1
|
Forman D, Yang M, Chien R, Nguyen H, Wong C, Kim JHJ, Ziogas A, Park HL. ALDH2 Deficiency and Alcohol Intake in the United States: Opportunity for Precision Cancer Prevention. Cancer Epidemiol Biomarkers Prev 2025; 34:744-753. [PMID: 40063522 DOI: 10.1158/1055-9965.epi-24-1296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/26/2024] [Accepted: 03/06/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Alcoholic beverages and the main metabolite of alcohol, acetaldehyde, are known carcinogens. A genetic variant in aldehyde dehydrogenase 2 (ALDH2, G>A, rs671) leads to decreased efficiency in metabolizing acetaldehyde and is associated with an increased cancer risk. As alcohol consumption is a modifiable risk factor for various cancers, the identification of ALDH2 deficiency presents an opportunity for precision cancer prevention. METHODS Our primary objectives were to examine the prevalence of ALDH2 deficiency and alcohol consumption behavior among affected individuals within a large, diverse US national cohort. The prevalence of ALDH2 deficiency was determined by examining the rs671 genotype among 311,290 participants within the All of Us Research Program. Relationships among self-reported alcohol consumption, sociodemographic factors, and the rs671 genotype were analyzed. RESULTS ALDH2 deficiency was most prevalent among individuals who identified as Asian, among whom 23.5% had at least one deficient ALDH2 allele compared with <2.5% in all other racial/ethnic groups. Among those with one and two deficient ALDH2 alleles, 61.2% and 24.4% reported drinking in the past year, respectively, and of these, 30.3% and 16.0% reported binge drinking. Multivariable analysis showed that ALDH2 genotype, sex, age, race, education, income, employment, marital status, and country of birth were associated with alcohol consumption behavior. CONCLUSIONS Most individuals with ALDH2 deficiency reported drinking alcohol in the past year, and consumption was associated with various sociodemographic variables, particularly sex, age, and country of birth. IMPACT Our findings suggest a significant opportunity for precision cancer prevention targeting the unique prevalence of ALDH2 deficiency among Asian Americans.
Collapse
Affiliation(s)
- Danielle Forman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California
| | - Manxi Yang
- Department of Epidemiology and Biostatistics, University of California, Irvine, California
| | - Ryan Chien
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California
| | - Hester Nguyen
- Department of Statistics, University of California, Irvine, California
| | - Caressa Wong
- Department of Biological Sciences, University of California, Irvine, California
| | | | - Argyrios Ziogas
- Department of Medicine, University of California, Irvine, California
| | - Hannah Lui Park
- Department of Epidemiology and Biostatistics, University of California, Irvine, California
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California
| |
Collapse
|
2
|
Porcher L, Vijayraghavan S, Patel Y, Becker S, Blouin T, McCollum J, Mieczkowski PA, Saini N. Multiple DNA repair pathways prevent acetaldehyde-induced mutagenesis in yeast. Genetics 2025; 229:iyae213. [PMID: 39707916 PMCID: PMC12005267 DOI: 10.1093/genetics/iyae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024] Open
Abstract
Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources, including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers. Moreover, a mutation signature specific to acetaldehyde exposure is widespread in alcohol- and smoking-associated cancers. However, the pathways that repair acetaldehyde-induced DNA damage and thus prevent mutagenesis are vaguely understood. Here, we used Saccharomyces cerevisiae to delete genes in each of the major DNA repair pathways to identify those that alter acetaldehyde-induced mutagenesis. We observed that loss of functional nucleotide excision repair had the largest effect on acetaldehyde mutagenesis. In addition, base excision repair and DNA protein crosslink repair pathways were involved in modulating acetaldehyde mutagenesis, while mismatch repair, homologous recombination, and postreplication repair are dispensable for acetaldehyde mutagenesis. Acetaldehyde-induced mutations in a nucleotide excision repair-deficient (Δrad1) background were dependent on translesion synthesis and DNA interstrand crosslink repair. Moreover, whole-genome sequencing of the mutated isolates demonstrated an increase in C→A changes coupled with an enrichment of gCn→A changes, which is diagnostic of acetaldehyde exposure in yeast and in human cancers. Finally, downregulation of the leading strand replicative polymerase Pol epsilon, but not the lagging strand polymerase, resulted in increased acetaldehyde mutagenesis, indicating that lesions are likely formed on the leading strand. Our findings demonstrate that multiple DNA repair pathways coordinate to prevent acetaldehyde-induced mutagenesis.
Collapse
Affiliation(s)
- Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yashvi Patel
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Samuel Becker
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Thomas Blouin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James McCollum
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Sato S, Ohata E, Nakatani E, Hawke P, Sasaki H, Nagai E, Taki Y, Nishida M, Watanabe M, Ohata K, Kanemoto H, Sugawara A. High mean corpuscular volume as a predictor of esophageal cancer: A cohort study based on the Japanese Shizuoka Kokuho Database. PLoS One 2025; 20:e0318791. [PMID: 39932963 PMCID: PMC11813134 DOI: 10.1371/journal.pone.0318791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Mean corpuscular volume (MCV) is known to increase with alcohol and tobacco consumption, and is therefore a potential predictive marker for esophageal cancer onset. However, this potential has not previously been examined using a large database. This study aims to clarify whether MCV is a predictor of esophageal cancer onset using health checkup data from a comprehensive health insurance claims database of a major administrative district in Japan. Health checkup data for 582,342 individuals recorded between April 2012 and September 2020 in the Shizuoka Kokuho Database were analyzed. Risk factors were assessed using both univariable and multivariable Cox proportional hazards models. Within the cohort, 1,562 health checkup participants (0.27%) had been diagnosed with esophageal cancer during the study period. Multivariable analysis revealed that risk of esophageal cancer onset was predicted by hypertension, smoking, systolic blood pressure, alcohol consumption, alcohol use disorder, body mass index, low-density lipoprotein cholesterol, and MCV. The cutoff value of MCV for predicting esophageal cancer onset was 104.086 fl. These results suggest that it may be appropriate to carry out endoscopy to detect esophageal cancer when MCV, a well-known indicator of alcohol and tobacco consumption, is greater than 104 fl.
Collapse
Affiliation(s)
- Shinsuke Sato
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Emi Ohata
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Department of Academic Services, Tokyo, Japan
| | - Eiji Nakatani
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
- Department of Biostatistics and Health Data Science, Graduate School of Medical Science, Nagoya City University, Nagoya, Japan
| | - Philip Hawke
- School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Hatoko Sasaki
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Erina Nagai
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Yusuke Taki
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Masato Nishida
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Masaya Watanabe
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Ko Ohata
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Hideyuki Kanemoto
- Department of Gastroenterological Surgery, Shizuoka General Hospital, Shizuoka, Japan
| | - Akira Sugawara
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| |
Collapse
|
4
|
Wang K, Tobias B, Pany-Kucera D, Berner M, Eggers S, Gnecchi-Ruscone GA, Zlámalová D, Gretzinger J, Ingrová P, Rohrlach AB, Tuke J, Traverso L, Klostermann P, Koger R, Friedrich R, Wiltschke-Schrotta K, Kirchengast S, Liccardo S, Wabnitz S, Vida T, Geary PJ, Daim F, Pohl W, Krause J, Hofmanová Z. Ancient DNA reveals reproductive barrier despite shared Avar-period culture. Nature 2025; 638:1007-1014. [PMID: 39814885 PMCID: PMC11864967 DOI: 10.1038/s41586-024-08418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 11/18/2024] [Indexed: 01/18/2025]
Abstract
After a long-distance migration, Avars with Eastern Asian ancestry arrived in Eastern Central Europe in 567 to 568 CE and encountered groups with very different European ancestry1,2. We used ancient genome-wide data of 722 individuals and fine-grained interdisciplinary analysis of large seventh- to eighth-century CE neighbouring cemeteries south of Vienna (Austria) to address the centuries-long impact of this encounter1,2. We found that even 200 years after immigration, the ancestry at one site (Leobersdorf) remained dominantly East Asian-like, whereas the other site (Mödling) shows local, European-like ancestry. These two nearby sites show little biological relatedness, despite sharing a distinctive late-Avar culture3,4. We reconstructed six-generation pedigrees at both sites including up to 450 closely related individuals, allowing per-generation demographic profiling of the communities. Despite different ancestry, these pedigrees together with large networks of distant relatedness show absence of consanguinity, patrilineal pattern with female exogamy, multiple reproductive partnerships (for example, levirate) and direct correlation of biological connectivity with archaeological markers of social status. The generation-long genetic barrier was maintained by systematically choosing partners with similar ancestry from other sites in the Avar realm. Leobersdorf had more biological connections with the Avar heartlands than with Mödling, which is instead linked to another site from the Vienna Basin with European-like ancestry. Mobility between sites was mostly due to female exogamy pointing to different marriage networks as the main driver of the maintenance of the genetic barrier.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, and Human Phenome Institute, Fudan University, Shanghai, China.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China.
| | - Bendeguz Tobias
- Institute of Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Doris Pany-Kucera
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Margit Berner
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Sabine Eggers
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | - Guido Alberto Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czech Republic
| | - Denisa Zlámalová
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czech Republic
| | - Joscha Gretzinger
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Pavlína Ingrová
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czech Republic
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| | - Jonathan Tuke
- School of Computer and Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| | - Luca Traverso
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Paul Klostermann
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
- Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Robin Koger
- Department of Anthropology, Natural History Museum Vienna, Vienna, Austria
| | | | | | - Sylvia Kirchengast
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- HEAS Human Evolution and Archaeological Science Network, University of Vienna, Vienna, Austria
| | - Salvatore Liccardo
- Institute of Medieval Research, Austrian Academy of Sciences, Vienna, Austria
- Institute for Austrian Historical Research, University of Vienna, Vienna, Austria
| | - Sandra Wabnitz
- Institute of Medieval Research, Austrian Academy of Sciences, Vienna, Austria
- Institute for Austrian Historical Research, University of Vienna, Vienna, Austria
| | - Tivadar Vida
- Institute of Archaeological Sciences, ELTE-Eötvös Loránd University, Budapest, Hungary
- Institute of Archaeology, Research Centre for the Humanities, HUN-REN-Hungarian Research Network, Budapest, Hungary
| | | | - Falko Daim
- Institute of Medieval Research, Austrian Academy of Sciences, Vienna, Austria
| | - Walter Pohl
- Institute of Medieval Research, Austrian Academy of Sciences, Vienna, Austria.
- Institute for Austrian Historical Research, University of Vienna, Vienna, Austria.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Department of Archaeology and Museology, Faculty of Arts, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
5
|
Fu Y, Maccioni L, Wang XW, Greten TF, Gao B. Alcohol-associated liver cancer. Hepatology 2024; 80:1462-1479. [PMID: 38607725 DOI: 10.1097/hep.0000000000000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Heavy alcohol intake induces a wide spectrum of liver diseases ranging from steatosis, steatohepatitis, cirrhosis, and HCC. Although alcohol consumption is a well-known risk factor for the development, morbidity, and mortality of HCC globally, alcohol-associated hepatocellular carcinoma (A-HCC) is poorly characterized compared to viral hepatitis-associated HCC. Most A-HCCs develop after alcohol-associated cirrhosis (AC), but the direct carcinogenesis from ethanol and its metabolites to A-HCC remains obscure. The differences between A-HCC and HCCs caused by other etiologies have not been well investigated in terms of clinical prognosis, genetic or epigenetic landscape, molecular mechanisms, and heterogeneity. Moreover, there is a huge gap between basic research and clinical practice due to the lack of preclinical models of A-HCC. In the current review, we discuss the pathogenesis, heterogeneity, preclinical approaches, epigenetic, and genetic profiles of A-HCC, and discuss the current insights into and the prospects for future research on A-HCC. The potential effect of alcohol on cholangiocarcinoma and liver metastasis is also discussed.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tim F Greten
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- Gastrointestinal Malignancies Section, Thoracic and Gastrointestinal Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Chao TH, Lin TH, Cheng CI, Wu YW, Ueng KC, Wu YJ, Lin WW, Leu HB, Cheng HM, Huang CC, Wu CC, Lin CF, Chang WT, Pan WH, Chen PR, Ting KH, Su CH, Chu CS, Chien KL, Yen HW, Wang YC, Su TC, Liu PY, Chang HY, Chen PW, Juang JMJ, Lu YW, Lin PL, Wang CP, Ko YS, Chiang CE, Hou CJY, Wang TD, Lin YH, Huang PH, Chen WJ. 2024 Guidelines of the Taiwan Society of Cardiology on the Primary Prevention of Atherosclerotic Cardiovascular Disease --- Part II. ACTA CARDIOLOGICA SINICA 2024; 40:669-715. [PMID: 39582845 PMCID: PMC11579689 DOI: 10.6515/acs.202411_40(6).20240724b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/24/2024] [Indexed: 11/26/2024]
Abstract
For the primary prevention of atherosclerotic cardiovascular disease (ASCVD), the recommended treatment target for each modifiable risk factor is as follows: reducing body weight by 5-10%; blood pressure < 130/80 mmHg (systolic pressure < 120 mmHg in high-risk individuals); low-density lipoprotein cholesterol (LDL-C) < 100 mg/dL in high-risk individuals, LDL-C < 115 mg/dL in moderate-risk individuals, LDL-C < 130 mg/dL in low-risk individuals, and LDL-C < 160 mg/dL in those with a minimal; complete and persistent abstinence from cigarette smoking; hemoglobin A1C < 7.0%; fulfilling recommended amounts of the six food groups according to the Taiwan food guide; and moderate-intensity physical activity 150 min/wk or vigorous physical activity 75 min/wk. For the primary prevention of ASCVD by pharmacological treatment in individuals with modifiable risk factors/clinical conditions, statins are the first-line therapy for reducing LDL-C levels; some specific anti-diabetic drugs proven to be effective in randomized controlled trials for the primary prevention of ASCVD are recommended in patients with type 2 diabetes mellitus; pharmacological treatment is recommended to assist in weight management for obese patients with a body mass index ≥ 30 kg/m2 (or 27 kg/m2 who also have at least one ASCVD risk factor or obesity-related comorbidity); an angiotensin-converting enzyme inhibitor, a glucagon-like peptide-1 receptor agonist, a sodium-dependent glucose cotransporter-2 inhibitor, and finerenone can be used in diabetic patients with chronic kidney disease for the primary prevention of ASCVD. Of note, healthcare providers are at full discretion in clinical practice, owing to the diversity of individuals and practice, and the availability of resources and facilities.
