1
|
Newton S, Aguilar C, Bowl MR. C57BL/6-derived mice and the Cdh23 ahl allele - Background matters. Hear Res 2025; 462:109278. [PMID: 40305983 DOI: 10.1016/j.heares.2025.109278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/31/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
C57BL/6-derived mice are the most utilised mice in biomedical research, and yet actually there is no such thing as a generic C57BL/6 mouse. Instead, there are more than 150 C57BL/6-derived sub-strains recognised by the Mouse Genome Informatics (MGI) database, each of which carry sub-strain-specific fixed genetic differences that can potentially lead to phenotypic differences affecting a single, or multiple biological systems. One of the most widely known strain-specific alleles is the Cdh23ahl allele, a single nucleotide change that predisposes C57BL/6-derived mice to a progressive hearing loss that starts in the high-frequency region. As such, this allele is of particular relevance to auditory researchers. However, a recent study, comparing C57BL/6NTac mice with a co-isogenic strain in which the Cdh23ahl allele has been 'repaired' using genome editing, suggests that the Cdh23ahl allele may have a broader effect on phenotype expressivity of mouse mutants impacting not just the auditory system, but other organ systems as well. Here, using the Cdh23ahl allele as an exemplar, we discuss the importance of knowing, understanding and reporting the genetic background of mouse mutants.
Collapse
Affiliation(s)
- Sherylanne Newton
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1 × 8EE, United Kingdom
| | - Carlos Aguilar
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1 × 8EE, United Kingdom
| | - Michael R Bowl
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London WC1 × 8EE, United Kingdom.
| |
Collapse
|
2
|
David S, Pinter K, Nguyen KK, Lee DS, Lei Z, Sokolova Y, Sheets L, Kindt KS. Kif1a and intact microtubules maintain synaptic-vesicle populations at ribbon synapses in zebrafish hair cells. J Physiol 2024:10.1113/JP286263. [PMID: 39373584 PMCID: PMC11973241 DOI: 10.1113/jp286263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This transmission necessitates rapid and sustained neurotransmitter release, which depends on a large pool of synaptic vesicles at the hair-cell presynapse. While previous work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, the mechanisms of this process in hair cells remain unclear. Our study demonstrates that the kinesin motor protein Kif1a, along with an intact microtubule network, is essential for enriching synaptic vesicles at the presynapse in hair cells. Through genetic and pharmacological approaches, we disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. These manipulations led to a significant reduction in synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, in vivo calcium imaging, and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1aa mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Furthermore, kif1aa mutants exhibit impaired rheotaxis, a behaviour reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-mediated microtubule transport is critical to enrich synaptic vesicles at the active zone, a process that is vital for proper ribbon-synapse function in hair cells. KEY POINTS: Kif1a mRNAs are present in zebrafish hair cells. Loss of Kif1a disrupts the enrichment of synaptic vesicles at ribbon synapses. Disruption of microtubules depletes synaptic vesicles at ribbon synapses. Kif1aa mutants have impaired ribbon-synapse and sensory-system function.
Collapse
Affiliation(s)
- Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
- National Institutes of Health-Brown University Graduate Partnership Program, Bethesda, Maryland, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Keziah-Khue Nguyen
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David S Lee
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Yuliya Sokolova
- Advanced Imaging Core, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| | - Lavinia Sheets
- Department of Otolaryngology, Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Ikäheimo K, Leinonen S, Lankinen T, Lindahl M, Saarma M, Pirvola U. Stereocilia fusion pathology in the cochlear outer hair cells at the nanoscale level. J Physiol 2024; 602:3995-4025. [PMID: 39037943 DOI: 10.1113/jp286318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
The hair bundle of cochlear hair cells comprises specialized microvilli, the stereocilia, which fulfil the role of mechanotransduction. Genetic defects and environmental noise challenge the maintenance of hair bundle structure, critically contributing to age-related hearing loss. Stereocilia fusion is a major component of the hair bundle pathology in mature hair cells, but its role in hearing loss and its molecular basis are poorly understood. Here, we utilized super-resolution expansion microscopy to examine the molecular anatomy of outer hair cell stereocilia fusion in mouse models of age-related hearing loss, heightened endoplasmic reticulum stress and prolonged noise exposure. Prominent stereocilia fusion in our model of heightened endoplasmic reticulum stress, Manf (Mesencephalic astrocyte-derived neurotrophic factor)-inactivated mice in a background with Cadherin 23 missense mutation, impaired mechanotransduction and calcium balance in stereocilia. This was indicated by reduced FM1-43 dye uptake through the mechanotransduction channels, reduced neuroplastin/PMCA2 expression and increased expression of the calcium buffer oncomodulin inside stereocilia. Sparse BAIAP2L2 and myosin 7a expression was retained in the fused stereocilia but mislocalized away from their functional sites at the tips. These hair bundle abnormalities preceded cell soma degeneration, suggesting a sequela from stereociliary molecular perturbations to cell death signalling. In the age-related hearing loss and noise-exposure models, stereocilia fusion was more restricted within the bundles, yet both models exhibited oncomodulin upregulation at the fusion sites, implying perturbed calcium homeostasis. We conclude that stereocilia fusion is linked with the failure to maintain cellular proteostasis and with disturbances in stereociliary calcium balance. KEY POINTS: Stereocilia fusion is a hair cell pathology causing hearing loss. Inactivation of Manf, a component of the endoplasmic reticulum proteostasis machinery, has a cell-intrinsic mode of action in triggering outer hair cell stereocilia fusion and the death of these cells. The genetic background with Cadherin 23 missense mutation contributes to the high susceptibility of outer hair cells to stereocilia fusion, evidenced in Manf-inactivated mice and in the mouse models of early-onset hearing loss and noise exposure. Endoplasmic reticulum stress feeds to outer hair cell stereocilia bundle pathology and impairs the molecular anatomy of calcium regulation. The maintenance of the outer hair cell stereocilia bundle cohesion is challenged by intrinsic and extrinsic stressors, and understanding the underlying mechanisms will probably benefit the development of interventions to promote hearing health.
