1
|
Schneller NM, Strugnell JM, Field MA, Johannesson K, Cooke I. Putting Structural Variants Into Practice: The Role of Chromosomal Inversions in the Management of Marine Environments. Mol Ecol 2025:e17776. [PMID: 40342214 DOI: 10.1111/mec.17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Major threats to marine species and ecosystems include overfishing, invasive species, pollution and climate change. The changing climate not only imposes direct threats through the impacts of severe marine heatwaves, cyclones and ocean acidification but also complicates fisheries and invasive species management by driving species range shifts. The dynamic nature of these threats means that the future of our oceans will depend on the ability of species to adapt. This has led to calls for genetic interventions focussed on enhancing species' adaptive capacity, including translocations, restocking and selective breeding. Assessing the benefits and risks of such approaches requires an improved understanding of the genetic architecture of adaptive variation, not only in relation to climate-resilient phenotypes but also locally adapted populations and the fitness of hybrids. Large structural genetic variants such as chromosomal inversions play an important role in local adaptation by linking multiple adaptive loci. Consequently, inversions are likely to be particularly important when managing for adaptive capacity. However, under some circumstances, they also accumulate deleterious mutations, potentially increasing the risk of inbreeding depression. Genetic management that takes account of these dual roles on fitness is likely to be more effective at ensuring population persistence. We summarise evolutionary factors influencing adaptive and deleterious variation of inversions, review inversions found in marine taxa, and provide a framework to predict the consequences of ignoring inversions in key management scenarios. We conclude by describing practical methods to bridge the gap between evolutionary theory and practical application of inversions in conservation.
Collapse
Affiliation(s)
- Nadja M Schneller
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Jan M Strugnell
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| | - Matt A Field
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Ira Cooke
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
2
|
Ravagni S, Montero-Mendieta S, Leonard JA, Webster MT, Christmas MJ, Bunikis I, Rodríguez-Teijeiro JD, Sanchez-Donoso I, Vilà C. Large Inversions Shape Diversification and Genome Evolution in Common Quails. Mol Ecol 2025; 34:e17740. [PMID: 40183764 DOI: 10.1111/mec.17740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025]
Abstract
Chromosomal inversions, by suppressing recombination, can profoundly shape genome evolution and drive adaptation. In the common quail (Coturnix coturnix), a highly mobile bird with a vast Palearctic breeding range, we previously identified a massive inversion on chromosome 1 associated with distinct phenotypes and restricted geographic distribution. Here, using a new de novo genome assembly, we characterise this inversion and uncover additional, ancient structural variation on chromosome 2 that segregates across the species' range: either two putatively linked inversions or a single, large inversion that appears as two due to scaffolding limitations. Together, the inversions encompass a remarkable 15.6% of the quail genome (153.6 Mbp), creating highly divergent haplotypes that diverged over a million years ago. While the chromosome 1 inversion is linked to phenotypic differences, including morphology and migratory behaviour, the chromosome 2 inversion(s) show no such association. Notably, all inversion regions exhibit reduced effective population size and a relaxation of purifying selection, evidenced by elevated nonsynonymous-to-synonymous substitution ratios (N/S). This suggests that inversions, particularly the geographically restricted one on chromosome 1, may act as engines of diversification, accelerating the accumulation of functional variation and potentially contributing to local adaptation, especially within isolated island populations. Our findings demonstrate how large-scale chromosomal rearrangements can compartmentalise a genome, fostering distinct evolutionary trajectories within a single, highly mobile species.
Collapse
Affiliation(s)
- Sara Ravagni
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
- Department of Biology and Biotechnologies "Charles Darwin", University of Rome La Sapienza, Rome, Italy
| | - Santiago Montero-Mendieta
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jennifer A Leonard
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, National Genomics Infrastructure Hosted by SciLifeLab, Uppsala, Sweden
| | | | - Ines Sanchez-Donoso
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| | - Carles Vilà
- Conservation and Evolutionary Genetics Group, Doñana Biological Station (EBD-CSIC), Seville, Spain
| |
Collapse
|
3
|
Oggenfuss U, Todd RT, Soisangwan N, Kemp B, Guyer A, Beach A, Selmecki A. Candida albicans isolates contain frequent heterozygous structural variants and transposable elements within genes and centromeres. Genome Res 2025; 35:824-838. [PMID: 39438112 PMCID: PMC12047244 DOI: 10.1101/gr.279301.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
The human fungal pathogen Candida albicans poses a significant burden on global health, causing high rates of mortality and antifungal drug resistance. C. albicans is a heterozygous diploid organism that reproduces asexually. Structural variants (SVs) are an important source of genomic rearrangement, particularly in species that lack sexual recombination. To comprehensively investigate SVs across clinical isolates of C. albicans, we conducted long-read sequencing and genome-wide SV analysis in three distantly related clinical isolates. Our work includes a new, comprehensive analysis of transposable element (TE) composition, location, and diversity. SVs and TEs are frequently close to coding sequences and many SVs are heterozygous, suggesting that SVs might impact gene and allele-specific expression. Most SVs are uniquely present in only one clinical isolate, indicating that SVs represent a significant source of intraspecies genetic variation. We identify multiple, distinct SVs at the centromeres of Chromosome 4 and Chromosome 5, including inversions and transposon polymorphisms. These two chromosomes are often aneuploid in drug-resistant clinical isolates and can form isochromosome structures with breakpoints near the centromere. Further screening of 100 clinical isolates confirms the widespread presence of centromeric SVs in C. albicans, often appearing in a heterozygous state, indicating that SVs are contributing to centromere evolution in C. albicans Together, these findings highlight that SVs and TEs are common across diverse clinical isolates of C. albicans and that the centromeres of this organism are important sites of genome rearrangement.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biology, Bard College, Annandale-on-Hudson, New York 12504, USA
| | - Natthapon Soisangwan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Bailey Kemp
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Alison Guyer
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Annette Beach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA;
| |
Collapse
|
4
|
Cheng L, Wang N, Bao Z, Zhou Q, Guarracino A, Yang Y, Wang P, Zhang Z, Tang D, Zhang P, Wu Y, Zhou Y, Zheng Y, Hu Y, Lian Q, Ma Z, Lassois L, Zhang C, Lucas WJ, Garrison E, Stein N, Städler T, Zhou Y, Huang S. Leveraging a phased pangenome for haplotype design of hybrid potato. Nature 2025; 640:408-417. [PMID: 39843749 PMCID: PMC11981936 DOI: 10.1038/s41586-024-08476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/02/2024] [Indexed: 01/24/2025]
Abstract
The tetraploid genome and clonal propagation of the cultivated potato (Solanum tuberosum L.)1,2 dictate a slow, non-accumulative breeding mode of the most important tuber crop. Transitioning potato breeding to a seed-propagated hybrid system based on diploid inbred lines has the potential to greatly accelerate its improvement3. Crucially, the development of inbred lines is impeded by manifold deleterious variants; explaining their nature and finding ways to eliminate them is the current focus of hybrid potato research4-10. However, most published diploid potato genomes are unphased, concealing crucial information on haplotype diversity and heterozygosity11-13. Here we develop a phased potato pangenome graph of 60 haplotypes from cultivated diploids and the ancestral wild species, and find evidence for the prevalence of transposable elements in generating structural variants. Compared with the linear reference, the graph pangenome represents a broader diversity (3,076 Mb versus 742 Mb). Notably, we observe enhanced heterozygosity in cultivated diploids compared with wild ones (14.0% versus 9.5%), indicating extensive hybridization during potato domestication. Using conservative criteria, we identify 19,625 putatively deleterious structural variants (dSVs) and reveal a biased accumulation of deleterious single nucleotide polymorphisms (dSNPs) around dSVs in coupling phase. Based on the graph pangenome, we computationally design ideal potato haplotypes with minimal dSNPs and dSVs. These advances provide critical insights into the genomic basis of clonal propagation and will guide breeders to develop a suite of promising inbred lines.
Collapse
Affiliation(s)
- Lin Cheng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Nan Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhigui Bao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Molecular Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Qian Zhou
- School of Agriculture and Biotechnology, Sun Yat-Sen University, Shenzhen, China
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yuting Yang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Pei Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiyang Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dié Tang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Pingxian Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yaoyao Wu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yao Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Zheng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yong Hu
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qun Lian
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhaoxu Ma
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ludivine Lassois
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chunzhi Zhang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Städler
- Institute of Integrative Biology and Zurich-Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Sanwen Huang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- National Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
5
|
Moya ND, Yan SM, McCoy RC, Andersen EC. The long and short of hyperdivergent regions. Trends Genet 2025; 41:303-314. [PMID: 39706705 PMCID: PMC11981857 DOI: 10.1016/j.tig.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
The increasing prevalence of genome sequencing and assembly has uncovered evidence of hyperdivergent genomic regions - loci with excess genetic diversity - in species across the tree of life. Hyperdivergent regions are often enriched for genes that mediate environmental responses, such as immunity, parasitism, and sensory perception. Especially in self-fertilizing species where the majority of the genome is homozygous, the existence of hyperdivergent regions might imply the historical action of evolutionary forces such as introgression and/or balancing selection. We anticipate that the application of new sequencing technologies, broader taxonomic sampling, and evolutionary modeling of hyperdivergent regions will provide insights into the mechanisms that generate and maintain genetic diversity within and between species.
Collapse
Affiliation(s)
- Nicolas D Moya
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephanie M Yan
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Pereyra RT, Kinnby A, Le Moan A, Ortega-Martinez O, Jonsson PR, Piarulli S, Pinder MIM, Töpel M, De Wit P, André C, Knutsen H, Johannesson K. An Evolutionary Mosaic Challenges Traditional Monitoring of a Foundation Species in a Coastal Environment-The Baltic Fucus vesiculosus. Mol Ecol 2025:e17699. [PMID: 39957665 DOI: 10.1111/mec.17699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025]
Abstract
During periods of environmental change, genetic diversity in foundation species is critical for ecosystem function and resilience, but it remains overlooked in environmental monitoring. In the Baltic Sea, a key species for monitoring is the brown seaweed Fucus vesiculosus, which forms sublittoral 3D habitats providing shelter and food for fish and invertebrates. Ecological distribution models predict a significant loss of Baltic F. vesiculosus due to ocean warming, unless populations can adapt. Genetic variation and recombination during sexual reproduction are essential for adaptation, but studies have revealed large-scale clonal reproduction within the Baltic Sea. We analysed genome-wide single nucleotide polymorphism (SNP) data from the east Atlantic, the "Transition zone," and the Baltic Sea, and found a mosaic of divergent lineages in the Baltic Sea, contrasting an outside dominance of a few genetic groups. We determined that the previously described endemic species Fucus radicans is predominantly a large female clone of F. vesiculosus in its northern Baltic distribution. In the two Estonian sites, however, individuals earlier referred to as F. radicans are sexually and reproductively isolated from Baltic F. vesiculosus, revealing a separate lineage that may have diverged long before the formation of the Baltic Sea. Monitoring Baltic Fucus without considering this genetic complexity will fail to prioritise populations with adaptive potential to new climate conditions. From our genomic data, we can extract informative and diagnostic genetic markers that differentiate major genetic entities. Such a SNP panel will provide a straightforward tool for spatial and temporal monitoring and informing management decisions and actions.