Collapse
Affiliation(s)
- Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital
- Faculty of Medicine and Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University
| | - Cheng-I Cheng
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung; School of Medicine, College of Medicine, Chang Gung University, Taoyuan
| | - Yen-Wen Wu
- Division of Cardiology, Cardiovascular Medical Center, Far Eastern Memorial Hospital, New Taipei City
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan
| | - Kwo-Chang Ueng
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Yih-Jer Wu
- Department of Medicine and Institute of Biomedical Sciences, MacKay Medical College, New Taipei City
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
| | - Wei-Wen Lin
- Cardiovascular center, Taichung Veterans General Hospital, Taichung
| | - Hsing-Ban Leu
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Healthcare and Management Center
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Hao-Min Cheng
- Ph.D. Program of Interdisciplinary Medicine (PIM), National Yang Ming Chiao Tung University College of Medicine; Division of Faculty Development; Center for Evidence-based Medicine, Taipei Veterans General Hospital; Institute of Public Health; Institute of Health and Welfare Policy, National Yang Ming Chiao Tung University College of Medicine
| | - Chin-Chou Huang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei
| | - Chih-Cheng Wu
- Center of Quality Management, National Taiwan University Hospital Hsinchu Branch, Hsinchu; College of Medicine, National Taiwan University, Taipei; Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan
| | - Chao-Feng Lin
- Department of Medicine, MacKay Medical College, New Taipei City; Department of Cardiology, MacKay Memorial Hospital, Taipei
| | - Wei-Ting Chang
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung; Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan
| | - Wen-Han Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei; Institute of Population Health Sciences, National Health Research Institutes, Miaoli; Institute of Biochemistry and Biotechnology, National Taiwan University
| | - Pey-Rong Chen
- Department of Dietetics, National Taiwan University Hospital, Taipei
| | - Ke-Hsin Ting
- Division of Cardiology, Department of Internal Medicine, Yunlin Christian Hospital, Yunlin
| | - Chun-Hung Su
- Division of Cardiology, Department of Internal Medicine, Chung-Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung
| | - Chih-Sheng Chu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University; Department of Internal Medicine, National Taiwan University Hospital and College of Medicine; Population Health Research Center, National Taiwan University, Taipei
| | - Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine Kaohsiung Medical University Hospital
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital; Department of Medical Laboratory Science and Biotechnology, Asia University; Division of Cardiology, China Medical University College of Medicine and Hospital, Taichung
| | - Ta-Chen Su
- Cardiovascular Center, Department of Internal Medicine, National Taiwan University Hospital
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine
| | - Pang-Yen Liu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Po-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan
| | - Jyh-Ming Jimmy Juang
- Heart Failure Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine, and National Taiwan University Hospital
| | - Ya-Wen Lu
- Cardiovascular center, Taichung Veterans General Hospital, Taichung
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei
| | - Po-Lin Lin
- Division of Cardiology, Department of Internal Medicine, Hsinchu MacKay Memorial Hospital, Hsinchu
| | - Chao-Ping Wang
- Division of Cardiology, E-Da Hospital; School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung
| | - Yu-Shien Ko
- Cardiovascular Division, Chang Gung Memorial Hospital; College of Medicine, Chang Gung University, Taoyuan
| | - Chern-En Chiang
- General Clinical Research Center and Division of Cardiology, Taipei Veterans General Hospital and National Yang Ming Chiao Tung University
| | - Charles Jia-Yin Hou
- Cardiovascular Center, Department of Internal Medicine, MacKay Memorial Hospital, Taipei
| | - Tzung-Dau Wang
- Cardiovascular Center and Divisions of Hospital Medicine and Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
| | - Po-Hsun Huang
- Cardiovascular Research Center, National Yang Ming Chiao Tung University
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital
| | - Wen-Jone Chen
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan; Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
7
|
Kulkarni AV, Singal AK, Kamath PS. Research Priorities and Future Landscape of Clinical Trials in Alcohol-Associated Liver Disease. Clin Liver Dis 2024; 28:831-851. [PMID: 39362725 DOI: 10.1016/j.cld.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Liver is the most common organ affected by alcohol misuse. The spectrum of alcohol-associated liver disease (ALD) ranges from simple steatosis to cirrhosis and its complications. The unique clinical phenotype of alcohol-associated hepatitis has a risk for high short-term mortality. Several gaps exist with respect to epidemiology, noninvasive testing, prognostication, and treatment of ALD. Most studies focus on short-term survival as the ideal endpoint and ignore other aspects of alcohol-use disorder and ALD. In this review, the authors discuss the existing knowledge gaps, enumerate ongoing clinical trials, and highlight the research priorities and future landscape of clinical trials.
Collapse
Affiliation(s)
| | - Ashwani K Singal
- Department of Medicine, Division of Gastroenterology Hepatology and Nutrition, University of Louisville, KY, USA; Department of Research, VA Medical Center, Sioux Falls, University of South Dakota, Sioux Falls, SD, USA; American Gastro Association Council (Liver Section); University of Louisville School of Medicine; Clinical Trials in Hepatology, UofL Clinical Trials Unit; University of Louisville Physics Group; University of Louisville Health and Jewish Hospital; Trager Transplant Center.
| | | |
Collapse
|
8
|
Tsoi B, Zhang H, So CP, Lam AKK, Poon CCW, Law SL, Wong BL, Seto SW. Acceleration of Ethanol Metabolism by a Patented Bos taurus Isolated Alcohol Degradation Protein (ADP) on Acute Alcohol Consumption. Foods 2024; 13:3207. [PMID: 39410241 PMCID: PMC11476218 DOI: 10.3390/foods13193207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Alcoholic beverages are among the most widely enjoyed leisure drinks around the world. However, irresponsible drinking habits can have detrimental effects on human health. Therefore, exploring strategies to alleviate discomfort following alcohol consumption would be beneficial for individuals who inevitably need to consume alcohol. In this study, three different models were used to determine the efficacy of a patented alcohol degradation protein (ADP) extracted from Bos taurus on ethanol metabolism. In an ethanol-challenged HepG2 cell model, ADP significantly protected the cell from ethanol-induced toxicity. Subsequently, results demonstrated that ADP significantly alleviated the effect of ethanol, as reflected by the increased distance and activity time of zebrafish during the testing period. Additionally, in a rat model, ADP promoted ethanol degradation at 1 and 2 h after ethanol consumption. Mechanistic studies found that ADP treatment increased ADH and ALDH activity in the gastrointestinal tract. ADP also exhibited potent antioxidation effects by lowering HO-1 expression in the liver. In conclusion, we believe that ADP is a promising product for relieving hangover symptoms after ethanol consumption, with demonstrated safety and effectiveness at the recommended dosage.
Collapse
Affiliation(s)
- Bun Tsoi
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; (B.T.); (H.Z.)
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- School of Professional and Continuing Education (HKU SPACE), The University of Hong Kong, Hong Kong, China
| | - Huan Zhang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; (B.T.); (H.Z.)
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
| | - Chun-Pang So
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; (B.T.); (H.Z.)
| | - Angel Ka-Kei Lam
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; (B.T.); (H.Z.)
| | - Christina Chui-Wa Poon
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; (B.T.); (H.Z.)
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sek-Lun Law
- Alcolear Limited, Fotan, New Territories, Hong Kong, China
| | - Bing-Lou Wong
- Alcolear Limited, Fotan, New Territories, Hong Kong, China
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China; (B.T.); (H.Z.)
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong, China
- NICM Health Research Institute, Western Sydney University, Penrith, NSW 2751, Australia
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Georgescu OS, Martin L, Târtea GC, Rotaru-Zavaleanu AD, Dinescu SN, Vasile RC, Gresita A, Gheorman V, Aldea M, Dinescu VC. Alcohol Consumption and Cardiovascular Disease: A Narrative Review of Evolving Perspectives and Long-Term Implications. Life (Basel) 2024; 14:1134. [PMID: 39337917 PMCID: PMC11433171 DOI: 10.3390/life14091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiovascular illnesses remain the primary cause of death, accounting for at least 17.9 million fatalities per year and posing a significant public health problem because of its extensive predominance and effect on healthcare systems. The etiology of cardiovascular disease is complex and involves several environmental and lifestyle factors. Alcohol use is a highly important determinant because of its dual-edged effect on cardiovascular health. Multiple studies indicate that moderate alcohol consumption may have certain advantages, such as slight enhancements in lipid profiles. Conversely, excessive alcohol intake is associated with serious negative consequences, including cardiomyopathy, hypertension, arrhythmias, and even mortality. The aim of this study is to provide a comprehensive analysis of the several effects of alcohol on cardiovascular health and their understanding within the medical field over time. It uses an interpretative narrative review methodology and analyzes studies that focus on genetic risk factors, gender differences, and shifts in paradigms in recent years. This article highlights the need for obtaining a thorough understanding of the effects of alcohol on cardiovascular health to support public health guidelines and clinical practice, and it underscores the significance of including alcohol consumption into the broader context of cardiovascular risk management and identifies important subjects for further study.
Collapse
Affiliation(s)
- Ovidiu Stefan Georgescu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania
| | - Liviu Martin
- Faculty of Medical Care, Titu Maiorescu University, Văcărești Road, no 187, 040051 Bucharest, Romania
| | - Georgică Costinel Târtea
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania
| | | | - Sorin Nicolae Dinescu
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania
| | - Ramona Constantina Vasile
- Department of Epidemiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania
| | - Andrei Gresita
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania
| | - Veronica Gheorman
- Department 3 Medical Semiology, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania
| | - Madalina Aldea
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania
| | - Venera Cristina Dinescu
- Department of Health Promotion and Occupational Medicine, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Str., 200349 Craiova, Romania
| |
Collapse
|
10
|
Bogahawaththa S, Hara M, Furukawa T, Iwasaka C, Sawada T, Yamada G, Tokiya M, Kitagawa K, Miyake Y, Kido MA, Hirota Y, Matsumoto A. Asian Flush Gene Variant Enhances Cellular Immunogenicity of COVID-19 Vaccine: Prospective Observation in the Japanese General Population. Vaccines (Basel) 2024; 12:1015. [PMID: 39340045 PMCID: PMC11435883 DOI: 10.3390/vaccines12091015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
We previously reported a reduced humoral immune response to the COVID-19 vaccines. Subsequently, we observed a lower susceptibility to COVID-19 in individuals carrying the ALDH2 rs671 variant through a web-based retrospective survey. Based on these findings, we hypothesized that rs671 variant was beneficial for cellular immunity against COVID-19. Using the IFN-γ enzyme-linked immunospot (ELISPOT) assay, we assessed cellular immunity before and after COVID-19 vaccination in two subcohorts of a previously reported cohort. Subcohort 1 (26 participants) had six repeated observations at baseline after one to three doses, whereas subcohort 2 (19 participants) had two observations before and after the third dose. ELISPOT counts at six months after the second dose increased from baseline in carriers of the rs671 variant but not in non-carriers. A positive effect of rs671 on ELISPOT counts was estimated using a mixed model (183 observations from 45 participants), including the random effect of subcohort, repeated measures, and fixed effects of vaccine type, age, sex, height, lifestyle, steroid use, and allergic disease. There was no association between ELISPOT counts and specific IgG levels, suggesting a limitation in estimating protective potential by humoral response. Our sequential observational studies suggest a beneficial effect of the rs671 variant in SARS-CoV-2 infection via enhanced cellular immune response, providing a potential basis for optimizing preventive measures and drug development.
Collapse
Affiliation(s)
- Sudarma Bogahawaththa
- Laboratory of Biochemistry, Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Honjo, Saga 840-8502, Japan;
- Department of Social and Environmental Medicine, Saga University, Nabeshima, Saga 840-8501, Japan;
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga 840-8501, Japan; (M.H.); (T.F.); (C.I.)
| | - Takuma Furukawa
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga 840-8501, Japan; (M.H.); (T.F.); (C.I.)
- Clinical Research Center, Saga University Hospital, Nabeshima, Saga 840-8501, Japan
| | - Chiharu Iwasaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Nabeshima, Saga 840-8501, Japan; (M.H.); (T.F.); (C.I.)
