1
|
Rummens J, Khalil B, Yıldırım G, Silva P, Zorzini V, Peredo N, Wojno M, Ramakers M, Van Den Bosch L, Van Damme P, Davie K, Hendrix J, Rousseau F, Schymkowitz J, Da Cruz S. TDP-43 seeding induces cytoplasmic aggregation heterogeneity and nuclear loss of function of TDP-43. Neuron 2025; 113:1597-1613.e8. [PMID: 40157356 DOI: 10.1016/j.neuron.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/21/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Cytoplasmic aggregation and nuclear depletion of TAR DNA-binding protein 43 (TDP-43) are hallmarks of several neurodegenerative disorders. Yet, recapitulating both features in cellular systems has been challenging. Here, we produced amyloid-like fibrils from recombinant TDP-43 low-complexity domain and demonstrate that sonicated fibrils trigger TDP-43 pathology in human cells, including induced pluripotent stem cell (iPSC)-derived neurons. Fibril-induced cytoplasmic TDP-43 inclusions acquire distinct biophysical properties, recapitulate pathological hallmarks such as phosphorylation, ubiquitin, and p62 accumulation, and recruit nuclear endogenous TDP-43, leading to its loss of function. A transcriptomic signature linked to both aggregation and nuclear loss of TDP-43, including disease-specific cryptic splicing, is identified. Cytoplasmic TDP-43 aggregates exhibit time-dependent heterogeneous morphologies as observed in patients-including compacted, filamentous, or fragmented-which involve upregulation/recruitment of protein clearance pathways. Ultimately, cell-specific progressive toxicity is provoked by seeded TDP-43 pathology in human neurons. These findings identify TDP-43-templated aggregation as a key mechanism driving both cytoplasmic gain of function and nuclear loss of function, offering a valuable approach to identify modifiers of sporadic TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Jens Rummens
- Laboratory of Neurophysiology in Neurodegenerative Disorders, VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Bilal Khalil
- Laboratory of Neurophysiology in Neurodegenerative Disorders, VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Günseli Yıldırım
- Laboratory of Neurophysiology in Neurodegenerative Disorders, VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium; Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Pedro Silva
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium
| | - Valentina Zorzini
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Biophysics Expertise Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Nicolas Peredo
- VIB Bio-Imaging Core, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Marta Wojno
- VIB Single Cell & Microfluidics Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Meine Ramakers
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
| | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium; Neurology Department, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Kristofer Davie
- VIB Single Cell Bioinformatics Expertise Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain & Disease Research, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sandrine Da Cruz
- Laboratory of Neurophysiology in Neurodegenerative Disorders, VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, KU Leuven, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Dang M, Wu L, Zhang X. Structural insights and milestones in TDP-43 research: A comprehensive review of its pathological and therapeutic advances. Int J Biol Macromol 2025; 306:141677. [PMID: 40032118 DOI: 10.1016/j.ijbiomac.2025.141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Transactive response (TAR) DNA-binding protein 43 (TDP-43) is a critical RNA/DNA-binding protein involved in various cellular processes, including RNA splicing, transcription regulation, and RNA stability. Mislocalization and aggregation of TDP-43 in the cytoplasm are key features of the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). This review provides a comprehensive retrospective and prospective analysis of TDP-43 research, highlighting structural insights, significant milestones, and the evolving understanding of its physiological and pathological functions. We delineate five major stages in TDP-43 research, from its initial discovery as a pathological hallmark in neurodegeneration to the recent advances in understanding its liquid-liquid phase separation (LLPS) behavior and interactions with cellular processes. Furthermore, we assess therapeutic strategies targeting TDP-43 pathology, categorizing approaches into direct and indirect interventions, alongside modulating aberrant TDP-43 LLPS. We propose that future research will focus on three critical areas: targeting TDP-43 structural polymorphisms for disease-specific therapeutics, exploring dual temporal-spatial modulation of TDP-43, and advancing nano-therapy. More importantly, we emphasize the importance of understanding TDP-43's functional repertoire at the mesoscale, which bridges its molecular functions with broader cellular processes. This review offers a foundational framework for advancing TDP-43 research and therapeutic development.
Collapse
Affiliation(s)
- Mei Dang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Longjiang Wu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1 Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Rubio AD, Hamilton L, Bausch M, Jin M, Papetti A, Jiang P, Yelamanchili SV. A Comprehensive Review on Utilizing Human Brain Organoids to Study Neuroinflammation in Neurological Disorders. J Neuroimmune Pharmacol 2025; 20:23. [PMID: 39987404 PMCID: PMC11846768 DOI: 10.1007/s11481-025-10181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/26/2025] [Indexed: 02/24/2025]
Abstract
Most current information about neurological disorders and diseases is derived from direct patient and animal studies. However, patient studies in many cases do not allow replication of the early stages of the disease and, therefore, offer limited opportunities to understand disease progression. On the other hand, although the use of animal models allows us to study the mechanisms of the disease, they present significant limitations in developing drugs for humans. Recently, 3D-cultured in vitro models derived from human pluripotent stem cells have surfaced as a promising system. They offer the potential to connect findings from patient studies with those from animal models. In this comprehensive review, we discuss their application in modeling neurodevelopmental conditions such as Down Syndrome or Autism, neurodegenerative diseases such as Alzheimer's or Parkinson's, and viral diseases like Zika virus or HIV. Furthermore, we will discuss the different models used to study prenatal exposure to drugs of abuse, as well as the limitations and challenges that must be met to transform the landscape of research on human brain disorders.
Collapse
Affiliation(s)
- Adrian Domene Rubio
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Luke Hamilton
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
| | - Mark Bausch
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA
- University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ava Papetti
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Sowmya V Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center (UNMC), Omaha, NE, 68198, USA.
| |
Collapse
|
4
|
Xu L, Zhang Y, Chen X, Hong Y, Zhang X, Hu H, Han X, Zou X, Xu M, Zhu W, Liu Y. Human Brain Organoids Model Abnormal Prenatal Neural Development Induced by Thermal Stimulation. Cell Prolif 2025; 58:e13777. [PMID: 39668124 PMCID: PMC11839188 DOI: 10.1111/cpr.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/17/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
The developing human foetal brain is sensitive to thermal stimulation during pregnancy. However, the mechanisms by which heat exposure affects human foetal brain development remain unclear, largely due to the lack of appropriate research models for studying thermal stimulation. To address this, we have developed a periodic heating model based on brain organoids derived from human pluripotent stem cells. The model recapitulated neurodevelopmental disruptions under prenatal heat exposure at the early stages, providing a paradigm for studying the altered neurodevelopment under environmental stimulation. Our study found that periodic heat exposure led to decreased size and impaired neural tube development in the brain organoids. Bulk RNA-seq analysis revealed that the abnormal WNT signalling pathway and the reduction of G2/M progenitor cells might be involved in heat stimulation. Further investigation revealed increased neural differentiation and decreased proliferation under heat stimulation, indicating that periodic heat exposure might lead to abnormal brain development by altering key developmental processes. Hence, our model of periodically heating brain organoids provides a platform for modelling the effects of maternal fever on foetal brain development and could be extended to applications in neurodevelopmental disorders intervention.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Department of Neurology, Affiliated Zhongda HospitalSoutheast UniversityNanjingChina
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yufan Zhang
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Xingyi Chen
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yuan Hong
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Xu Zhang
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Hao Hu
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Xiao Han
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Xiao Zou
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Min Xu
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Wanying Zhu
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| | - Yan Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Department of Neurology, Affiliated Zhongda HospitalSoutheast UniversityNanjingChina
- Institute of Stem Cell and Neural Regeneration, School of PharmacyNanjing Medical UniversityNanjingChina
- State Key Laboratory of Reproductive Medicine and Offspring HealthNanjing Medical UniversityNanjingChina
| |
Collapse
|
5
|
Lei T, Zhang X, Fu G, Luo S, Zhao Z, Deng S, Li C, Cui Z, Cao J, Chen P, Yang H. Advances in human cellular mechanistic understanding and drug discovery of brain organoids for neurodegenerative diseases. Ageing Res Rev 2024; 102:102517. [PMID: 39321879 DOI: 10.1016/j.arr.2024.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing rapidly as the aging population accelerates, and there are still no treatments to halt or reverse the progression of these diseases. While traditional 2D cultures and animal models fail to translate into effective therapies benefit patients, 3D cultured human brain organoids (hBOs) facilitate the use of non-invasive methods to capture patient data. The purpose of this study was to review the research and application of hBO in disease models and drug screening in NDs. The pluripotent stem cells are induced in multiple stages to form cerebral organoids, brain region-specific organoids and their derived brain cells, which exhibit complex brain-like structures and perform electrophysiological activities. The brain region-specific organoids and their derived neurons or glial cells contribute to the understanding of the pathogenesis of NDs and the efficient development of drugs, including Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. Glial-rich brain organoids facilitate the study of glial function and neuroinflammation, including astrocytes, microglia, and oligodendrocytes. Further research on the maturation enhancement, vascularization and multi-organoid assembly of hBO will help to enhance the research and application of NDs cellular models.