Collapse
Affiliation(s)
- Ricardo T Pereyra
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Alexandra Kinnby
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Alan Le Moan
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Olga Ortega-Martinez
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Per R Jonsson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Stefania Piarulli
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
- Department of Climate and Environment, SINTEF Ocean, Trondheim, Norway
| | - Matthew I M Pinder
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Mats Töpel
- IVL Swedish Environmental Research Institute, Gothenburg, Sweden
| | - Pierre De Wit
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Carl André
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Halvor Knutsen
- Center for Coastal Research, Department of Natural Sciences, University of Agder, Kristiansand, Norway
- Institute of Marine Research, Flødevigen, Norway
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
7
|
De-Kayne R, Gordon IJ, Terblanche RF, Collins S, Saitoti Omufwoko K, Martins DJ, Martin SH. Incomplete recombination suppression fuels extensive haplotype diversity in a butterfly colour pattern supergene. PLoS Biol 2025; 23:e3003043. [PMID: 40019922 PMCID: PMC11918383 DOI: 10.1371/journal.pbio.3003043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 03/18/2025] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Supergenes can evolve when recombination-suppressing mechanisms like inversions promote co-inheritance of alleles at two or more polymorphic loci that affect a complex trait. Theory shows that such genetic architectures can be favoured under balancing selection or local adaptation in the face of gene flow, but they can also bring costs associated with reduced opportunities for recombination. These costs may in turn be offset by rare 'gene flux' between inverted and ancestral haplotypes, with a range of possible outcomes. We aimed to shed light on these processes by investigating the 'BC supergene', a large genomic region comprising multiple rearrangements associated with three distinct wing colour morphs in Danaus chrysippus, a butterfly known as the African monarch, African queen and plain tiger. Using whole-genome resequencing data from 174 individuals, we first confirm the effects of BC on wing colour pattern: background melanism is associated with SNPs in the promoter region of yellow, within an inverted subregion of the supergene, while forewing tip pattern is most likely associated with copy-number variation in a separate subregion of the supergene. We then show that haplotype diversity within the supergene is surprisingly extensive: there are at least six divergent haplotype groups that experience suppressed recombination with respect to each other. Despite high divergence between these haplotype groups, we identify an unexpectedly large number of natural recombinant haplotypes. Several of the inferred crossovers occurred between adjacent inversion 'modules', while others occurred within inversions. Furthermore, we show that new haplotype groups have arisen through recombination between two pre-existing ones. Specifically, an allele for dark colouration in the promoter of yellow has recombined into distinct haplotype backgrounds on at least two separate occasions. Overall, our findings paint a picture of dynamic evolution of supergene haplotypes, fuelled by incomplete recombination suppression.
Collapse
Affiliation(s)
- Rishi De-Kayne
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ian J. Gordon
- Centre of Excellence in Biodiversity and Natural Resource Management, University of Rwanda, Huye, Rwanda
| | - Reinier F. Terblanche
- Department of Conservation Ecology & Entomology, University of Stellenbosch, Stellenbosch, South Africa
| | - Steve Collins
- African Butterfly Research Institute, Nairobi, Kenya
| | - Kennedy Saitoti Omufwoko
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Dino J. Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, New York, United States of America
- Mpala Research Centre, Nanyuki, Kenya
| | - Simon H. Martin
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Ferreira EA, Moore CC, Ogereau D, Suwalski A, Prigent SR, Rogers RL, Yassin A. Genomic Islands of Divergence Between Drosophila yakuba Subspecies are Predominantly Driven by Chromosomal Inversions and the Recombination Landscape. Mol Ecol 2025; 34:e17627. [PMID: 39690859 PMCID: PMC11757039 DOI: 10.1111/mec.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
During the early stages of local adaptation and speciation, genetic differences tend to accumulate at certain regions of the genome leading to the formation of genomic islands of divergence (GIDs). This pattern may be due to selection and/or difference in the rate of recombination. Here, we investigate the possible causes of GIDs in Drosophila yakuba mayottensis, and reconfirm using field collection its association with toxic noni (Morinda citrifolia) fruits on the Mayotte island. Population genomics revealed lack of genetic structure on the island and identified 23 GIDs distinguishing D. y. mayottensis from generalist mainland populations of D. y. yakuba. The GIDs were enriched with gene families involved in the metabolism of lipids, sugars, peptides and xenobiotics, suggesting a role in host shift. We assembled a new genome for D. y. mayottensis and identified five novel chromosomal inversions. Twenty one GIDs (~99% of outlier windows) fell in low recombining regions or subspecies-specific inversions. However, only two GIDs were in collinear, normally recombining regions suggesting a signal of hard selective sweeps. Unlike D. y. mayottensis, D. sechellia, the only other noni-specialist, is known to be homosequential with its generalist relatives. Thus, whereas structural variation may disproportionally shape GIDs in some species, striking parallel adaptations can occur between species despite distinct genomic architectures.
Collapse
Affiliation(s)
- Erina A. Ferreira
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay – Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Gif-sur-Yvette, France
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Cathy C. Moore
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte NC, USA
| | - David Ogereau
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay – Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Gif-sur-Yvette, France
| | - Arnaud Suwalski
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Stéphane R. Prigent
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Rebekah L. Rogers
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte NC, USA
| | - Amir Yassin
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay – Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Gif-sur-Yvette, France
- Institut Systématique, Evolution, Biodiversité (ISYEB), CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 50, 75005 Paris, France
| |
Collapse
|
9
|
Loveland JL, Zemella A, Jovanović VM, Möller G, Sager CP, Bastos B, Dyar KA, Fusani L, Gahr M, Giraldo-Deck LM, Goymann W, Lank DB, Tokarz J, Nowick K, Küpper C. A single gene orchestrates androgen variation underlying male mating morphs in ruffs. Science 2025; 387:406-412. [PMID: 39847616 DOI: 10.1126/science.adp5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/26/2024] [Indexed: 01/25/2025]
Abstract
Androgens are pleiotropic and play pivotal roles in the formation and variation of sexual phenotypes. We show that differences in circulating androgens between the three male mating morphs in ruff sandpipers are linked to 17-beta hydroxysteroid dehydrogenase 2 (HSD17B2), encoded by a gene within the supergene that determines the morphs. Low-testosterone males had higher HSD17B2 expression in blood than high-testosterone males, as well as in brain areas related to social behaviors and testosterone production. Derived HSD17B2 isozymes, which are absent in high-testosterone males but preferentially expressed in low-testosterone males, converted testosterone to androstenedione faster than the ancestral isozyme. Thus, a combination of evolutionary changes in regulation, sequence, and structure of a single gene introduces endocrine variation underlying reproductive phenotypes.
Collapse
Affiliation(s)
- Jasmine L Loveland
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Department of Cognitive and Behavioral Biology, University of Vienna, Vienna, Austria
| | - Alex Zemella
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Vladimir M Jovanović
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany
| | - Gabriele Möller
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Bárbara Bastos
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Kenneth A Dyar
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Leonida Fusani
- Department of Cognitive and Behavioral Biology, University of Vienna, Vienna, Austria
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | - Manfred Gahr
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | | | - Wolfgang Goymann
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
- Department Biologie II, Ludwig Maximilians University Munich, Martinsried-Planegg, Germany
| | - David B Lank
- Department of Biological Sciences, Simon Fraser University, Burnaby, Canada
| | - Janina Tokarz
- Metabolic Physiology, Institute for Diabetes and Cancer, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Katja Nowick
- Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Clemens Küpper
- Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| |
Collapse
|
10
|
Mykhailenko A, Zieliński P, Bednarz A, Schlyter F, Andersson MN, Antunes B, Borowski Z, Krokene P, Melin M, Morales-García J, Müller J, Nowak Z, Schebeck M, Stauffer C, Viiri H, Zaborowska J, Babik W, Nadachowska-Brzyska K. Complex Genomic Landscape of Inversion Polymorphism in Europe's Most Destructive Forest Pest. Genome Biol Evol 2024; 16:evae263. [PMID: 39656753 DOI: 10.1093/gbe/evae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.