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, KENTO Innovation Park NK Building, 3–17, Senriokashinmachi, Settsu 566-0002, Japan
| | - Takeshi Sawada
- Department of Histology and Neuroanatomy, Faculty of Medicine, Saga University, Nabeshima, Saga 840-8501, Japan; (T.S.); (M.A.K.)
| | - Goki Yamada
- United Graduate School of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan;
| | - Mikiko Tokiya
- Department of Social and Environmental Medicine, Saga University, Nabeshima, Saga 840-8501, Japan;
| | - Kyoko Kitagawa
- Division of Ultrastructural Cell Biology, Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Yasunobu Miyake
- Division of Molecular and Cellular Immunoscience, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Mizuho Aoki Kido
- Department of Histology and Neuroanatomy, Faculty of Medicine, Saga University, Nabeshima, Saga 840-8501, Japan; (T.S.); (M.A.K.)
| | - Yoshio Hirota
- Clinical Epidemiology Research Center, SOUSEIKAI Medical Group (Medical Co., LTA), Fukuoka 813-0017, Japan;
| | - Akiko Matsumoto
- Department of Social and Environmental Medicine, Saga University, Nabeshima, Saga 840-8501, Japan;
| |
Collapse
|
11
|
Lim J, Han H, Jung SI, Rim YA, Ju JH. Impaired Osteogenesis in Human Induced Pluripotent Stem Cells with Acetaldehyde Dehydrogenase 2 Mutations. Int J Stem Cells 2024; 17:284-297. [PMID: 38604748 PMCID: PMC11361852 DOI: 10.15283/ijsc23151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/01/2024] [Accepted: 02/16/2024] [Indexed: 04/13/2024] Open
Abstract
Acetaldehyde dehydrogenase 2 (ALDH2) is the second enzyme involved in the breakdown of acetaldehyde into acetic acid during the process of alcohol metabolism. Roughly 40% of East Asians carry one or two ALDH2*2 alleles, and the presence of ALDH2 genetic mutations in individuals may affect the bone remodeling cycle owing to accumulation of acetaldehyde in the body. In this study, we investigated the effects of ALDH2 mutations on bone remodeling. In this study, we examined the effects of ALDH2 polymorphisms on in vitro osteogensis using human induced pluripotent stem cells (hiPSCs). We differentiated wild-type (ALDH2*1/*1-) and ALDH2*1/*2-genotyped hiPSCs into osteoblasts (OBs) and confirmed their OB characteristics. Acetaldehyde was administered to confirm the impact caused by the mutation during OB differentiation. Calcium deposits formed during osteogenesis were significantly decreased in ALDH2*1/*2 OBs. The expression of osteogenic markers were also decreased in acetaldehyde-treated OBs differentiated from the ALDH2*1/*2 hiPSCs. Furthermore, the impact of ALDH2 polymorphism and acetaldehyde-induced stress on inflammatory factors such as 4-hydroxynonenal and tumor necrosis factor α was confirmed. Our findings suggest that individuals with ALDH2 deficiency may face challenges in acetaldehyde breakdown, rendering them susceptible to disturbances in normal bone remodeling therefore, caution should be exercised regarding alcohol consumption. In this proof-of-concept study, we were able to suggest these findings as a result of a disease-in-a-dish concept using hiPSCs derived from individuals bearing a certain mutation. This study also shows the potential of patient-derived hiPSCs for disease modeling with a specific condition.
Collapse
Affiliation(s)
- Jooyoung Lim
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic iPSC Research Center, CiSTEM Laboratory, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Heeju Han
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic iPSC Research Center, CiSTEM Laboratory, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Se In Jung
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Catholic iPSC Research Center, CiSTEM Laboratory, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeri Alice Rim
- Catholic iPSC Research Center, CiSTEM Laboratory, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, CiSTEM Laboratory, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Rheumatology, Department of Internal Medicine, Institute of Medical Science, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
12
|
Wang J, Wang Z, Liu C, Song M, Xu Q, Liu Y, Yan H. Genome analysis of a newly isolated Bacillus velezensis-YW01 for biodegrading acetaldehyde. Biodegradation 2024; 35:539-549. [PMID: 38573500 DOI: 10.1007/s10532-024-10075-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Acetaldehyde (AL), a primary carcinogen, not only pollutes the environment, but also endangers human health after drinking alcohol. Here a promising bacterial strain was successfully isolated from a white wine cellar pool in the province of Shandong, China, and identified as Bacillus velezensis-YW01 with 16 S rDNA sequence. Using AL as sole carbon source, initial AL of 1 g/L could be completely biodegraded by YW01 within 84 h and the cell-free extracts of YW01 has also been detected to biodegrade the AL, which indicate that YW01 is a high-potential strain for the biodegradation of AL. The optimal culture conditions and the biodegradation of AL of YW01 are at pH 7.0 and 38 °C, respectively. To further analyze the biodegradation mechanism of AL, the whole genome of YW01 was sequenced. Genes ORF1040, ORF1814 and ORF0127 were revealed in KEGG, which encode for acetaldehyde dehydrogenase. Furthermore, ORF0881 and ORF052 encode for ethanol dehydrogenase. This work provides valuable information for exploring metabolic pathway of converting ethanol to AL and subsequently converting AL to carboxylic acid compounds, which opened up potential pathways for the development of microbial catalyst against AL.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhihao Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chao Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Meijie Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
13
|
Wei Y, Gao S, Li C, Huang X, Xie B, Geng J, Dai H, Wang C. Aldehyde Dehydrogenase 2 Deficiency Aggravates Lung Fibrosis through Mitochondrial Dysfunction and Aging in Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1458-1477. [PMID: 38777148 DOI: 10.1016/j.ajpath.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/07/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
Idiopathic pulmonary fibrosis, a fatal interstitial lung disease, is characterized by fibroblast activation and aberrant extracellular matrix accumulation. Effective therapeutic development is limited because of incomplete understanding of the mechanisms by which fibroblasts become aberrantly activated. Here, we show aldehyde dehydrogenase 2 (ALDH2) in fibroblasts as a potential therapeutic target for pulmonary fibrosis. A decrease in ALDH2 expression was observed in patients with idiopathic pulmonary fibrosis and bleomycin-treated mice. ALDH2 deficiency spontaneously induces collagen accumulation in the lungs of aged mice. Furthermore, young ALDH2 knockout mice exhibited exacerbated bleomycin-induced pulmonary fibrosis and increased mortality compared with that in control mice. Mechanistic studies revealed that transforming growth factor (TGF)-β1 induction and ALDH2 depletion constituted a positive feedback loop that exacerbates fibroblast activation. TGF-β1 down-regulated ALDH2 through a TGF-β receptor 1/Smad3-dependent mechanism. The subsequent deficiency in ALDH2 resulted in fibroblast dysfunction that manifested as impaired mitochondrial autophagy and senescence, leading to fibroblast activation and extracellular matrix production. ALDH2 overexpression markedly suppressed fibroblast activation, and this effect was abrogated by PTEN-induced putative kinase 1 (PINK1) knockdown, indicating that the profibrotic effects of ALDH2 are PINK1- dependent. Furthermore, ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) reversed the established pulmonary fibrosis in both young and aged mice. In conclusion, ALDH2 expression inhibited the pathogenesis of pulmonary fibrosis. Strategies to up-regulate or activate ALDH2 expression could be potential therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Yanqiu Wei
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuwei Gao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Chen Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China; Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoxi Huang
- Department of Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bingbing Xie
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Jing Geng
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Chen Wang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China; National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
14
|
Meijnikman AS, Nieuwdorp M, Schnabl B. Endogenous ethanol production in health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:556-571. [PMID: 38831008 DOI: 10.1038/s41575-024-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome exerts metabolic actions on distal tissues and organs outside the intestine, partly through microbial metabolites that diffuse into the circulation. The disruption of gut homeostasis results in changes to microbial metabolites, and more than half of the variance in the plasma metabolome can be explained by the gut microbiome. Ethanol is a major microbial metabolite that is produced in the intestine of nearly all individuals; however, elevated ethanol production is associated with pathological conditions such as metabolic dysfunction-associated steatotic liver disease and auto-brewery syndrome, in which the liver's capacity to metabolize ethanol is surpassed. In this Review, we describe the mechanisms underlying excessive ethanol production in the gut and the role of ethanol catabolism in mediating pathogenic effects of ethanol on the liver and host metabolism. We conclude by discussing approaches to target excessive ethanol production by gut bacteria.
Collapse
Affiliation(s)
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, Netherlands
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Kang B, Kim C, Shin SH, Shin H, Cho Y. Impact of Alcohol-Induced Facial Flushing Phenotype on Alcohol Consumption Among Korean Adults: 2-Year Cross-Sectional Study. JMIR Public Health Surveill 2024; 10:e49826. [PMID: 38796304 PMCID: PMC11325126 DOI: 10.2196/49826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The alcohol-induced facial flushing phenotype (flushing) is common among East Asians. Despite a small intake of alcohol, they experience heightened levels of acetaldehyde, a group-1 carcinogen, which, in turn, causes unpleasant symptoms such as redness, acting as a robust protective mechanism against consuming alcohol. However, some individuals with this genetic trait exhibit weakened alcohol restraint, which increases the risk of developing alcohol-related cancers, such as esophageal and head or neck cancer, by several times. Although this flushing phenomenon is crucial for public health, there is a paucity of studies that have comprehensively investigated the effect of flushing or its genotype on alcohol consumption in a large group of East Asians while controlling for various sociodemographic and health-related variables at a country level. OBJECTIVE This 2-year cross-sectional study aims to explore the effect of flushing on drinking behavior in Koreans and to examine whether the effect varies across sociodemographic and health-related factors. METHODS We used data from the Korea National Health and Nutrition Examination Survey (KNHANES) for 2019 and 2020 conducted by the Korea Disease Control and Prevention Agency. Our sample comprised 10,660 Korean adults. The study investigated the association of 26 variables, including flushing, with drinking frequency and amount. The effect of flushing was examined with and without adjusting for the other 25 variables using multinomial logistic regression analysis. In addition, we tested the interaction effect with flushing and conducted a simple effect analysis. We used complex sample design elements, including strata, clusters, and weights, to obtain unbiased results for the Rao-Scott χ2 test, 2-tailed t test, and multinomial logistic regression analysis. RESULTS The suppressive effect of flushing was significant (P<.001) across all pronounced categories of alcohol consumption in 2019. The ranges of standardized regression slopes and odds ratios (ORs) were -6.70≥β≥-11.25 and 0.78≥OR≥0.50 for frequency and -5.37≥β≥-17.64 and 0.73≥OR≥0.36 for amount, respectively. The effect became somewhat stronger when adjusted for confounders. The effect also exhibited an overall stronger trend as the severity of alcohol consumption increased. The β values and ORs were consistently smaller in 2020 compared to the previous year. A simple effect analysis revealed a diminished alcohol-suppressive effect of flushing on alcohol consumption for specific groups (eg, those with low levels of education, limited family support, physical labor, or health-related issues). CONCLUSIONS Our findings suggest that flushing suppresses drinking in Koreans overall but has little or no effect in certain susceptible populations. Therefore, health authorities should conduct targeted epidemiological studies to assess drinking patterns and disease profiles, particularly regarding alcohol-related cancers, and establish effective preventive measures tailored to this population.
Collapse
Affiliation(s)
- Bossng Kang
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Changsun Kim
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seon-Hi Shin
- Biostatistical Consulting and Research Lab, Medical Research Collaborating Center, Hanyang University, Seoul, Republic of Korea
| | - Hyungoo Shin
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yongil Cho
- Department of Emergency Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Rwere F, White JR, Hell RCR, Yu X, Zeng X, McNeil L, Zhou KN, Angst MS, Chen CH, Mochly-Rosen D, Gross ER. Uncovering newly identified aldehyde dehydrogenase 2 genetic variants that lead to acetaldehyde accumulation after an alcohol challenge. J Transl Med 2024; 22:697. [PMID: 39075523 PMCID: PMC11288122 DOI: 10.1186/s12967-024-05507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 2 (ALDH2) is critical for alcohol metabolism by converting acetaldehyde to acetic acid. In East Asian descendants, an inactive genetic variant in ALDH2, rs671, triggers an alcohol flushing response due to acetaldehyde accumulation. As alcohol flushing is not exclusive to those of East Asian descent, we questioned whether additional ALDH2 genetic variants can drive facial flushing and inefficient acetaldehyde metabolism using human testing and biochemical assays. METHODS After IRB approval, human subjects were given an alcohol challenge (0.25 g/kg) while quantifying acetaldehyde levels and the physiological response (heart rate and skin temperature) to alcohol. Further, by employing biochemical techniques including human purified ALDH2 proteins and transiently transfected NIH 3T3 cells, we characterized two newly identified ALDH2 variants for ALDH2 enzymatic activity, ALDH2 dimer/tetramer formation, and reactive oxygen species production after alcohol treatment. RESULTS Humans heterozygous for rs747096195 (R101G) or rs190764869 (R114W) had facial flushing and a 2-fold increase in acetaldehyde levels, while rs671 (E504K) had facial flushing and a 6-fold increase in acetaldehyde levels relative to wild type ALDH2 carriers. In vitro studies with recombinant R101G and R114W ALDH2 enzyme showed a reduced efficiency in acetaldehyde metabolism that is unique when compared to E504K or wild-type ALDH2. The effect is caused by a lack of functional dimer/tetramer formation for R101G and decreased Vmax for both R101G and R114W. Transiently transfected NIH-3T3 cells with R101G and R114W also had a reduced enzymatic activity by ~ 50% relative to transfected wild-type ALDH2 and when subjected to alcohol, the R101G and R114W variants had a 2-3-fold increase in reactive oxygen species formation with respect to wild type ALDH2. CONCLUSIONS We identified two additional ALDH2 variants in humans causing facial flushing and acetaldehyde accumulation after alcohol consumption. As alcohol use is associated with a several-fold higher risk for esophageal cancer for the E504K variant, the methodology developed here to characterize ALDH2 genetic variant response to alcohol can lead the way precision medicine strategies to further understand the interplay of alcohol consumption, ALDH2 genetics, and cancer.
Collapse
Affiliation(s)
- Freeborn Rwere
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Joseph R White
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Present address: Department of Anesthesiology, University of California Davis, Davis, CA, USA
| | - Rafaela C R Hell
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Xuan Yu
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Xiaocong Zeng
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Present address: Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Leslie McNeil
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Kevin N Zhou
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
17
|
Yook HJ, Lee GN, Lee JH, Han K, Park YM. Epidemiologic relationship between alcohol flushing and smoking in the Korean population: the Korea National Health and Nutrition Examination Survey. Sci Rep 2024; 14:15710. [PMID: 38977782 PMCID: PMC11231332 DOI: 10.1038/s41598-024-66521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Although facial flushing after drinking alcohol (alcohol flushing response) is common in Asian populations, the epidemiological features in a large sample have been investigated in only a few studies. This study assessed the epidemiologic characteristics and associated factors for alcohol flushing in a Korean population. This study was based on data collected during the 2019 Korea National Health and Nutrition Examination Survey (KNHANES). A total of 5572 Korean adults was included in the general population group, and the alcohol flushing group consisted of 2257 participants. Smoking and physical activity were evaluated as possible associated factors for alcohol flushing. The overall prevalence of alcohol flushing was estimated at 40.56% of the general population (43.74% in males and 37.4% in females), and the prevalence was highest at 60-69 years of age and lowest in individuals older than 80 years. Occasional, frequent, and persistent alcohol flushing was reported by 11.9%, 3.7% and 15.0% of current flushers, among whom persistent flushers consumed the least amount of alcohol. Subjects who currently smoke had a higher propensity of alcohol flushing (adjusted OR 1.525, 95% CI 1.2-1.938), and subjects with smoking history of 20-29 pack-years (PYs) showed the highest association (adjusted OR 1.725, 95% CI 1.266-2.349) with alcohol flushing after adjustment for confounders. In contrast, significant association was not found between physical activity and alcohol flushing. The results demonstrated that current smoking status is shown to be significantly associated with alcohol flushing, and that current smokers with a history of smoking ≥ 20 PYs had a higher likelihood of alcohol flushing than non-smokers or ex-smokers.