Collapse
Affiliation(s)
- Tong Lei
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaoshuang Zhang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Gaoshuang Fu
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shaohan Luo
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ziwei Zhao
- Department of Disease and Syndromes Research, Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhao Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
6
|
Pongrácová E, Buratti E, Romano M. Prion-like Spreading of Disease in TDP-43 Proteinopathies. Brain Sci 2024; 14:1132. [PMID: 39595895 PMCID: PMC11591745 DOI: 10.3390/brainsci14111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
TDP-43 is a ubiquitous nuclear protein that plays a central role in neurodegenerative disorders collectively known as TDP-43 proteinopathies. Under physiological conditions, TDP-43 is primarily localized to the nucleus, but in its pathological form it aggregates in the cytoplasm, contributing to neuronal death. Given its association with numerous diseases, particularly ALS and FTLD, the mechanisms underlying TDP-43 aggregation and its impact on neuronal function have been extensively investigated. However, little is still known about the spreading of this pathology from cell to cell. Recent research has unveiled the possibility that TDP-43 may possess prion-like properties. Specifically, misfolded TDP-43 aggregates can act as templates inducing conformational changes in native TDP-43 molecules and propagating the misfolded state across neural networks. This review summarizes the mounting and most recent evidence from in vitro and in vivo studies supporting the prion-like hypothesis and its underlying mechanisms. The prion-like behavior of TDP-43 has significant implications for diagnostics and therapeutics. Importantly, emerging strategies such as small molecule inhibitors, immunotherapies, and gene therapies targeting TDP-43 propagation offer promising avenues for developing effective treatments. By elucidating the mechanisms of TDP-43 spreading, we therefore aim to pave the way for novel therapies for TDP-43-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma Pongrácová
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
7
|
Theme 3 In Vitro Experimental Models. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:122-135. [PMID: 39508666 DOI: 10.1080/21678421.2024.2403300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
|
8
|
Alshehri RS, Abuzinadah AR, Alrawaili MS, Alotaibi MK, Alsufyani HA, Alshanketi RM, AlShareef AA. A Review of Biomarkers of Amyotrophic Lateral Sclerosis: A Pathophysiologic Approach. Int J Mol Sci 2024; 25:10900. [PMID: 39456682 PMCID: PMC11507293 DOI: 10.3390/ijms252010900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. The heterogeneous nature of ALS at the clinical, genetic, and pathological levels makes it challenging to develop diagnostic and prognostic tools that fit all disease phenotypes. Limitations associated with the functional scales and the qualitative nature of mainstay electrophysiological testing prompt the investigation of more objective quantitative assessment. Biofluid biomarkers have the potential to fill that gap by providing evidence of a disease process potentially early in the disease, its progression, and its response to therapy. In contrast to other neurodegenerative diseases, no biomarker has yet been validated in clinical use for ALS. Several fluid biomarkers have been investigated in clinical studies in ALS. Biofluid biomarkers reflect the different pathophysiological processes, from protein aggregation to muscle denervation. This review takes a pathophysiologic approach to summarizing the findings of clinical studies utilizing quantitative biofluid biomarkers in ALS, discusses the utility and shortcomings of each biomarker, and highlights the superiority of neurofilaments as biomarkers of neurodegeneration over other candidate biomarkers.
Collapse
Affiliation(s)
- Rawiah S. Alshehri
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Ahmad R. Abuzinadah
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Moafaq S. Alrawaili
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Muteb K. Alotaibi
- Neurology Department, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Hadeel A. Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (R.S.A.); (H.A.A.)
| | - Rajaa M. Alshanketi
- Internal Medicine Department, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia;
| | - Aysha A. AlShareef
- Department of Neurology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia; (M.S.A.); (A.A.A.)
- Neuromuscular Medicine Unit, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
9
|
Chevalier E, Audrain M, Ratnam M, Ollier R, Fuchs A, Piorkowska K, Pfeifer A, Kosco-Vilbois M, Seredenina T, Afroz T. Targeting the TDP-43 low complexity domain blocks spreading of pathology in a mouse model of ALS/FTD. Acta Neuropathol Commun 2024; 12:156. [PMID: 39363348 PMCID: PMC11448013 DOI: 10.1186/s40478-024-01867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Abnormal cytoplasmic localization and accumulation of pathological transactive response DNA binding protein of 43 kDa (TDP-43) underlies several devastating diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 pathology (FTLD-TDP). A key element is the correlation between disease progression and spatio-temporal propagation of TDP-43-mediated pathology in the central nervous system. Several lines of evidence support the concept of templated aggregation and cell to cell spreading of pathological TDP-43. To further investigate this mechanism in vivo, we explored the efficacy of capturing and masking the seeding-competent region of extracellular TDP-43 species. For this, we generated a novel monoclonal antibody (mAb), ACI-6677, that targets the pathogenic protease-resistant amyloid core of TDP-43. ACI-6677 has a picomolar binding affinity for TDP-43 and is capable of binding to all C-terminal TDP-43 fragments. In vitro, ACI-6677 inhibited TDP-43 aggregation and boosted removal of pathological TDP-43 aggregates by phagocytosis. When injecting FTLD-TDP brain extracts unilaterally in the CamKIIa-hTDP-43NLSm mouse model, ACI-6677 significantly limited the induction of phosphorylated TDP-43 (pTDP-43) inclusions. Strikingly, on the contralateral side, the mAb significantly prevented pTDP-43 inclusion appearance exemplifying blocking of the spreading process. Taken together, these data demonstrate for the first time that an immunotherapy targeting the protease-resistant amyloid core of TDP-43 has the potential to restrict spreading, substantially slowing or stopping progression of disease.