Collapse
Affiliation(s)
- Anastasiia Mykhailenko
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Piotr Zieliński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Aleksandra Bednarz
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Fredrik Schlyter
- Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences Alnarp, 234 22 Lomma, Sweden
- ETM, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 165 00 Praha, Czechia
| | | | - Bernardo Antunes
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Zbigniew Borowski
- Departament of Forest Ecology, Forest Research Institute, 05-090 Raszyn, Poland
| | - Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, 1433 Ås, Norway
| | - Markus Melin
- Forest Health and Bidiversity Group, Natural Resources Institute Finland, 80100 Joensuu, Finland
| | - Julia Morales-García
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-348 Kraków, Poland
| | - Jörg Müller
- Field Station Fabrikschleichach, Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 96181 Rauhenebrach, Germany
- Bavarian Forest National Park, 94481 Grafenau, Germany
| | - Zuzanna Nowak
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Martin Schebeck
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Christian Stauffer
- Institute of Forest Entomology, Forest Pathology and Forest Protection, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Heli Viiri
- UPM Forest, UPM-Kymmene, 33100 Tampere, Finland
| | - Julia Zaborowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | - Wiesław Babik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland
| | | |
Collapse
|
11
|
Jay P, Aubier TG, Joron M. The interplay of local adaptation and gene flow may lead to the formation of supergenes. Mol Ecol 2024; 33:e17297. [PMID: 38415327 DOI: 10.1111/mec.17297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Supergenes are genetic architectures resulting in the segregation of alternative combinations of alleles underlying complex phenotypes. The co-segregation of alleles at linked loci is often facilitated by polymorphic chromosomal rearrangements suppressing recombination locally. Supergenes are involved in many complex polymorphisms, including sexual, colour or behavioural polymorphisms in numerous plants, fungi, mammals, fish, and insects. Despite a long history of empirical and theoretical research, the formation of supergenes remains poorly understood. Here, using a two-island population genetic model, we explore how gene flow and the evolution of overdominant chromosomal inversions may jointly lead to the formation of supergenes. We show that the evolution of inversions in differentiated populations, both under disruptive selection, leads to an increase in frequency of poorly adapted, immigrant haplotypes. Indeed, rare allelic combinations, such as immigrant haplotypes, are more frequently reshuffled by recombination than common allelic combinations, and therefore benefit from the recombination suppression generated by inversions. When an inversion capturing a locally adapted haplotype spreads but is associated with a fitness cost hampering its fixation (e.g. a recessive mutation load), the maintenance of a non-inverted haplotype in the population is enhanced; under certain conditions, the immigrant haplotype persists alongside the inverted local haplotype, while the standard local haplotype disappears. This establishes a stable, local polymorphism with two non-recombining haplotypes encoding alternative adaptive strategies, that is, a supergene. These results bring new light to the importance of local adaptation, overdominance, and gene flow in the formation of supergenes and inversion polymorphisms in general.
Collapse
Affiliation(s)
- Paul Jay
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Thomas G Aubier
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
12
|
Meyer L, Barry P, Riquet F, Foote A, Der Sarkissian C, Cunha RL, Arbiol C, Cerqueira F, Desmarais E, Bordes A, Bierne N, Guinand B, Gagnaire PA. Divergence and gene flow history at two large chromosomal inversions underlying ecotype differentiation in the long-snouted seahorse. Mol Ecol 2024; 33:e17277. [PMID: 38279695 DOI: 10.1111/mec.17277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
Chromosomal inversions can play an important role in divergence and reproductive isolation by building and maintaining distinct allelic combinations between evolutionary lineages. Alternatively, they can take the form of balanced polymorphisms that segregate within populations until one arrangement becomes fixed. Many questions remain about how inversion polymorphisms arise, how they are maintained over the long term, and ultimately, whether and how they contribute to speciation. The long-snouted seahorse (Hippocampus guttulatus) is genetically subdivided into geographic lineages and marine-lagoon ecotypes, with shared structural variation underlying lineage and ecotype divergence. Here, we aim to characterize structural variants and to reconstruct their history and suspected role in ecotype formation. We generated a near chromosome-level genome assembly and described genome-wide patterns of diversity and divergence through the analysis of 112 whole-genome sequences from Atlantic, Mediterranean, and Black Sea populations. By also analysing linked-read sequencing data, we found evidence for two chromosomal inversions that were several megabases in length and showed contrasting allele frequency patterns between lineages and ecotypes across the species range. We reveal that these inversions represent ancient intraspecific polymorphisms, one likely being maintained by divergent selection and the other by pseudo-overdominance. A possible selective coupling between the two inversions was further supported by the absence of specific haplotype combinations and a putative functional interaction between the two inversions in reproduction. Lastly, we detected gene flux eroding divergence between inverted alleles at varying levels for the two inversions, with a likely impact on their dynamics and contribution to divergence and speciation.
Collapse
Affiliation(s)
- Laura Meyer
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Pierre Barry
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos Universidade do Porto, Vairão, Portugal
| | | | - Andrew Foote
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Clio Der Sarkissian
- Centre for Anthropobiology and Genomics of Toulouse, CNRS, University of Toulouse Paul Sabatier, Toulouse, France
| | - Regina L Cunha
- Centre of Marine Sciences-CCMAR, University of Algarve, Faro, Portugal
| | | | | | - Erick Desmarais
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Anaïs Bordes
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Bruno Guinand
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | |
Collapse
|
13
|
Banse P, Luiselli J, Parsons DP, Grohens T, Foley M, Trujillo L, Rouzaud‐Cornabas J, Knibbe C, Beslon G. Forward-in-time simulation of chromosomal rearrangements: The invisible backbone that sustains long-term adaptation. Mol Ecol 2024; 33:e17234. [PMID: 38078552 PMCID: PMC11628651 DOI: 10.1111/mec.17234] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/11/2024]
Abstract
While chromosomal rearrangements are ubiquitous in all domains of life, very little is known about their evolutionary significance, mostly because, apart from a few specifically studied and well-documented mechanisms (interaction with recombination, gene duplication, etc.), very few models take them into account. As a consequence, we lack a general theory to account for their direct and indirect contributions to evolution. Here, we propose Aevol, a forward-in-time simulation platform specifically dedicated to unravelling the evolutionary significance of chromosomal rearrangements (CR) compared to local mutations (LM). Using the platform, we evolve populations of organisms in four conditions characterized by an increasing diversity of mutational operators-from substitutions alone to a mix of substitutions, InDels and CR-but with a constant global mutational rate. Despite being almost invisible in the phylogeny owing to the scarcity of their fixation in the lineages, we show that CR make a decisive contribution to the evolutionary dynamics by comparing the outcome in these four conditions. As expected, chromosomal rearrangements allow fast expansion of the gene repertoire through gene duplication, but they also reduce the effect of diminishing-returns epistasis, hence sustaining adaptation on the long-run. At last, we show that chromosomal rearrangements tightly regulate the size of the genome through indirect selection for reproductive robustness. Overall, these results confirm the need to improve our theoretical understanding of the contribution of chromosomal rearrangements to evolution and show that dedicated platforms like Aevol can efficiently contribute to this agenda.
Collapse
Affiliation(s)
- Paul Banse
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Juliette Luiselli
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - David P. Parsons
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Théotime Grohens
- Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| | - Marco Foley
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Leonardo Trujillo
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Jonathan Rouzaud‐Cornabas
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| | - Carole Knibbe
- Université de Lyon, INSA‐Lyon, Inria, Université Claude Bernard Lyon 1, Inserm, INRAE, CarMeN laboratoryPierre‐BéniteFrance
| | - Guillaume Beslon
- Université de Lyon, INSA‐Lyon, Inria, CNRS, Université Claude Bernard Lyon 1, ECL, Université Lumière Lyon 2, LIRIS UMR5205LyonFrance
| |
Collapse
|
14
|
Jin M, Peng Y, Peng J, Yu S, Wu C, Yang X, Zhu J, Infante O, Xu Q, Wang H, Wu K, Xiao Y. A supergene controls facultative diapause in the crop pest Helicoverpa armigera. Cell Rep 2024; 43:114939. [PMID: 39509270 DOI: 10.1016/j.celrep.2024.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Many insect species, including the economically important pest Helicoverpa armigera, avoid unfavorable conditions by suspending development. This form of phenotypic plasticity-facultative diapause-is a complex trait, though its evolution and intricate genetic architecture remain poorly understood. To investigate how such a polygenic trait could be locally adapted, we explore its genetic architecture. We map a large-effect diapause-associated locus to the Z chromosome by crossing high- and low-latitude populations. By generating multiple chromosome-scale assemblies, we identify an ∼5.93-Mb chromosomal inversion that constitutes the locus. Within this inversion, 33 genes harbor divergent non-synonymous mutations, notably including three circadian rhythm genes: Period, Clock, and Cycle. CRISPR-Cas9 knockout experiments confirm that each gene is independently essential for pupal diapause. Thus, a diapause supergene arose within H. armigera via a Z chromosome inversion, enabling local climatic adaptation in this economically important crop pest.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Jie Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Songmiao Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Xianming Yang
- The State Key Laboratory for Biology and Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingyun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Oscar Infante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP 04510, México
| | - Qi Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China.
| | - Kongming Wu
- The State Key Laboratory for Biology and Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China.
| |
Collapse
|
15
|
Jamsandekar M, Ferreira MS, Pettersson ME, Farrell ED, Davis BW, Andersson L. The origin and maintenance of supergenes contributing to ecological adaptation in Atlantic herring. Nat Commun 2024; 15:9136. [PMID: 39443489 PMCID: PMC11499932 DOI: 10.1038/s41467-024-53079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Chromosomal inversions are associated with local adaptation in many species. However, questions regarding how they are formed, maintained and impact various other evolutionary processes remain elusive. Here, using a large genomic dataset of long-read and short-read sequencing, we ask these questions in one of the most abundant vertebrates on Earth, the Atlantic herring. This species has four megabase-sized inversions associated with ecological adaptation that correlate with water temperature. The S and N inversion alleles at these four loci dominate in the southern and northern parts, respectively, of the species distribution in the North Atlantic Ocean. By determining breakpoint coordinates of the four inversions and the structural variations surrounding them, we hypothesize that these inversions are formed by ectopic recombination between duplicated sequences immediately outside of the inversions. We show that these are old inversions (>1 MY), albeit formed after the split between the Atlantic herring and its sister species, the Pacific herring. There is evidence for extensive gene flux between inversion alleles at all four loci. The large Ne of herring combined with the common occurrence of opposite homozygotes across the species distribution has allowed effective purifying selection to prevent the accumulation of genetic load and repeats within the inversions.
Collapse
Affiliation(s)
- Minal Jamsandekar
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Mafalda S Ferreira
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mats E Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Brian W Davis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, USA.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Zhang J, Schneller NM, Field MA, Chan CX, Miller DJ, Strugnell JM, Riginos C, Bay L, Cooke I. Chromosomal inversions harbour excess mutational load in the coral, Acropora kenti, on the Great Barrier Reef. Mol Ecol 2024; 33:e17468. [PMID: 39046252 DOI: 10.1111/mec.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024]
Abstract
The future survival of coral reefs in the Anthropocene depends on the capacity of corals to adapt as oceans warm and extreme weather events become more frequent. Targeted interventions designed to assist evolutionary processes in corals require a comprehensive understanding of the distribution and structure of standing variation, however, efforts to map genomic variation in corals have so far focussed almost exclusively on SNPs, overlooking structural variants that have been shown to drive adaptive processes in other taxa. Here, we show that the reef-building coral, Acropora kenti, harbours at least five large, highly polymorphic structural variants, all of which exhibit signatures of strongly suppressed recombination in heterokaryotypes, a feature commonly associated with chromosomal inversions. Based on their high minor allele frequency, uniform distribution across habitats and elevated genetic load, we propose that these inversions in A. kenti are likely to be under balancing selection. An excess of SNPs with high impact on protein-coding genes within these loci elevates their importance both as potential targets for adaptive selection and as contributors to genetic decline if coral populations become fragmented or inbred in future.