Collapse
Affiliation(s)
- Hwa Jung Yook
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Gyu-Na Lee
- Department of Biomedicine & Health Science, The Catholic University of Korea, Seoul, Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Young Min Park
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea.
| |
Collapse
|
18
|
Lamb RJ, Griffiths K, Lip GYH, Sorokin V, Frenneaux MP, Feelisch M, Madhani M. ALDH2 polymorphism and myocardial infarction: From alcohol metabolism to redox regulation. Pharmacol Ther 2024; 259:108666. [PMID: 38763322 DOI: 10.1016/j.pharmthera.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death worldwide. Increased formation of reactive oxygen species (ROS) during the early reperfusion phase is thought to trigger lipid peroxidation and disrupt redox homeostasis, leading to myocardial injury. Whilst the mitochondrial enzyme aldehyde dehydrogenase 2 (ALDH2) is chiefly recognised for its central role in ethanol metabolism, substantial experimental evidence suggests an additional cardioprotective role for ALDH2 independent of alcohol intake, which mitigates myocardial injury by detoxifying breakdown products of lipid peroxidation including the reactive aldehydes, malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Epidemiological evidence suggests that an ALDH2 mutant variant with reduced activity that is highly prevalent in the East Asian population increases AMI risk. Additional studies have uncovered a strong association between coronary heart disease and this ALDH2 mutant variant. It appears this enzyme polymorphism (in particular, in ALDH2*2/2 carriers) has the potential to have wide-ranging effects on thiol reactivity, redox tone and therefore numerous redox-related signaling processes, resilience of the heart to cope with lifestyle-related and environmental stressors, and the ability of the whole body to achieve redox balance. In this review, we summarize the journey of ALDH2 from a mitochondrial reductase linked to alcohol metabolism, via pre-clinical studies aimed at stimulating ALDH2 activity to reduce myocardial injury to clinical evidence for its protective role in the heart.
Collapse
Affiliation(s)
- Reece J Lamb
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Kayleigh Griffiths
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom; Danish Centre for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Vitaly Sorokin
- Department of Cardiac, Thoracic, and Vascular Surgery, National University Heart Centre, National University Health System, Singapore
| | | | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | - Melanie Madhani
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, United Kingdom.
| |
Collapse
|
19
|
Fu Y, Mackowiak B, Lin YH, Maccioni L, Lehner T, Pan H, Guan Y, Godlewski G, Lu H, Chen C, Wei S, Feng D, Paloczi J, Zhou H, Pacher P, Zhang L, Kunos G, Gao B. Coordinated action of a gut-liver pathway drives alcohol detoxification and consumption. Nat Metab 2024; 6:1380-1396. [PMID: 38902331 DOI: 10.1038/s42255-024-01063-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024]
Abstract
Alcohol use disorder (AUD) affects millions of people worldwide, causing extensive morbidity and mortality with limited pharmacological treatments. The liver is considered as the principal site for the detoxification of ethanol metabolite, acetaldehyde (AcH), by aldehyde dehydrogenase 2 (ALDH2) and as a target for AUD treatment, however, our recent data indicate that the liver only plays a partial role in clearing systemic AcH. Here we show that a liver-gut axis, rather than liver alone, synergistically drives systemic AcH clearance and voluntary alcohol drinking. Mechanistically, we find that after ethanol intake, a substantial proportion of AcH generated in the liver is excreted via the bile into the gastrointestinal tract where AcH is further metabolized by gut ALDH2. Modulating bile flow significantly affects serum AcH level and drinking behaviour. Thus, combined targeting of liver and gut ALDH2, and manipulation of bile flow and secretion are potential therapeutic strategies to treat AUD.
Collapse
Affiliation(s)
- Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yu-Hong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Taylor Lehner
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongna Pan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Yukun Guan
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Hongkun Lu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Cheng Chen
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Shoupeng Wei
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University and Richmond Veterans Affairs Medical Center, Richmond, VA, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
20
|
Tam CC, Li L, Lui CK, Cook WK. Drinking patterns among US men and women: Racial and ethnic differences from adolescence to early midlife. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1076-1087. [PMID: 38829485 PMCID: PMC11178455 DOI: 10.1111/acer.15308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Drinking patterns among young adult men and women in the United States have been understudied, especially among racial and ethnic groups such as Asian Americans and Hispanics. Because alcohol-related racial and ethnic health disparities persist or increase in midlife, identifying peak ages of hazardous drinking could help to reduce disparities. METHODS We used the National Longitudinal Study of Adolescent to Adult Health to examine: (1) past 12-month heavy episodic drinking (HED) and total alcohol volume consumption among non-Hispanic White (NHW), Black, Hispanic, and Asian men and women from ages 12 through 41, and (2) age-varying associations of race and ethnicity with drinking. Hispanic and Asian ethnic groups were disaggregated by historical drinking patterns. Time-varying effect models accounted for major demographic confounders. RESULTS NHW men and women experienced elevated drinking rates in their early 20s, with a second elevation in their 30s. Black men and women did not have elevated drinking until their 30s. Among Hispanic men and women, peak drinking periods varied by gender and subgroup drinking pattern. Peak HED and total consumption emerged in the early 30s for Asian men, while peak HED occurred in the early 20s for Asian women. Drinking at certain ages for some racial and ethnic minoritized men and women did not differ from that in their NHW counterparts. CONCLUSIONS Age periods during which subgroups in the U.S. population experience elevated alcohol consumption vary by ethnicity and gender. Recognition of these group differences could enhance our understanding of intervention timing.
Collapse
Affiliation(s)
- Christina C Tam
- Alcohol Research Group, Public Health Institute, Emeryville, California, USA
| | - Libo Li
- Alcohol Research Group, Public Health Institute, Emeryville, California, USA
| | - Camillia K Lui
- Alcohol Research Group, Public Health Institute, Emeryville, California, USA
| | - Won Kim Cook
- Alcohol Research Group, Public Health Institute, Emeryville, California, USA
| |
Collapse
|
21
|
Ray B, Rungratanawanich W, LeFort KR, Chidambaram SB, Song BJ. Mitochondrial Aldehyde Dehydrogenase 2 (ALDH2) Protects against Binge Alcohol-Mediated Gut and Brain Injury. Cells 2024; 13:927. [PMID: 38891060 PMCID: PMC11171926 DOI: 10.3390/cells13110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Mitochondrial aldehyde dehydrogenase-2 (ALDH2) metabolizes acetaldehyde to acetate. People with ALDH2 deficiency and Aldh2-knockout (KO) mice are more susceptible to alcohol-induced tissue damage. However, the underlying mechanisms behind ALDH2-related gut-associated brain damage remain unclear. Age-matched young female Aldh2-KO and C57BL/6J wild-type (WT) mice were gavaged with binge alcohol (4 g/kg/dose, three doses) or dextrose (control) at 12 h intervals. Tissues and sera were collected 1 h after the last ethanol dose and evaluated by histological and biochemical analyses of the gut and hippocampus and their extracts. For the mechanistic study, mouse neuroblast Neuro2A cells were exposed to ethanol with or without an Aldh2 inhibitor (Daidzin). Binge alcohol decreased intestinal tight/adherens junction proteins but increased oxidative stress-mediated post-translational modifications (PTMs) and enterocyte apoptosis, leading to elevated gut leakiness and endotoxemia in Aldh2-KO mice compared to corresponding WT mice. Alcohol-exposed Aldh2-KO mice also showed higher levels of hippocampal brain injury, oxidative stress-related PTMs, and neuronal apoptosis than the WT mice. Additionally, alcohol exposure reduced Neuro2A cell viability with elevated oxidative stress-related PTMs and apoptosis, all of which were exacerbated by Aldh2 inhibition. Our results show for the first time that ALDH2 plays a protective role in binge alcohol-induced brain injury partly through the gut-brain axis, suggesting that ALDH2 is a potential target for attenuating alcohol-induced tissue injury.
Collapse
Affiliation(s)
- Bipul Ray
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| | - Karli R. LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, and Center for Experimental Pharmacology and Toxicology, JSS Academy of Higher Education & Research, Mysuru 570015, India;
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892, USA; (B.R.); (W.R.); (K.R.L.)
| |
Collapse
|
22
|
Katada C, Yokoyama T, Yano T, Suzuki H, Furue Y, Yamamoto K, Doyama H, Koike T, Tamaoki M, Kawata N, Hirao M, Kawahara Y, Ogata T, Katagiri A, Yamanouchi T, Kiyokawa H, Kawakubo H, Konno M, Yokoyama A, Ohashi S, Kondo Y, Kishimoto Y, Kano K, Mure K, Hayashi R, Ishikawa H, Yokoyama A, Muto M. Alcohol consumption, multiple Lugol-voiding lesions, and field cancerization. DEN OPEN 2024; 4:e261. [PMID: 37409321 PMCID: PMC10318126 DOI: 10.1002/deo2.261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
The development of multiple squamous cell carcinomas (SCC) in the upper aerodigestive tract, which includes the oral cavity, pharynx, larynx, and esophagus, is explained by field cancerization and is associated with alcohol consumption and cigarette smoking. We reviewed the association between alcohol consumption, multiple Lugol-voiding lesions, and field cancerization, mainly based on the Japan Esophageal Cohort study. The Japan Esophageal Cohort study is a prospective cohort study that enrolled patients with esophageal SCC after endoscopic resection. Enrolled patients received surveillance by gastrointestinal endoscopy every 6 months and surveillance by an otolaryngologist every 12 months. The Japan Esophageal Cohort study showed that esophageal SCC and head and neck SCC that developed after endoscopic resection for esophageal SCC were associated with genetic polymorphisms related to alcohol metabolism. They were also associated with Lugol-voiding lesions grade in the background esophageal mucosa, the score of the health risk appraisal model for predicting the risk of esophageal SCC, macrocytosis, and score on alcohol use disorders identification test. The standardized incidence ratio of head and neck SCC in patients with esophageal SCC after endoscopic resection was extremely high compared to the general population. Drinking and smoking cessation is strongly recommended to reduce the risk of metachronous esophageal SCC after treatment of esophageal SCC. Risk factors for field cancerization provide opportunities for early diagnosis and minimally invasive treatment. Lifestyle guidance of alcohol consumption and cigarette smoking for esophageal precancerous conditions, which are endoscopically visualized as multiple Lugol-voiding lesions, may play a pivotal role in decreasing the incidence and mortality of esophageal SCC.
Collapse
Affiliation(s)
- Chikatoshi Katada
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Tetsuji Yokoyama
- Department of Health and PromotionNational Institute of Public HealthSaitamaJapan
| | - Tomonori Yano
- Department of Gastroenterology and EndoscopyNational Cancer Center Hospital EastChibaJapan
| | | | - Yasuaki Furue
- Department of GastroenterologyKitasato University School of MedicineKanagawaJapan
| | - Keiko Yamamoto
- Division of EndoscopyHokkaido University HospitalHokkaidoJapan
| | - Hisashi Doyama
- Department of GastroenterologyIshikawa Prefectural Central HospitalIshikawaJapan
| | - Tomoyuki Koike
- Division of GastroenterologyTohoku University Graduate School of MedicineMiyagiJapan
| | - Masashi Tamaoki
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Noboru Kawata
- Division of EndoscopyShizuoka Cancer CenterShizuokaJapan
| | - Motohiro Hirao
- Department of SurgeryNational Hospital Organization Osaka National HospitalOsakaJapan
| | - Yoshiro Kawahara
- Department of Practical Gastrointestinal EndoscopyFaculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama UniversityOkayamaJapan
| | - Takashi Ogata
- Department of GastroenterologyKanagawa Cancer CenterKanagawaJapan
| | - Atsushi Katagiri
- Department of Medicine, Division of GastroenterologyShowa University HospitalTokyoJapan
| | | | - Hirofumi Kiyokawa
- Division of Gastroenterology, Department of Internal MedicineSt. Marianna University School of MedicineKanagawaJapan
| | - Hirofumi Kawakubo
- Department of SurgeryKawasaki Municipal Kawasaki HospitalKanagawaJapan
| | - Maki Konno
- Department of GastroenterologyTochigi Cancer CenterTochigiJapan
| | - Akira Yokoyama
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Shinya Ohashi
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Yuki Kondo
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Yo Kishimoto
- Department of Otolaryngology‐Head and Neck SurgeryKyoto University HospitalKyotoJapan
| | - Koichi Kano
- Department of Otorhinolaryngology‐Head and Neck SurgeryKitasato University School of MedicineKanagawaJapan
| | - Kanae Mure
- Department of Public HealthWakayama Medical University School of MedicineWakayamaJapan
| | - Ryuichi Hayashi
- Department of Head and Neck SurgeryNational Cancer Center Hospital EastChibaJapan
| | - Hideki Ishikawa
- Department of Molecular‐Targeting PreventionKyoto Prefectural University of MedicineKyotoJapan
| | - Akira Yokoyama
- Clinical Research UnitNational Hospital Organization Kurihama Medical and Addiction CenterKanagawaJapan
| | - Manabu Muto
- Department of Therapeutic OncologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
23
|
Zhang H, Ruan WJ, Chou SP, Saha TD, Fan AZ, Huang B, White AM. Exploring patterns of alcohol use and alcohol use disorder among Asian Americans with a finer lens. Drug Alcohol Depend 2024; 257:111120. [PMID: 38402754 DOI: 10.1016/j.drugalcdep.2024.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND National survey data suggest Asian Americans (AA) are less likely to consume alcohol and develop AUD than Americans in other groups. However, it is common for AA to be born outside of the US and carry gene variants that alter alcohol metabolism, both of which can lead to lower levels of alcohol involvement. The current study examined differences in alcohol use and AUD between AA and other groups before and after controlling for birth location and gene variants. DESIGN Past year alcohol measures were examined from adults 18+ (N=22,848) in the 2012-2013 National Epidemiologic Survey on Alcohol and Related Conditions III before and after controlling for birth location (inside or outside of the US) and gene variants (ALDH2*2 and ADH1B*2/ADH1B*3). Gender gaps in alcohol measures also were assessed. RESULTS Before adjustments, AA were less likely than White Americans to drink in the previous year (OR=0.50, 95% CI 0.41-0.62), binge (OR=0.68, 95% CI 0.52-0.88), engage in frequent heavy drinking (OR=0.55, 95% CI 0.42-0.73), and reach criteria for AUD (OR=0.71, 95% CI 0.53-0.94). After controlling for birth location and gene variants, AA remained less likely to drink in the past year (OR=0.54, 95% CI 0.41-0.70) but all other differences disappeared. Gender gaps were only observed for AA born outside of the US, highlighting the importance of experience rather than racial category per se. CONCLUSIONS Findings indicate that heterogeneity among AA leads to spurious generalizations regarding alcohol use and AUD and challenge the model minority myth.
