systemic lupus erythematosus (SLE) varies significantly based on ethnicity rather than geographic distribution; thus, the prevalence is higher in Asian, Hispanic, and Black African populations than in European populations. The risk of developing lupus nephritis (LN) is the highest among Asian populations. Therefore, we hypothesize that human genetic diversity between races has occurred through the early human migration and human genetic adaptation to various environments, with a particular focus on pathogens. Additionally, we compile the currently available evidence on the ethnic gene diversity of SLE and how it relates to disease severity. The human leukocyte antigen (HLA) locus is well established as associated with susceptibility to SLE; specific allele distributions have been observed across diverse populations. Notably, specific amino acid residues within these HLA loci demonstrate significant associations with SLE risk. The non-HLA genetic loci associated with SLE risk also varies across diverse ancestries, implicating distinct immunological pathways, such as the type-I interferon and janus kinase-signal transducers and activators of transcription (JAK-STAT) pathways in Asians, the type-II interferon signaling pathway in Europeans, and B cell activation pathway in Africans. Furthermore, assessing individual genetic susceptibility using genetic risk scores (GRS) for SLE helps to reveal the diverse prevalence, age of onset, and clinical phenotypes across different ethnicities. A higher GRS increases the risk of LN and the severity of SLE. Therefore, understanding ethnic gene diversity is crucial for elucidating disease mechanisms and SLE severity, which could enable the development of novel drugs specific to each race.
Collapse
Affiliation(s)
- So-Young Bang
- Division of Rheumatology, Hanyang University Guri Hospital, Guri, Korea
- Hanyang University Institute for Rheumatology Research and Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Regional Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
8
|
Tsuda R, Kido T, Okada I, Kobiyama A, Kawataka M, Yamazaki M, Asano R, Hounoki H, Shinoda K, Tobe K. Thrombotic thrombocytopenic purpura that developed 3 years after systemic lupus erythematosus had remitted with rituximab therapy. Mod Rheumatol Case Rep 2023; 8:57-62. [PMID: 37341710 DOI: 10.1093/mrcr/rxad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
Patients with systemic lupus erythematosus (SLE) occasionally develop thrombotic thrombocytopenic purpura (TTP), which can be fatal. Here, we report a case of TTP developing 3 years after SLE remitted with rituximab (RTX) therapy. A 50-year-old woman was treated with RTX for marked immune thrombocytopenic purpura and autoimmune haemolytic anaemia due to SLE relapse. After induction of remission, she was treated with prednisolone alone without maintenance therapy with RTX. Approximately 3 years later, she was readmitted with marked thrombocytopenia and severe renal dysfunction. On admission, she was diagnosed with TTP for the first time based on severe reduction in a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13) activity and detection of ADAMTS13 inhibitors. CD19+ B cells in the patient's serum increased to 34%, suggesting that B cells had reactivated once the effect of RTX had subsided. The patient was successfully treated with plasmapheresis, glucocorticoid pulse therapy, and RTX. There are no previous reports of newly diagnosed TTP with ADAMTS13 inhibitor production after having achieved remission of SLE with RTX. Therefore, our report also discusses the potential mechanisms of production of new autoantibodies after B-cell depletion therapy.
Collapse
Affiliation(s)
- Reina Tsuda
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Toshiki Kido
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Ikuma Okada
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Aoi Kobiyama
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Masatoshi Kawataka
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Miho Yamazaki
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Ryoko Asano
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Hiroyuki Hounoki
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Koichiro Shinoda
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Bogers L, Kuiper KL, Smolders J, Rip J, van Luijn MM. Epstein-Barr virus and genetic risk variants as determinants of T-bet + B cell-driven autoimmune diseases. Immunol Lett 2023; 261:66-74. [PMID: 37451321 DOI: 10.1016/j.imlet.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
B cells expressing the transcription factor T-bet are found to have a protective role in viral infections, but are also considered major players in the onset of different types of autoimmune diseases. Currently, the exact mechanisms driving such 'atypical' memory B cells to contribute to protective immunity or autoimmunity are unclear. In addition to general autoimmune-related factors including sex and age, the ways T-bet+ B cells instigate autoimmune diseases may be determined by the close interplay between genetic risk variants and Epstein-Barr virus (EBV). The impact of EBV on T-bet+ B cells likely relies on the type of risk variants associated with each autoimmune disease, which may affect their differentiation, migratory routes and effector function. In this hypothesis-driven review, we discuss the lines of evidence pointing to such genetic and/or EBV-mediated influence on T-bet+ B cells in a range of autoimmune diseases, including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). We provide examples of how genetic risk variants can be linked to certain signaling pathways and are differentially affected by EBV to shape T-bet+ B-cells. Finally, we propose options to improve current treatment of B cell-related autoimmune diseases by more selective targeting of pathways that are critical for pathogenic T-bet+ B-cell formation.
Collapse
Affiliation(s)
- Laurens Bogers
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Kirsten L Kuiper
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Joost Smolders
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands; MS Center ErasMS, Department of Neurology, Erasmus MC, University Medical Center Rotterdam, Rotterdam 3015 CN, The Netherlands; Netherlands Institute for Neuroscience, Neuroimmunology research group, Amsterdam 1105 BA, The Netherlands
| | - Jasper Rip
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands
| | - Marvin M van Luijn
- MS Center ErasMS, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, Rotterdam 3015 CN, The Netherlands.
| |
Collapse
|
10
|
Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis 2023; 82:999-1014. [PMID: 36792346 DOI: 10.1136/ard-2022-223741] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
Research elucidating the pathogenesis of systemic lupus erythematosus (SLE) has defined two critical families of mediators, type I interferon (IFN-I) and autoantibodies targeting nucleic acids and nucleic acid-binding proteins, as fundamental contributors to the disease. On the fertile background of significant genetic risk, a triggering stimulus, perhaps microbial, induces IFN-I, autoantibody production or most likely both. When innate and adaptive immune system cells are engaged and collaborate in the autoimmune response, clinical SLE can develop. This review describes recent data from genetic analyses of patients with SLE, along with current studies of innate and adaptive immune function that contribute to sustained IFN-I pathway activation, immune activation and autoantibody production, generation of inflammatory mediators and tissue damage. The goal of these studies is to understand disease mechanisms, identify therapeutic targets and stimulate development of therapeutics that can achieve improved outcomes for patients.
Collapse
Affiliation(s)
- Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
11
|
Sutanto H, Yuliasih Y. Disentangling the Pathogenesis of Systemic Lupus Erythematosus: Close Ties between Immunological, Genetic and Environmental Factors. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1033. [PMID: 37374237 DOI: 10.3390/medicina59061033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a systemic autoimmune disease that attacks various organ systems with a variety of clinical implications, ranging from mild skin and mucosal manifestations to severe central nervous system manifestations and death. Cases of SLE have been documented nearly two centuries ago when scholars used the terms 'erythema centrifugum' and 'seborrhea congestiva' to describe the discoid skin lesions and the butterfly or malar rash in SLE. Since then, knowledge about this disease has developed rapidly, especially knowledge related to the underlying pathogenesis of SLE. To date, it is known that immune system dysregulation, supported by genetic and environmental predisposition, can trigger the occurrence of SLE in a group of susceptible individuals. Various inflammatory mediators, cytokines and chemokines, as well as intra- and intercellular signaling pathways, are involved in the pathogenesis of SLE. In this review, we will discuss the molecular and cellular aspects of SLE pathogenesis, with a focus on how the immune system, genetics and the environment interact and trigger the various clinical manifestations of SLE.