Collapse
Affiliation(s)
- Jia Zhang
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nadja M Schneller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matt A Field
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - David J Miller
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Jan M Strugnell
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Line Bay
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Ira Cooke
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
17
|
Mackintosh C, Scott MF, Reuter M, Pomiankowski A. Locally adaptive inversions in structured populations. Genetics 2024; 227:iyae073. [PMID: 38709495 PMCID: PMC11979745 DOI: 10.1093/genetics/iyae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Inversions have been proposed to facilitate local adaptation, by linking together locally coadapted alleles at different loci. Prior work addressing this question theoretically has considered the spread of inversions in "continent-island" scenarios in which there is a unidirectional flow of maladapted migrants into the island population. In this setting, inversions capturing locally adaptive haplotypes are most likely to invade when selection is weak, because stronger local selection (i) more effectively purges maladaptive alleles and (ii) generates linkage disequilibrium between adaptive alleles, thus lessening the advantage of inversions. We show this finding only holds under limited conditions by studying the establishment of inversions in a more general two-deme model, which explicitly considers the dynamics of allele frequencies in both populations linked by bidirectional migration. In this model, the level of symmetry between demes can be varied from complete asymmetry (continent-island) to complete symmetry. For symmetric selection and migration, strong selection increases the allele frequency divergence between demes thereby increasing the frequency of maladaptive alleles in migrants, favoring inversions-the opposite of the pattern seen in the asymmetric continent-island scenario. We also account for the likelihood that a new inversion captures an adaptive haplotype in the first instance. When considering the combined process of capture and invasion in "continent island" and symmetric scenarios, relatively strong selection increases inversion establishment probability. Migration must also be low enough that the inversion is likely to capture an adaptive allele combination, but not so low as to eliminate the inversion's advantage. Overall, our analysis suggests that inversions are likely to harbor larger effect alleles that experience relatively strong selection.
Collapse
Affiliation(s)
- Carl Mackintosh
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
- CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff 29680, France
- Sorbonne Universités, UPMC Université Paris VI, Roscoff 29680, France
| | - Michael F Scott
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Max Reuter
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
| | - Andrew Pomiankowski
- Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E 6BT, UK
- CoMPLEX, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
18
|
Mee JA, Carson B, Yeaman S. Conditionally Deleterious Mutation Load Accumulates in Genomic Islands of Local Adaptation but Can Be Purged with Sufficient Genotypic Redundancy. Am Nat 2024; 204:43-54. [PMID: 38857343 DOI: 10.1086/730186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractLocal adaptation frequently evolves in patches or environments that are connected via migration. In these cases, genomic regions that are linked to a locally adapted locus experience reduced effective migration rates. Via individual-based simulations of a two-patch system, we show that this reduced effective migration results in the accumulation of conditionally deleterious mutations, but not universally deleterious mutations, adjacent to adaptive loci. When there is redundancy in the genetic basis of local adaptation (i.e., genotypic redundancy), turnover of locally adapted polymorphisms allows conditionally deleterious mutation load to be purged. The amount of mutational load that accumulates adjacent to locally adapted loci is dependent on redundancy, recombination rate, migration rate, population size, strength of selection, and the phenotypic effect size of adaptive alleles. Our results highlight the need to be cautious when interpreting patterns of local adaptation at the level of phenotype or fitness, as the genetic basis of local adaptation can be transient, and evolution may confer a degree of maladaptation to nonlocal environments.
Collapse
|
19
|
Jay P, Jeffries D, Hartmann FE, Véber A, Giraud T. Why do sex chromosomes progressively lose recombination? Trends Genet 2024; 40:564-579. [PMID: 38677904 DOI: 10.1016/j.tig.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.
Collapse
Affiliation(s)
- Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark; Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France.
| | - Daniel Jeffries
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
| | - Fanny E Hartmann
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| | - Amandine Véber
- Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
| | - Tatiana Giraud
- Université Paris-Saclay, CNRS, AgroParisTech, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, 12 route RD128, 91190 Gif-sur-Yvette, France
| |
Collapse
|
20
|
Knief U, Müller IA, Stryjewski KF, Metzler D, Sorenson MD, Wolf JBW. Evolution of Chromosomal Inversions across an Avian Radiation. Mol Biol Evol 2024; 41:msae092. [PMID: 38743589 PMCID: PMC11152452 DOI: 10.1093/molbev/msae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Chromosomal inversions are structural mutations that can play a prominent role in adaptation and speciation. Inversions segregating across species boundaries (trans-species inversions) are often taken as evidence for ancient balancing selection or adaptive introgression, but can also be due to incomplete lineage sorting. Using whole-genome resequencing data from 18 populations of 11 recognized munia species in the genus Lonchura (N = 176 individuals), we identify four large para- and pericentric inversions ranging in size from 4 to 20 Mb. All four inversions cosegregate across multiple species and predate the numerous speciation events associated with the rapid radiation of this clade across the prehistoric Sahul (Australia, New Guinea) and Bismarck Archipelago. Using coalescent theory, we infer that trans-specificity is improbable for neutrally segregating variation despite substantial incomplete lineage sorting characterizing this young radiation. Instead, the maintenance of all three autosomal inversions (chr1, chr5, and chr6) is best explained by selection acting along ecogeographic clines not observed for the collinear parts of the genome. In addition, the sex chromosome inversion largely aligns with species boundaries and shows signatures of repeated positive selection for both alleles. This study provides evidence for trans-species inversion polymorphisms involved in both adaptation and speciation. It further highlights the importance of informing selection inference using a null model of neutral evolution derived from the collinear part of the genome.
Collapse
Affiliation(s)
- Ulrich Knief
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
- Evolutionary Biology & Ecology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ingo A Müller
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, 11418 Stockholm, Sweden
- Division of Systematics and Evolution, Department of Zoology, Stockholm University, 11418 Stockholm, Sweden
| | | | - Dirk Metzler
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| | | | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
21
|
De Gasperin O, Blacher P, Sarton-Lohéac S, Grasso G, Corliss MK, Nicole S, Chérasse S, Aron S, Chapuisat M. A supergene-controlling social structure in Alpine ants also affects the dispersal ability and fecundity of each sex. Proc Biol Sci 2024; 291:20240494. [PMID: 38864332 DOI: 10.1098/rspb.2024.0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 06/13/2024] Open
Abstract
Social organization, dispersal and fecundity coevolve, but whether they are genetically linked remains little known. Supergenes are prime candidates for coupling adaptive traits and mediating sex-specific trade-offs. Here, we test whether a supergene that controls social structure in Formica selysi also influences dispersal-related traits and fecundity within each sex. In this ant species, single-queen colonies contain only the ancestral supergene haplotype M and produce MM queens and M males, while multi-queen colonies contain the derived haplotype P and produce MP queens, PP queens and P males. By combining multiple experiments, we show that the M haplotype induces phenotypes with higher dispersal potential and higher fecundity in both sexes. Specifically, MM queens, MP queens and M males are more aerodynamic and more fecund than PP queens and P males, respectively. Differences between MP and PP queens from the same colonies reveal a direct genetic effect of the supergene on dispersal-related traits and fecundity. The derived haplotype P, associated with multi-queen colonies, produces queens and males with reduced dispersal abilities and lower fecundity. More broadly, similarities between the Formica and Solenopsis systems reveal that supergenes play a major role in linking behavioural, morphological and physiological traits associated with intraspecific social polymorphisms.
Collapse
Affiliation(s)
- Ornela De Gasperin
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
- Red de Ecoetología, Instituto de Ecología, A. C. , Xalapa, Veracruz 91073, Mexico
| | - Pierre Blacher
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
| | - Solenn Sarton-Lohéac
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
| | - Guglielmo Grasso
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
- University of Manchester , Manchester M13 9PL, UK
| | - Mia Kotur Corliss
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
| | - Sidonie Nicole
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
| | | | - Serge Aron
- Universite libre de Bruxelles , Brussels 1050, Belgium
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne , Lausanne 1015, Switzerland
| |
Collapse
|
22
|
Bock DG, Baeckens S, Kolbe JJ, Losos JB. When adaptation is slowed down: Genomic analysis of evolutionary stasis in thermal tolerance during biological invasion in a novel climate. Mol Ecol 2024; 33:e17075. [PMID: 37489260 DOI: 10.1111/mec.17075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Research conducted during the past two decades has demonstrated that biological invasions are excellent models of rapid evolution. Even so, characteristics of invasive populations such as a short time for recombination to assemble optimal combinations of alleles may occasionally limit adaptation to new environments. Here, we investigated such genetic constraints to adaptation in the invasive brown anole (Anolis sagrei)-a tropical ectotherm that was introduced to the southeastern United States, a region with a much colder climate than in its native Caribbean range. We examined thermal physiology for 30 invasive populations and tested for a climatic cline in cold tolerance. Also, we used genomics to identify mechanisms that may limit adaptation. We found no support for a climatic cline, indicating that thermal tolerance did not shift adaptively. Concomitantly, population genomic results were consistent with the occurrence of recombination cold spots that comprise more than half of the genome and maintain long-range associations among alleles in invasive populations. These genomic regions overlap with both candidate thermal tolerance loci that we identified using a standard genome-wide association test. Moreover, we found that recombination cold spots do not have a large contribution to population differentiation in the invasive range, contrary to observations in the native range. We suggest that limited recombination is constraining the contribution of large swaths of the genome to adaptation in invasive brown anoles. Our study provides an example of evolutionary stasis during invasion and highlights the possibility that reduced recombination occasionally slows down adaptation in invasive populations.