Collapse
Affiliation(s)
- Elodie Chevalier
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Mickael Audrain
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Monisha Ratnam
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Romain Ollier
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Aline Fuchs
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Kasia Piorkowska
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | - Andrea Pfeifer
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland
| | | | - Tamara Seredenina
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland.
| | - Tariq Afroz
- AC Immune SA, EPFL Innovation Park, Building B, 1015, Lausanne, Switzerland.
| |
Collapse
|
10
|
Stavrovskaya AV, Voronkov DN, Pavlova AK, Olshanskiy AS, Belugin BV, Ivanova MV, Zakharova MN, Illarioshkin SN. Intraventricular Administration of Exosomes from Patients with Amyotrophic Lateral Sclerosis Provokes Motor Neuron Disease in Mice. Acta Naturae 2024; 16:73-80. [PMID: 39877010 PMCID: PMC11771849 DOI: 10.32607/actanaturae.27499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/02/2024] [Indexed: 01/31/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe disease of the central nervous system (CNS) characterized by motor neuron damage leading to death from respiratory failure. The neurodegenerative process in ALS is characterized by an accumulation of aberrant proteins (TDP-43, SOD1, etc.) in CNS cells. The trans-synaptic transmission of these proteins via exosomes may be one of the mechanisms through which the pathology progresses. The aim of this work was to study the effect of an intraventricular injection of exosomes obtained from the cerebrospinal fluid (CSF) of ALS patients on the motor activity and CNS pathomorphology of mice. The exosomes were obtained from two ALS patients and a healthy donor. Exosome suspensions at high and low concentrations were injected into the lateral brain ventricles of male BALB/c mice (n = 45). Motor activity and physiological parameters were evaluated twice a month; morphological examination of the spinal cord was performed 14 months after the start of the experiment. Nine months after administration of exosomes from the ALS patients, the animals started exhibiting a pathological motor phenotype; i.e., altered locomotion with paresis of hind limbs, coordination impairment, and increasing episodes of immobility. The motor symptoms accelerated after administration of a higher concentration of exosomes. The experimental group showed a significant decrease in motor neuron density in the ventral horns of the spinal cord, a significant increase in the number of microglial cells, and microglia activation. The TDP43 protein in the control animals was localized in the nuclei of motor neurons. TDP43 mislocation with its accumulation in the cytoplasm was observed in the experimental group. Thus, the triggering effect of the exosomal proteins derived from the CSF of ALS patients in the development of a motor neuron pathology in the experimental animals was established. This confirms the pathogenetic role of exosomes in neurodegenerative progression and makes it possible to identify a new target for ALS therapy.
Collapse
Affiliation(s)
- A. V. Stavrovskaya
- Research Center of neurology, Ministry of Science and Higher Education of the Russian Federation, Moscow, 125367 Russian Federation
| | - D. N. Voronkov
- Research Center of neurology, Ministry of Science and Higher Education of the Russian Federation, Moscow, 125367 Russian Federation
| | - A. K. Pavlova
- Research Center of neurology, Ministry of Science and Higher Education of the Russian Federation, Moscow, 125367 Russian Federation
| | - A. S. Olshanskiy
- Research Center of neurology, Ministry of Science and Higher Education of the Russian Federation, Moscow, 125367 Russian Federation
| | - B. V. Belugin
- National Research Center for Epidemiology and Microbiology named after the honorary academician N. F. Gamaleya, Moscow, 123098 Russian Federation
| | - M. V. Ivanova
- Research Center of neurology, Ministry of Science and Higher Education of the Russian Federation, Moscow, 125367 Russian Federation
| | - M. N. Zakharova
- Research Center of neurology, Ministry of Science and Higher Education of the Russian Federation, Moscow, 125367 Russian Federation
| | - S. N. Illarioshkin
- Research Center of neurology, Ministry of Science and Higher Education of the Russian Federation, Moscow, 125367 Russian Federation
| |
Collapse
|
11
|
Mazzini L, De Marchi F, Buzanska L, Follenzi A, Glover JC, Gelati M, Lombardi I, Maioli M, Mesa-Herrera F, Mitrečić D, Olgasi C, Pivoriūnas A, Sanchez-Pernaute R, Sgromo C, Zychowicz M, Vescovi A, Ferrari D. Current status and new avenues of stem cell-based preclinical and therapeutic approaches in amyotrophic lateral sclerosis. Expert Opin Biol Ther 2024; 24:933-954. [PMID: 39162129 DOI: 10.1080/14712598.2024.2392307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
INTRODUCTION Cell therapy development represents a critical challenge in amyotrophic lateral sclerosis (ALS) research. Despite more than 20 years of basic and clinical research, no definitive safety and efficacy results of cell-based therapies for ALS have been published. AREAS COVERED This review summarizes advances using stem cells (SCs) in pre-clinical studies to promote clinical translation and in clinical trials to treat ALS. New technologies have been developed and new experimental in vitro and animal models are now available to facilitate pre-clinical research in this field and to determine the most promising approaches to pursue in patients. New clinical trial designs aimed at developing personalized SC-based treatment with biological endpoints are being defined. EXPERT OPINION Knowledge of the basic biology of ALS and on the use of SCs to study and potentially treat ALS continues to grow. However, a consensus has yet to emerge on how best to translate these results into therapeutic applications. The selection and follow-up of patients should be based on clinical, biological, and molecular criteria. Planning of SC-based clinical trials should be coordinated with patient profiling genetically and molecularly to achieve personalized treatment. Much work within basic and clinical research is still needed to successfully transition SC therapy in ALS.