Collapse
Affiliation(s)
- Henry Sutanto
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
| | - Yuliasih Yuliasih
- Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
- Department of Internal Medicine, Dr. Soetomo General Academic Hospital, Surabaya 60286, Indonesia
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| |
Collapse
|
12
|
Zhou XJ, Su T, Xie J, Xie QH, Wang LZ, Hu Y, Chen G, Jia Y, Huang JW, Li G, Liu Y, Yu XJ, Nath SK, Tsoi LC, Patrick MT, Berthier CC, Liu G, Wang SX, Xu H, Chen N, Hao CM, Zhang H, Yang L. Genome-Wide Association Study in Acute Tubulointerstitial Nephritis. J Am Soc Nephrol 2023; 34:895-908. [PMID: 36749126 PMCID: PMC10125656 DOI: 10.1681/asn.0000000000000091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/28/2022] [Indexed: 02/08/2023] Open
Abstract
SIGNIFICANCE STATEMENT Polymorphisms of HLA genes may confer susceptibility to acute tubulointerstitial nephritis (ATIN), but small sample sizes and candidate gene design have hindered their investigation. The first genome-wide association study of ATIN identified two significant loci, risk haplotype DRB1*14-DQA1*0101-DQB1*0503 (DR14 serotype) and protective haplotype DRB1*1501-DQA1*0102-DQB1*0602 (DR15 serotype), with amino acid position 60 in the peptide-binding groove P10 of HLA-DR β 1 key. Risk alleles were shared among different causes of ATIN and HLA genotypes associated with kidney injury and immune therapy response. HLA alleles showed the strongest association. The findings suggest that a genetically conferred risk of immune dysregulation is part of the pathogenesis of ATIN. BACKGROUND Acute tubulointerstitial nephritis (ATIN) is a rare immune-related disease, accounting for approximately 10% of patients with unexplained AKI. Previous elucidation of the relationship between genetic factors that contribute to its pathogenesis was hampered because of small sample sizes and candidate gene design. METHODS We undertook the first two-stage genome-wide association study and meta-analysis involving 544 kidney biopsy-defined patients with ATIN and 2346 controls of Chinese ancestry. We conducted statistical fine-mapping analysis, provided functional annotations of significant variants, estimated single nucleotide polymorphism (SNP)-based heritability, and checked genotype and subphenotype correlations. RESULTS Two genome-wide significant loci, rs35087390 of HLA-DQA1 ( P =3.01×10 -39 ) on 6p21.32 and rs2417771 of PLEKHA5 on 12p12.3 ( P =2.14×10 -8 ), emerged from the analysis. HLA imputation using two reference panels suggested that HLA-DRB1*14 mainly drives the HLA risk association . HLA-DRB1 residue 60 belonging to pocket P10 was the key amino acid position. The SNP-based heritability estimates with and without the HLA locus were 20.43% and 10.35%, respectively. Different clinical subphenotypes (drug-related or tubulointerstitial nephritis and uveitis syndrome) seemed to share the same risk alleles. However, the HLA risk genotype was associated with disease severity and response rate to immunosuppressive therapy. CONCLUSIONS We identified two candidate genome regions associated with susceptibility to ATIN. The findings suggest that a genetically conferred risk of immune dysregulation is involved in the pathogenesis of ATIN.
Collapse
Affiliation(s)
- Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Tao Su
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jingyuan Xie
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong-Hong Xie
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Zhong Wang
- WeGene, Shenzhen Zaozhidao Technology Co., Ltd., Shenzhen, China
- Human Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
- Shenzhen WeGene Clinical Laboratory, Shenzhen, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, China
| | - Gang Chen
- WeGene, Shenzhen Zaozhidao Technology Co., Ltd., Shenzhen, China
- Human Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
- Shenzhen WeGene Clinical Laboratory, Shenzhen, China
| | - Yan Jia
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Jun-Wen Huang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Gui Li
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Yang Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Xiao-Juan Yu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Gang Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Su-Xia Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Nan Chen
- Department of Nephrology, Institute of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| | - Li Yang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
13
|
Immunogenetic Profiling of SLE and LN among Jordanian Patients. J Pers Med 2022; 12:jpm12121955. [PMID: 36556176 PMCID: PMC9782219 DOI: 10.3390/jpm12121955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is a prolonged inflammatory autoimmune disease, which is characterized by a high titer of serological autoantibodies. Interactions between environmental and genetic factors play a crucial role in the pathogenesis of SLE. Human Leukocyte Antigen (HLA) genes, namely HLA-class II genes, are one of the main candidate genes that increase susceptibility to SLE. The aim of this study was to investigate, for the first time, the association of HLA-DRB1 and HLA-DQB1 genes among Jordanian patients diagnosed with SLE and Lupus Nephritis (LN) using the Polymerase Chain Reaction-Sequence-Specific Primer (PCR-SSP) technique. This study showed that SLE is positively associated with DRB1*0301, DRB1*1101, DRB1*1102 and HLA-DQB1*0601. Furthermore, HLA-DRB1*0301, DRB1*1101, HLA-DRB1*1501 and HLA-DQB1*0601 were found to be linked to SLE patients with LN. In addition, haplotypes HLA-DRB1*0301/DQB1*0201 and HLA-DRB1*1501/DQB1*0601 were found to be linked to SLE and LN. Our findings may serve as possible predictive markers for early screening for LN risk in SLE patients. In light of these results, the role of HLA gene polymorphisms may help in understanding the clinical course, prognosis of the disease and developing better treatment strategies for SLE patients. In addition, it may help in early diagnosis, prevention, intervention and management of the disease.
Collapse
|
14
|
Villalvazo P, Carriazo S, Rojas-Rivera J, Ramos AM, Ortiz A, Perez-Gomez MV. Gain-of-function TLR7 and loss-of-function A20 gene variants identify a novel pathway for Mendelian lupus and lupus nephritis. Clin Kidney J 2022; 15:1973-1980. [PMID: 36324999 PMCID: PMC9613427 DOI: 10.1093/ckj/sfac152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic and inflammatory autoimmune disease of unknown origin that may cause kidney disease, i.e. lupus nephritis (LN). Within a wider trend towards an expanding field of genetic causes of kidney disease, two recent reports have emphasized the role of Mendelian autoimmune disorders in causing LN both in children and in young adults. Loss-of-function (LOF) variants of tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and gain of function (GOF) variants of Toll-like receptor 7 (TLR7) cause SLE and LN, respectively. Interestingly, both genes regulate the same signaling route, as A20, the protein encoded by TNFAIP3, inhibits nuclear factor ĸB (NF-ĸB) activation while TLR7 promoted NF-ĸB activation. Moreover, TNFAIP3 and TLR7 variants are relatively frequent, potentially contributing to polygenic risk for LN. Finally, they both may be expressed by kidney cells, potentially contributing to the severity of kidney injury in persons who have already developed autoimmunity. The fact that both genes regulate the same pathway may lead to novel therapeutic approaches targeting the shared molecular pathway.