Collapse
Affiliation(s)
- Dan G Bock
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Simon Baeckens
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
- Functional Morphology Lab, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jason J Kolbe
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Jonathan B Losos
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Ding W, Li X, Zhang J, Ji M, Zhang M, Zhong X, Cao Y, Liu X, Li C, Xiao C, Wang J, Li T, Yu Q, Mo F, Zhang B, Qi J, Yang JC, Qi J, Tian L, Xu X, Peng Q, Zhou WZ, Liu Z, Fu A, Zhang X, Zhang JJ, Sun Y, Hu B, An NA, Zhang L, Li CY. Adaptive functions of structural variants in human brain development. SCIENCE ADVANCES 2024; 10:eadl4600. [PMID: 38579006 DOI: 10.1126/sciadv.adl4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Quantifying the structural variants (SVs) in nonhuman primates could provide a niche to clarify the genetic backgrounds underlying human-specific traits, but such resource is largely lacking. Here, we report an accurate SV map in a population of 562 rhesus macaques, verified by in-house benchmarks of eight macaque genomes with long-read sequencing and another one with genome assembly. This map indicates stronger selective constrains on inversions at regulatory regions, suggesting a strategy for prioritizing them with the most important functions. Accordingly, we identified 75 human-specific inversions and prioritized them. The top-ranked inversions have substantially shaped the human transcriptome, through their dual effects of reconfiguring the ancestral genomic architecture and introducing regional mutation hotspots at the inverted regions. As a proof of concept, we linked APCDD1, located on one of these inversions and down-regulated specifically in humans, to neuronal maturation and cognitive ability. We thus highlight inversions in shaping the human uniqueness in brain development.
Collapse
Affiliation(s)
- Wanqiu Ding
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xiangshang Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Mingjun Ji
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Mengling Zhang
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Xiaoming Zhong
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 119S Fourth Ring Rd W, Fengtai District, Beijing, China
| | - Xiaoge Liu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Chunqiong Li
- Chinese Institute for Brain Research, Beijing, China
| | - Chunfu Xiao
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jiaxin Wang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Ting Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qing Yu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Fan Mo
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Boya Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianhuan Qi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jie-Chun Yang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Juntian Qi
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Lu Tian
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Xinwei Xu
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Qi Peng
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Wei-Zhen Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Aisi Fu
- Wuhan Dgensee Clinical Laboratory, Wuhan, China
| | - Xiuqin Zhang
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Jian-Jun Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, National International Joint Research Center for Molecular Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ni A An
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
| | - Li Zhang
- Chinese Institute for Brain Research, Beijing, China
| | - Chuan-Yun Li
- State Key Laboratory of Protein and Plant Gene Research, Laboratory of Bioinformatics and Genomic Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Biomedical Imaging Center, College of Future Technology, Peking University, Beijing, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
24
|
Charlesworth B. The fitness consequences of genetic divergence between polymorphic gene arrangements. Genetics 2024; 226:iyad218. [PMID: 38147527 PMCID: PMC11090464 DOI: 10.1093/genetics/iyad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
Inversions restrict recombination when heterozygous with standard arrangements, but often have few noticeable phenotypic effects. Nevertheless, there are several examples of inversions that can be maintained polymorphic by strong selection under laboratory conditions. A long-standing model for the source of such selection is divergence between arrangements with respect to recessive or partially recessive deleterious mutations, resulting in a selective advantage to heterokaryotypic individuals over homokaryotypes. This paper uses a combination of analytical and numerical methods to investigate this model, for the simple case of an autosomal inversion with multiple independent nucleotide sites subject to mildly deleterious mutations. A complete lack of recombination in heterokaryotypes is assumed, as well as constancy of the frequency of the inversion over space and time. It is shown that a significantly higher mutational load will develop for the less frequent arrangement. A selective advantage to heterokaryotypes is only expected when the two alternative arrangements are nearly equal in frequency, so that their mutational loads are very similar in size. The effects of some Drosophila pseudoobscura polymorphic inversions on fitness traits seem to be too large to be explained by this process, although it may contribute to some of the observed effects. Several population genomic statistics can provide evidence for signatures of a reduced efficacy of selection associated with the rarer of two arrangements, but there is currently little published data that are relevant to the theoretical predictions.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
25
|
Poikela N, Laetsch DR, Hoikkala V, Lohse K, Kankare M. Chromosomal Inversions and the Demography of Speciation in Drosophila montana and Drosophila flavomontana. Genome Biol Evol 2024; 16:evae024. [PMID: 38482698 PMCID: PMC10972691 DOI: 10.1093/gbe/evae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 04/01/2024] Open
Abstract
Chromosomal inversions may play a central role in speciation given their ability to locally reduce recombination and therefore genetic exchange between diverging populations. We analyzed long- and short-read whole-genome data from sympatric and allopatric populations of 2 Drosophila virilis group species, Drosophila montana and Drosophila flavomontana, to understand if inversions have contributed to their divergence. We identified 3 large alternatively fixed inversions on the X chromosome and one on each of the autosomes 4 and 5. A comparison of demographic models estimated for inverted and noninverted (colinear) chromosomal regions suggests that these inversions arose before the time of the species split. We detected a low rate of interspecific gene flow (introgression) from D. montana to D. flavomontana, which was further reduced inside inversions and was lower in allopatric than in sympatric populations. Together, these results suggest that the inversions were already present in the common ancestral population and that gene exchange between the sister taxa was reduced within inversions both before and after the onset of species divergence. Such ancestrally polymorphic inversions may foster speciation by allowing the accumulation of genetic divergence in loci involved in adaptation and reproductive isolation inside inversions early in the speciation process, while gene exchange at colinear regions continues until the evolving reproductive barriers complete speciation. The overlapping X inversions are particularly good candidates for driving the speciation process of D. montana and D. flavomontana, since they harbor strong genetic incompatibilities that were detected in a recent study of experimental introgression.
Collapse
Affiliation(s)
- Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Ville Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| | - Konrad Lohse
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014, Jyväskylä, Finland
| |
Collapse
|
26
|
Berdan EL, Aubier TG, Cozzolino S, Faria R, Feder JL, Giménez MD, Joron M, Searle JB, Mérot C. Structural Variants and Speciation: Multiple Processes at Play. Cold Spring Harb Perspect Biol 2024; 16:a041446. [PMID: 38052499 PMCID: PMC10910405 DOI: 10.1101/cshperspect.a041446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Research on the genomic architecture of speciation has increasingly revealed the importance of structural variants (SVs) that affect the presence, abundance, position, and/or direction of a nucleotide sequence. SVs include large chromosomal rearrangements such as fusion/fissions and inversions and translocations, as well as smaller variants such as duplications, insertions, and deletions (CNVs). Although we have ample evidence that SVs play a key role in speciation, the underlying mechanisms differ depending on the type and length of the SV, as well as the ecological, demographic, and historical context. We review predictions and empirical evidence for classic processes such as underdominance due to meiotic aberrations and the coupling effect of recombination suppression before exploring how recent sequencing methodologies illuminate the prevalence and diversity of SVs. We discuss specific properties of SVs and their impact throughout the genome, highlighting that multiple processes are at play, and possibly interacting, in the relationship between SVs and speciation.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, Gothenburg University, Gothenburg 40530, Sweden
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G Aubier
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italia
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Claire Mérot
- CNRS, UMR 6553 Ecobio, OSUR, Université de Rennes, 35000 Rennes, France
| |
Collapse
|
27
|
Hill J, Enbody ED, Bi H, Lamichhaney S, Lei W, Chen J, Wei C, Liu Y, Schwochow D, Younis S, Widemo F, Andersson L. Low Mutation Load in a Supergene Underpinning Alternative Male Mating Strategies in Ruff (Calidris pugnax). Mol Biol Evol 2023; 40:msad224. [PMID: 37804117 DOI: 10.1093/molbev/msad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
A paradox in evolutionary biology is how supergenes can maintain high fitness despite reduced effective population size, the suppression of recombination, and the expected accumulation of mutational load. The ruff supergene involves 2 rare inversion haplotypes (satellite and faeder). These are recessive lethals but with dominant effects on male mating strategies, plumage, and body size. Sequence divergence to the wild-type (independent) haplotype indicates that the inversion could be as old as 4 million years. Here, we have constructed a highly contiguous genome assembly of the inversion region for both the independent and satellite haplotypes. Based on the new data, we estimate that the recombination event(s) creating the satellite haplotype occurred only about 70,000 yr ago. Contrary to expectations for supergenes, we find no substantial expansion of repeats and only a modest mutation load on the satellite and faeder haplotypes despite high sequence divergence to the non-inverted haplotype (1.46%). The essential centromere protein N (CENPN) gene is disrupted by the inversion and is as well conserved on the inversion haplotypes as on the noninversion haplotype. These results suggest that the inversion may be much younger than previously thought. The low mutation load, despite recessive lethality, may be explained by the introgression of the inversion from a now extinct lineage.
Collapse
Affiliation(s)
- Jason Hill
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Erik D Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| | - Huijuan Bi
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | - Sangeet Lamichhaney
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Biological Sciences, Kent State University, Kent, OH 44241, USA
| | - Weipan Lei
- Key Laboratory for Biodiversity Science and Ecological Engineering, National Demonstration Center for Experimental Life Sciences and Biotechnology Education, College of Life Sciences, Beijing Normal University, 100875 Beijing, China
| | - Juexin Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, 510275 Guangzhou, China
| | - Chentao Wei
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, 510275 Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, 510275 Guangzhou, China
| | - Doreen Schwochow
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Shady Younis
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Division of Immunology and Rheumatology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Fredrik Widemo
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
28
|
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. How chromosomal inversions reorient the evolutionary process. J Evol Biol 2023; 36:1761-1782. [PMID: 37942504 DOI: 10.1111/jeb.14242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
Collapse
Affiliation(s)
- Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas H Barton
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Roger Butlin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Bioscience, The University of Sheffield, Sheffield, UK
| | - Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rui Faria
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Inês Fragata
- CHANGE - Global Change and Sustainability Institute/Animal Biology Department, cE3c - Center for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Claire Mérot
- UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, Rennes, France
| | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Stephen W Schaeffer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerstin Johannesson
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
29
|
Kyriazis CC, Robinson JA, Lohmueller KE. Using Computational Simulations to Model Deleterious Variation and Genetic Load in Natural Populations. Am Nat 2023; 202:737-752. [PMID: 38033186 PMCID: PMC10897732 DOI: 10.1086/726736] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractDeleterious genetic variation is abundant in wild populations, and understanding the ecological and conservation implications of such variation is an area of active research. Genomic methods are increasingly used to quantify the impacts of deleterious variation in natural populations; however, these approaches remain limited by an inability to accurately predict the selective and dominance effects of mutations. Computational simulations of deleterious variation offer a complementary tool that can help overcome these limitations, although such approaches have yet to be widely employed. In this perspective article, we aim to encourage ecological and conservation genomics researchers to adopt greater use of computational simulations to aid in deepening our understanding of deleterious variation in natural populations. We first provide an overview of the components of a simulation of deleterious variation, describing the key parameters involved in such models. Next, we discuss several approaches for validating simulation models. Finally, we compare and validate several recently proposed deleterious mutation models, demonstrating that models based on estimates of selection parameters from experimental systems are biased toward highly deleterious mutations. We describe a new model that is supported by multiple orthogonal lines of evidence and provide example scripts for implementing this model (https://github.com/ckyriazis/simulations_review).