Collapse
Affiliation(s)
- Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Antonia Follenzi
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
- Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C. Arrigo, Alessandria, Italy
| | - Joel Clinton Glover
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital; Laboratory of Neural Development and Optical Recording (NDEVOR), Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maurizio Gelati
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ivan Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Center for Developmental Biology and Reprogramming-CEDEBIOR, University of Sassari, Sassari, Italy
| | - Fatima Mesa-Herrera
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Dinko Mitrečić
- Laboratory for Stem Cells, Croatian Institute for Brain Research and Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Cristina Olgasi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Rosario Sanchez-Pernaute
- Reprogramming and Neural Regeneration Lab, BioBizkaia Health Research Institute, Barakaldo, Spain
- Ikerbaske, Basque Foundation for Science, Bilbao, Spain
| | - Chiara Sgromo
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, Novara, Italy
| | - Marzena Zychowicz
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Angelo Vescovi
- Unità Produttiva per Terapie Avanzate (UPTA), IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
12
|
Ren K, Wang Q, Jiang D, Liu E, Alsmaan J, Jiang R, Rutkove SB, Tian F. A comprehensive review of electrophysiological techniques in amyotrophic lateral sclerosis research. Front Cell Neurosci 2024; 18:1435619. [PMID: 39280794 PMCID: PMC11393746 DOI: 10.3389/fncel.2024.1435619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease, is characterized by progressive motor neuron degeneration, leading to widespread weakness and respiratory failure. While a variety of mechanisms have been proposed as causes of this disease, a full understanding remains elusive. Electrophysiological alterations, including increased motor axon excitability, likely play an important role in disease progression. There remains a critical need for non-animal disease models that can integrate electrophysiological tools to better understand underlying mechanisms, track disease progression, and evaluate potential therapeutic interventions. This review explores the integration of electrophysiological technologies with ALS disease models. It covers cellular and clinical electrophysiological tools and their applications in ALS research. Additionally, we examine conventional animal models and highlight advancements in humanized models and 3D organoid technologies. By bridging the gap between these models, we aim to enhance our understanding of ALS pathogenesis and facilitate the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Keyuan Ren
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Qinglong Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Douglas Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Scripps Institution of Oceanography, San Diego, CA, United States
| | - Ethan Liu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Julie Alsmaan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Rui Jiang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- School of Arts and Science, Harvard College, Cambridge, MA, United States
| | - Seward B. Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Feng Tian
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Asada-Utsugi M, Urushitani M. Tau beyond Tangles: DNA Damage Response and Cytoskeletal Protein Crosstalk on Neurodegeneration. Int J Mol Sci 2024; 25:7906. [PMID: 39063148 PMCID: PMC11277103 DOI: 10.3390/ijms25147906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Neurons in the brain are continuously exposed to various sources of DNA damage. Although the mechanisms of DNA damage repair in mitotic cells have been extensively characterized, the repair pathways in post-mitotic neurons are still largely elusive. Moreover, inaccurate repair can result in deleterious mutations, including deletions, insertions, and chromosomal translocations, ultimately compromising genomic stability. Since neurons are terminally differentiated cells, they cannot employ homologous recombination (HR) for double-strand break (DSB) repair, suggesting the existence of neuron-specific repair mechanisms. Our research has centered on the microtubule-associated protein tau (MAPT), a crucial pathological protein implicated in neurodegenerative diseases, and its interplay with neurons' DNA damage response (DDR). This review aims to provide an updated synthesis of the current understanding of the complex interplay between DDR and cytoskeletal proteins in neurons, with a particular focus on the role of tau in neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Makoto Urushitani
- Department of Neurology, Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| |
Collapse
|
14
|
Bock M, Hong SJ, Zhang S, Yu Y, Lee S, Shin H, Choi BH, Han I. Morphogenetic Designs, and Disease Models in Central Nervous System Organoids. Int J Mol Sci 2024; 25:7750. [PMID: 39062993 PMCID: PMC11276855 DOI: 10.3390/ijms25147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Since the emergence of the first cerebral organoid (CO) in 2013, advancements have transformed central nervous system (CNS) research. Initial efforts focused on studying the morphogenesis of COs and creating reproducible models. Numerous methodologies have been proposed, enabling the design of the brain organoid to represent specific regions and spinal cord structures. CNS organoids now facilitate the study of a wide range of CNS diseases, from infections to tumors, which were previously difficult to investigate. We summarize the major advancements in CNS organoids, concerning morphogenetic designs and disease models. We examine the development of fabrication procedures and how these advancements have enabled the generation of region-specific brain organoids and spinal cord models. We highlight the application of these organoids in studying various CNS diseases, demonstrating the versatility and potential of organoid models in advancing our understanding of complex conditions. We discuss the current challenges in the field, including issues related to reproducibility, scalability, and the accurate recapitulation of the in vivo environment. We provide an outlook on prospective studies and future directions. This review aims to provide a comprehensive overview of the state-of-the-art CNS organoid research, highlighting key developments, current challenges, and prospects in the field.
Collapse
Affiliation(s)
- Minsung Bock
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Sung Jun Hong
- Research Competency Milestones Program, School of Medicine, CHA University, Seongnam-si 13488, Republic of Korea;
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Yerin Yu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Somin Lee
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Haeeun Shin
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Byung Hyune Choi
- Department of Biomedical Science, Inha University College of Medicine, Incheon 22212, Republic of Korea;
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| |
Collapse
|
15
|
Guo R, Chen Y, Zhang J, Zhou Z, Feng B, Du X, Liu X, Ma J, Cui H. Neural Differentiation and spinal cord organoid generation from induced pluripotent stem cells (iPSCs) for ALS modelling and inflammatory screening. Mol Neurobiol 2024; 61:4732-4749. [PMID: 38127186 DOI: 10.1007/s12035-023-03836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
C9orf72 genetic mutation is the most common genetic cause of ALS/FTD accompanied by abnormal protein insufficiency. Induced pluripotent stem cell (iPSC)-derived two-dimensional (2D) and three-dimensional (3D) cultures are providing new approaches. Therefore, this study established neuronal cell types and generated spinal cord organoids (SCOs) derived from C9orf72 knockdown human iPSCs to model ALS disease and screen the unrevealed phenotype. Wild-type (WT) iPSC lines from three healthy donor fibroblasts were established, and pluripotency and differentiation ability were identified by RT-PCR, immunofluorescence and flow cytometry. After infection by the lentivirus with C9orf72-targeting shRNA, stable C9-knockdown iPSC colonies were selected and differentiated into astrocytes, motor neurons and SCOs. Finally, we analyzed the extracted RNA-seq data of human C9 mutant/knockout iPSC-derived motor neurons and astrocytes from the GEO database and the inflammatory regulation-related genes in function and pathways. The expression of inflammatory factors was measured by qRT-PCR. The results showed that both WT-iPSCs and edited C9-iPSCs maintained a similar ability to differentiate into the three germ layers, astrocytes and motor neurons, forming SCOs in a 3D culture system. The constructed C9-SCOs have features of spinal cord development and multiple neuronal cell types, including sensory neurons, motor neurons, and other neurons. Based on the bioinformatics analysis, proinflammatory factors were confirmed to be upregulated in C9-iPSC-derived 2D cells and 3D cultured SCOs. The above differentiated models exhibited low C9orf72 expression and the pathological characteristics of ALS, especially neuroinflammation.
Collapse
Affiliation(s)
- Ruiyun Guo
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Yimeng Chen
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jinyu Zhang
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Zijing Zhou
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Baofeng Feng
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
| | - Xiaofeng Du
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Xin Liu
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China
| | - Jun Ma
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Huixian Cui
- Hebei Medical University-University of Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, 050017, Hebei Province, China.
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Shijiazhuang, 050017, Hebei Province, China.
- Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
16
|
Zhao Y, Xu K, Shu F, Zhang F. Neurotropic virus infection and neurodegenerative diseases: Potential roles of autophagy pathway. CNS Neurosci Ther 2024; 30:e14548. [PMID: 38082503 PMCID: PMC11163195 DOI: 10.1111/cns.14548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 06/11/2024] Open
Abstract
Neurodegenerative diseases (NDs) constitute a group of disorders characterized by the progressive deterioration of nervous system functionality. Currently, the precise etiological factors responsible for NDs remain incompletely elucidated, although it is probable that a combination of aging, genetic predisposition, and environmental stressors participate in this process. Accumulating evidence indicates that viral infections, especially neurotropic viruses, can contribute to the onset and progression of NDs. In this review, emerging evidence supporting the association between viral infection and NDs is summarized, and how the autophagy pathway mediated by viral infection can cause pathological aggregation of cellular proteins associated with various NDs is discussed. Furthermore, autophagy-related genes (ARGs) involved in Herpes simplex virus (HSV-1) infection and NDs are analyzed, and whether these genes could link HSV-1 infection to NDs is discussed. Elucidating the mechanisms underlying NDs is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of NDs.