Collapse
Affiliation(s)
- Priscila Villalvazo
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sol Carriazo
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jorge Rojas-Rivera
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Adrián M Ramos
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, Instituto de Investigación Sanitaria, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
- RICORS2040,Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Manca E. Autoantibodies in Neuropsychiatric Systemic Lupus Erythematosus (NPSLE): Can They Be Used as Biomarkers for the Differential Diagnosis of This Disease? Clin Rev Allergy Immunol 2022; 63:194-209. [PMID: 34115263 PMCID: PMC9464150 DOI: 10.1007/s12016-021-08865-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/13/2023]
Abstract
Systemic lupus erythematosus is a complex immunological disease where both environmental factors and genetic predisposition lead to the dysregulation of important immune mechanisms. Eventually, the combination of these factors leads to the production of self-reactive antibodies that can target any organ or tissue of the human body. Autoantibodies can form immune complexes responsible for both the organ damage and the most severe complications. Involvement of the central nervous system defines a subcategory of the disease, generally known with the denomination of neuropsychiatric systemic lupus erythematosus. Neuropsychiatric symptoms can range from relatively mild manifestations, such as headache, to more severe complications, such as psychosis. The evaluation of the presence of the autoantibodies in the serum of these patients is the most helpful diagnostic tool for the assessment of the disease. The scientific progresses achieved in the last decades helped researchers and physicians to discover some of autoepitopes targeted by the autoantibodies, although the majority of them have not been identified yet. Additionally, the central nervous system is full of epitopes that cannot be found elsewhere in the human body, for this reason, autoantibodies that selectively target these epitopes might be used for the differential diagnosis between patients with and without the neuropsychiatric symptoms. In this review, the most relevant data is reported with regard to mechanisms implicated in the production of autoantibodies and the most important autoantibodies found among patients with systemic lupus erythematosus with and without the neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Elias Manca
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
16
|
Ortíz-Fernández L, Martín J, Alarcón-Riquelme ME. A Summary on the Genetics of Systemic Lupus Erythematosus, Rheumatoid Arthritis, Systemic Sclerosis, and Sjögren's Syndrome. Clin Rev Allergy Immunol 2022; 64:392-411. [PMID: 35749015 DOI: 10.1007/s12016-022-08951-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/03/2022]
Abstract
Systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, and Sjögren's syndrome are four major autoimmune rheumatic diseases characterized by the presence of autoantibodies, caused by a dysregulation of the immune system that leads to a wide variety of clinical manifestations. These conditions present complex etiologies strongly influenced by multiple environmental and genetic factors. The human leukocyte antigen (HLA) region was the first locus identified to be associated and still represents the strongest susceptibility factor for each of these conditions, particularly the HLA class II genes, including DQA1, DQB1, and DRB1, but class I genes have also been associated. Over the last two decades, the genetic component of these disorders has been extensively investigated and hundreds of non-HLA risk genetic variants have been uncovered. Furthermore, it is widely accepted that autoimmune rheumatic diseases share molecular disease pathways, such as the interferon (IFN) type I pathways, which are reflected in a common genetic background. Some examples of well-known pleiotropic loci for autoimmune rheumatic diseases are the HLA region, DNASEL13, TNIP1, and IRF5, among others. The identification of the causal molecular mechanisms behind the genetic associations is still a challenge. However, recent advances have been achieved through mouse models and functional studies of the loci. Here, we provide an updated overview of the genetic architecture underlying these four autoimmune rheumatic diseases, with a special focus on the HLA region.
Collapse
Affiliation(s)
- Lourdes Ortíz-Fernández
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Parque Tecnológico de La Salud, 18016, Granada, Spain
| | - Marta E Alarcón-Riquelme
- GENYO. Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Av de la Ilustración 114, Parque Tecnológico de La Salud, 18016, Granada, Spain. .,Institute for Environmental Medicine, Karolinska Institutet, 171 77, Solna, Sweden.
| |
Collapse
|
17
|
Choi MY, Costenbader KH. Understanding the Concept of Pre-Clinical Autoimmunity: Prediction and Prevention of Systemic Lupus Erythematosus: Identifying Risk Factors and Developing Strategies Against Disease Development. Front Immunol 2022; 13:890522. [PMID: 35720390 PMCID: PMC9203849 DOI: 10.3389/fimmu.2022.890522] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/04/2022] [Indexed: 12/27/2022] Open
Abstract
There is growing evidence that preceding the diagnosis or classification of systemic lupus erythematosus (SLE), patients undergo a preclinical phase of disease where markers of inflammation and autoimmunity are already present. Not surprisingly then, even though SLE management has improved over the years, many patients will already have irreversible disease-related organ damage by time they have been diagnosed with SLE. By gaining a greater understanding of the pathogenesis of preclinical SLE, we can potentially identify patients earlier in the disease course who are at-risk of transitioning to full-blown SLE and implement preventative strategies. In this review, we discuss the current state of knowledge of SLE preclinical pathogenesis and propose a screening and preventative strategy that involves the use of promising biomarkers of early disease, modification of lifestyle and environmental risk factors, and initiation of preventative therapies, as examined in other autoimmune diseases such as rheumatoid arthritis and type 1 diabetes.
Collapse
Affiliation(s)
- May Y. Choi
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Medicine, University of Calgary, Calgary, AB, Canada
- Cumming School of Medicine, McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
| | - Karen H. Costenbader
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
18
|
Fawcett KA, Demidov G, Shrine N, Paynton ML, Ossowski S, Sayers I, Wain LV, Hollox EJ. Exome-wide analysis of copy number variation shows association of the human leukocyte antigen region with asthma in UK Biobank. BMC Med Genomics 2022; 15:119. [PMID: 35597955 PMCID: PMC9124406 DOI: 10.1186/s12920-022-01268-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The role of copy number variants (CNVs) in susceptibility to asthma is not well understood. This is, in part, due to the difficulty of accurately measuring CNVs in large enough sample sizes to detect associations. The recent availability of whole-exome sequencing (WES) in large biobank studies provides an unprecedented opportunity to study the role of CNVs in asthma. METHODS We called common CNVs in 49,953 individuals in the first release of UK Biobank WES using ClinCNV software. CNVs were tested for association with asthma in a stage 1 analysis comprising 7098 asthma cases and 36,578 controls from the first release of sequencing data. Nominally-associated CNVs were then meta-analysed in stage 2 with an additional 17,280 asthma cases and 115,562 controls from the second release of UK Biobank exome sequencing, followed by validation and fine-mapping. RESULTS Five of 189 CNVs were associated with asthma in stage 2, including a deletion overlapping the HLA-DQA1 and HLA-DQB1 genes, a duplication of CHROMR/PRKRA, deletions within MUC22 and TAP2, and a duplication in FBRSL1. The HLA-DQA1, HLA-DQB1, MUC22 and TAP2 genes all reside within the human leukocyte antigen (HLA) region on chromosome 6. In silico analyses demonstrated that the deletion overlapping HLA-DQA1 and HLA-DQB1 is likely to be an artefact arising from under-mapping of reads from non-reference HLA haplotypes, and that the CHROMR/PRKRA and FBRSL1 duplications represent presence/absence of pseudogenes within the HLA region. Bayesian fine-mapping of the HLA region suggested that there are two independent asthma association signals. The variants with the largest posterior inclusion probability in the two credible sets were an amino acid change in HLA-DQB1 (glutamine to histidine at residue 253) and a multi-allelic amino acid change in HLA-DRB1 (presence/absence of serine, glycine or leucine at residue 11). CONCLUSIONS At least two independent loci characterised by amino acid changes in the HLA-DQA1, HLA-DQB1 and HLA-DRB1 genes are likely to account for association of SNPs and CNVs in this region with asthma. The high divergence of haplotypes in the HLA can give rise to spurious CNVs, providing an important, cautionary tale for future large-scale analyses of sequencing data.
Collapse
Affiliation(s)
- Katherine A Fawcett
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK.
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Megan L Paynton
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ian Sayers
- Translational Medical Sciences, NIHR Respiratory Biomedical Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, University Park, Nottingham, UK
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- Leicester Respiratory Biomedical Research Centre, National Institute for Health Research, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
19
|
Genome-wide pharmacogenetics of anti-drug antibody response to bococizumab highlights key residues in HLA DRB1 and DQB1. Sci Rep 2022; 12:4266. [PMID: 35277540 PMCID: PMC8917227 DOI: 10.1038/s41598-022-07997-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
In this largest to-date genetic analysis of anti-drug antibody (ADA) response to a therapeutic monoclonal antibody (MAb), genome-wide association was performed for five measures of ADA status among 8844 individuals randomized to bococizumab, which targets PCSK9 for LDL-C lowering and cardiovascular protection. Index associations prioritized specific amino acid substitutions at the DRB1 and DQB1 MHC class II genes rather than canonical haplotypes. Two clusters of missense variants at DRB1 were associated with general ADA measures (residues 9, 11, 13; and 96, 112, 120, 180) and a third cluster of missense variants in DQB1 was associated with ADA measures including neutralizing antibody (NAb) titers (residues 66, 67, 71, 74, 75). The structural disposition of the missense substitutions implicates peptide antigen binding and CD4 effector function, mechanisms that are potentially generalizable to other therapeutic mAbs. Clinicaltrials.gov: NCT01968954, NCT01968967, NCT01968980, NCT01975376, NCT01975389, NCT02100514.