Collapse
Affiliation(s)
- Christopher C. Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles; Los Angeles, CA, USA
| | - Jacqueline A. Robinson
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles; Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA, USA
| |
Collapse
|
30
|
Enge S, Mérot C, Mozūraitis R, Apšegaitė V, Bernatchez L, Martens GA, Radžiutė S, Pavia H, Berdan EL. A supergene in seaweed flies modulates male traits and female perception. Proc Biol Sci 2023; 290:20231494. [PMID: 37817592 PMCID: PMC10565388 DOI: 10.1098/rspb.2023.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Supergenes, tightly linked sets of alleles, offer some of the most spectacular examples of polymorphism persisting under long-term balancing selection. However, we still do not understand their evolution and persistence, especially in the face of accumulation of deleterious elements. Here, we show that an overdominant supergene in seaweed flies, Coelopa frigida, modulates male traits, potentially facilitating disassortative mating and promoting intraspecific polymorphism. Across two continents, the Cf-Inv(1) supergene strongly affected the composition of male cuticular hydrocarbons (CHCs) but only weakly affected CHC composition in females. Using gas chromatography-electroantennographic detection, we show that females can sense male CHCs and that there may be differential perception between genotypes. Combining our phenotypic results with RNA-seq data, we show that candidate genes for CHC biosynthesis primarily show differential expression for Cf-Inv(1) in males but not females. Conversely, candidate genes for odorant detection were differentially expressed in both sexes but showed high levels of divergence between supergene haplotypes. We suggest that the reduced recombination between supergene haplotypes may have led to rapid divergence in mate preferences as well as increasing linkage between male traits, and overdominant loci. Together this probably helped to maintain the polymorphism despite deleterious effects in homozygotes.
Collapse
Affiliation(s)
- Swantje Enge
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Sweden
| | - Claire Mérot
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- CNRS UMR 6553 Ecobio, Université de Rennes, OSUR, Rennes, France
| | - Raimondas Mozūraitis
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Violeta Apšegaitė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| | - Gerrit A. Martens
- Institute of Cell and Systems Biology of Animals, University of Hamburg, Hamburg, Germany
| | - Sandra Radžiutė
- Laboratory of Chemical and Behavioural Ecology, Institute of Ecology, Nature Research Centre, Vilnius, Lithuania
| | - Henrik Pavia
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Sweden
| | - Emma L. Berdan
- Department of Marine Sciences, University of Gothenburg, Tjärnö, Sweden
| |
Collapse
|
31
|
Luna LW, Williams LM, Duren K, Tyl R, Toews DPL, Avery JD. Whole genome assessment of a declining game bird reveals cryptic genetic structure and insights for population management. Mol Ecol 2023; 32:5498-5513. [PMID: 37688483 DOI: 10.1111/mec.17129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Population genomics applied to game species conservation can help delineate management units, ensure appropriate harvest levels and identify populations needing genetic rescue to safeguard their adaptive potential. The ruffed grouse (Bonasa umbellus) is rapidly declining in much of the eastern USA due to a combination of forest maturation and habitat fragmentation. More recently, mortality from West Nile Virus may have affected connectivity of local populations; however, genetic approaches have never explicitly investigated this issue. In this study, we sequenced 54 individual low-coverage (~5X) grouse genomes to characterize population structure, assess migration rates across the landscape to detect potential barriers to gene flow and identify genomic regions with high differentiation. We identified two genomic clusters with no clear geographic correlation, with large blocks of genomic differentiation associated with chromosomes 4 and 20, likely due to chromosomal inversions. After excluding these putative inversions from the data set, we found weak but nonsignificant signals of population subdivision. Estimated gene flow revealed reduced rates of migration in areas with extensive habitat fragmentation and increased genetic connectivity in areas with less habitat fragmentation. Our findings provide a benchmark for wildlife managers to compare and scale the genetic diversity and structure of ruffed grouse populations in Pennsylvania and across the eastern USA, and we also reveal structural variation in the grouse genome that requires further study to understand its possible effects on individual fitness and population distribution.
Collapse
Affiliation(s)
- Leilton W Luna
- Department of Ecosystem Science and Management, Penn State University, University Park, Pennsylvania, USA
| | - Lisa M Williams
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, Pennsylvania, USA
| | - Kenneth Duren
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, Pennsylvania, USA
| | - Reina Tyl
- Bureau of Wildlife Management, Pennsylvania Game Commission, Harrisburg, Pennsylvania, USA
| | - David P L Toews
- Department of Biology, Penn State University, University Park, Pennsylvania, USA
| | - Julian D Avery
- Department of Ecosystem Science and Management, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
32
|
Arnqvist G, Rowe L. Ecology, the pace-of-life, epistatic selection and the maintenance of genetic variation in life-history genes. Mol Ecol 2023; 32:4713-4724. [PMID: 37386734 DOI: 10.1111/mec.17062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Evolutionary genetics has long struggled with understanding how functional genes under selection remain polymorphic in natural populations. Taking as a starting point that natural selection is ultimately a manifestation of ecological processes, we spotlight an underemphasized and potentially ubiquitous ecological effect that may have fundamental effects on the maintenance of genetic variation. Negative frequency dependency is a well-established emergent property of density dependence in ecology, because the relative profitability of different modes of exploiting or utilizing limiting resources tends to be inversely proportional to their frequency in a population. We suggest that this may often generate negative frequency-dependent selection (NFDS) on major effect loci that affect rate-dependent physiological processes, such as metabolic rate, that are phenotypically manifested as polymorphism in pace-of-life syndromes. When such a locus under NFDS shows stable intermediate frequency polymorphism, this should generate epistatic selection potentially involving large numbers of loci with more minor effects on life-history (LH) traits. When alternative alleles at such loci show sign epistasis with a major effect locus, this associative NFDS will promote the maintenance of polygenic variation in LH genes. We provide examples of the kind of major effect loci that could be involved and suggest empirical avenues that may better inform us on the importance and reach of this process.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Locke Rowe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Swedish Collegium of Advanced Study, Uppsala, Sweden
| |
Collapse
|
33
|
Rougemont Q, Leroy T, Rondeau EB, Koop B, Bernatchez L. Allele surfing causes maladaptation in a Pacific salmon of conservation concern. PLoS Genet 2023; 19:e1010918. [PMID: 37683018 PMCID: PMC10545117 DOI: 10.1371/journal.pgen.1010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 10/02/2023] [Accepted: 08/11/2023] [Indexed: 09/10/2023] Open
Abstract
How various factors, including demography, recombination or genome duplication, may impact the efficacy of natural selection and the burden of deleterious mutations, is a central question in evolutionary biology and genetics. In this study, we show that key evolutionary processes, including variations in i) effective population size (Ne) ii) recombination rates and iii) chromosome inheritance, have influenced the genetic load and efficacy of selection in Coho salmon (Oncorhynchus kisutch), a widely distributed salmonid species on the west coast of North America. Using whole genome resequencing data from 14 populations at different migratory distances from their southern glacial refugium, we found evidence supporting gene surfing, wherein reduced Ne at the postglacial recolonization front, leads to a decrease in the efficacy of selection and a surf of deleterious alleles in the northernmost populations. Furthermore, our results indicate that recombination rates play a prime role in shaping the load along the genome. Additionally, we identified variation in polyploidy as a contributing factor to within-genome variation of the load. Overall, our results align remarkably well with expectations under the nearly neutral theory of molecular evolution. We discuss the fundamental and applied implications of these findings for evolutionary and conservation genomics.
Collapse
Affiliation(s)
- Quentin Rougemont
- Centre d’Ecologie Fonctionnelle et Evolutive, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Thibault Leroy
- GenPhySE, INRAE, INP, ENVT, Université de Toulouse, Auzeville- Tolosane, France
| | - Eric B. Rondeau
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, Canada
| | - Ben Koop
- Department of Biology, University of Victoria, Victoria, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
| |
Collapse
|
34
|
Reid BN, Star B, Pinsky ML. Detecting parallel polygenic adaptation to novel evolutionary pressure in wild populations: a case study in Atlantic cod ( Gadus morhua). Philos Trans R Soc Lond B Biol Sci 2023; 378:20220190. [PMID: 37246382 DOI: 10.1098/rstb.2022.0190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/13/2023] [Indexed: 05/30/2023] Open
Abstract
Populations can adapt to novel selection pressures through dramatic frequency changes in a few genes of large effect or subtle shifts in many genes of small effect. The latter (polygenic adaptation) is expected to be the primary mode of evolution for many life-history traits but tends to be more difficult to detect than changes in genes of large effect. Atlantic cod (Gadus morhua) were subjected to intense fishing pressure over the twentieth century, leading to abundance crashes and a phenotypic shift toward earlier maturation across many populations. Here, we use spatially replicated temporal genomic data to test for a shared polygenic adaptive response to fishing using methods previously applied to evolve-and-resequence experiments. Cod populations on either side of the Atlantic show covariance in allele frequency change across the genome that are characteristic of recent polygenic adaptation. Using simulations, we demonstrate that the degree of covariance in allele frequency change observed in cod is unlikely to be explained by neutral processes or background selection. As human pressures on wild populations continue to increase, understanding and attributing modes of adaptation using methods similar to those demonstrated here will be important in identifying the capacity for adaptive responses and evolutionary rescue. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Brendan N Reid
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| | - Bastiaan Star
- Center for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066, Blindern, 0316 Oslo, Norway
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08540, USA
| |
Collapse
|
35
|
Kapun M, Mitchell ED, Kawecki TJ, Schmidt P, Flatt T. An Ancestral Balanced Inversion Polymorphism Confers Global Adaptation. Mol Biol Evol 2023; 40:msad118. [PMID: 37220650 PMCID: PMC10234209 DOI: 10.1093/molbev/msad118] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Zentrale Forschungslaboratorien, Vienna, Austria
| | - Esra Durmaz Mitchell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
36
|
Blacher P, De Gasperin O, Grasso G, Sarton-Lohéac S, Allemann R, Chapuisat M. Cryptic recessive lethality of a supergene controlling social organization in ants. Mol Ecol 2023; 32:1062-1072. [PMID: 36504171 DOI: 10.1111/mec.16821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Supergenes are clusters of linked loci that control complex phenotypes, such as alternative forms of social organization in ants. Explaining the long-term maintenance of supergenes is challenging, particularly when the derived haplotype lacks homozygous lethality and causes gene drive. In the Alpine silver ant, Formica selysi, a large and ancient social supergene with two haplotypes, M and P, controls colony social organization. Single-queen colonies only contain MM females, while multiqueen colonies contain MP and PP females. The derived P haplotype, found only in multiqueen colonies, selfishly enhances its transmission through maternal effect killing, which could have led to its fixation. A population genetic model showed that a stable social polymorphism can only be maintained under a narrow set of conditions, which includes partial assortative mating by social form (which is known to occur in the wild), and low fitness of PP queens. With a combination of field and laboratory experiments, we show that the P haplotype has deleterious effects on female fitness. The survival rate of PP queens and workers was around half that of other genotypes. Moreover, P-carrying queens had lower fertility and fecundity compared to other queens. We discuss how cryptic lethal effects of the P haplotype help stabilize this ancient polymorphism.