Collapse
Affiliation(s)
- Kuu Ikäheimo
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Saija Leinonen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Tuuli Lankinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Ulla Pirvola
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Liang Y, Ormazabal-Toledo R, Yao S, Shi YS, Herrera-Molina R, Montag D, Lin X. Deafness causing neuroplastin missense variants fail to promote plasma membrane Ca 2+-ATPase levels and Ca 2+ transient regulation in brain neurons. J Biol Chem 2024; 300:107474. [PMID: 38879011 PMCID: PMC11264175 DOI: 10.1016/j.jbc.2024.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/08/2024] Open
Abstract
Hearing, the ability to sense sounds, and the processing of auditory information are important for perception of the world. Mice lacking expression of neuroplastin (Np), a type-1 transmembrane glycoprotein, display deafness, multiple cognitive deficiencies, and reduced expression of plasma membrane calcium (Ca2+) ATPases (PMCAs) in cochlear hair cells and brain neurons. In this study, we transferred the deafness causing missense mutations pitch (C315S) and audio-1 (I122N) into human Np (hNp) constructs and investigated their effects at the molecular and cellular levels. Computational molecular dynamics show that loss of the disulfide bridge in hNppitch causes structural destabilization of immunoglobulin-like domain (Ig) III and that the novel asparagine in hNpaudio-1 results in steric constraints and an additional N-glycosylation site in IgII. Additional N-glycosylation of hNpaudio-1 was confirmed by PNGaseF treatment. In comparison to hNpWT, transfection of hNppitch and hNpaudio-1 into HEK293T cells resulted in normal mRNA levels but reduced the Np protein levels and their cell surface expression due to proteasomal/lysosomal degradation. Furthermore, hNppitch and hNpaudio-1 failed to promote exogenous PMCA levels in HEK293T cells. In hippocampal neurons, expression of additional hNppitch or hNpaudio-1 was less efficient than hNpWT to elevate endogenous PMCA levels and to accelerate the restoration of basal Ca2+ levels after electrically evoked Ca2+ transients. We propose that mutations leading to pathological Np variants, as exemplified here by the deafness causing Np mutants, can affect Np-dependent Ca2+ regulatory mechanisms and may potentially cause intellectual and cognitive deficits in humans.
Collapse
Affiliation(s)
- Yi Liang
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Ormazabal-Toledo
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Songhui Yao
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Yun Stone Shi
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Rodrigo Herrera-Molina
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany; Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China.
| |
Collapse
|
5
|
David S, Pinter K, Nguyen KK, Lee DS, Lei Z, Sokolova Y, Sheets L, Kindt KS. Kif1a and intact microtubules maintain synaptic-vesicle populations at ribbon synapses in zebrafish hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595037. [PMID: 38903095 PMCID: PMC11188139 DOI: 10.1101/2024.05.20.595037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Sensory hair cells of the inner ear utilize specialized ribbon synapses to transmit sensory stimuli to the central nervous system. This sensory transmission necessitates rapid and sustained neurotransmitter release, which relies on a large pool of synaptic vesicles at the hair-cell presynapse. Work in neurons has shown that kinesin motor proteins traffic synaptic material along microtubules to the presynapse, but how new synaptic material reaches the presynapse in hair cells is not known. We show that the kinesin motor protein Kif1a and an intact microtubule network are necessary to enrich synaptic vesicles at the presynapse in hair cells. We use genetics and pharmacology to disrupt Kif1a function and impair microtubule networks in hair cells of the zebrafish lateral-line system. We find that these manipulations decrease synaptic-vesicle populations at the presynapse in hair cells. Using electron microscopy, along with in vivo calcium imaging and electrophysiology, we show that a diminished supply of synaptic vesicles adversely affects ribbon-synapse function. Kif1a mutants exhibit dramatic reductions in spontaneous vesicle release and evoked postsynaptic calcium responses. Additionally, we find that kif1a mutants exhibit impaired rheotaxis, a behavior reliant on the ability of hair cells in the lateral line to respond to sustained flow stimuli. Overall, our results demonstrate that Kif1a-based microtubule transport is critical to enrich synaptic vesicles at the active zone in hair cells, a process that is vital for proper ribbon-synapse function.