Collapse
|
20
|
Shuoshan X, Changjuan X, Honglin Z, Qinghua Z, Shaxi O, Qi W, Lihua Z. Genetic variants related to systemic lupus erythematosus revealed using bioinformatics. EUR J INFLAMM 2022. [DOI: 10.1177/20587392211070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objectives Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and is characterized by immune inflammation. The pathogenesis of SLE is complex and involves genetic and environmental components. Methods In this study, single nucleotide polymorphisms (SNPs) closely related to SLE were searched through integration analysis of public gene expression profiles from Gene Expression Omnibus and European Bioinformatics Institute data, and immunochip data in a genome-wide association study. Results SLE-associated SNPs were identified in 17 genes common among datasets. The mRNA expression levels of three genes among them were verified to differ between SLE patients and healthy controls subjects based on real-time polymerase chain reaction and sequencing of peripheral blood mononuclear cells (PBMCs). The GG genotype frequency of rs116253043 in LY6G6D was significantly lower in SLE patients and the GC genotype frequency of rs328 on LPL was significantly higher in SLE patients than in controls. VARS2 levels were significantly higher in SLE PBMCs than controls, but there was no significant difference in allele or genotype frequencies of the two SNPs (rs115470445 [C/T] and rs114394807 [A/G]) between groups. Conclusion Our results suggest that the GG genotype of rs116253043 plays a protective role against SLE, whereas the C allele of rs328 is a risk factor for SLE and rs116253043 with the GC genotype is an SLE-susceptibility SNP.
Collapse
Affiliation(s)
- Xie Shuoshan
- Department of Rheumatology & Nephrology, Department and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, PR China
- Changsha Clinical Research Center for Kidney Disease, Changsha, PR China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, PR China
| | - Xiao Changjuan
- Department of Rheumatology & Nephrology, Department and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, PR China
- Changsha Clinical Research Center for Kidney Disease, Changsha, PR China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, PR China
| | - Zhu Honglin
- Rheumatology Department, Xiangya Hospital, Central South University, Changsha, China
| | - Zeng Qinghua
- Department of Rheumatology & Nephrology, Department and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, PR China
- Changsha Clinical Research Center for Kidney Disease, Changsha, PR China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, PR China
| | - Ouyang Shaxi
- Department of Rheumatology & Nephrology, Department and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, PR China
- Changsha Clinical Research Center for Kidney Disease, Changsha, PR China
- Hunan Clinical Research Center for Chronic Kidney Disease, Changsha, PR China
| | - Wang Qi
- Department of Radiology, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhang Lihua
- Department of Rheumatology, Hunan Provincial People’s Hospital and The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
21
|
Xia Y, Liu X, Mu W, Ma C, Wang L, Jiao Y, Cui B, Hu S, Gao Y, Liu T, Sun H, Zong S, Liu X, Zhao Y. Capturing 3D Chromatin Maps of Human Primary Monocytes: Insights From High-Resolution Hi-C. Front Immunol 2022; 13:837336. [PMID: 35309301 PMCID: PMC8927851 DOI: 10.3389/fimmu.2022.837336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Although the variation in chromatin architecture during adaptive immune responses has been thoroughly investigated, the 3D landscape of innate immunity is still unknown. Herein, chromatin regulation and heterogeneity among human primary monocytes were investigated. Peripheral blood was collected from two healthy persons and two patients with systemic lupus erythematosus (SLE), and CD14+ monocytes were selected to perform Hi-C, RNA-seq, ATAC-seq and ChIP-seq analyses. Raw data from the THP1 cell line Hi-C library were used for comparison. For each sample, we constructed three Hi-C libraries and obtained approximately 3 billion paired-end reads in total. Resolution analysis showed that more than 80% of bins presented depths greater than 1000 at a 5 kb resolution. The constructed high-resolution chromatin interaction maps presented similar landscapes in the four individuals, which showed significant divergence from the THP1 cell line chromatin structure. The variability in chromatin interactions around HLA-D genes in the HLA complex region was notable within individuals. We further found that the CD16-encoding gene (FCGR3A) is located at a variable topologically associating domain (TAD) boundary and that chromatin loop dynamics might modulate CD16 expression. Our results indicate both the stability and variability of high-resolution chromatin interaction maps among human primary monocytes. This work sheds light on the potential mechanisms by which the complex interplay of epigenetics and spatial 3D architecture regulates chromatin in innate immunity.
Collapse
Affiliation(s)
- Yu Xia
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaowen Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenli Mu
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chunyan Ma
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Laicheng Wang
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yulian Jiao
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Cui
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shengnan Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ying Gao
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Tao Liu
- Bioinformation Center, Annoroad Gene Technology (Beijing) Co., Ltd., Beijing, China
| | - Huanxin Sun
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuai Zong
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Liu
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yueran Zhao
- Department of Central Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Deakin CT, Bowes J, Rider LG, Miller FW, Pachman LM, Sanner H, Rouster-Stevens K, Mamyrova G, Curiel R, Feldman BM, Huber AM, Reed AM, Schmeling H, Cook CG, Marshall LR, Wilkinson MGL, Eyre S, Raychaudhuri S, Wedderburn LR. Association with HLA-DRβ1 position 37 distinguishes juvenile Dermatomyositis from adult-onset myositis. Hum Mol Genet 2022; 31:2471-2481. [PMID: 35094092 PMCID: PMC9307311 DOI: 10.1093/hmg/ddac019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Objectives
Juvenile dermatomyositis (JDM) is a rare, severe autoimmune disease and the most common idiopathic inflammatory myopathy (IIM) of children. JDM and adult-onset dermatomyositis (DM) have similar clinical, biological and serological features, although these features differ in prevalence between childhood-onset and adult-onset disease, suggesting age of disease onset may influence pathogenesis. Therefore, a JDM-focused genetic analysis was performed using the largest collection of JDM samples to date.
Methods
Caucasian JDM samples (n = 952) obtained via international collaboration were genotyped using the Illumina HumanCoreExome chip. Additional non-assayed HLA loci and genome-wide SNPs were imputed.
Results
HLA-DRB1*03:01 was confirmed as the classical HLA allele most strongly associated with JDM (OR 1.66; 95% CI 1.46, 1.89; P = 1.4 × 10−14), with an independent association at HLA-C*02:02 (OR = 1.74; 95% CI 1.42, 2.13, P = 7.13 × 10−8). Analyses of amino acid positions within HLA-DRB1 indicated the strongest association was at position 37 (omnibus P = 3.3 × 10−19), with suggestive evidence this association was independent of position 74 (omnibus P = 5.1 × 10−5), the position most strongly associated with adult-onset DM. Conditional analyses also suggested the association at position 37 of HLA-DRB1 was independent of some alleles of the Caucasian HLA 8.1 ancestral haplotype (AH8.1) such as HLA-DQB1*02:01 (OR = 1.62; 95% CI 1.36, 1.93; P = 8.70 × 10−8), but not HLA-DRB1*03:01 (OR = 1.49; 95% CR 1.24, 1.80; P = 2.24 × 10−5). No associations outside the HLA region were identified.
Conclusions
Our findings confirm previous associations with AH8.1 and HLA-DRB1*03:01, HLA-C*02:02 and identify a novel association with amino acid position 37 within HLA-DRB1 which may distinguish JDM from adult DM.