Collapse
Affiliation(s)
- Pierre Blacher
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Ornela De Gasperin
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Red de Ecoetología, Instituto de Ecología A. C., Veracruz, Mexico
| | - Guglielmo Grasso
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,University of Manchester, Manchester, UK
| | - Solenn Sarton-Lohéac
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Roxane Allemann
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Michel Chapuisat
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
37
|
Harringmeyer OS, Hoekstra HE. Chromosomal inversion polymorphisms shape the genomic landscape of deer mice. Nat Ecol Evol 2022; 6:1965-1979. [PMID: 36253543 PMCID: PMC9715431 DOI: 10.1038/s41559-022-01890-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Chromosomal inversions are an important form of structural variation that can affect recombination, chromosome structure and fitness. However, because inversions can be challenging to detect, the prevalence and hence the significance of inversions segregating within species remains largely unknown, especially in natural populations of mammals. Here, by combining population-genomic and long-read sequencing analyses in a single, widespread species of deer mouse (Peromyscus maniculatus), we identified 21 polymorphic inversions that are large (1.5-43.8 Mb) and cause near-complete suppression of recombination when heterozygous (0-0.03 cM Mb-1). We found that inversion breakpoints frequently occur in centromeric and telomeric regions and are often flanked by long inverted repeats (0.5-50 kb), suggesting that they probably arose via ectopic recombination. By genotyping inversions in populations across the species' range, we found that the inversions are often widespread and do not harbour deleterious mutational loads, and many are likely to be maintained as polymorphisms by divergent selection. Comparisons of forest and prairie ecotypes of deer mice revealed 13 inversions that contribute to differentiation between populations, of which five exhibit significant associations with traits implicated in local adaptation. Taken together, these results show that inversion polymorphisms have a significant impact on recombination, genome structure and genetic diversity in deer mice and likely facilitate local adaptation across the widespread range of this species.
Collapse
Affiliation(s)
- Olivia S Harringmeyer
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| | - Hopi E Hoekstra
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Museum of Comparative Zoology and Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
38
|
Berdan EL, Flatt T, Kozak GM, Lotterhos KE, Wielstra B. Genomic architecture of supergenes: connecting form and function. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210192. [PMID: 35694757 PMCID: PMC9189501 DOI: 10.1098/rstb.2021.0192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Supergenes are tightly linked sets of loci that are inherited together and control complex phenotypes. While classical supergenes-governing traits such as wing patterns in Heliconius butterflies or heterostyly in Primula-have been studied since the Modern Synthesis, we still understand very little about how they evolve and persist in nature. The genetic architecture of supergenes is a critical factor affecting their evolutionary fate, as it can change key parameters such as recombination rate and effective population size, potentially redirecting molecular evolution of the supergene in addition to the surrounding genomic region. To understand supergene evolution, we must link genomic architecture with evolutionary patterns and processes. This is now becoming possible with recent advances in sequencing technology and powerful forward computer simulations. The present theme issue brings together theoretical and empirical papers, as well as opinion and synthesis papers, which showcase the architectural diversity of supergenes and connect this to critical processes in supergene evolution, such as polymorphism maintenance and mutation accumulation. Here, we summarize those insights to highlight new ideas and methods that illuminate the path forward for the study of supergenes in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Emma L Berdan
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.,Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands.,Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Genevieve M Kozak
- Department of Biology, University of Massachusetts Dartmouth, 285 Old Westport Road, MA 02747, USA
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, 430 Nahant Road, Nahant, MA 01908, USA
| | - Ben Wielstra
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands.,Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
| |
Collapse
|
39
|
Westram AM, Faria R, Johannesson K, Butlin R, Barton N. Inversions and parallel evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210203. [PMID: 35694747 PMCID: PMC9189493 DOI: 10.1098/rstb.2021.0203] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Local adaptation leads to differences between populations within a species. In many systems, similar environmental contrasts occur repeatedly, sometimes driving parallel phenotypic evolution. Understanding the genomic basis of local adaptation and parallel evolution is a major goal of evolutionary genomics. It is now known that by preventing the break-up of favourable combinations of alleles across multiple loci, genetic architectures that reduce recombination, like chromosomal inversions, can make an important contribution to local adaptation. However, little is known about whether inversions also contribute disproportionately to parallel evolution. Our aim here is to highlight this knowledge gap, to showcase existing studies, and to illustrate the differences between genomic architectures with and without inversions using simple models. We predict that by generating stronger effective selection, inversions can sometimes speed up the parallel adaptive process or enable parallel adaptation where it would be impossible otherwise, but this is highly dependent on the spatial setting. We highlight that further empirical work is needed, in particular to cover a broader taxonomic range and to understand the relative importance of inversions compared to genomic regions without inversions. This article is part of the theme issue ‘Genomic architecture of supergenes: causes and evolutionary consequences’.
Collapse
Affiliation(s)
- Anja M Westram
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal.,BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.,Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Roger Butlin
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nick Barton
- ISTA (Institute of Science and Technology Austria), Klosterneuburg, Austria
| |
Collapse
|
40
|
Schaal SM, Haller BC, Lotterhos KE. Inversion invasions: when the genetic basis of local adaptation is concentrated within inversions in the face of gene flow. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210200. [PMID: 35694752 PMCID: PMC9189506 DOI: 10.1098/rstb.2021.0200] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Across many species where inversions have been implicated in local adaptation, genomes often evolve to contain multiple, large inversions that arise early in divergence. Why this occurs has yet to be resolved. To address this gap, we built forward-time simulations in which inversions have flexible characteristics and can invade a metapopulation undergoing spatially divergent selection for a highly polygenic trait. In our simulations, inversions typically arose early in divergence, captured standing genetic variation upon mutation, and then accumulated many small-effect loci over time. Under special conditions, inversions could also arise late in adaptation and capture locally adapted alleles. Polygenic inversions behaved similarly to a single supergene of large effect and were detectable by genome scans. Our results show that characteristics of adaptive inversions found in empirical studies (e.g. multiple large, old inversions that are FST outliers, sometimes overlapping with other inversions) are consistent with a highly polygenic architecture, and inversions do not need to contain any large-effect genes to play an important role in local adaptation. By combining a population and quantitative genetic framework, our results give a deeper understanding of the specific conditions needed for inversions to be involved in adaptation when the genetic architecture is polygenic. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Sara M. Schaal
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| | - Benjamin C. Haller
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Katie E. Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA, USA
| |
Collapse
|
41
|
Finseth F, Brown K, Demaree A, Fishman L. Supergene potential of a selfish centromere. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210208. [PMID: 35694746 PMCID: PMC9189507 DOI: 10.1098/rstb.2021.0208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selfishly evolving centromeres bias their transmission by exploiting the asymmetry of female meiosis and preferentially segregating to the egg. Such female meiotic drive systems have the potential to be supergenes, with multiple linked loci contributing to drive costs or enhancement. Here, we explore the supergene potential of a selfish centromere (D) in Mimulus guttatus, which was discovered in the Iron Mountain (IM) Oregon population. In the nearby Cone Peak population, D is still a large, non-recombining and costly haplotype that recently swept, but shorter haplotypes and mutational variation suggest a distinct population history. We detected D in five additional populations spanning more than 200 km; together, these findings suggest that selfish centromere dynamics are widespread in M. guttatus. Transcriptome comparisons reveal elevated differences in expression between driving and non-driving haplotypes within, but not outside, the drive region, suggesting large-scale cis effects of D's spread on gene expression. We use the expression data to refine linked candidates that may interact with drive, including Nuclear Autoantigenic Sperm Protein (NASPSIM3), which chaperones the centromere-defining histone CenH3 known to modify Mimulus drive. Together, our results show that selfishly evolving centromeres may exhibit supergene behaviour and lay the foundation for future genetic dissection of drive and its costs. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Findley Finseth
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA
| | - Keely Brown
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Andrew Demaree
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
42
|
Wright D, Schaeffer SW. The relevance of chromatin architecture to genome rearrangements in Drosophila. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210206. [PMID: 35694744 PMCID: PMC9189500 DOI: 10.1098/rstb.2021.0206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
DNA within chromosomes in the nucleus is non-randomly organized into chromosome territories, compartments and topologically associated domains (TADs). Chromosomal rearrangements have the potential to alter chromatin organization and modify gene expression leading to selection against these structural variants. Drosophila pseudoobscura has a wealth of naturally occurring gene arrangements that were generated by overlapping inversion mutations caused by two chromosomal breaks that rejoin the central region in reverse order. Unlike humans, Drosophila inversion heterozygotes do not have negative effects associated with crossing over during meiosis because males use achiasmate mechanisms for proper segregation, and aberrant recombinant meiotic products generated in females are lost in polar bodies. As a result, Drosophila populations are found to harbour extensive inversion polymorphisms. It is not clear, however, whether chromatin architecture constrains which inversions breakpoints persist in populations. We mapped the breakpoints of seven inversions in D. pseudoobscura to the TAD map to determine if persisting inversion breakpoints are more likely to occur at boundaries between TADs. Our results show that breakpoints occur at TAD boundaries more than expected by chance. Some breakpoints may alter gene expression within TADs supporting the hypothesis that position effects contribute to inversion establishment. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Dynisty Wright
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen W. Schaeffer
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
43
|