Collapse
Affiliation(s)
- Yu‐jia Zhao
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Kai‐fei Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| | - Fu‐xing Shu
- Bioresource Institute for Healthy UtilizationZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
17
|
Wu W, Liu Y, Liu R, Wang Y, Zhao Y, Li H, Lu B, Ju C, Gao X, Xu H, Cao Y, Cheng S, Wang Z, Jia S, Hu C, Zhu L, Hao D. Decellularized Brain Extracellular Matrix Hydrogel Aids the Formation of Human Spinal-Cord Organoids Recapitulating the Complex Three-Dimensional Organization. ACS Biomater Sci Eng 2024; 10:3203-3217. [PMID: 38557027 DOI: 10.1021/acsbiomaterials.4c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The intricate electrophysiological functions and anatomical structures of spinal cord tissue render the establishment of in vitro models for spinal cord-related diseases highly challenging. Currently, both in vivo and in vitro models for spinal cord-related diseases are still underdeveloped, complicating the exploration and development of effective therapeutic drugs or strategies. Organoids cultured from human induced pluripotent stem cells (hiPSCs) hold promise as suitable in vitro models for spinal cord-related diseases. However, the cultivation of spinal cord organoids predominantly relies on Matrigel, a matrix derived from murine sarcoma tissue. Tissue-specific extracellular matrices are key drivers of complex organ development, thus underscoring the urgent need to research safer and more physiologically relevant organoid culture materials. Herein, we have prepared a rat decellularized brain extracellular matrix hydrogel (DBECMH), which supports the formation of hiPSC-derived spinal cord organoids. Compared with Matrigel, organoids cultured in DBECMH exhibited higher expression levels of markers from multiple compartments of the natural spinal cord, facilitating the development and maturation of spinal cord organoid tissues. Our study suggests that DBECMH holds potential to replace Matrigel as the standard culture medium for human spinal cord organoids, thereby advancing the development of spinal cord organoid culture protocols and their application in in vitro modeling of spinal cord-related diseases.
Collapse
Affiliation(s)
- Weidong Wu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Youjun Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Renfeng Liu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Yuhao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Yuqi Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Hui Li
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Botao Lu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Cheng Ju
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Xinlin Gao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Hailiang Xu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Yulin Cao
- Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair of Tianjin Economic-Technological Development Area, No. 220 DongTing Road, TEDA District, Tianjin 300457, China
- TANGYI Biomedicine (Tianjin) Co., Ltd. (TBMed), No. 286 Anshan West Road, Nankai District, Tianjin 300190, China
| | - Shixiang Cheng
- Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair of Tianjin Economic-Technological Development Area, No. 220 DongTing Road, TEDA District, Tianjin 300457, China
- TANGYI Biomedicine (Tianjin) Co., Ltd. (TBMed), No. 286 Anshan West Road, Nankai District, Tianjin 300190, China
| | - Zhiyuan Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Shuaijun Jia
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Chunping Hu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Lei Zhu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| | - Dingjun Hao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
- Shaanxi Key Laboratory of Spine Bionic Treatment, Youyi East Road No. 555, Beilin District, Xi'an, Shaanxi, China 710001
| |
Collapse
|
18
|
Han X, Cai C, Deng W, Shi Y, Li L, Wang C, Zhang J, Rong M, Liu J, Fang B, He H, Liu X, Deng C, He X, Cao X. Landscape of human organoids: Ideal model in clinics and research. Innovation (N Y) 2024; 5:100620. [PMID: 38706954 PMCID: PMC11066475 DOI: 10.1016/j.xinn.2024.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
In the last decade, organoid research has entered a golden era, signifying a pivotal shift in the biomedical landscape. The year 2023 marked a milestone with the publication of thousands of papers in this arena, reflecting exponential growth. However, amid this burgeoning expansion, a comprehensive and accurate overview of the field has been conspicuously absent. Our review is intended to bridge this gap, providing a panoramic view of the rapidly evolving organoid landscape. We meticulously analyze the organoid field from eight distinctive vantage points, harnessing our rich experience in academic research, industrial application, and clinical practice. We present a deep exploration of the advances in organoid technology, underpinned by our long-standing involvement in this arena. Our narrative traverses the historical genesis of organoids and their transformative impact across various biomedical sectors, including oncology, toxicology, and drug development. We delve into the synergy between organoids and avant-garde technologies such as synthetic biology and single-cell omics and discuss their pivotal role in tailoring personalized medicine, enhancing high-throughput drug screening, and constructing physiologically pertinent disease models. Our comprehensive analysis and reflective discourse provide a deep dive into the existing landscape and emerging trends in organoid technology. We spotlight technological innovations, methodological evolution, and the broadening spectrum of applications, emphasizing the revolutionary influence of organoids in personalized medicine, oncology, drug discovery, and other fields. Looking ahead, we cautiously anticipate future developments in the field of organoid research, especially its potential implications for personalized patient care, new avenues of drug discovery, and clinical research. We trust that our comprehensive review will be an asset for researchers, clinicians, and patients with keen interest in personalized medical strategies. We offer a broad view of the present and prospective capabilities of organoid technology, encompassing a wide range of current and future applications. In summary, in this review we attempt a comprehensive exploration of the organoid field. We offer reflections, summaries, and projections that might be useful for current researchers and clinicians, and we hope to contribute to shaping the evolving trajectory of this dynamic and rapidly advancing field.
Collapse
Affiliation(s)
- Xinxin Han
- Organ Regeneration X Lab, Lisheng East China Institute of Biotechnology, Peking University, Jiangsu 226200, China
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Chunhui Cai
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Wei Deng
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Yanghua Shi
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Lanyang Li
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Chen Wang
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Jian Zhang
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Mingjie Rong
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Jiping Liu
- Shanghai Lisheng Biotech, Shanghai 200092, China
| | - Bangjiang Fang
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wanping South Road, Xuhui District, Shanghai 200032, China
| | - Hua He
- Department of Neurosurgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China
| | - Xiling Liu
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Ministry of Justice, Shanghai 200063, China
| | - Chuxia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| | - Xiao He
- CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai 200032, China
| |
Collapse
|
19
|
Sun W, Liu SH, Wei XJ, Sun H, Ma ZW, Yu XF. Potential of neuroimaging as a biomarker in amyotrophic lateral sclerosis: from structure to metabolism. J Neurol 2024; 271:2238-2257. [PMID: 38367047 DOI: 10.1007/s00415-024-12201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by motor neuron degeneration. The development of ALS involves metabolite alterations leading to tissue lesions in the nervous system. Recent advances in neuroimaging have significantly improved our understanding of the underlying pathophysiology of ALS, with findings supporting the corticoefferent axonal disease progression theory. Current studies on neuroimaging in ALS have demonstrated inconsistencies, which may be due to small sample sizes, insufficient statistical power, overinterpretation of findings, and the inherent heterogeneity of ALS. Deriving meaningful conclusions solely from individual imaging metrics in ALS studies remains challenging, and integrating multimodal imaging techniques shows promise for detecting valuable ALS biomarkers. In addition to giving an overview of the principles and techniques of different neuroimaging modalities, this review describes the potential of neuroimaging biomarkers in the diagnosis and prognostication of ALS. We provide an insight into the underlying pathology, highlighting the need for standardized protocols and multicenter collaborations to advance ALS research.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Si-Han Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiao-Jing Wei
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hui Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Wei Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xue-Fan Yu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
20
|
Pazzin DB, Previato TTR, Budelon Gonçalves JI, Zanirati G, Xavier FAC, da Costa JC, Marinowic DR. Induced Pluripotent Stem Cells and Organoids in Advancing Neuropathology Research and Therapies. Cells 2024; 13:745. [PMID: 38727281 PMCID: PMC11083827 DOI: 10.3390/cells13090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review delves into the groundbreaking impact of induced pluripotent stem cells (iPSCs) and three-dimensional organoid models in propelling forward neuropathology research. With a focus on neurodegenerative diseases, neuromotor disorders, and related conditions, iPSCs provide a platform for personalized disease modeling, holding significant potential for regenerative therapy and drug discovery. The adaptability of iPSCs, along with associated methodologies, enables the generation of various types of neural cell differentiations and their integration into three-dimensional organoid models, effectively replicating complex tissue structures in vitro. Key advancements in organoid and iPSC generation protocols, alongside the careful selection of donor cell types, are emphasized as critical steps in harnessing these technologies to mitigate tumorigenic risks and other hurdles. Encouragingly, iPSCs show promising outcomes in regenerative therapies, as evidenced by their successful application in animal models.