Collapse
Affiliation(s)
- Haitao Zhang
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - W June Ruan
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - S Patricia Chou
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Tulshi D Saha
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Amy Z Fan
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Boji Huang
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Aaron M White
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA.
| |
Collapse
|
24
|
Huang MC, Tu HY, Chung RH, Kuo HW, Liu TH, Chen CH, Mochly-Rosen D, Liu YL. Changes of neurofilament light chain in patients with alcohol dependence following withdrawal and the genetic effect from ALDH2 Polymorphism. Eur Arch Psychiatry Clin Neurosci 2024; 274:423-432. [PMID: 37314537 PMCID: PMC10719424 DOI: 10.1007/s00406-023-01635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/29/2023] [Indexed: 06/15/2023]
Abstract
Neurofilament light chain (NFL), as a measure of neuroaxonal injury, has recently gained attention in alcohol dependence (AD). Aldehyde dehydrogenase 2 (ALDH2) is the major enzyme which metabolizes the alcohol breakdown product acetaldehyde. An ALDH2 single nucleotide polymorphism (rs671) is associated with less ALDH2 enzyme activity and increased neurotoxicity. We examined the blood NFL levels in 147 patients with AD and 114 healthy controls using enzyme-linked immunosorbent assay and genotyped rs671. We also followed NFL level, alcohol craving and psychological symptoms in patients with AD after 1 and 2 weeks of detoxification. We found the baseline NFL level was significantly higher in patients with AD than in controls (mean ± SD: 264.2 ± 261.8 vs. 72.1 ± 35.6 pg/mL, p < 0.001). The receiver operating characteristic curve revealed that NFL concentration could discriminate patients with AD from controls (area under the curve: 0.85; p < 0.001). The NFL levels were significantly reduced following 1 and 2 weeks of detoxification, with the extent of reduction correlated with the improvement of craving, depression, and anxiety (p < 0.001). Carriers with the rs671 GA genotype, which is associated with less ALDH2 activity, had higher NLF levels either at baseline or after detoxification compared with GG carriers. In conclusion, plasma NFL level was increased in patients with AD and reduced after early abstinence. Reduction in NFL level corroborated well with the improvement of clinical symptoms. The ALDH2 rs671 polymorphism may play a role in modulating the extent of neuroaxonal injury and its recovery.
Collapse
Affiliation(s)
- Ming-Chyi Huang
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
- Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Psychiatric Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsueh-Yuan Tu
- Department of Addiction Sciences, Taipei City Psychiatric Center, Taipei City Hospital, Taipei, Taiwan
| | - Ren-Hua Chung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hsiang-Wei Kuo
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tung-Hsia Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan.
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
25
|
Kim YG, Kim DY, Roh SY, Jeong JH, Lee HS, Min K, Choi YY, Han KD, Shim J, Choi JI, Kim YH. Alcohol and the risk of all-cause death, atrial fibrillation, ventricular arrhythmia, and sudden cardiac arrest. Sci Rep 2024; 14:5053. [PMID: 38424149 PMCID: PMC10904378 DOI: 10.1038/s41598-024-55434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
The risk of having atrial fibrillation (AF) is associated with alcohol intake. However, it is not clear whether sudden cardiac arrest (SCA) and ventricular arrhythmia (VA) including ventricular tachycardia, flutter, or fibrillation have similar associations with alcohol. We aimed to evaluate the association of alcohol intake with all-cause death, new-onset AF, VA, and SCA using single cohort with a sufficient sample size. A total of 3,990,373 people without a prior history of AF, VAs, or SCA was enrolled in this study based on nationwide health check-up in 2009. We classified the participants into four groups according to weekly alcohol consumption, and evaluated the association of alcohol consumption with each outcome. We observed a significant association between mild (hazard ratio [HR] = 0.826; 95% confidence interval [CI] = 0.815-0.838) to moderate (HR = 0.930; 95% CI = 0.912-0.947) drinking with decreased risk of all-cause mortality. However heavy drinking (HR = 1.108; 95% CI = 1.087-1.129) was associated with increased all-cause death. The risk of new-onset AF was significantly associated with moderate (HR = 1.129; 95% CI = 1.097-1.161) and heavy (HR = 1.298; 95% CI = 1.261-1.337) drinking. However, the risk of SCA showed negative association with all degrees of alcohol intake: 20% (HR = 0.803; 95% CI = 0.769-0.839), 15% (HR = 0.853; 95% CI = 0.806-0.902), and 8% (HR = 0.918; 95% CI = 0.866-0.974) lower risk for mild, moderate, and heavy drinkers, respectively. Mild drinking was associated with reduced risk of VA with moderate and heavy drinking having no associations. In conclusion, the association between alcohol and various outcomes in this study were heterogeneous. Alcohol might have different influences on various cardiac disorders.
Collapse
Affiliation(s)
- Yun Gi Kim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong Yun Kim
- Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung-Young Roh
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Guro Hospital, Seoul, Republic of Korea
| | - Joo Hee Jeong
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyoung Seok Lee
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kyongjin Min
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yun Young Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Jaemin Shim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Young-Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Korea University College of Medicine and Korea University Anam Hospital, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
26
|
Moh I, Simon D, Gross ER. The Alcohol Flush Response. GRAPHIC MEDICINE REVIEW 2024; 4:e807. [PMID: 38895023 PMCID: PMC11185044 DOI: 10.7191/gmr.807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nearly 540 million people world-wide have facial flushing and an increased heart rate after consuming alcohol. Known as the alcohol flushing response, this reaction to alcohol is a result of a genetic variant in an enzyme aldehyde dehydrogenase 2 (ALDH2), known as ALDH2*2. Mainly carried by those of East Asian descent, the genetic variant is likely the most common genetic variant carried in the world. Carrying this ALDH2*2 genetic variant has important health implications with respect cancer risk which is increased when carriers of the ALDH2*2 genetic variant frequently use of alcohol or tobacco products. This comic explains the alcohol flush response and the health risks associated with alcohol and tobacco use for those who carry an ALDH2*2 variant.
Collapse
Affiliation(s)
| | - Daniel Simon
- Anesthesiology, Perioperative and Pain Medicine, Stanford Medicine, Stanford University, Stanford, CA USA
| | - Eric R Gross
- Anesthesiology, Perioperative and Pain Medicine, Stanford Medicine, Stanford University, Stanford, CA USA
| |
Collapse
|
27
|
LeFort KR, Rungratanawanich W, Song BJ. Contributing roles of mitochondrial dysfunction and hepatocyte apoptosis in liver diseases through oxidative stress, post-translational modifications, inflammation, and intestinal barrier dysfunction. Cell Mol Life Sci 2024; 81:34. [PMID: 38214802 PMCID: PMC10786752 DOI: 10.1007/s00018-023-05061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
This review provides an update on recent findings from basic, translational, and clinical studies on the molecular mechanisms of mitochondrial dysfunction and apoptosis of hepatocytes in multiple liver diseases, including but not limited to alcohol-associated liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and drug-induced liver injury (DILI). While the ethanol-inducible cytochrome P450-2E1 (CYP2E1) is mainly responsible for oxidizing binge alcohol via the microsomal ethanol oxidizing system, it is also responsible for metabolizing many xenobiotics, including pollutants, chemicals, drugs, and specific diets abundant in n-6 fatty acids, into toxic metabolites in many organs, including the liver, causing pathological insults through organelles such as mitochondria and endoplasmic reticula. Oxidative imbalances (oxidative stress) in mitochondria promote the covalent modifications of lipids, proteins, and nucleic acids through enzymatic and non-enzymatic mechanisms. Excessive changes stimulate various post-translational modifications (PTMs) of mitochondrial proteins, transcription factors, and histones. Increased PTMs of mitochondrial proteins inactivate many enzymes involved in the reduction of oxidative species, fatty acid metabolism, and mitophagy pathways, leading to mitochondrial dysfunction, energy depletion, and apoptosis. Unique from other organelles, mitochondria control many signaling cascades involved in bioenergetics (fat metabolism), inflammation, and apoptosis/necrosis of hepatocytes. When mitochondrial homeostasis is shifted, these pathways become altered or shut down, likely contributing to the death of hepatocytes with activation of inflammation and hepatic stellate cells, causing liver fibrosis and cirrhosis. This review will encapsulate how mitochondrial dysfunction contributes to hepatocyte apoptosis in several types of liver diseases in order to provide recommendations for targeted therapeutics.
Collapse
Affiliation(s)
- Karli R LeFort
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Porcher L, Vijayraghavan S, McCollum J, Mieczkowski PA, Saini N. Multiple DNA repair pathways prevent acetaldehyde-induced mutagenesis in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574575. [PMID: 38260495 PMCID: PMC10802451 DOI: 10.1101/2024.01.07.574575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers. Moreover, a mutation signature specific to acetaldehyde exposure is widespread in alcohol and smoking-associated cancers. However, the pathways that repair acetaldehyde-induced DNA damage and thus prevent mutagenesis are vaguely understood. Here, we used Saccharomyces cerevisiae to systematically delete genes in each of the major DNA repair pathways to identify those that alter acetaldehyde-induced mutagenesis. We found that deletion of the nucleotide excision repair (NER) genes, RAD1 or RAD14, led to an increase in mutagenesis upon acetaldehyde exposure. Acetaldehyde-induced mutations were dependent on translesion synthesis as well as DNA inter-strand crosslink (ICL) repair in Δrad1 strains. Moreover, whole genome sequencing of the mutated isolates demonstrated an increase in C→A changes coupled with an enrichment of gCn→A changes in the acetaldehyde-treated Δrad1 isolates. The gCn→A mutation signature has been shown to be diagnostic of acetaldehyde exposure in yeast and in human cancers. We also demonstrated that the deletion of the two DNA-protein crosslink (DPC) repair proteases, WSS1 and DDI1, also led to increased acetaldehyde-induced mutagenesis. Defects in base excision repair (BER) led to a mild increase in mutagenesis, while defects in mismatch repair (MMR), homologous recombination repair (HR) and post replicative repair pathways did not impact mutagenesis upon acetaldehyde exposure. Our results in yeast were further corroborated upon analysis of whole exome sequenced liver cancers, wherein, tumors with defects in ERCC1 and ERCC4 (NER), FANCD2 (ICL repair) or SPRTN (DPC repair) carried a higher gCn→A mutation load than tumors with no deleterious mutations in these genes. Our findings demonstrate that multiple DNA repair pathways protect against acetaldehyde-induced mutagenesis.
Collapse
Affiliation(s)
- Latarsha Porcher
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| | - Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| | - James McCollum
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| | - Piotr A Mieczkowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, 27599, United States of America
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, 29425, United States of America
| |
Collapse
|
29
|
Tokiya M, Hashimoto M, Fukuda K, Kawamoto K, Akao C, Tsuji M, Yakushiji Y, Koike H, Matsumoto A. Asian flush gene variant increases mild cognitive impairment risk: a cross-sectional study of the Yoshinogari Brain MRI Checkup Cohort. Environ Health Prev Med 2024; 29:55. [PMID: 39401906 PMCID: PMC11473384 DOI: 10.1265/ehpm.24-00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/15/2024] [Indexed: 10/17/2024] Open
Abstract
BACKGROUND The East Asian-specific genetic diversity, the rs671 variant of aldehyde dehydrogenase 2, causes the "Asian flush" phenomenon following alcohol consumption, resulting in an alcohol avoidance phenotype. The variant is suggested as a risk factor for Alzheimer's disease; however, its association with mild cognitive impairment (MCI), an effective target for secondary prevention of dementia, remains unclear. METHOD This cross-sectional study examined 430 individuals aged 60-80 years (251 women) without overt cognitive impairment in Yoshinogari, Japan. The effect of the rs671 variant on MCI, defined by scores <26 or <25 on the Japanese version of the Montreal Cognitive Assessment, was evaluated using multivariate logistic regression. RESULTS The models included APOEε4, sex, age, education, history of habitual drinking, Brinkman index, hypertension, diabetes, and subclinical magnetic resonance imaging findings and consistently estimated the risk of the rs671 variant. Subsequently, stratified analyses by history of habitual drinking were performed based on an interactive effect between rs671 and alcohol consumption, and the rs671 variant significantly influenced MCI in participants who did not drink habitually, with odds ratios ranging from 1.9 to 2.1 before and after adjusting for covariates, suggesting an association independent of hippocampal atrophy and small vessel dysfunction. Conversely, no such association with the rs671 variant was observed in participants with a history of habitual alcohol use. Instead, hippocampal atrophy and silent infarcts were associated with MCI. CONCLUSIONS This is the first study to demonstrate an association between the rs671 variant and MCI morbidity. The findings highlight the need for race-specific preventive strategies and suggest potential unrecognized mechanisms in dementia development.