Kay T, Helleu Q, Keller L. Iterative evolution of supergene-based social polymorphism in ants. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210196. [PMID: 35694755 PMCID: PMC9189498 DOI: 10.1098/rstb.2021.0196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
Species commonly exhibit alternative morphs, with individual fate being determined during development by either genetic factors, environmental cues or a combination thereof. Ants offer an interesting case study because many species are polymorphic in their social structure. Some colonies contain one queen while others contain many queens. This variation in queen number is generally associated with a suite of phenotypic and life-history traits, including mode of colony founding, queen lifespan, queen-worker dimorphism and colony size. The basis of this social polymorphism has been studied in five ant lineages, and remarkably social morph seems to be determined by a supergene in all cases. These 'social supergenes' tend to be large, having formed through serial inversions, and to comprise hundreds of linked genes. They have persisted over long evolutionary timescales, in multiple lineages following speciation events, and have spread between closely related species via introgression. Their evolutionary dynamics are unusually complex, combining recessive lethality, spatially variable selection, selfish genetic elements and non-random mating. Here, we synthesize the five cases of supergene-based social polymorphism in ants, highlighting interesting commonalities, idiosyncrasies and implications for the evolution of polymorphisms in general. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Quentin Helleu
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laurent Keller
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
44
|
Berdan EL, Blanckaert A, Butlin RK, Flatt T, Slotte T, Wielstra B. Mutation accumulation opposes polymorphism: supergenes and the curious case of balanced lethals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210199. [PMID: 35694750 PMCID: PMC9189497 DOI: 10.1098/rstb.2021.0199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Supergenes offer spectacular examples of long-term balancing selection in nature, but their origin and maintenance remain a mystery. Reduced recombination between arrangements, a critical aspect of many supergenes, protects adaptive multi-trait phenotypes but can lead to mutation accumulation. Mutation accumulation can stabilize the system through the emergence of associative overdominance (AOD), destabilize the system, or lead to new evolutionary outcomes. One outcome is the formation of maladaptive balanced lethal systems, where only heterozygotes remain viable and reproduce. We investigated the conditions under which these different outcomes occur, assuming a scenario of introgression after divergence. We found that AOD aided the invasion of a new supergene arrangement and the establishment of a polymorphism. However, this polymorphism was easily destabilized by further mutation accumulation, which was often asymmetric, disrupting the quasi-equilibrium state. Mechanisms that accelerated degeneration tended to amplify asymmetric mutation accumulation between the supergene arrangements and vice-versa. As the evolution of balanced lethal systems requires symmetric degeneration of both arrangements, this leaves only restricted conditions for their evolution, namely small population sizes and low rates of gene conversion. The dichotomy between the persistence of polymorphism and degeneration of supergene arrangements likely underlies the rarity of balanced lethal systems in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Emma L. Berdan
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
- Tjarnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Stromstad, Sweden
| | - Alexandre Blanckaert
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Roger K. Butlin
- Tjarnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Stromstad, Sweden
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Ben Wielstra
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
45
|
Migration of repetitive DNAs during evolution of the permanent translocation heterozygosity in the oyster plant (Tradescantia section Rhoeo). Chromosoma 2022; 131:163-173. [PMID: 35896680 PMCID: PMC9470650 DOI: 10.1007/s00412-022-00776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
Abstract
Due to translocation heterozygosity for all chromosomes in the cell complement, the oyster plant (Tradescantia spathacea) forms a complete meiotic ring. It also shows Rabl-arrangement at interphase, featured by polar centromere clustering. We demonstrate that the pericentromeric regions of the oyster plant are homogenized in concert by three subtelomeric sequences: 45S rDNA, (TTTAGGG)n motif, and TSrepI repeat. The Rabl-based clustering of pericentromeric regions may have been an excellent device to combine the subtelomere-pericentromere sequence migration (via inversions) with the pericentromere-pericentromere DNA movement (via whole arm translocations) that altogether led to the concerted homogenization of all the pericentromeric domains by the subtelomeric sequences. We also show that the repetitive sequence landscape of interstitial chromosome regions contains many loci consisting of Arabidopsis-type telomeric sequence or of TSrepI repeat, and it is extensively heterozygous. However, the sequence arrangement on some chromosomal arms suggest segmental inversions that are fully or partially homozygous, a fact that could be explained if the inversions started to create linkages already in a bivalent-forming ancestor. Remarkably, the subterminal TSrepI loci reside exclusively on the longer arms that could be due to sharing sequences between similarly-sized chromosomal arms in the interphase nucleus. Altogether, our study spotlights the supergene system of the oyster plant as an excellent model to link complex chromosome rearrangements, evolution of repetitive sequences, and nuclear architecture.
Collapse
|
46
|
Hager ER, Harringmeyer OS, Wooldridge TB, Theingi S, Gable JT, McFadden S, Neugeboren B, Turner KM, Jensen JD, Hoekstra HE. A chromosomal inversion contributes to divergence in multiple traits between deer mouse ecotypes. Science 2022; 377:399-405. [PMID: 35862520 PMCID: PMC9571565 DOI: 10.1126/science.abg0718] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
How locally adapted ecotypes are established and maintained within a species is a long-standing question in evolutionary biology. Using forest and prairie ecotypes of deer mice (Peromyscus maniculatus), we characterized the genetic basis of variation in two defining traits-tail length and coat color-and discovered a 41-megabase chromosomal inversion linked to both. The inversion frequency is 90% in the dark, long-tailed forest ecotype; decreases across a habitat transition; and is absent from the light, short-tailed prairie ecotype. We implicate divergent selection in maintaining the inversion at frequencies observed in the wild, despite high levels of gene flow, and explore fitness benefits that arise from suppressed recombination within the inversion. We uncover a key role for a large, previously uncharacterized inversion in the evolution and maintenance of classic mammalian ecotypes.
Collapse
Affiliation(s)
- Emily R Hager
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Olivia S Harringmeyer
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - T Brock Wooldridge
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Shunn Theingi
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jacob T Gable
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Sade McFadden
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Beverly Neugeboren
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kyle M Turner
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hopi E Hoekstra
- Department of Molecular and Cellular Biology, Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, and Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
47
|
Roesti M, Gilbert KJ, Samuk K. Chromosomal inversions can limit adaptation to new environments. Mol Ecol 2022; 31:4435-4439. [PMID: 35810344 DOI: 10.1111/mec.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Chromosomal inversions are often thought to facilitate local adaptation and population divergence because they can link multiple adaptive alleles into non-recombining genomic blocks. Selection should thus be more efficient in driving inversion-linked adaptive alleles to high frequency in a population, particularly in the face of maladaptive gene flow. But what if ecological conditions and hence selection on inversion-linked alleles change? Reduced recombination within inversions could then constrain the formation of optimal combinations of pre-existing alleles under these new ecological conditions. Here, we outline this idea of inversions limiting adaptation and divergence when ecological conditions change across time or space. We reason and use simulations to illustrate that the benefit of inversions for local adaptation and divergence under one set of ecological conditions can come with a concomitant constraint for adaptation to novel sets of ecological conditions. This limitation of inversions to adaptation may contribute to the maintenance of polymorphism within species.
Collapse
Affiliation(s)
- Marius Roesti
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | | | - Kieran Samuk
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California, USA
| |
Collapse
|
48
|
Jay P, Joron M. The double game of chromosomal inversions in a neotropical butterfly. C R Biol 2022; 345:57-73. [DOI: 10.5802/crbiol.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022]
|
49
|
Huang K, Ostevik KL, Elphinstone C, Todesco M, Bercovich N, Owens GL, Rieseberg LH. Mutation load in sunflower inversions is negatively correlated with inversion heterozygosity. Mol Biol Evol 2022; 39:6583099. [PMID: 35535689 PMCID: PMC9127631 DOI: 10.1093/molbev/msac101] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombination is critical both for accelerating adaptation and purging deleterious mutations. Chromosomal inversions can act as recombination modifiers that suppress local recombination in heterozygotes and thus, under some conditions, are predicted to accumulate such mutations. In this study, we investigated patterns of recombination, transposable element abundance and coding sequence evolution across the genomes of 1,445 individuals from three sunflower species, as well as within nine inversions segregating within species. We also analyzed the effects of inversion genotypes on 87 phenotypic traits to test for overdominance. We found significant negative correlations of long terminal repeat retrotransposon abundance and deleterious mutations with recombination rates across the genome in all three species. However, we failed to detect an increase in these features in the inversions, except for a modest increase in the proportion of stop codon mutations in several very large or rare inversions. Consistent with this finding, there was little evidence of overdominance of inversions in phenotypes that may relate to fitness. On the other hand, significantly greater load was observed for inversions in populations polymorphic for a given inversion compared to populations monomorphic for one of the arrangements, suggesting that the local state of inversion polymorphism affects deleterious load. These seemingly contradictory results can be explained by the low frequency of inversion heterozygotes in wild sunflower populations, apparently due to divergent selection and associated geographic structure. Inversions contributing to local adaptation represent ideal recombination modifiers, acting to facilitate adaptive divergence with gene flow, while largely escaping the accumulation of deleterious mutations.
Collapse
Affiliation(s)
- Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kate L Ostevik
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA
| | - Cassandra Elphinstone
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Marco Todesco
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Natalia Bercovich
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Gregory L Owens
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Supergenes promote ecological stasis in a keystone species. Trends Genet 2022; 38:629-631. [PMID: 35487824 DOI: 10.1016/j.tig.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 10/18/2022]
Abstract
Structural variation can create supergene architectures through tight genomic linkages that maintain traits in favourable combinations. A new study by Sodeland et al. links such supergenes in Atlantic cod with species persistence over millennia, despite the fisheries-induced decline in populations. This links intraspecific supergene diversity to ecological stasis, with significant consequences for ecosystem stability.
Collapse
|