1
|
Salomon R, Razavi Bazaz S, Mutafopulos K, Gallego-Ortega D, Warkiani M, Weitz D, Jin D. Challenges in blood fractionation for cancer liquid biopsy: how can microfluidics assist? LAB ON A CHIP 2025; 25:1097-1127. [PMID: 39775440 DOI: 10.1039/d4lc00563e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Liquid biopsy provides a minimally invasive approach to characterise the molecular and phenotypic characteristics of a patient's individual tumour by detecting evidence of cancerous change in readily available body fluids, usually the blood. When applied at multiple points during the disease journey, it can be used to monitor a patient's response to treatment and to personalise clinical management based on changes in disease burden and molecular findings. Traditional liquid biopsy approaches such as quantitative PCR, have tended to look at only a few biomarkers, and are aimed at early detection of disease or disease relapse using predefined markers. With advances in the next generation sequencing (NGS) and single-cell genomics, simultaneous analysis of both circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) is now a real possibility. To realise this, however, we need to overcome issues with current blood collection and fractionation processes. These include overcoming the need to add a preservative to the collection tube or the need to rapidly send blood tubes to a centralised processing lab with the infrastructure required to fractionate and process the blood samples. This review focuses on outlining the current state of liquid biopsy and how microfluidic blood fractionation tools can be used in cancer liquid biopsy. We describe microfluidic devices that can separate plasma for ctDNA analysis, and devices that are important in isolating the cellular component(s) in liquid biopsy, i.e., individual CTCs and CTC clusters. To facilitate a better understanding of these devices, we propose a new categorisation system based on how these devices operate. The three categories being 1) solid Interaction devices, 2) fluid Interaction devices and 3) external force/active devices. Finally, we conclude that whilst some assays and some cancers are well suited to current microfluidic techniques, new tools are necessary to support broader, clinically relevant multiomic workflows in cancer liquid biopsy.
Collapse
Affiliation(s)
- Robert Salomon
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| | - Sajad Razavi Bazaz
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, Australia.
| | - Kirk Mutafopulos
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - David Gallego-Ortega
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Majid Warkiani
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - David Weitz
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD)/Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007 Australia
| |
Collapse
|
2
|
Smolle MA, Seidel MG, Kashofer K, Liegl-Atzwanger B, Sadoghi P, Müller DA, Leithner A. Precision medicine in diagnosis, prognosis, and disease monitoring of bone and soft tissue sarcomas using liquid biopsy: a systematic review. Arch Orthop Trauma Surg 2025; 145:121. [PMID: 39797974 PMCID: PMC11724793 DOI: 10.1007/s00402-024-05711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/27/2024] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Liquid biopsy as a non-invasive method to investigate cancer biology and monitor residual disease has gained significance in clinical practice over the years. Whilst its applicability in carcinomas is well established, the low incidence and heterogeneity of bone and soft tissue sarcomas explains the less well-established knowledge considering liquid biopsy in these highly malignant mesenchymal neoplasms. MATERIALS AND METHODS A systematic literature review adhering to the PRISMA guidelines initially identified 920 studies, of whom 68 original articles could be finally included, all dealing with clinical applicability of liquid biopsy in sarcoma. Studies were discussed within two main chapters, i.e. translocation-associated and complex-karyotype sarcomas. RESULTS Overall, data on clinical applicability of liquid biopsy in 2636 patients with > 10 different entities of bone and soft tissue sarcomas could be summarised. The five most frequent tumour entities included osteosarcoma (n = 602), Ewing sarcoma (n = 384), gastrointestinal stromal tumour (GIST; n = 203), rhabdomyosarcoma (n = 193), and leiomyosarcoma (n = 145). Of 11 liquid biopsy analytes, largest evidence was present for ctDNA and cfDNA, investigated in 26 and 18 studies, respectively. CONCLUSIONS This systematic literature review provides an extensive up-to-date overview about the current and potential future uses of different liquid biopsy modalities as diagnostic, prognostic, and disease monitoring markers in sarcoma.