Collapse
Affiliation(s)
- Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
- National Institutes of Health-Brown University Graduate Partnership Program, Bethesda, MD, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Keziah-Khue Nguyen
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David S Lee
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Yuliya Sokolova
- Advanced Imaging Core, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| | - Lavinia Sheets
- Department of Otolaryngology - Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and other Communication Disorders, Bethesda, MD, USA
| |
Collapse
|
6
|
Jukic A, Lei Z, Cebul ER, Pinter K, Mosqueda N, David S, Tarchini B, Kindt K. Presynaptic Nrxn3 is essential for ribbon-synapse assembly in hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580267. [PMID: 38410471 PMCID: PMC10896334 DOI: 10.1101/2024.02.14.580267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hair cells of the inner ear rely on specialized ribbon synapses to transmit sensory information to the central nervous system. The molecules required to assemble these synapses are not fully understood. We show that Nrxn3, a presynaptic adhesion molecule, is critical for ribbon-synapse assembly in hair cells. In both mouse and zebrafish models, loss of Nrxn3 results in significantly fewer intact ribbon synapses. In zebrafish we demonstrate that a 60% loss of synapses in nrxn3 mutants dramatically reduces both presynaptic responses in hair cells and postsynaptic responses in afferent neurons. Despite a reduction in synapse function in this model, we find no deficits in the acoustic startle response, a behavior reliant on these synapses. Overall, this work demonstrates that Nrxn3 is a critical and conserved molecule required to assemble ribbon synapses. Understanding how ribbon synapses assemble is a key step towards generating novel therapies to treat forms of age-related and noise-induced hearing loss that occur due to loss of ribbon synapses.
Collapse
Affiliation(s)
- Alma Jukic
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Elizabeth R Cebul
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Natalie Mosqueda
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | | | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Verdoodt D, van Wijk E, Broekman S, Venselaar H, Aben F, Sels L, De Backer E, Gommeren H, Szewczyk K, Van Camp G, Ponsaerts P, Van Rompaey V, de Vrieze E. Rational design of a genomically humanized mouse model for dominantly inherited hearing loss, DFNA9. Hear Res 2024; 442:108947. [PMID: 38218018 DOI: 10.1016/j.heares.2023.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/04/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
DFNA9 is a dominantly inherited form of adult-onset progressive hearing impairment caused by mutations in the COCH gene. COCH encodes cochlin, a crucial extracellular matrix protein. We established a genomically humanized mouse model for the Dutch/Belgian c.151C>T founder mutation in COCH. Considering upcoming sequence-specific genetic therapies, we exchanged the genomic murine Coch exons 3-6 for the corresponding human sequence. Introducing human-specific genetic information into mouse exons can be risky. To mitigate unforeseen consequences on cochlin function resulting from the introduction of the human COCH protein-coding sequence, we converted all human-specific amino acids to mouse equivalents. We furthermore optimized the recognition of the human COCH exons by the murine splicing machinery during pre-mRNA splicing. Subsequent observations in mouse embryonic stem cells revealed correct splicing of the hybrid Coch transcript. The inner ear of the established humanized Coch mice displays correctly-spliced wild-type and mutant humanized Coch alleles. For a comprehensive study of auditory function, mice were crossbred with C57BL/6 Cdh23753A>G mice to remove the Cdh23ahl allele from the genetic background of the mice. At 9 months, all humanized Coch genotypes showed hearing thresholds comparable to wild-type C57BL/6 Cdh23753A>G mice. This indicates that both the introduction of human wildtype COCH, and correction of Cdh23ahl in the humanized Coch lines was successful. Overall, our approach proved beneficial in eliminating potential adverse events of genomic humanization of mouse genes, and provides us with a model in which sequence-specific therapies directed against the human mutant COCH alle can be investigated. With the hearing and balance defects anticipated to occur late in the second year of life, a long-term follow-up study is ongoing to fully characterize the humanized Coch mouse model.