Collapse
Affiliation(s)
- Douglas Bottega Pazzin
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Pediatrics and Child Health, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - Thales Thor Ramos Previato
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Fernando Antonio Costa Xavier
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90610-000, Brazil; (D.B.P.); (T.T.R.P.); (J.I.B.G.); (G.Z.); (F.A.C.X.); (J.C.d.C.)
| |
Collapse
|
21
|
De Cock L, Bercier V, Van Den Bosch L. New developments in pre-clinical models of ALS to guide translation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:477-524. [PMID: 38802181 DOI: 10.1016/bs.irn.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder in which selective death of motor neurons leads to muscle weakness and paralysis. Most research has focused on understanding and treating monogenic familial forms, most frequently caused by mutations in SOD1, FUS, TARDBP and C9orf72, although ALS is mostly sporadic and without a clear genetic cause. Rodent models have been developed to study monogenic ALS, but despite numerous pre-clinical studies and clinical trials, few disease-modifying therapies are available. ALS is a heterogeneous disease with complex underlying mechanisms where several genes and molecular pathways appear to play a role. One reason for the high failure rate of clinical translation from the current models could be oversimplification in pre-clinical studies. Here, we review advances in pre-clinical models to better capture the heterogeneous nature of ALS and discuss the value of novel model systems to guide translation and aid in the development of precision medicine.
Collapse
Affiliation(s)
- Lenja De Cock
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain-University of Leuven, Leuven, Belgium; Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain-University of Leuven, Leuven, Belgium; Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain-University of Leuven, Leuven, Belgium; Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium.
| |
Collapse
|
22
|
Wang X, Hu Y, Xu R. The pathogenic mechanism of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis. Neural Regen Res 2024; 19:800-806. [PMID: 37843214 PMCID: PMC10664110 DOI: 10.4103/1673-5374.382233] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 10/17/2023] Open
Abstract
The onset of amyotrophic lateral sclerosis is usually characterized by focal death of both upper and/or lower motor neurons occurring in the motor cortex, basal ganglia, brainstem, and spinal cord, and commonly involves the muscles of the upper and/or lower extremities, and the muscles of the bulbar and/or respiratory regions. However, as the disease progresses, it affects the adjacent body regions, leading to generalized muscle weakness, occasionally along with memory, cognitive, behavioral, and language impairments; respiratory dysfunction occurs at the final stage of the disease. The disease has a complicated pathophysiology and currently, only riluzole, edaravone, and phenylbutyrate/taurursodiol are licensed to treat amyotrophic lateral sclerosis in many industrialized countries. The TAR DNA-binding protein 43 inclusions are observed in 97% of those diagnosed with amyotrophic lateral sclerosis. This review provides a preliminary overview of the potential effects of TAR DNA-binding protein 43 in the pathogenesis of amyotrophic lateral sclerosis, including the abnormalities in nucleoplasmic transport, RNA function, post-translational modification, liquid-liquid phase separation, stress granules, mitochondrial dysfunction, oxidative stress, axonal transport, protein quality control system, and non-cellular autonomous functions (e.g., glial cell functions and prion-like propagation).
Collapse
Affiliation(s)
- Xinxin Wang
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Yushu Hu
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| | - Renshi Xu
- Medical College of Nanchang University, Nanchang, Jiangxi Province, China
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, The Clinical College of Nanchang Medical College, Nanchang, Jiangxi Province, China
| |
Collapse
|
23
|
Cuevas EP, Martinez-Gonzalez L, Gordillo C, Tosat-Bitrián C, Pérez de la Lastra C, Sáenz A, Gil C, Palomo V, Martin-Requero Á, Martinez A. Casein kinase 1 inhibitor avoids TDP-43 pathology propagation in a patient-derived cellular model of amyotrophic lateral sclerosis. Neurobiol Dis 2024; 192:106430. [PMID: 38325718 DOI: 10.1016/j.nbd.2024.106430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease without a cure to reverse its progression. Its main hallmark is the nuclear protein TDP-43, which undergoes different post-translational modifications leading to a loss of function in the nucleus and an increase in toxicity in the cytoplasm. Previous reports have indicated that pathogenic TDP-43 exhibits prion-like propagation in various contexts. With the aim of advancing therapeutics focused on preventing the propagation of TDP-43 pathology, we studied the potential role of pathogenic TDP-43 in lymphoblasts from sporadic ALS patients. We used lymphoblastoid cell lines from sporadic ALS patients as a source of pathogenic forms of TDP-43, and healthy human cells (lymphoblasts, myoblasts, neuroblastoma SH-SY5Y, or osteosarcoma U2OS) as recipient cells to investigate the seeding and spread of TDP-43 proteinopathy. Furthermore, we evaluated the potential of targeting TDP-43 phosphorylation with a CK-1 inhibitor to prevent the propagation of the pathology. The results presented herein indicate that pathogenic forms of TDP-43 are secreted into the extracellular medium of sporadic ALS lymphoblasts and could be transported by extracellular vesicles, spreading TDP-43 pathology to healthy cells. Moreover, tunneling nanotubes have also been discovered in pathological cells and may be involved in the transport of TDP-43. Interestingly, targeting TDP-43 phosphorylation with an in-house designed CK-1 inhibitor (IGS2.7) was sufficient to halt TDP-43 pathology transmission, in addition to its known effects on restoring the homeostasis of TDP-43 protein in patients-derived cells.
Collapse
Affiliation(s)
- Eva P Cuevas
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Loreto Martinez-Gonzalez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Clara Gordillo
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Carmen Pérez de la Lastra
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), C/Faraday 9, Cantoblanco, 28049 Madrid, Spain
| | - Amets Sáenz
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Biodonostia Health Research Institute, Neurosciences Area, 20014 San Sebastian, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Valle Palomo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain; Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), C/Faraday 9, Cantoblanco, 28049 Madrid, Spain
| | - Ángeles Martin-Requero
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, (CIBERNED), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
24
|
Ray SK. TUNEL-n-DIFL Method for Detection and Estimation of Apoptosis Specifically in Neurons and Glial Cells in Mixed Culture and Animal Models of Central Nervous System Diseases and Injuries. Methods Mol Biol 2024; 2761:1-26. [PMID: 38427225 DOI: 10.1007/978-1-0716-3662-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Detection of merely apoptosis does not reveal the type of central nervous system (CNS) cells that are dying in the CNS diseases and injuries. In situ detection and estimation of amount of apoptosis specifically in neurons or glial cells (astrocytes, oligodendrocytes, and microglia) can unveil valuable information for designing therapeutics for protection of the CNS cells and functional recovery. A method was first developed and reported from our laboratory for in situ detection and estimation of amount of apoptosis precisely in neurons and glial cells using in vitro and in vivo models of CNS diseases and injuries. This is a combination of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and double immunofluorescent labeling (DIFL) or simply TUNEL-n-DIFL method for in situ detection and estimation of amount of apoptosis in a specific CNS cell type. An anti-digoxigenin (DIG) IgG antibody conjugated with 7-amino-4-methylcoumarin-3-acetic acid (AMCA) for blue fluorescence, fluorescein isothiocyanate (FITC) for green fluorescence, or Texas Red (TR) for red fluorescence can be used for in situ detection of apoptotic cell DNA, which is earlier labeled with TUNEL using alkali-stable DIG-11-dUTP. A primary anti-NeuN (neurons), anti-GFAP (astrocytes), anti-MBP (oligodendrocytes), or anti-OX-42 (microglia) IgG antibody and a secondary IgG antibody conjugated with one of the above fluorophores (other than that of ani-DIG antibody) are used for in situ detection of apoptosis in a specific CNS cell type in the mixed culture and animal models of the CNS diseases and injuries.