Collapse
Affiliation(s)
- Mikiko Tokiya
- Department of Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Manabu Hashimoto
- National Hospital Organization Hizen Psychiatric Medical Center, 160 Mitsu, Yoshinogari-machi, Kanzaki-gun, Saga 842-0192, Japan
| | - Kenji Fukuda
- Department of Cerebrovascular Disease, St. Mary’s Hospital, 422 Tsubukuhonmachi, Kurume, Fukuoka 830-8543, Japan
| | - Kazuhiro Kawamoto
- Department of Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Chiho Akao
- Department of Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Mariko Tsuji
- National Hospital Organization Hizen Psychiatric Medical Center, 160 Mitsu, Yoshinogari-machi, Kanzaki-gun, Saga 842-0192, Japan
| | - Yusuke Yakushiji
- Department of Neurology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka-fu 573-1010, Japan
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Haruki Koike
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Akiko Matsumoto
- Department of Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
30
|
Takashima S, Tokiya M, Izui K, Miyamoto H, Matsumoto A. Asian flush is a potential protective factor against COVID-19: a web-based retrospective survey in Japan. Environ Health Prev Med 2024; 29:14. [PMID: 38462476 PMCID: PMC10937249 DOI: 10.1265/ehpm.23-00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/10/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), first reported in December 2019, spread worldwide in a short period, resulting in numerous cases and associated deaths; however, the toll was relatively low in East Asia. A genetic polymorphism unique to East Asians, Aldehyde dehydrogenase 2 rs671, has been reported to confer protection against infections. METHOD We retrospectively investigated the association between the surrogate marker of the rs671 variant, the skin flushing phenomenon after alcohol consumption, and the timing of COVID-19 incidence using a web-based survey tool to test any protective effects of rs671 against COVID-19. RESULTS A total of 807 valid responses were received from 362 non-flushers and 445 flushers. During the 42 months, from 12/1/2019 to 5/31/2023, 40.6% of non-flushers and 35.7% of flushers experienced COVID-19. Flushers tended to have a later onset (Spearman's partial rank correlation test, p = 0.057, adjusted for sex and age). Similarly, 2.5% of non-flushers and 0.5% of flushers were hospitalized because of COVID-19. Survival analysis estimated lower risks of COVID-19 and associated hospitalization among flushers (p = 0.03 and <0.01, respectively; generalized Wilcoxon test). With the Cox proportional hazards model covering 21 months till 8/31/2021, when approximately half of the Japanese population had received two doses of COVID-19 vaccine, the hazard ratio (95% confidence interval) of COVID-19 incidence was estimated to be 0.21 (0.10-0.46) for flusher versus non-flusher, with adjustment for sex, age, steroid use, and area of residence. CONCLUSIONS Our study suggests an association between the flushing phenomenon after drinking and a decreased risk of COVID-19 morbidity and hospitalization, suggesting that the rs671 variant is a protective factor. This study provides valuable information for infection control and helps understand the unique constitutional diversity of East Asians.
Collapse
Affiliation(s)
- Satoshi Takashima
- Department of Social and Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
- Plant Products Safety Division, Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries, 1-2-1 Kasumigaseki, Chiyodaku, Tokyo 100-8950, Japan
| | - Mikiko Tokiya
- Department of Social and Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Katsura Izui
- Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Miyamoto
- Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Akiko Matsumoto
- Department of Social and Environmental Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| |
Collapse
|
31
|
Tokiya M, Kobayashi T, Kido MA, Matsumoto A. ALDH2 polymorphism rs671 and alcohol consumption: possible explanatory factors for race/ethnic differences in bone density. Osteoporos Int 2023; 34:2133-2135. [PMID: 37695337 DOI: 10.1007/s00198-023-06909-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Mikiko Tokiya
- Department of Social and Environmental Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Takaomi Kobayashi
- Department of Preventive Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Mizuho A Kido
- Department of Anatomy and Physiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Akiko Matsumoto
- Department of Social and Environmental Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
32
|
Cho Y, Lin K, Lee SH, Yu C, Valle DS, Avery D, Lv J, Jung K, Li L, Smith GD, China Kadoorie Biobank Collaborative Group, Sun D, Chen Z, Millwood IY, Hemani G, Walters RG. Genetic influences on alcohol flushing in East Asian populations. BMC Genomics 2023; 24:638. [PMID: 37875790 PMCID: PMC10594868 DOI: 10.1186/s12864-023-09721-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Although it is known that variation in the aldehyde dehydrogenase 2 (ALDH2) gene family influences the East Asian alcohol flushing response, knowledge about other genetic variants that affect flushing symptoms is limited. METHODS We performed a genome-wide association study meta-analysis and heritability analysis of alcohol flushing in 15,105 males of East Asian ancestry (Koreans and Chinese) to identify genetic associations with alcohol flushing. We also evaluated whether self-reported flushing can be used as an instrumental variable for alcohol intake. RESULTS We identified variants in the region of ALDH2 strongly associated with alcohol flushing, replicating previous studies conducted in East Asian populations. Additionally, we identified variants in the alcohol dehydrogenase 1B (ADH1B) gene region associated with alcohol flushing. Several novel variants were identified after adjustment for the lead variants (ALDH2-rs671 and ADH1B-rs1229984), which need to be confirmed in larger studies. The estimated SNP-heritability on the liability scale was 13% (S.E. = 4%) for flushing, but the heritability estimate decreased to 6% (S.E. = 4%) when the effects of the lead variants were controlled for. Genetic instrumentation of higher alcohol intake using these variants recapitulated known associations of alcohol intake with hypertension. Using self-reported alcohol flushing as an instrument gave a similar association pattern of higher alcohol intake and cardiovascular disease-related traits (e.g. stroke). CONCLUSION This study confirms that ALDH2-rs671 and ADH1B-rs1229984 are associated with alcohol flushing in East Asian populations. Our findings also suggest that self-reported alcohol flushing can be used as an instrumental variable in future studies of alcohol consumption.
Collapse
Affiliation(s)
- Yoonsu Cho
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK
| | - Kuang Lin
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Su-Hyun Lee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Canqing Yu
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Dan Schmidt Valle
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Daniel Avery
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jun Lv
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Keumji Jung
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Liming Li
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK
| | | | - Dianjianyi Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, 100191, China
| | - Zhengming Chen
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Iona Y Millwood
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- MRC Population Health Research Unit, University of Oxford, Oxford, UK.
| | - Gibran Hemani
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Barley House, Oakfield Grove, Bristol, UK.
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- MRC Population Health Research Unit, University of Oxford, Oxford, UK.
| |
Collapse
|
33
|
Chang YC, Lee HL, Yang W, Hsieh ML, Liu CC, Lee TY, Huang JY, Nong JY, Li FA, Chuang HL, Ding ZZ, Su WL, Chueh LY, Tsai YT, Chen CH, Mochly-Rosen D, Chuang LM. A common East-Asian ALDH2 mutation causes metabolic disorders and the therapeutic effect of ALDH2 activators. Nat Commun 2023; 14:5971. [PMID: 37749090 PMCID: PMC10520061 DOI: 10.1038/s41467-023-41570-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Obesity and type 2 diabetes have reached pandemic proportion. ALDH2 (acetaldehyde dehydrogenase 2, mitochondrial) is the key metabolizing enzyme of acetaldehyde and other toxic aldehydes, such as 4-hydroxynonenal. A missense Glu504Lys mutation of the ALDH2 gene is prevalent in 560 million East Asians, resulting in reduced ALDH2 enzymatic activity. We find that male Aldh2 knock-in mice mimicking human Glu504Lys mutation were prone to develop diet-induced obesity, glucose intolerance, insulin resistance, and fatty liver due to reduced adaptive thermogenesis and energy expenditure. We find reduced activity of ALDH2 of the brown adipose tissue from the male Aldh2 homozygous knock-in mice. Proteomic analyses of the brown adipose tissue from the male Aldh2 knock-in mice identifies increased 4-hydroxynonenal-adducted proteins involved in mitochondrial fatty acid oxidation and electron transport chain, leading to markedly decreased fatty acid oxidation rate and mitochondrial respiration of brown adipose tissue, which is essential for adaptive thermogenesis and energy expenditure. AD-9308 is a water-soluble, potent, and highly selective ALDH2 activator. AD-9308 treatment ameliorates diet-induced obesity and fatty liver, and improves glucose homeostasis in both male Aldh2 wild-type and knock-in mice. Our data highlight the therapeutic potential of reducing toxic aldehyde levels by activating ALDH2 for metabolic diseases.
Collapse
Affiliation(s)
- Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Lin Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wenjin Yang
- Foresee Pharmaceuticals, Co.Ltd, Taipei, Taiwan
| | - Meng-Lun Hsieh
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cai-Cin Liu
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Tung-Yuan Lee
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Jing-Yong Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiun-Yi Nong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Fu-An Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Zhi-Zhong Ding
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Wei-Lun Su
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Li-Yun Chueh
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Tsai
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Graduate Institute of Molecular Medicine, National Taiwan University, Taipei, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
Seike T, Chen CH, Mochly-Rosen D. Impact of common ALDH2 inactivating mutation and alcohol consumption on Alzheimer's disease. Front Aging Neurosci 2023; 15:1223977. [PMID: 37693648 PMCID: PMC10483235 DOI: 10.3389/fnagi.2023.1223977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is an enzyme found in the mitochondrial matrix that plays a central role in alcohol and aldehyde metabolism. A common ALDH2 polymorphism in East Asians descent (called ALDH2*2 or E504K missense variant, SNP ID: rs671), present in approximately 8% of the world's population, has been associated with a variety of diseases. Recent meta-analyses support the relationship between this ALDH2 polymorphism and Alzheimer's disease (AD). And AD-like pathology observed in ALDH2-/- null mice and ALDH2*2 overexpressing transgenic mice indicate that ALDH2 deficiency plays an important role in the pathogenesis of AD. Recently, the worldwide increase in alcohol consumption has drawn attention to the relationship between heavy alcohol consumption and AD. Of potential clinical significance, chronic administration of alcohol in ALDH2*2/*2 knock-in mice exacerbates the pathogenesis of AD-like symptoms. Therefore, ALDH2 polymorphism and alcohol consumption likely play an important role in the onset and progression of AD. Here, we review the data on the relationship between ALDH2 polymorphism, alcohol, and AD, and summarize what is currently known about the role of the common ALDH2 inactivating mutation, ALDH2*2, and alcohol in the onset and progression of AD.
Collapse
Affiliation(s)
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
35
|
Gorący A, Rosik J, Szostak J, Szostak B, Retfiński S, Machaj F, Pawlik A. Improving mitochondrial function in preclinical models of heart failure: therapeutic targets for future clinical therapies? Expert Opin Ther Targets 2023; 27:593-608. [PMID: 37477241 DOI: 10.1080/14728222.2023.2240021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Heart failure is a complex clinical syndrome resulting from the unsuccessful compensation of symptoms of myocardial damage. Mitochondrial dysfunction is a process that occurs because of an attempt to adapt to the disruption of metabolic and energetic pathways occurring in the myocardium. This, in turn, leads to further dysfunction in cardiomyocyte processes. Currently, many therapeutic strategies have been implemented to improve mitochondrial function, but their effectiveness varies widely. AREAS COVERED This review focuses on new models of therapeutic strategies targeting mitochondrial function in the treatment of heart failure. EXPERT OPINION Therapeutic strategies targeting mitochondria appear to be a valuable option for treating heart failure. Currently, the greatest challenge is to develop new research models that could restore the disrupted metabolic processes in mitochondria as comprehensively as possible. Only the development of therapies that focus on improving as many dysregulated mitochondrial processes as possible in patients with heart failure will be able to bring the expected clinical improvement, along with inhibition of disease progression. Combined strategies involving the reduction of the effects of oxidative stress and mitochondrial dysfunction, appear to be a promising possibility for developing new therapies for a complex and multifactorial disease such as heart failure.
Collapse
Affiliation(s)
- Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Szymon Retfiński
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
- Department of Medical Biology, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
36
|
Liu JC, Liang Y, Gao Y, Wu L, Lee C, Cauwenberghs G. Quantitative Simulation of Enzymatic Breakdown of Alcohol in Human Metabolism. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082983 DOI: 10.1109/embc40787.2023.10340992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The breakdown of ethanol, the active chemical in alcohol, is tightly regulated by the body, yet alcohol intoxication occurs in thousands of Americans annually. Many factors contribute to the concentration of ethanol in the bloodstream and the tolerance an individual has, including body size, previous drinking experience, and liver functionality. We propose a model that estimates both the blood alcohol concentration and the concentration of acetaldehyde (the toxic intermediate during catabolism) in the liver over time to quantify organ damage for an average person. From the current literature, we derived ordinary differential equations that govern the absorption of ethanol in the body and extended it with the metabolic enzyme mechanisms. We also altered the parameters of our system in order to show the effects of Asian flush, which impairs the body's processing of acetaldehyde. We demonstrated the accumulation of acetaldehyde in Asian flush patients was about 660 times higher compared to those without the disease.Clinical relevance-With further improvements and personalization, our model would be able to quantitatively describe the effects of alcohol consumption without having volunteers go through repetitive trials with extensive exposure to alcohol. Liver damage can also be estimated with the acetaldehyde buildup predicted by the model.