Collapse
Affiliation(s)
- Maria Anna Smolle
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Markus G Seidel
- Research Unit for Cancer and Inborn Errors of the Blood and Immunity in Children, Division of Paediatric and Adolescent Haematology/Oncology, Department of Paediatric and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 38, 8036, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Bernadette Liegl-Atzwanger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Patrick Sadoghi
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Daniel A Müller
- Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria.
| |
Collapse
|
3
|
Cole JJ, Ferner RE, Gutmann DH. Neurofibromatosis type 1. ROSENBERG'S MOLECULAR AND GENETIC BASIS OF NEUROLOGICAL AND PSYCHIATRIC DISEASE 2025:231-249. [DOI: 10.1016/b978-0-443-19176-3.00017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Tomczak K, Patel MS, Bhalla AD, Peterson CB, Landers SM, Callahan SC, Zhang D, Wong J, Landry JP, Lazar AJ, Livingston JA, Guadagnolo BA, Lyu HG, Lillemoe H, Roland CL, Keung EZ, Scally CP, Hunt KK, McCutcheon IE, Slopis JM, Gu J, Scheet P, Wang L, Rai K, Torres KE. Plasma DNA Methylation-Based Biomarkers for MPNST Detection in Patients With Neurofibromatosis Type 1. Mol Carcinog 2025; 64:44-56. [PMID: 39600120 PMCID: PMC11636586 DOI: 10.1002/mc.23825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 11/29/2024]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) development is characterized by an altered DNA methylation landscape, which presents a promising area for developing MPNST-specific biomarkers for screening patients with NF1. Genome-wide DNA methylation profiling of a cohort of 13 patients with MPNST (29 samples of tumor and adjacent neurofibroma tissues) and of NF1-MPNST cell lines was performed to identify and validate candidate MPNST-specific CpG sites (CpGs). A logistic regression prediction model was constructed to select MPNST-specific CpGs distinct from adjacent neurofibromas and normal tissues. To test if hypermethylation at selected CpGs can also be detected in plasma from patients with MPNST, cfMBD-seq was applied to profile the cfDNA methylome of blood from patients with MPNST and NF1. Based on stringent feature-selection criteria and predictive modeling, we identified 73 candidate MPNST-specific CpGs (67 with unique CpG island locations) that reliably discriminated MPNSTs from neurofibromas. Validation of five candidate biomarkers confirmed successful MPNST detection (sensitivity: > 88%, specificity: > 91%) in tissues. In plasma samples, 63 of 67 selected genomic regions had greater than 1.2-fold higher methylation in patients with MPNST than those with NF1. Further, we identified 15 CpG islands that consistently separated plasma from patients with confirmed MPNST diagnosis from plasma of individuals with NF1 without a diagnosis of malignant transformation (FDR < 0.1). Our findings confirmed a unique hypermethylation pattern present during malignant transformation. This study highlights the potential to be investigated further as biomarkers in clinical settings for early MPNST detection in patients with NF1.
Collapse
Affiliation(s)
- Katarzyna Tomczak
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Manishkumar S. Patel
- Department of Tumor Microenvironment and MetastasisH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Angela D. Bhalla
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christine B. Peterson
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sharon M. Landers
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - S. Carson Callahan
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Di Zhang
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Justin Wong
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jace P. Landry
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alexander J. Lazar
- Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - J. Andrew Livingston
- Department of Sarcoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - B. Ashleigh Guadagnolo
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Heather G. Lyu
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Heather Lillemoe
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christina L. Roland
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Emily Z. Keung
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christopher P. Scally
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Kelly K. Hunt
- Department of Breast Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ian E. McCutcheon
- Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - John M. Slopis
- Department of Neuro‐OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jian Gu
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Paul Scheet
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Liang Wang
- Department of Tumor Microenvironment and MetastasisH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Kunal Rai
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Keila E. Torres
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
5
|
Skórka P, Kordykiewicz D, Ilków A, Ptaszyński K, Wójcik J, Skórka W, Wojtyś ME. Surgical Treatment and Targeted Therapy for a Large Metastatic Malignant Peripheral Nerve Sheath Tumor: A Case Report and Literature Review. Life (Basel) 2024; 14:1648. [PMID: 39768355 PMCID: PMC11680011 DOI: 10.3390/life14121648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Neurofibromatosis type 1 (NF1) significantly increases the risk of malignant peripheral nerve sheath tumors (MPNST), a rare and aggressive malignancy for which treatment is clinically challenging. This paper presents the case of a 24-year-old male with an NF1 who developed MPNST with lung metastases. Due to the limited effectiveness of systemic therapy in the treatment of MPNST, the patient underwent radical surgical resection and radiotherapy. Pathological evaluation confirmed high-grade MPNST, and PET-CT imaging revealed further metastatic progression. The treatment results for our patient are compared with those of other patients with NF1 who also developed MPNST with lung metastases in the literature. The findings suggest the need for further research into personalized treatment strategies that may improve prognosis and overall survival in patients with NF1 and MPNST, with immunotherapy being a promising therapeutic option.