Collapse
Affiliation(s)
- Claire T Deakin
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCL Hospital and Great Ormond Street Hospital, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- National Institute of Health Research Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Lauren M Pachman
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Helga Sanner
- Department of Rheumatology, University of Oslo, Oslo, Norway
- Oslo New University College, Oslo, Norway
| | | | - Gulnara Mamyrova
- Division of Rheumatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Rodolfo Curiel
- Division of Rheumatology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brian M Feldman
- Division of Rheumatology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam M Huber
- IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ann M Reed
- Pediatrics, Duke University, Durham, North Carolina, USA
| | - Heinrike Schmeling
- Alberta Children's Hospital and Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Charlotte G Cook
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Lucy R Marshall
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCL Hospital and Great Ormond Street Hospital, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Meredyth G Ll Wilkinson
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCL Hospital and Great Ormond Street Hospital, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- National Institute of Health Research Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Soumya Raychaudhuri
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- National Institute of Health Research Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Lucy R Wedderburn
- Infection, Immunity and Inflammation Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for Adolescent Rheumatology Versus Arthritis at UCL, UCL Hospital and Great Ormond Street Hospital, London, UK
- NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK
| |
Collapse
|
23
|
Chung CW, Hsiao TH, Huang CJ, Chen YJ, Chen HH, Lin CH, Chou SC, Chen TS, Chung YF, Yang HI, Chen YM. Machine learning approaches for the genomic prediction of rheumatoid arthritis and systemic lupus erythematosus. BioData Min 2021; 14:52. [PMID: 34895289 PMCID: PMC8666017 DOI: 10.1186/s13040-021-00284-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) and systemic lupus erythematous (SLE) are autoimmune rheumatic diseases that share a complex genetic background and common clinical features. This study's purpose was to construct machine learning (ML) models for the genomic prediction of RA and SLE. METHODS A total of 2,094 patients with RA and 2,190 patients with SLE were enrolled from the Taichung Veterans General Hospital cohort of the Taiwan Precision Medicine Initiative. Genome-wide single nucleotide polymorphism (SNP) data were obtained using Taiwan Biobank version 2 array. The ML methods used were logistic regression (LR), random forest (RF), support vector machine (SVM), gradient tree boosting (GTB), and extreme gradient boosting (XGB). SHapley Additive exPlanation (SHAP) values were calculated to clarify the contribution of each SNPs. Human leukocyte antigen (HLA) imputation was performed using the HLA Genotype Imputation with Attribute Bagging package. RESULTS Compared with LR (area under the curve [AUC] = 0.8247), the RF approach (AUC = 0.9844), SVM (AUC = 0.9828), GTB (AUC = 0.9932), and XGB (AUC = 0.9919) exhibited significantly better prediction performance. The top 20 genes by feature importance and SHAP values included HLA class II alleles. We found that imputed HLA-DQA1*05:01, DQB1*0201 and DRB1*0301 were associated with SLE; HLA-DQA1*03:03, DQB1*0401, DRB1*0405 were more frequently observed in patients with RA. CONCLUSIONS We established ML methods for genomic prediction of RA and SLE. Genetic variations at HLA-DQA1, HLA-DQB1, and HLA-DRB1 were crucial for differentiating RA from SLE. Future studies are required to verify our results and explore their mechanistic explanation.
Collapse
Affiliation(s)
- Chih-Wei Chung
- Department of Information Management, National Taiwan University, Taipei, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Jen Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yen-Ju Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsin-Hua Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine & Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Seng-Cho Chou
- Department of Information Management, National Taiwan University, Taipei, Taiwan
| | - Tzer-Shyong Chen
- Department of Information Management, Tunghai University, Taichung, Taiwan
| | - Yu-Fang Chung
- Department of Electrical Engineering, Tunghai University, Taichung, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.
- Rong Hsing Research Center for Translational Medicine & Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- College of Medicine, National Chung Hsing University, 40227, Taichung City, Taiwan.
| |
Collapse
|
24
|
Owen KA, Grammer AC, Lipsky PE. Deconvoluting the heterogeneity of SLE: The contribution of ancestry. J Allergy Clin Immunol 2021; 149:12-23. [PMID: 34857396 DOI: 10.1016/j.jaci.2021.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disorder with a prominent genetic component. Evidence has shown that individuals of non-European ancestry experience the disease more severely, exhibiting an increased incidence of cardiovascular disease, renal involvement, and tissue damage compared with European ancestry populations. Furthermore, there seems to be variability in the response of individuals within different ancestral groups to standard medications, including cyclophosphamide, mycophenolate, rituximab, and belimumab. Although the widespread application of candidate gene, Immunochip, and genome-wide association studies has contributed to our understanding of the link between genetic variation (typically single nucleotide polymorphisms) and SLE, despite decades of research it is still unclear why ancestry remains a key determinant of poorer outcome in non-European-ancestry patients with SLE. Here, we will discuss the impact of ancestry on SLE disease burden in patients from diverse backgrounds and highlight how research efforts using novel bioinformatic and pathway-based approaches have begun to disentangle the complex genetic architecture linking ancestry to SLE susceptibility. Finally, we will illustrate how genomic and gene expression analyses can be combined to help identify novel molecular pathways and drug candidates that might uniquely impact SLE among different ancestral populations.
Collapse
|
25
|
Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol 2021; 44:29-46. [PMID: 34731289 DOI: 10.1007/s00281-021-00900-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a polygenic chronic autoimmune disease leading to multiple organ damage. A large heritability of up to 66% is estimated in SLE, with roughly 180 reported susceptibility loci that have been identified mostly by genome-wide association studies (GWASs) and account for approximately 30% of genetic heritability. A vast majority of risk variants reside in non-coding regions, which makes it quite challenging to interpret their functional implications in the SLE-affected immune system, suggesting the importance of understanding cell type-specific epigenetic regulation around SLE GWAS variants. The latest genetic studies have been highly fruitful as several dozens of SLE loci were newly discovered in the last few years and many loci have come to be understood in systemic approaches integrating GWAS signals with other biological resources. In this review, we summarize SLE-associated genetic variants in both the major histocompatibility complex (MHC) and non-MHC loci, examining polygenetic risk scores for SLE and their associations with clinical features. Finally, variant-driven pathogenetic functions underlying genetic associations are described, coupled with discussion about challenges and future directions in genetic studies on SLE.
Collapse
Affiliation(s)
- Eunji Ha
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea. .,Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea.
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea. .,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Hernández-Doño S, Jakez-Ocampo J, Márquez-García JE, Ruiz D, Acuña-Alonzo V, Lima G, Llorente L, Tovar-Méndez VH, García-Silva R, Granados J, Zúñiga J, Vargas-Alarcón G. Heterogeneity of Genetic Admixture Determines SLE Susceptibility in Mexican. Front Genet 2021; 12:701373. [PMID: 34413879 PMCID: PMC8369992 DOI: 10.3389/fgene.2021.701373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 12/11/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is an autoimmune inflammatory disorder for which Major Histocompatibility Complex (MHC) genes are well identified as risk factors. SLE patients present different clinical phenotypes, which are partly explained by admixture patterns variation among Mexicans. Population genetic has insight into the high genetic variability of Mexicans, mainly described through HLA gene studies with anthropological and biomedical importance. A prospective, case-control study was performed. In this study, we recruited 146 SLE patients, and 234 healthy individuals were included as a control group; both groups were admixed Mexicans from Mexico City. The HLA typing methods were based on Next Generation Sequencing and Sequence-Based Typing (SBT). The data analysis was performed with population genetic programs and statistical packages. The admixture estimations based on HLA-B and -DRB1 revealed that SLE patients have a higher Southwestern European ancestry proportion (48 ± 8%) than healthy individuals (30 ± 7%). In contrast, Mexican Native American components are diminished in SLE patients (44 ± 1%) and augmented in Healthy individuals (63 ± 4%). HLA alleles and haplotypes' frequency analysis found variants previously described in SLE patients from Mexico City. Moreover, a conserved extended haplotype that confers risk to develop SLE was found, the HLA-A∗29:02∼C∗16:01∼B∗44:03∼DRB1∗07:01∼DQB1∗02:02, pC = 0.02, OR = 1.41. Consistent with the admixture estimations, the origin of all risk alleles and haplotypes found in this study are European, while the protection alleles are Mexican Native American. The analysis of genetic distances supported that the SLE patient group is closer to the Southwestern European parental populace and farthest from Mexican Native Americans than healthy individuals. Heterogeneity of genetic admixture determines SLE susceptibility and protection in Mexicans. HLA sequencing is helpful to determine susceptibility alleles and haplotypes restricted to some populations.