Collapse
|
37
|
Vijayraghavan S, Saini N. Aldehyde-Associated Mutagenesis─Current State of Knowledge. Chem Res Toxicol 2023. [PMID: 37363863 DOI: 10.1021/acs.chemrestox.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Aldehydes are widespread in the environment, with multiple sources such as food and beverages, industrial effluents, cigarette smoke, and additives. The toxic effects of exposure to several aldehydes have been observed in numerous studies. At the molecular level, aldehydes damage DNA, cross-link DNA and proteins, lead to lipid peroxidation, and are associated with increased disease risk including cancer. People genetically predisposed to aldehyde sensitivity exhibit severe health outcomes. In various diseases such as Fanconi's anemia and Cockayne syndrome, loss of aldehyde-metabolizing pathways in conjunction with defects in DNA repair leads to widespread DNA damage. Importantly, aldehyde-associated mutagenicity is being explored in a growing number of studies, which could offer key insights into how they potentially contribute to tumorigenesis. Here, we review the genotoxic effects of various aldehydes, focusing particularly on the DNA adducts underlying the mutagenicity of environmentally derived aldehydes. We summarize the chemical structures of the aldehydes and their predominant DNA adducts, discuss various methodologies, in vitro and in vivo, commonly used in measuring aldehyde-associated mutagenesis, and highlight some recent studies looking at aldehyde-associated mutation signatures and spectra. We conclude the Review with a discussion on the challenges and future perspectives of investigating aldehyde-associated mutagenesis.
Collapse
Affiliation(s)
- Sriram Vijayraghavan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| | - Natalie Saini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, United States
| |
Collapse
|
38
|
Pereira WR, Ferreira JCB, Artioli GG. Commentary: Aldehyde dehydrogenase, redox balance and exercise physiology: What is missing? Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111470. [PMID: 37364662 DOI: 10.1016/j.cbpa.2023.111470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme involved in reactive aldehyde detoxification. Approximately 560 million people (about 8% of the world's population) carry a point mutation in the aldehyde dehydrogenase 2 gene (ALDH2), identified as ALDH2*2, which leads to decreased ALDH2 catalytic activity. ALDH2*2 variant is associated with an accumulation of toxic reactive aldehydes and consequent disruption of cellular metabolism, which contributes to the establishment and progression of several degenerative diseases. Consequences of aldehyde accumulation include impaired mitochondrial functional, hindered anabolic signaling in the skeletal muscle, impaired cardiovascular and pulmonary function, and reduced osteoblastogenesis. Considering that aldehydes are endogenously produced through redox processes, it is expected that conditions that have a high energy demand, such as exercise, might be affected by impaired aldehyde clearance in ALDH2*2 individuals. Despite the large body of evidence supporting the importance of ALDH2 to ethanol metabolism, redox homeostasis and overall health, specific research investigating the impact of ALDH2*2 on phenotypes relevant to exercise performance are notoriously scarce. In this commentary, we highlight the consolidated knowledge on the impact of ALDH2*2 on physiological processes that are relevant to exercise.
Collapse
Affiliation(s)
- Wagner Ribeiro Pereira
- Applied Physiology & Nutrition Research Group, University of Sao Paulo, Sao Paulo, Brazil; Rheumatology Division, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
39
|
Abstract
The medical disorders of alcoholism rank among the leading public health problems worldwide and the need for predictive and prognostic risk markers for assessing alcohol use disorders (AUD) has been widely acknowledged. Early-phase detection of problem drinking and associated tissue toxicity are important prerequisites for timely initiations of appropriate treatments and improving patient's committing to the objective of reducing drinking. Recent advances in clinical chemistry have provided novel approaches for a specific detection of heavy drinking through assays of unique ethanol metabolites, phosphatidylethanol (PEth) or ethyl glucuronide (EtG). Carbohydrate-deficient transferrin (CDT) measurements can be used to indicate severe alcohol problems. Hazardous drinking frequently manifests as heavy episodic drinking or in combinations with other unfavorable lifestyle factors, such as smoking, physical inactivity, poor diet or adiposity, which aggravate the metabolic consequences of alcohol intake in a supra-additive manner. Such interactions are also reflected in multiple disease outcomes and distinct abnormalities in biomarkers of liver function, inflammation and oxidative stress. Use of predictive biomarkers either alone or as part of specifically designed biological algorithms helps to predict both hepatic and extrahepatic morbidity in individuals with such risk factors. Novel approaches for assessing progression of fibrosis, a major determinant of prognosis in AUD, have also been made available. Predictive algorithms based on the combined use of biomarkers and clinical observations may prove to have a major impact on clinical decisions to detect AUD in early pre-symptomatic stages, stratify patients according to their substantially different disease risks and predict individual responses to treatment.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, Seinäjoki, Finland.
| |
Collapse
|
40
|
Lee AS, Sung YL, Pan SH, Sung KT, Su CH, Ding SL, Lu YJ, Hsieh CL, Chen YF, Liu CC, Chen WY, Chen XR, Chung FP, Wang SW, Chen CH, Mochly-Rosen D, Hung CL, Yeh HI, Lin SF. A Common East Asian aldehyde dehydrogenase 2*2 variant promotes ventricular arrhythmia with chronic light-to-moderate alcohol use in mice. Commun Biol 2023; 6:610. [PMID: 37280327 PMCID: PMC10244406 DOI: 10.1038/s42003-023-04985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2023] [Indexed: 06/08/2023] Open
Abstract
Chronic heavy alcohol use is associated with lethal arrhythmias. Whether common East Asian-specific aldehyde dehydrogenase deficiency (ALDH2*2) contributes to arrhythmogenesis caused by low level alcohol use remains unclear. Here we show 59 habitual alcohol users carrying ALDH2 rs671 have longer QT interval (corrected) and higher ventricular tachyarrhythmia events compared with 137 ALDH2 wild-type (Wt) habitual alcohol users and 57 alcohol non-users. Notably, we observe QT prolongation and a higher risk of premature ventricular contractions among human ALDH2 variants showing habitual light-to-moderate alcohol consumption. We recapitulate a human electrophysiological QT prolongation phenotype using a mouse ALDH2*2 knock-in (KI) model treated with 4% ethanol, which shows markedly reduced total amount of connexin43 albeit increased lateralization accompanied by markedly downregulated sarcolemmal Nav1.5, Kv1.4 and Kv4.2 expressions compared to EtOH-treated Wt mice. Whole-cell patch-clamps reveal a more pronounced action potential prolongation in EtOH-treated ALDH2*2 KI mice. By programmed electrical stimulation, rotors are only provokable in EtOH-treated ALDH2*2 KI mice along with higher number and duration of ventricular arrhythmia episodes. The present research helps formulate safe alcohol drinking guideline for ALDH2 deficient population and develop novel protective agents for these subjects.
Collapse
Affiliation(s)
- An-Sheng Lee
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yen-Ling Sung
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei, Taiwan
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Tzu Sung
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Cheng-Huang Su
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shiao-Li Ding
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Ying-Jui Lu
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Chin-Ling Hsieh
- Department of Medical Research, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Yun-Fang Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Chuan-Chuan Liu
- Department of Physiology Examination, MacKay Memorial Hospital, New Taipei, Taiwan
| | - Wei-Yu Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
| | - Xuan-Ren Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fa-Po Chung
- Heart Rhythm Center and Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Medicine, National Yang Ming Chiao Tung University, School of Medicine, Taipei, Taiwan
| | - Shih-Wei Wang
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan
| | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Chung-Lieh Hung
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
| | - Hung-I Yeh
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.
| | - Shien-Fong Lin
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
41
|
Mazouzi A, Moser SC, Abascal F, van den Broek B, Del Castillo Velasco-Herrera M, van der Heijden I, Hekkelman M, Drenth AP, van der Burg E, Kroese LJ, Jalink K, Adams DJ, Jonkers J, Brummelkamp TR. FIRRM/C1orf112 mediates resolution of homologous recombination intermediates in response to DNA interstrand crosslinks. SCIENCE ADVANCES 2023; 9:eadf4409. [PMID: 37256941 PMCID: PMC10413679 DOI: 10.1126/sciadv.adf4409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
DNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases. Our knowledge on the precise coordination of this process remains incomplete. Here, we designed complementary genetic screens to map the machinery involved in the response to ICLs and identified FIRRM/C1orf112 as an indispensable factor in maintaining genome stability. FIRRM deficiency leads to hypersensitivity to ICL-inducing compounds, accumulation of DNA damage during S-G2 phase of the cell cycle, and chromosomal aberrations, and elicits a unique mutational signature previously observed in HR-deficient tumors. In addition, FIRRM is recruited to ICLs, controls MUS81 chromatin loading, and thereby affects resolution of HR intermediates. FIRRM deficiency in mice causes early embryonic lethality and accelerates tumor formation. Thus, FIRRM plays a critical role in the response to ICLs encountered during DNA replication.
Collapse
Affiliation(s)
- Abdelghani Mazouzi
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Sarah C. Moser
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Bram van den Broek
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
- BioImaging Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Ingrid van der Heijden
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Maarten Hekkelman
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anne Paulien Drenth
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Eline van der Burg
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Lona J. Kroese
- Animal Modeling Facility, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Kees Jalink
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David J. Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Jos Jonkers
- Oncode Institute, Amsterdam, Netherlands
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Thijn R. Brummelkamp
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| |
Collapse
|
42
|
Lee S, Kim J, Kim JS. Current Status of Korean Alcohol Drinking in Accordance with the Korean Alcohol Guidelines for Moderate Drinking Based on Facial Flushing. Korean J Fam Med 2023; 44:129-142. [PMID: 37225438 DOI: 10.4082/kjfm.23.0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
Since each person has a different ability to break down alcohol, it is inappropriate to apply a uniform standard to everyone when evaluating drinking status. In Korea, there has been a guideline for moderate drinking based not only on sex and age but Koreans' alcohol metabolism capabilities that can be predicted by presence of facial flushing response. So far, there have been no studies that have investigated drinking habits of Koreans in accordance with the guideline. This study tried to identify the current drinking status of Koreans according to the guideline. As a result, it was confirmed that about 1/3 of the total population was accompanied by facial flushing when drinking alcohol, and it was found that different drinking habits were shown even in the same age and gender groups according to the presence of facial flushing. It is difficult to accurately evaluate drinking habits because facial flushing has not yet been investigated in some large data or various medical examinations. In the future, it is necessary to ensure that the presence of facial flushing can be confirmed at the medical treatment or examination site so that accurate drinking habit evaluation and prevention and resolution of drinking problems can be achieved.
Collapse
Affiliation(s)
- Sami Lee
- Department of Family Medicine, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Jihan Kim
- Department of Family Medicine, Sejong Trinium Woman's Hospital, Sejong, Korea
- Department of Family Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jong Sung Kim
- Department of Family Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
43
|
Landini L, Souza Monteiro de Araujo D, Chieca M, De Siena G, Bellantoni E, Geppetti P, Nassini R, De Logu F. Acetaldehyde via CGRP receptor and TRPA1 in Schwann cells mediates ethanol-evoked periorbital mechanical allodynia in mice: relevance for migraine. J Biomed Sci 2023; 30:28. [PMID: 37101198 PMCID: PMC10131321 DOI: 10.1186/s12929-023-00922-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/18/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Ingestion of alcoholic beverages is a known trigger of migraine attacks. However, whether and how ethanol exerts its pro-migraine action remains poorly known. Ethanol stimulates the transient receptor potential vanilloid 1 (TRPV1) channel, and its dehydrogenized metabolite, acetaldehyde, is a known TRP ankyrin 1 (TRPA1) agonist. METHODS Periorbital mechanical allodynia following systemic ethanol and acetaldehyde was investigated in mice after TRPA1 and TRPV1 pharmacological antagonism and global genetic deletion. Mice with selective silencing of the receptor activated modifying protein 1 (RAMP1), a component of the calcitonin gene-related peptide (CGRP) receptor, in Schwann cells or TRPA1 in dorsal root ganglion (DRG) neurons or Schwann cells, were used after systemic ethanol and acetaldehyde. RESULTS We show in mice that intragastric ethanol administration evokes a sustained periorbital mechanical allodynia that is attenuated by systemic or local alcohol dehydrogenase inhibition, and TRPA1, but not TRPV1, global deletion, thus indicating the implication of acetaldehyde. Systemic (intraperitoneal) acetaldehyde administration also evokes periorbital mechanical allodynia. Importantly, periorbital mechanical allodynia by both ethanol and acetaldehyde is abrogated by pretreatment with the CGRP receptor antagonist, olcegepant, and a selective silencing of RAMP1 in Schwann cells. Periorbital mechanical allodynia by ethanol and acetaldehyde is also attenuated by cyclic AMP, protein kinase A, and nitric oxide inhibition and pretreatment with an antioxidant. Moreover, selective genetic silencing of TRPA1 in Schwann cells or DRG neurons attenuated periorbital mechanical allodynia by ethanol or acetaldehyde. CONCLUSIONS Results suggest that, in mice, periorbital mechanical allodynia, a response that mimics cutaneous allodynia reported during migraine attacks, is elicited by ethanol via the systemic production of acetaldehyde that, by releasing CGRP, engages the CGRP receptor in Schwann cells. The ensuing cascade of intracellular events results in a Schwann cell TRPA1-dependent oxidative stress generation that eventually targets neuronal TRPA1 to signal allodynia from the periorbital area.
Collapse
Affiliation(s)
- Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | | | - Martina Chieca
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Gaetano De Siena
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Elisa Bellantoni
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy.
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139, Florence, Italy
| |
Collapse
|
44
|
Yao P, Zhang Z, Liu H, Jiang P, Li W, Du W. p53 protects against alcoholic fatty liver disease via ALDH2 inhibition. EMBO J 2023; 42:e112304. [PMID: 36825429 PMCID: PMC10106987 DOI: 10.15252/embj.2022112304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
The tumor suppressor p53 is critical for tumor suppression, but the regulatory role of p53 in alcohol-induced fatty liver remains unclear. Here, we show a role for p53 in regulating ethanol metabolism via acetaldehyde dehydrogenase 2 (ALDH2), a key enzyme responsible for the oxidization of alcohol. By repressing ethanol oxidization, p53 suppresses intracellular levels of acetyl-CoA and histone acetylation, leading to the inhibition of the stearoyl-CoA desaturase-1 (SCD1) gene expression. Mechanistically, p53 directly binds to ALDH2 and prevents the formation of its active tetramer and indirectly limits the production of pyruvate that promotes the activity of ALDH2. Notably, p53-deficient mice exhibit increased lipid accumulation, which can be reversed by ALDH2 depletion. Moreover, liver-specific knockdown of SCD1 alleviates ethanol-induced hepatic steatosis caused by p53 loss. By contrast, overexpression of SCD1 in liver promotes ethanol-induced fatty liver development in wild-type mice, while it has a mild effect on p53-/- or ALDH2-/- mice. Overall, our findings reveal a previously unrecognized function of p53 in alcohol-induced fatty liver and uncover pyruvate as a natural regulator of ALDH2.