Collapse
Affiliation(s)
- Dorien Verdoodt
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Sanne Broekman
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Hanka Venselaar
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Fien Aben
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands
| | - Lize Sels
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Evi De Backer
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Hanne Gommeren
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Krystyna Szewczyk
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Guy Van Camp
- Center for Medical Genetics, University of Antwerp, Antwerp 2000, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Department of Otorhinolaryngology and Head & Neck Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Hearing and Genes, Radboud University Medical Center, Nijmegen, GA 6525, the Netherlands.
| |
Collapse
|
8
|
Newton S, Aguilar C, Bunton-Stasyshyn RK, Flook M, Stewart M, Marcotti W, Brown S, Bowl MR. Absence of Embigin accelerates hearing loss and causes sub-viability, brain and heart defects in C57BL/6N mice due to interaction with Cdh23ahl. iScience 2023; 26:108056. [PMID: 37854703 PMCID: PMC10579432 DOI: 10.1016/j.isci.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Mouse studies continue to help elaborate upon the genetic landscape of mammalian disease and the underlying molecular mechanisms. Here, we have investigated an Embigintm1b allele maintained on a standard C57BL/6N background and on a co-isogenic C57BL/6N background in which the Cdh23ahl allele has been "repaired." The hypomorphic Cdh23ahl allele is present in several commonly used inbred mouse strains, predisposing them to progressive hearing loss, starting in high-frequency regions. Absence of the neural cell adhesion molecule Embigin on the standard C57BL/6N background leads to accelerated hearing loss and causes sub-viability, brain and cardiac defects. Contrastingly, Embigintm1b/tm1b mice maintained on the co-isogenic "repaired" C57BL/6N background exhibit normal hearing and viability. Thus Embigin genetically interacts with Cdh23. Importantly, our study is the first to demonstrate an effect of the common Cdh23ahl allele outside of the auditory system, which has important ramifications for genetic studies involving inbred strains carrying this allele.
Collapse
Affiliation(s)
- Sherylanne Newton
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | - Carlos Aguilar
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | | | - Marisa Flook
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | - Michelle Stewart
- The Mary Lyon Centre, Medical Research Council Harwell Institute, Oxford, Oxfordshire OX11 0RD, UK
| | - Walter Marcotti
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Steve Brown
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| |
Collapse
|
9
|
Wu DD, Cheng J, Zheng YN, Liu YT, Hou SX, Liu LF, Huang L, Yuan QL. Neuroplastin 65 deficiency reduces amyloid plaque formation and cognitive deficits in an Alzheimer's disease mouse model. Front Cell Neurosci 2023; 17:1129773. [PMID: 37213217 PMCID: PMC10196121 DOI: 10.3389/fncel.2023.1129773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is characterized by increasing cognitive dysfunction, progressive cerebral amyloid beta (Aβ) deposition, and neurofibrillary tangle aggregation. However, the molecular mechanisms of AD pathologies have not been completely understood. As synaptic glycoprotein neuroplastin 65 (NP65) is related with synaptic plasticity and complex molecular events underlying learning and memory, we hypothesized that NP65 would be involved in cognitive dysfunction and Aβ plaque formation of AD. For this purpose, we examined the role of NP65 in the transgenic amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD. Methods Neuroplastin 65-knockout (NP65-/-) mice crossed with APP/PS1 mice to get the NP65-deficient APP/PS1 mice. In the present study, a separate cohort of NP65-deficient APP/PS1 mice were used. First, the cognitive behaviors of NP65-deficient APP/PS1 mice were assessed. Then, Aβ plaque burden and Aβ levels in NP65-deficient APP/PS1 mice were measured by immunostaining and western blot as well as ELISA. Thirdly, immunostaining and western blot were used to evaluate the glial response and neuroinflammation. Finally, protein levels of 5-hydroxytryptamin (serotonin) receptor 3A and synaptic proteins and neurons were measured. Results We found that loss of NP65 alleviated the cognitive deficits of APP/PS1 mice. In addition, Aβ plaque burden and Aβ levels were significantly reduced in NP65-deficient APP/PS1 mice compared with control animals. NP65-loss in APP/PS1 mice resulted in a decrease in glial activation and the levels of pro- and anti-inflammatory cytokines (IL-1β, TNF-α, and IL-4) as well as protective matrix YM-1 and Arg-1, but had no effect on microglial phenotype. Moreover, NP65 deficiency significantly reversed the increase in 5-hydroxytryptamine (serotonin) receptor 3A (Htr3A) expression levels in the hippocampus of APP/PS1 mice. Discussion These findings identify a previously unrecognized role of NP65 in cognitive deficits and Aβ formation of APP/PS1 mice, and suggest that NP65 may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Dan-Dan Wu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Cheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ya-Ni Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Tong Liu
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shuang-Xin Hou
- Department of Neurobiology, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Li-Fen Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Qiong-Lan Yuan,
| |
Collapse
|