Collapse
Affiliation(s)
- Susana Hernández-Doño
- Immunogenetics Division, Department of Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Jakez-Ocampo
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Eduardo Márquez-García
- Molecular Biology Core Facility, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Daniela Ruiz
- Department of Dermatology, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Víctor Acuña-Alonzo
- Laboratory of Physiology, Biochemistry, and Genetics, Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Guadalupe Lima
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis Llorente
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Víctor Hugo Tovar-Méndez
- Department of Endocrinology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Rafael García-Silva
- Department of Internal Medicine, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Julio Granados
- Immunogenetics Division, Department of Transplant, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | | |
Collapse
|
27
|
Sarri CA, Giannoulis T, Moutou KA, Mamuris Z. HLA class II peptide-binding-region analysis reveals funneling of polymorphism in action. Immunol Lett 2021; 238:75-95. [PMID: 34329645 DOI: 10.1016/j.imlet.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND HLA-class II proteins hold important roles in key physiological processes. The purpose of this study was to compile all class II alleles reported in human population and investigate patterns in pocket variants and their combinations, focusing on the peptide-binding region (PBR). METHODS For this purpose, all protein sequences of DPA1, DQA1, DPB1, DQB1 and DRB1 were selected and filtered, in order to have full PBR sequences. Proportional representation was used for pocket variants while population data were also used. RESULTS All pocket variants and PBR sequences were retrieved and analyzed based on the preference of amino acids and their properties in all pocket positions. The observed number of pocket variants combinations was much lower than the possible inferred, suggesting that PBR formation is under strict funneling. Also, although class II proteins are very polymorphic, in the majority of the reported alleles in all populations, a significantly less polymorphic pocket core was found. CONCLUSIONS Pocket variability of five HLA class II proteins was studied revealing favorable properties of each protein. The actual PBR sequences of HLA class II proteins appear to be governed by restrictions that lead to the establishment of only a fraction of the possible combinations and the polymorphism recorded is the result of intense funneling based on function.
Collapse
Affiliation(s)
- Constantina A Sarri
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Themistoklis Giannoulis
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece; Department of Animal Science, University of Thessaly, Trikallon 224, 43100 Karditsa, Greece
| | - Katerina A Moutou
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece
| | - Zissis Mamuris
- Department of Biochemistry and Biotechnology, Laboratory of Genetics, Comparative and Evolutionary Biology, University of Thessaly, Viopolis, Mezourlo, 41500, Larisa, Greece.
| |
Collapse
|
28
|
Relevance of autoantibody profile with HLA-DRB1 and -DQB1 alleles in a group of Iranian systemic lupus erythematosus patients. Immunol Lett 2021; 237:11-16. [PMID: 34186156 DOI: 10.1016/j.imlet.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND One of the most relevant genetic components in systemic lupus erythematosus (SLE) is human leukocyte antigen (HLA) gene complex which plays a central role in autoimmune responses. This study aimed to explore the associations of HLA-DRB1/-DQB1 alleles and haplotypes with SLE risk and the appearance of autoantibodies in SLE disease. METHODS A total of 127 SLE patients and 153 ethnically matched healthy controls were enrolled. HLA-DRB1 and HLA-DQB1 alleles were determined by PCR-SSP method and then HLA alleles and haplotypes frequencies were compared between two groups and among the patients in terms of autoantibodies spectrum. RESULTS We found that HLA-DRB1*03 and HLA-DRB1*16 alleles were significantly associated with increased risk (P = 0.008, PC=0.05 and P = 0.002, PC=0.02 respectively) and DRB1*01 conferred a potential protective role for disease (P = 0.03, PC=0.13). Similar associations were observed at haplotype level; DRB1*03~DQB1*02 (OR1.91,P = 0.01, PC=0.08), DRB1*16~DQB1*05 (OR3.65,P = 0.004,PC=0.06) and DRB1*01~DQB1*05 (OR0.36,P = 0.04, PC=0.22). Remarkably, we observed significantly associations of DRB1*03 with the appearance of anti-SSA/Ro (PC=0.02), anti-SSB/La (PC=0.002) and anti-coagulant (P = 0.007), DRB1*15 with anti-SSA/Ro (PC=0.04), DRB1*16 with anti-Sm (PC=0.02), DRB1*04 with anti-β2gpI (PC=3 * 10-5), anti-cardiolipin (P = 0.002) and rheumatoid factor (P = 0.004) and DRB1*13 with anti-Sm (PC=0.02) and anti-β2gpI (PC=0.01) antibodies. Also, negative associations of DRB1*04 with anti-Sm, anti-SSA/Ro, DQB1*03 with anti-Sm and DRB1*11 with anti-Sm and anti-β2gpI were observed. CONCLUSIONS We identified DRB1*03 and DRB1*16 as risk alleles and DRB1*01 as a potential protective allele for SLE disease. More importantly, we found a close link between genetic susceptibility for SLE and autoantibodies status that was more evident for DRB1*03 allele.
Collapse
|
29
|
Engel B, Laschtowitz A, Janik MK, Junge N, Baumann U, Milkiewicz P, Taubert R, Sebode M. Genetic aspects of adult and pediatric autoimmune hepatitis: A concise review. Eur J Med Genet 2021; 64:104214. [PMID: 33812046 DOI: 10.1016/j.ejmg.2021.104214] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023]
Abstract
Autoimmune Hepatitis (AIH) is a heterogenous, mostly chronic liver disease that affects people of all age groups, women more often than men. The aim of therapy is to prevent cirrhosis, as it mainly accounts for liver-related mortality in patients with AIH. Rates of remission are high in patients with AIH, but life-long immunosuppressive therapy is required. AIH is hypothesized to originate from immunologic reactivity targeted against mostly unknown self-antigens, potentially triggered by viral infections among other factors. While AIH does not follow a Mendelian inheritance pattern, part of the risk of developing AIH or worse disease course, is attributed to specific genetic risk factors. Major associations for the risk of development of AIH were found for HLA-DRB1*03:01 and HLA-DRB1*04:01 in adult AIH in the only genome-wide association study on AIH. However, other potential risk loci in SH2B3, CARD10 and KIR genes were described. This review covers the current knowledge on genetic risk factors in adult and pediatric AIH.
Collapse
Affiliation(s)
- Bastian Engel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany.
| | - Alena Laschtowitz
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Maciej K Janik
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Norman Junge
- Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Ulrich Baumann
- Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland; Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| | - Marcial Sebode
- I. Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Germany
| |
Collapse
|
30
|
Zhou XJ, Tsoi LC, Hu Y, Patrick MT, He K, Berthier CC, Li Y, Wang YN, Qi YY, Zhang YM, Gan T, Li Y, Hou P, Liu LJ, Shi SF, Lv JC, Xu HJ, Zhang H. Exome Chip Analyses and Genetic Risk for IgA Nephropathy among Han Chinese. Clin J Am Soc Nephrol 2021; 16:213-224. [PMID: 33462083 PMCID: PMC7863642 DOI: 10.2215/cjn.06910520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/11/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES IgA nephropathy is the most common form of primary GN worldwide. The evidence of geographic and ethnic differences, as well as familial aggregation of the disease, supports a strong genetic contribution to IgA nephropathy. Evidence for genetic factors in IgA nephropathy comes also from genome-wide association patient-control studies. However, few studies have systematically evaluated the contribution of coding variation in IgA nephropathy. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We performed a two-stage exome chip-based association study in 13,242 samples, including 3363 patients with IgA nephropathy and 9879 healthy controls of Han Chinese ancestry. Common variant functional annotation, gene-based low-frequency variants analysis, differential mRNA expression, and gene network integration were also explored. RESULTS We identified three non-HLA gene regions (FBXL21, CCR6, and STAT3) and one HLA gene region (GABBR1) with suggestive significance (Pmeta <5×10-5) in single-variant associations. These novel non-HLA variants were annotated as expression-associated single-nucleotide polymorphisms and were located in enhancer regions enriched in histone marks H3K4me1 in primary B cells. Gene-based low-frequency variants analysis suggests CFB as another potential susceptibility gene. Further combined expression and network integration suggested that the five novel susceptibility genes, TGFBI, CCR6, STAT3, GABBR1, and CFB, were involved in IgA nephropathy. CONCLUSIONS Five novel gene regions with suggestive significance for IgA nephropathy were identified and shed new light for further mechanism investigation.