Collapse
Affiliation(s)
- Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
25
|
Eisen A, Vucic S, Mitsumoto H. History of ALS and the competing theories on pathogenesis: IFCN handbook chapter. Clin Neurophysiol Pract 2023; 9:1-12. [PMID: 38213309 PMCID: PMC10776891 DOI: 10.1016/j.cnp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the human motor system, first described in the 19th Century. The etiology of ALS appears to be multifactorial, with a complex interaction of genetic, epigenetic, and environmental factors underlying the onset of disease. Importantly, there are no known naturally occurring animal models, and transgenic mouse models fail to faithfully reproduce ALS as it manifests in patients. Debate as to the site of onset of ALS remain, with three competing theories proposed, including (i) the dying-forward hypothesis, whereby motor neuron degeneration is mediated by hyperexcitable corticomotoneurons via an anterograde transsynaptic excitotoxic mechanism, (ii) dying-back hypothesis, proposing the ALS begins in the peripheral nervous system with a toxic factor(s) retrogradely transported into the central nervous system and mediating upper motor neuron dysfunction, and (iii) independent hypothesis, suggesting that upper and lower motor neuron degenerated independently. Transcranial magnetic stimulation studies, along with pathological and genetic findings have supported the dying forward hypothesis theory, although the science is yet to be settled. The review provides a historical overview of ALS, discusses phenotypes and likely pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Steve Vucic
- Director Brain and Nerve Research Center, Clinical School, University of Sydney, Australia
| | - Hiroshi Mitsumoto
- Wesley J. Howe Professor of Neurology, Columbia University, The Neurological Institute of New York, and New York-Presbyterian Hospital/Columbia University Medical Center, United States
| |
Collapse
|
26
|
Zhou Z, Kim J, Huang AY, Nolan M, Park J, Doan R, Shin T, Miller MB, Chhouk B, Morillo K, Yeh RC, Kenny C, Neil JE, Lee CZ, Ohkubo T, Ravits J, Ansorge O, Ostrow LW, Lagier-Tourenne C, Lee EA, Walsh CA. Somatic Mosaicism in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Reveals Widespread Degeneration from Focal Mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569436. [PMID: 38077003 PMCID: PMC10705414 DOI: 10.1101/2023.11.30.569436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Although mutations in dozens of genes have been implicated in familial forms of amyotrophic lateral sclerosis (fALS) and frontotemporal degeneration (fFTD), most cases of these conditions are sporadic (sALS and sFTD), with no family history, and their etiology remains obscure. We tested the hypothesis that somatic mosaic mutations, present in some but not all cells, might contribute in these cases, by performing ultra-deep, targeted sequencing of 88 genes associated with neurodegenerative diseases in postmortem brain and spinal cord samples from 404 individuals with sALS or sFTD and 144 controls. Known pathogenic germline mutations were found in 20.6% of ALS, and 26.5% of FTD cases. Predicted pathogenic somatic mutations in ALS/FTD genes were observed in 2.7% of sALS and sFTD cases that did not carry known pathogenic or novel germline mutations. Somatic mutations showed low variant allele fraction (typically <2%) and were often restricted to the region of initial discovery, preventing detection through genetic screening in peripheral tissues. Damaging somatic mutations were preferentially enriched in primary motor cortex of sALS and prefrontal cortex of sFTD, mirroring regions most severely affected in each disease. Somatic mutation analysis of bulk RNA-seq data from brain and spinal cord from an additional 143 sALS cases and 23 controls confirmed an overall enrichment of somatic mutations in sALS. Two adult sALS cases were identified bearing pathogenic somatic mutations in DYNC1H1 and LMNA, two genes associated with pediatric motor neuron degeneration. Our study suggests that somatic mutations in fALS/fFTD genes, and in genes associated with more severe diseases in the germline state, contribute to sALS and sFTD, and that mosaic mutations in a small fraction of cells in focal regions of the nervous system can ultimately result in widespread degeneration.
Collapse
Affiliation(s)
- Zinan Zhou
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Junho Kim
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - August Yue Huang
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew Nolan
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Junseok Park
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Ryan Doan
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Taehwan Shin
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael B. Miller
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Chhouk
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Katherine Morillo
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Rebecca C. Yeh
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Connor Kenny
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jennifer E. Neil
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| | - Chao-Zong Lee
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Takuya Ohkubo
- Department of Neurology, Yokohama City Minato Red Cross Hospital, Yokohama, Kanagawa, Japan
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Lyle W. Ostrow
- Department of Neurology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
27
|
Audrain M, Egesipe AL, Tentillier N, Font L, Ratnam M, Mottier L, Clavel M, Le Roux-Bourdieu M, Fenyi A, Ollier R, Chevalier E, Guilhot F, Fuchs A, Piorkowska K, Carlyle B, Arnold SE, Berry JD, Luthi-Carter R, Adolfsson O, Pfeifer A, Kosco-Vilbois M, Seredenina T, Afroz T. Targeting amyotrophic lateral sclerosis by neutralizing seeding-competent TDP-43 in CSF. Brain Commun 2023; 5:fcad306. [PMID: 38025276 PMCID: PMC10644982 DOI: 10.1093/braincomms/fcad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/08/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
In amyotrophic lateral sclerosis, a disease driven by abnormal transactive response DNA-binding protein of 43 kDa aggregation, CSF may contain pathological species of transactive response DNA-binding protein of 43 kDa contributing to the propagation of pathology and neuronal toxicity. These species, released in part by degenerating neurons, would act as a template for the aggregation of physiological protein contributing to the spread of pathology in the brain and spinal cord. In this study, a robust seed amplification assay was established to assess the presence of seeding-competent transactive response DNA-binding protein of 43 kDa species in CSF of apparently sporadic amyotrophic lateral sclerosis patients. These samples resulted in a significant acceleration of substrate aggregation differentiating the kinetics from healthy controls. In parallel, a second assay was developed to determine the level of target engagement that would be necessary to neutralize such species in human CSF by a therapeutic monoclonal antibody targeting transactive response DNA-binding protein of 43 kDa. For this, evaluation of the pharmacokinetic/pharmacodynamic effect for the monoclonal antibody, ACI-5891.9, in vivo and in vitro confirmed that a CSF concentration of ≍1100 ng/mL would be sufficient for sustained target saturation. Using this concentration in the seed amplification assay, ACI-5891.9 was able to neutralize the transactive response DNA-binding protein of 43 kDa pathogenic seeds derived from amyotrophic lateral sclerosis patient CSF. This translational work adds to the evidence of transmission of transactive response DNA-binding protein of 43 kDa pathology via CSF that could contribute to the non-contiguous pattern of clinical manifestations observed in amyotrophic lateral sclerosis and demonstrates the ability of a therapeutic monoclonal antibody to neutralize the toxic, extracellular seeding-competent transactive response DNA-binding protein of 43 kDa species in the CSF of apparently sporadic amyotrophic lateral sclerosis patients.