Collapse
Affiliation(s)
- Pengbo Yao
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Zhenxi Zhang
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijingChina
| | - Peng Jiang
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Wei Li
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
| | - Wenjing Du
- State Key Laboratory of Medical Molecular Biology, Haihe Laboratory of Cell Ecosystem, Department of Cell Biology, School of Basic Medicine Peking Union Medical CollegeInstitute of Basic Medical Sciences Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
45
|
Camilleri AE, Cung M, Hart FM, Pagovich OE, Crystal RG, Greenblatt MB, Stiles KM. Gene Therapy to Treat Osteopenia Associated With Chronic Ethanol Consumption and Aldehyde Dehydrogenase 2 Deficiency. JBMR Plus 2023; 7:e10723. [PMID: 37065630 PMCID: PMC10097638 DOI: 10.1002/jbm4.10723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/12/2022] [Accepted: 12/29/2022] [Indexed: 01/27/2023] Open
Abstract
Aldehyde dehydrogenase 2 (ALDH2) deficiency affects 35% to 45% of East Asians and 8% of the world population. ALDH2 is the second enzyme in the ethanol metabolism pathway. The common genetic variant ALDH2*2 allele has a glutamic acid-to-lysine substitution at position 487 (E487K) that reduces the enzyme activity, resulting in an accumulation of acetaldehyde after ethanol consumption. The ALDH2*2 allele is associated with increased risk of osteoporosis and hip fracture. Our prior study showed that administration of an adeno-associated virus (AAV) serotype rh.10 gene transfer vector expressing the human ALDH2 cDNA (AAVrh.10hALDH2) before initiation of ethanol consumption prevented bone loss in ALDH2-deficient homozygous knockin mice carrying the E487K mutation (Aldh2 E487K+/+). We hypothesized that AAVrh.10hALDH2 administration after establishment of osteopenia would be able to reverse bone loss due to ALDH2 deficiency and chronic ethanol consumption. To test this hypothesis, male and female Aldh2 E487K+/+ mice (n = 6) were given ethanol in the drinking water for 6 weeks to establish osteopenia and then administered AAVrh.10hALDH2 (1011 genome copies). Mice were evaluated for an additional 12 weeks. AAVrh.10hALDH2 administration after osteopenia was established corrected weight loss and locomotion phenotypes and, importantly, increased midshaft femur cortical bone thickness, the most important component of bone in the resistance to fractures, and showed a trend toward increased trabecular bone volume. AAVrh.10hALDH2 is a promising therapeutic for osteoporosis in ALDH2-deficient individuals. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna E Camilleri
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Michelle Cung
- Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Fiona M Hart
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Odelya E Pagovich
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Ronald G Crystal
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Matthew B Greenblatt
- Pathology and Laboratory MedicineWeill Cornell Medical CollegeNew YorkNYUSA
- Research DivisionHospital for Special SurgeryNew YorkNYUSA
| | - Katie M Stiles
- Department of Genetic MedicineWeill Cornell Medical CollegeNew YorkNYUSA
| |
Collapse
|
46
|
Mysiewicz S, North KC, Moreira L, Odum SJ, Bukiya AN, Dopico AM. Interspecies and regional variability of alcohol action on large cerebral arteries: regulation by KCNMB1 proteins. Am J Physiol Regul Integr Comp Physiol 2023; 324:R480-R496. [PMID: 36717168 PMCID: PMC10027090 DOI: 10.1152/ajpregu.00103.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Alcohol intake leading to blood ethanol concentrations (BEC) ≥ legal intoxication modifies brain blood flow with increases in some regions and decreases in others. Brain regions receive blood from the Willis' circle branches: anterior, middle (MCA) and posterior cerebral (PCA), and basilar (BA) arteries. Rats and mice have been used to identify the targets mediating ethanol-induced effects on cerebral arteries, with conclusions being freely interchanged, albeit data were obtained in different species/arterial branches. We tested whether ethanol action on cerebral arteries differed between male rat and mouse and/or across different brain regions and identified the targets of alcohol action. In both species and all Willis' circle branches, ethanol evoked reversible and concentration-dependent constriction (EC50s ≈ 37-86 mM; below lethal BEC in alcohol-naïve humans). Although showing similar constriction to depolarization, both species displayed differential responses to ethanol: in mice, MCA constriction was highly sensitive to the presence/absence of the endothelium, whereas in rat PCA was significantly more sensitive to ethanol than its mouse counterpart. In the rat, but not the mouse, BA was more ethanol sensitive than other branches. Both interspecies and regional variability were ameliorated by endothelium. Selective large conductance (BK) channel block in de-endothelialized vessels demonstrated that these channels were the effectors of alcohol-induced cerebral artery constriction across regions and species. Variabilities in alcohol actions did not fully matched KCNMB1 expression across vessels. However, immunofluorescence data from KCNMB1-/- mouse arteries electroporated with KCNMB1-coding cDNA demonstrate that KCNMB1 proteins, which regulate smooth muscle (SM) BK channel function and vasodilation, regulate interspecies and regional variability of brain artery responses to alcohol.
Collapse
Affiliation(s)
- Steven Mysiewicz
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Kelsey C North
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Luiz Moreira
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Schyler J Odum
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Anna N Bukiya
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Alex M Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
47
|
Wang H, Yang MA, Wangdue S, Lu H, Chen H, Li L, Dong G, Tsring T, Yuan H, He W, Ding M, Wu X, Li S, Tashi N, Yang T, Yang F, Tong Y, Chen Z, He Y, Cao P, Dai Q, Liu F, Feng X, Wang T, Yang R, Ping W, Zhang Z, Gao Y, Zhang M, Wang X, Zhang C, Yuan K, Ko AMS, Aldenderfer M, Gao X, Xu S, Fu Q. Human genetic history on the Tibetan Plateau in the past 5100 years. SCIENCE ADVANCES 2023; 9:eadd5582. [PMID: 36930720 PMCID: PMC10022901 DOI: 10.1126/sciadv.add5582] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Using genome-wide data of 89 ancient individuals dated to 5100 to 100 years before the present (B.P.) from 29 sites across the Tibetan Plateau, we found plateau-specific ancestry across plateau populations, with substantial genetic structure indicating high differentiation before 2500 B.P. Northeastern plateau populations rapidly showed admixture associated with millet farmers by 4700 B.P. in the Gonghe Basin. High genetic similarity on the southern and southwestern plateau showed population expansion along the Yarlung Tsangpo River since 3400 years ago. Central and southeastern plateau populations revealed extensive genetic admixture within the plateau historically, with substantial ancestry related to that found in southern and southwestern plateau populations. Over the past ~700 years, substantial gene flow from lowland East Asia further shaped the genetic landscape of present-day plateau populations. The high-altitude adaptive EPAS1 allele was found in plateau populations as early as in a 5100-year-old individual and showed a sharp increase over the past 2800 years.
Collapse
Affiliation(s)
- Hongru Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Melinda A. Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | - Shargan Wangdue
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Hongliang Lu
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Honghai Chen
- School of Cultural Heritage, Northwest University, Xi’an 710069, China
| | - Linhui Li
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Guanghui Dong
- Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tinley Tsring
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Haibing Yuan
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Wei He
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Manyu Ding
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Shuai Li
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Norbu Tashi
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Tsho Yang
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Feng Yang
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Yan Tong
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Zujun Chen
- Tibet Institute for Conservation and Research of Cultural Relics, Lhasa 850000, China
| | - Yuanhong He
- School of Archaeology and Museology, Sichuan University, Chengdu 610064, China
- Center for Archaeological Science, Sichuan University, Chengdu 610064, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Tianyi Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Zhaoxia Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Zhang
- School of Cultural Heritage, Northwest University, Xi’an 710069, China
| | - Xiaoji Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Mark Aldenderfer
- Department of Anthropology and Heritage Studies, University of California, Merced, Merced, CA 95343, USA
| | - Xing Gao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 201203, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Qi Zhi Institute, Shanghai 200232, China
| |
Collapse
|
48
|
Genetic Influences on Fetal Alcohol Spectrum Disorder. Genes (Basel) 2023; 14:genes14010195. [PMID: 36672936 PMCID: PMC9859092 DOI: 10.3390/genes14010195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) encompasses the range of deleterious outcomes of prenatal alcohol exposure (PAE) in the affected offspring, including developmental delay, intellectual disability, attention deficits, and conduct disorders. Several factors contribute to the risk for and severity of FASD, including the timing, dose, and duration of PAE and maternal factors such as age and nutrition. Although poorly understood, genetic factors also contribute to the expression of FASD, with studies in both humans and animal models revealing genetic influences on susceptibility. In this article, we review the literature related to the genetics of FASD in humans, including twin studies, candidate gene studies in different populations, and genetic testing identifying copy number variants. Overall, these studies suggest different genetic factors, both in the mother and in the offspring, influence the phenotypic outcomes of PAE. While further work is needed, understanding how genetic factors influence FASD will provide insight into the mechanisms contributing to alcohol teratogenicity and FASD risk and ultimately may lead to means for early detection and intervention.
Collapse
|
49
|
Starek-Świechowicz B, Budziszewska B, Starek A. Alcohol and breast cancer. Pharmacol Rep 2023; 75:69-84. [PMID: 36310188 PMCID: PMC9889462 DOI: 10.1007/s43440-022-00426-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 02/04/2023]
Abstract
Breast cancer is one of the main causes of death in women worldwide. In women, breast cancer includes over half of all tumours caused by alcohol. This paper discusses both ethanol metabolism and the mechanisms of mammary tumourigenesis caused by alcohol. Numerous signalling pathways in neoplastic transformation following alcohol consumption in women have been presented. In addition, primary and secondary prevention, phytochemicals, synthetic chemicals, specific inhibitors of enzymes and selective receptor modulators have been described.
Collapse
Affiliation(s)
- Beata Starek-Świechowicz
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Bogusława Budziszewska
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | - Andrzej Starek
- Department of Biochemical Toxicology, Chair of Toxicology, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
50
|
MacKillop J, Agabio R, Feldstein Ewing SW, Heilig M, Kelly JF, Leggio L, Lingford-Hughes A, Palmer AA, Parry CD, Ray L, Rehm J. Hazardous drinking and alcohol use disorders. Nat Rev Dis Primers 2022; 8:80. [PMID: 36550121 PMCID: PMC10284465 DOI: 10.1038/s41572-022-00406-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Alcohol is one of the most widely consumed psychoactive drugs globally. Hazardous drinking, defined by quantity and frequency of consumption, is associated with acute and chronic morbidity. Alcohol use disorders (AUDs) are psychiatric syndromes characterized by impaired control over drinking and other symptoms. Contemporary aetiological perspectives on AUDs apply a biopsychosocial framework that emphasizes the interplay of genetics, neurobiology, psychology, and an individual's social and societal context. There is strong evidence that AUDs are genetically influenced, but with a complex polygenic architecture. Likewise, there is robust evidence for environmental influences, such as adverse childhood exposures and maladaptive developmental trajectories. Well-established biological and psychological determinants of AUDs include neuroadaptive changes following persistent use, differences in brain structure and function, and motivational determinants including overvaluation of alcohol reinforcement, acute effects of environmental triggers and stress, elevations in multiple facets of impulsivity, and lack of alternative reinforcers. Social factors include bidirectional roles of social networks and sociocultural influences, such as public health control strategies and social determinants of health. An array of evidence-based approaches for reducing alcohol harms are available, including screening, pharmacotherapies, psychological interventions and policy strategies, but are substantially underused. Priorities for the field include translating advances in basic biobehavioural research into novel clinical applications and, in turn, promoting widespread implementation of evidence-based clinical approaches in practice and health-care systems.
Collapse
Affiliation(s)
- James MacKillop
- Peter Boris Centre for Addictions Research, McMaster University & St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada.
- Homewood Research Institute, Guelph, ON, Canada.
| | - Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
- Neuroscience Institute, Section of Cagliari, National Research Council, Cagliari, Italy
| | - Sarah W Feldstein Ewing
- Department of Psychology, University of Rhode Island, Kingston, RI, USA
- Department of Psychology and Behavioural Sciences, Centre for Alcohol and Drug Research, Aarhus University, Aarhus, Denmark
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - John F Kelly
- Recovery Research Institute and Department of Psychiatry, Massachusetts General Hospital & Harvard Medical School, Boston, MA, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Anne Lingford-Hughes
- Division of Psychiatry, Imperial College London, London, UK
- Central North West London NHS Foundation Trust, London, UK
| | - Abraham A Palmer
- Department of Psychiatry & Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Charles D Parry
- Alcohol, Tobacco and Other Drug Research Unit, South African Medical Research Council, Cape Town, South Africa
- Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Lara Ray
- Departments of Psychology and Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jürgen Rehm
- Institute for Mental Health Policy Research, Campbell Family Mental Health Research Institute, PAHO/WHO Collaborating Centre, Centre for Addiction and Mental Health, Toronto, Canada
- Dalla Lana School of Public Health; Institute of Health Policy, Management and Evaluation; & Department of Psychiatry, University of Toronto (UofT), Toronto, Canada
- WHO European Region Collaborating Centre at Public Health Institute of Catalonia, Barcelona, Spain
- Technische Universität Dresden, Klinische Psychologie & Psychotherapie, Dresden, Germany
- Department of International Health Projects, Institute for Leadership and Health Management, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Zentrum für Interdisziplinäre Suchtforschung der Universität Hamburg (ZIS), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|