Collapse
Affiliation(s)
- Xu-jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kevin He
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
- Kidney Epidemiology and Cost Center, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yanming Li
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Yan-na Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuan-yuan Qi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yue-miao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ting Gan
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yang Li
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ping Hou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Li-jun Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Su-fang Shi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ji-cheng Lv
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hu-ji Xu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, People’s Republic of China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
31
|
Teng JL, Chen X, Chen J, Zeng T, He L, Li M, Luo CN, Liu S, Ding TT, Yimaiti K, Li X, Ding Y, Cheng XB, Zhou J, Ye JN, Ji J, Su YT, Shi H, Sun Y, Gao C, Hu QY, Chi HH, Yuan X, Zhou ZC, Wang D, Wang K, Feng D, Li C, Sun Y, Niu Y, Xu X, Chen LJ, Xu J, Wu LJ, Zhou Z, Pan D, Niu H, Yang CD, Yongyong Shi, Li Z, Liu HL. The amino acid variants in HLA II molecules explain the major association with adult-onset Still's disease in the Han Chinese population. J Autoimmun 2020; 116:102562. [PMID: 33168359 DOI: 10.1016/j.jaut.2020.102562] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
Adult-onset Still's disease (AOSD) is a rare autoinflammatory disease with systemic involvement, and its pathophysiology remains unclear. Genome-wide association studies (GWAS) in the Chinese population have revealed an association between AOSD and the major histocompatibility complex (MHC) locus; however, causal variants in the MHC remain undetermined. In the present study, we identified independent amino-acid polymorphisms in human leukocyte antigen (HLA) molecules that are associated with Han Chinese patients with AOSD by fine-mapping the MHC locus. Through conditional analyses, we identified position 34 in HLA-DQα1 (p = 1.44 × 10-14) and Asn in HLA-DRβ1 position 37 (p = 5.12 × 10-11) as the major determinants for AOSD. Moreover, we identified the associations for three main HLA class II alleles: HLA-DQB1*06:02 (OR = 2.70, p = 3.02 × 10-14), HLA-DRB1*15:01 (OR = 2.44, p = 3.66 × 10-13), and HLA-DQA1*01:02 (OR = 1.97, p = 1.09 × 10-9). This study reveals the relationship between functional variations in the class II HLA region and AOSD, implicating the MHC locus in the pathogenesis of AOSD.
Collapse
Affiliation(s)
- Jia-Lin Teng
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Xia Chen
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zeng
- Xinhua Hospital Chongming Branch Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Meihang Li
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Cai-Nan Luo
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Ugyur Autonomous Region, Urumqi, 830001, China
| | - Shuang Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Ting-Ting Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, 233000, China
| | - Kuerbanjiang Yimaiti
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Ugyur Autonomous Region, Urumqi, 830001, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yonghe Ding
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Xiao-Bing Cheng
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Na Ye
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Jue Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Tong Su
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Yue Sun
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Qiong-Yi Hu
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Hui-Hui Chi
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Xuan Yuan
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Zhuo-Chao Zhou
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Dong Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Feng
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Changgui Li
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yuanchao Sun
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yujuan Niu
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Xiaolei Xu
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Lin-Jie Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Bengbu Medical College, 233000, China
| | - Jian Xu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Li-Jun Wu
- Department of Rheumatology and Immunology, People's Hospital of Xinjiang Ugyur Autonomous Region, Urumqi, 830001, China
| | - Zhaowei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Haitao Niu
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China; Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cheng-de Yang
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychiatry, The First Teaching Hospital of Xinjiang Medical University, Urumqi, China; Changning Mental Health Center, Shanghai, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & the Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), The Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China; Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China; Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hong-Lei Liu
- Department of Rheumatology and Immunology, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China.
| |
Collapse
|
32
|
Pang X, Qian J, Jin H, Zhang L, Lin L, Wang Y, Lei Y, Zhou Z, Li M, Zhang H. Durable benefit from immunotherapy and accompanied lupus erythematosus in pancreatic adenocarcinoma with DNA repair deficiency. J Immunother Cancer 2020; 8:jitc-2019-000463. [PMID: 32636238 PMCID: PMC7342819 DOI: 10.1136/jitc-2019-000463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Clinical trials showed limited benefit of anti-PD-1 (programmed cell death 1) monotherapy in pancreatic adenocarcinoma patients and immune-related adverse events caused by immune checkpoint inhibitors were rarely reported in pancreatic adenocarcinoma. Here, we report the first case of durable benefit along with systemic lupus erythematosus following immunotherapy in mismatch repair-proficient pancreatic cancer. Case presentation We describe a 57-year-old woman with resected stage ⅢB pancreatic cancer who underwent several lines of conventional chemotherapy after multiple lymph node metastases. When the disease progressed again, the patient received an off-label treatment with pembrolizumab (100 mg every 3 weeks). After four cycles of immunotherapy treatment, CA19-9 level rapidly decreased to normal and the lymph node metastases reduced dramatically in volume, demonstrating a partial response to the therapy by RECIST 1.1 criteria. She continued on pembrolizumab and a total of eight cycles of administration she had received. Her lesions showed consistent reduction in size even when the medication had been stopped. Actually the patient experienced durable benefit from anti-PD-1 therapy for more than 4 years and she is still in good condition without tumor relapses to date. Besides, she was diagnosed with systemic lupus erythematosus 2 months after the last dose of pembrolizumab. Molecular profiling identified two deleterious PALB2 alterations including a germline mutation (PALB2 c.3114–1G>A) and a somatic mutation (PALB2 c.2514+1G>C) in this patient, suggesting the potential of DNA homologous recombination deficiency. Multiplex immunohistochemistry and RNA-seq results revealed a brisk immune cell infiltration in her resected primary lesion. Additionally, humanleukocyte antigen (HLA) typing assay identified two previously reported systemic lupus erythematosus risk alleles HLA-DRB1*15:01 and HLA-DQB1*06:02 in this patient. Conclusions The deleterious mutations of PALB2 closely related to homologous recombination deficiency or alterations of DNA damage response and repair genes might be promising biomarkers for predicting efficacy of immune checkpoint inhibitors in pancreatic adenocarcinoma. Genetic correlation behind immunotherapy-induced systemic lupus erythematosus and associated mechanism remain to be elucidated.