Collapse
Affiliation(s)
| | | | | | - Laure Font
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| | | | | | | | | | - Alexis Fenyi
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| | | | | | | | - Aline Fuchs
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| | | | - Becky Carlyle
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Steven E Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - James D Berry
- Sean M. Healey & AMG Center for ALS & the Neurological Clinical Research Institute, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | - Tariq Afroz
- Research, AC Immune SA, 1015 Lausanne, Switzerland
| |
Collapse
|
28
|
Yabata H, Riku Y, Miyahara H, Akagi A, Sone J, Urushitani M, Yoshida M, Iwasaki Y. Nuclear Expression of TDP-43 Is Linked with Morphology and Ubiquitylation of Cytoplasmic Aggregates in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:12176. [PMID: 37569549 PMCID: PMC10418808 DOI: 10.3390/ijms241512176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The transactive response DNA-binding protein of 43 kDa (TDP-43) is a pathological protein of amyotrophic lateral sclerosis (ALS). TDP-43 pathology is characterized by a combination of the cytoplasmic aggregation and nuclear clearance of this protein. However, the mechanisms underlying TDP-43 pathology have not been fully clarified. The aim of this study was to evaluate the relationships between the expression level of nuclear TDP-43 and the pathological properties of cytoplasmic aggregates in autopsied ALS cases. We included 22 consecutively autopsied cases with sporadic TDP-43-related ALS. The motor neuron systems were neuropathologically assessed. We identified 790 neurons with cytoplasmic TDP-43 inclusions from the lower motor neuron system of included cases. Nuclear TDP-43 disappeared in 84% (n = 660) and expressed in 16% (n = 130) of neurons with cytoplasmic inclusions; the former was defined as TDP-43 cytoplasmic immunoreactivity (c-ir), and the latter was defined as nuclear and cytoplasmic immunoreactivity (n/c-ir). Morphologically, diffuse cytoplasmic inclusions were significantly more prevalent in TDP-43 n/c-ir neurons than in c-ir neurons, while skein-like and round inclusions were less prevalent in n/c-ir neurons. The cytoplasmic inclusions of TDP-43 n/c-ir neurons were phosphorylated but poorly ubiquitylated when compared with those of c-ir neurons. TDP-43 n/c-ir neurons became less dominant than the c-ir neurons among cases with a prolonged disease duration. The expression level of nuclear TDP-43 was significantly lower in n/c-ir neurons than in normal neurons without cytoplasmic inclusions. Our results indicate that the maturation of cytoplasmic TDP-43 inclusions correlates with the depletion of nuclear TDP-43 in each affected neuron. This finding supports the view that an imbalance between nuclear and cytoplasmic TDP-43 may be an essential pathway to TDP-43 pathology.
Collapse
Grants
- JP20K16586, JP22K07359, JP23K06935 JSPS KAKENHI
- JP20ek0109392, JP20ek0109391 AMED
- (30-8) Intramural Research Grant for Neurological and Psychiatric Disorders of NCNP
- not applicable Grants-in-Aid from the Research Committee of CNS Degenerative Diseases, Research on Policy Planning and Evaluation for Rare and Intractable Diseases, Health, Labour, and Welfare Sciences Research Grants, the Ministry of Health, Labour, and Welfare, Japan
Collapse
Affiliation(s)
- Hiroyuki Yabata
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Yuichi Riku
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
- Department of Neurology, Nagoya University, Nagoya 466-8550, Aichi, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Shiga, Japan;
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute 480-1195, Aichi, Japan; (H.Y.); (H.M.); (A.A.); (J.S.); (M.Y.); (Y.I.)
| |
Collapse
|
29
|
Arnold FJ, Nguyen AD, Bedlack RS, Bennett CL, La Spada AR. Intercellular transmission of pathogenic proteins in ALS: Exploring the pathogenic wave. Neurobiol Dis 2023:106218. [PMID: 37394036 DOI: 10.1016/j.nbd.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
In patients with amyotrophic lateral sclerosis (ALS), disease symptoms and pathology typically spread in a predictable spatiotemporal pattern beginning at a focal site of onset and progressing along defined neuroanatomical tracts. Like other neurodegenerative diseases, ALS is characterized by the presence of protein aggregates in postmortem patient tissue. Cytoplasmic, ubiquitin-positive aggregates of TDP-43 are observed in approximately 97% of sporadic and familial ALS patients, while SOD1 inclusions are likely specific to cases of SOD1-ALS. Additionally, the most common subtype of familial ALS, caused by a hexanucleotide repeat expansion in the first intron of the C9orf72 gene (C9-ALS), is further characterized by the presence of aggregated dipeptide repeat proteins (DPRs). As we will describe, cell-to-cell propagation of these pathological proteins tightly correlates with the contiguous spread of disease. While TDP-43 and SOD1 are capable of seeding protein misfolding and aggregation in a prion-like manner, C9orf72 DPRs appear to induce (and transmit) a 'disease state' more generally. Multiple mechanisms of intercellular transport have been described for all of these proteins, including anterograde and retrograde axonal transport, extracellular vesicle secretion, and macropinocytosis. In addition to neuron-to-neuron transmission, transmission of pathological proteins occurs between neurons and glia. Given that the spread of ALS disease pathology corresponds with the spread of symptoms in patients, the various mechanisms by which ALS-associated protein aggregates propagate through the central nervous system should be closely examined.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - R S Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
30
|
Vidovic M, Müschen LH, Brakemeier S, Machetanz G, Naumann M, Castro-Gomez S. Current State and Future Directions in the Diagnosis of Amyotrophic Lateral Sclerosis. Cells 2023; 12:736. [PMID: 36899872 PMCID: PMC10000757 DOI: 10.3390/cells12050736] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons, resulting in progressive weakness of all voluntary muscles and eventual respiratory failure. Non-motor symptoms, such as cognitive and behavioral changes, frequently occur over the course of the disease. Considering its poor prognosis with a median survival time of 2 to 4 years and limited causal treatment options, an early diagnosis of ALS plays an essential role. In the past, diagnosis has primarily been determined by clinical findings supported by electrophysiological and laboratory measurements. To increase diagnostic accuracy, reduce diagnostic delay, optimize stratification in clinical trials and provide quantitative monitoring of disease progression and treatment responsivity, research on disease-specific and feasible fluid biomarkers, such as neurofilaments, has been intensely pursued. Advances in imaging techniques have additionally yielded diagnostic benefits. Growing perception and greater availability of genetic testing facilitate early identification of pathogenic ALS-related gene mutations, predictive testing and access to novel therapeutic agents in clinical trials addressing disease-modified therapies before the advent of the first clinical symptoms. Lately, personalized survival prediction models have been proposed to offer a more detailed disclosure of the prognosis for the patient. In this review, the established procedures and future directions in the diagnostics of ALS are summarized to serve as a practical guideline and to improve the diagnostic pathway of this burdensome disease.
Collapse
Affiliation(s)
- Maximilian Vidovic
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Svenja Brakemeier
- Department of Neurology and Center for Translational Neuro and Behavioral Sciences (C-TNBS), University Hospital Essen, 45147 Essen, Germany
| | - Gerrit Machetanz
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Marcel Naumann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center, University of Rostock, 18147 Rostock, Germany
| | - Sergio Castro-Gomez
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Neurology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Department of Neuroimmunology, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|