Collapse
Affiliation(s)
- Xionghao Pang
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Juanjuan Qian
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Hua Jin
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Lei Zhang
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Lin Lin
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yuli Wang
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Yi Lei
- Department of Radiology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Zeqiang Zhou
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Meixiang Li
- Department of Oncology, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen, China
| | - Henghui Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol 2020; 21:605-614. [PMID: 32367037 PMCID: PMC8135909 DOI: 10.1038/s41590-020-0677-6] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 01/07/2023]
Abstract
Impressive progress has been made over the last several years toward understanding how almost every aspect of the immune system contributes to the expression of systemic autoimmunity. In parallel, studies have shed light on the mechanisms that contribute to organ inflammation and damage. New approaches that address the complicated interaction between genetic variants, epigenetic processes, sex and the environment promise to enlighten the multitude of pathways that lead to what is clinically defined as systemic lupus erythematosus. It is expected that each patient owns a unique 'interactome', which will dictate specific treatment.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
34
|
Bellavite P. Causality assessment of adverse events following immunization: the problem of multifactorial pathology. F1000Res 2020; 9:170. [PMID: 32269767 PMCID: PMC7111503 DOI: 10.12688/f1000research.22600.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2020] [Indexed: 07/22/2023] Open
Abstract
The analysis of Adverse Events Following Immunization (AEFI) is important in a balanced epidemiological evaluation of vaccines and in the issues related to national vaccine injury compensation programs. If manufacturing defects or vaccine storage and delivering errors are excluded, the majority of adverse reactions to vaccines occur as excessive or biased inflammatory and immune responses. These unwanted phenomena, occasionally severe, are associated with many different endogenous and exogenous factors, which often interact in complex ways. The confirmation or denial of the causal link between an AEFI and vaccination is determined pursuant to WHO guidelines, which propose a four-step analysis and algorithmic diagramming. The evaluation process from the onset considers all possible "other causes" that can explain the AEFI and thus exclude the role of the vaccine. Subsequently, even if there was biological plausibility and temporal compatibility for a causal association between the vaccine and the AEFI, the guidelines ask to look for any possible evidence that the vaccine could not have caused that event. Such an algorithmic method presents some concerns that are discussed here, in the light of the multifactorial nature of the inflammatory and immune pathologies induced by vaccines, including emerging knowledge of genetic susceptibility to adverse effects. It is proposed that the causality assessment could exclude a consistent association of the adverse event with the vaccine only when the presumed "other cause" is independent of an interaction with the vaccine. Furthermore, the scientific literature should be viewed not as an exclusion criterion but as a comprehensive analysis of all the evidence for or against the role of the vaccine in causing an adverse reaction. These issues are discussed in relation to the laws that, in some countries, regulate the mandatory vaccinations and the compensation for those who have suffered serious adverse effects.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, Section of General Pathology, University of Verona Medical School, Verona, 37134, Italy
| |
Collapse
|
35
|
Abstract
The analysis of Adverse Events Following Immunization (AEFI) is important in a balanced epidemiological evaluation of vaccines and in the issues related to vaccine injury compensation programs. The majority of adverse reactions to vaccines occur as excessive or biased inflammatory and immune responses. These unwanted phenomena, occasionally severe, are associated with many different endogenous and exogenous factors, which often interact in complex ways. The confirmation or denial of the causal link between an AEFI and vaccination is determined pursuant to WHO guidelines, which propose a four-step analysis and algorithmic diagramming. The evaluation process from the onset considers all possible "other causes" that might explain the AEFI and thus exclude the role of the vaccine. Subsequently, even if there was biological plausibility and temporal compatibility for a causal association between the vaccine and the AEFI, the guidelines ask to look for any possible evidence that the vaccine could not have caused that event. Such an algorithmic method presents several concerns that are discussed here, in the light of the multifactorial nature of the inflammatory and immune pathologies induced by vaccines, including emerging knowledge of genetic susceptibility to adverse effects. It is proposed that the causality assessment could exclude a consistent association of the adverse event with the vaccine only when the presumed "other cause" is independent of an interaction with the vaccine. Furthermore, the scientific literature should be viewed not as an exclusion criterion but as a comprehensive analysis of all the evidence for or against the role of the vaccine in causing an adverse reaction. Given these inadequacies in the evaluation of multifactorial diseases, the WHO guidelines need to be reevaluated and revised. These issues are discussed in relation to the laws that, in some countries, regulate the mandatory vaccinations and the compensation for those who have suffered serious adverse effects.
Collapse
Affiliation(s)
- Paolo Bellavite
- Department of Medicine, Section of General Pathology, University of Verona Medical School, Verona, 37134, Italy
| |
Collapse
|
36
|
Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, Adejumo SA, Ibeanu GC. Immunoinformatics and Vaccine Development: An Overview. Immunotargets Ther 2020; 9:13-30. [PMID: 32161726 PMCID: PMC7049754 DOI: 10.2147/itt.s241064] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
The use of vaccines have resulted in a remarkable improvement in global health. It has saved several lives, reduced treatment costs and raised the quality of animal and human lives. Current traditional vaccines came empirically with either vague or completely no knowledge of how they modulate our immune system. Even at the face of potential vaccine design advance, immune-related concerns (as seen with specific vulnerable populations, cases of emerging/re-emerging infectious disease, pathogens with complex lifecycle and antigenic variability, need for personalized vaccinations, and concerns for vaccines' immunological safety -specifically vaccine likelihood to trigger non-antigen-specific responses that may cause autoimmunity and vaccine allergy) are being raised. And these concerns have driven immunologists toward research for a better approach to vaccine design that will consider these challenges. Currently, immunoinformatics has paved the way for a better understanding of some infectious disease pathogenesis, diagnosis, immune system response and computational vaccinology. The importance of this immunoinformatics in the study of infectious diseases is diverse in terms of computational approaches used, but is united by common qualities related to host–pathogen relationship. Bioinformatics methods are also used to assign functions to uncharacterized genes which can be targeted as a candidate in vaccine design and can be a better approach toward the inclusion of women that are pregnant into vaccine trials and programs. The essence of this review is to give insight into the need to focus on novel computational, experimental and computation-driven experimental approaches for studying of host–pathogen interactions and thus making a case for its use in vaccine development.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Wilson Okechukwu Obialor
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Martins Ositadimma Ifeanyichukwu
- Department of Immunology, College of Health Sciences, Faculty of Medicine, Nnamdi Azikiwe University, Anambra, Nigeria.,Department of Medical Laboratory Science,Faculty of Health Science and Technology, College of Health Sciences, Nnamdi Azikiwe University,Nnewi Campus, Nnewi, Nigeria
| | - Damian Chukwu Odimegwu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, University of Nigeria Nsukka, Enugu, Nigeria
| | - Jude Nnaemeka Okoyeh
- Department of Biology and Clinical Laboratory Science, Division of Arts and Sciences, Neumann University, Aston, PA 19014-1298, USA
| | - George Ogonna Emechebe
- Department of Pediatrics, Faculty of Clinical Medicine, Chukwuemeka Odumegwu Ojukwu University, Awka, Nigeria
| | - Samson Adedeji Adejumo
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Gordon C Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
37
|
|
38
|
Kwon YC, Chun S, Kim K, Mak A. Update on the Genetics of Systemic Lupus Erythematosus: Genome-Wide Association Studies and Beyond. Cells 2019; 8:cells8101180. [PMID: 31575058 PMCID: PMC6829439 DOI: 10.3390/cells8101180] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/20/2019] [Accepted: 09/28/2019] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease of complex etiology that primarily affects women of childbearing age. The development of SLE is attributed to the breach of immunological tolerance and the interaction between SLE-susceptibility genes and various environmental factors, resulting in the production of pathogenic autoantibodies. Working in concert with the innate and adaptive arms of the immune system, lupus-related autoantibodies mediate immune-complex deposition in various tissues and organs, leading to acute and chronic inflammation and consequent end-organ damage. Over the past two decades or so, the impact of genetic susceptibility on the development of SLE has been well demonstrated in a number of large-scale genetic association studies which have uncovered a large fraction of genetic heritability of SLE by recognizing about a hundred SLE-susceptibility loci. Integration of genetic variant data with various omics data such as transcriptomic and epigenomic data potentially provides a unique opportunity to further understand the roles of SLE risk variants in regulating the molecular phenotypes by various disease-relevant cell types and in shaping the immune systems with high inter-individual variances in disease susceptibility. In this review, the catalogue of SLE susceptibility loci will be updated, and biological signatures implicated by the SLE-risk variants will be critically discussed. It is optimistically hoped that identification of SLE risk variants will enable the prognostic and therapeutic biomarker armamentarium of SLE to be strengthened, a major leap towards precision medicine in the management of the condition.
Collapse
Affiliation(s)
- Young-Chang Kwon
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, 222–1 Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Sehwan Chun
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Correspondence: (K.K.); (A.M.); Tel.: +82-29610604 (K.K.); +65-82338216 (A.M.)
| | - Anselm Mak
- Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: (K.K.); (A.M.); Tel.: +82-29610604 (K.K.); +65-82338216 (A.M.)
| |
Collapse
|