Collapse
Affiliation(s)
- Patryk Skórka
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Dawid Kordykiewicz
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Andrzej Ilków
- Department of General, Vascular and Oncological Surgery, Provincial Hospital, Mikołaja Kopernika, Tytusa Chałubińskiego 7, 75-581 Koszalin, Poland
| | - Konrad Ptaszyński
- Department of Pathology, University Hospital of Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Janusz Wójcik
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Wiktoria Skórka
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| | - Małgorzata Edyta Wojtyś
- Department of Thoracic Surgery and Transplantation, Pomeranian Medical University in Szczecin, Alfreda Sokołowskiego 11, 70-891 Szczecin, Poland
| |
Collapse
|
6
|
Perrino MR, Das A, Scollon SR, Mitchell SG, Greer MLC, Yohe ME, Hansford JR, Kalish JM, Schultz KAP, MacFarland SP, Kohlmann WK, Lupo PJ, Maxwell KN, Pfister SM, Weksberg R, Michaeli O, Jongmans MCJ, Tomlinson GE, Brzezinski J, Tabori U, Ney GM, Gripp KW, Gross AM, Widemann BC, Stewart DR, Woodward ER, Kratz CP. Update on Pediatric Cancer Surveillance Recommendations for Patients with Neurofibromatosis Type 1, Noonan Syndrome, CBL Syndrome, Costello Syndrome, and Related RASopathies. Clin Cancer Res 2024; 30:4834-4843. [PMID: 39196581 PMCID: PMC11530332 DOI: 10.1158/1078-0432.ccr-24-1611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
Neurofibromatosis type 1 (NF1), Noonan syndrome, and related syndromes, grouped as RASopathies, result from dysregulation of the RAS-MAPK pathway and demonstrate varied multisystemic clinical phenotypes. Together, RASopathies are among the more prevalent genetic cancer predisposition syndromes and require nuanced clinical management. When compared with the general population, children with RASopathies are at significantly increased risk of benign and malignant neoplasms. In the past decade, clinical trials have shown that targeted therapies can improve outcomes for low-grade and benign neoplastic lesions but have their own challenges, highlighting the multidisciplinary care needed for such individuals, specifically those with NF1. This perspective, which originated from the 2023 American Association for Cancer Research Childhood Cancer Predisposition Workshop, serves to update pediatric oncologists, neurologists, geneticists, counselors, and other health care professionals on revised diagnostic criteria, review previously published surveillance guidelines, and harmonize updated surveillance recommendations for patients with NF1 or RASopathies.
Collapse
Affiliation(s)
- Melissa R. Perrino
- Department of Oncology, St Jude Children’s Research Hospital, Department of Oncology, Memphis, Tennessee, United States
| | - Anirban Das
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Sarah R. Scollon
- Department of Pediatrics, Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah G. Mitchell
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Mary-Louise C. Greer
- Department of Diagnostic and Interventional Radiology, The Hospital for Sick Children, Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Marielle E. Yohe
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital; South Australia Health and Medical Research Institute; South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, Australia
| | - Jennifer M. Kalish
- Division of Genetics and Center for Childhood Cancer Research Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Kris Ann P. Schultz
- Cancer and Blood Disorders, Children’s Minnesota, Minneapolis, Minnesota, United States
| | - Suzanne P. MacFarland
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Wendy K. Kohlmann
- VA Medical Center, National TeleOncology Clinical Cancer Genetics Service, Durham NC; University of Utah Huntsman Cancer Institute, Salt Lake City, Utah, United States
| | - Philip J. Lupo
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States
| | - Kara N. Maxwell
- Division of Oncology, Children’s Hospital of Philadelphia, Department of Pediatrics, Perelman School of medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Medicine Service, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, Pensylvannia, United States
| | - Stefan M. Pfister
- Hopp Childreńs Cancer Center Heidelberg (KiTZ), Division Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg University Hospital and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Dept Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Orli Michaeli
- Division of Hematology/ Oncology, Schneider Children’s Medical Center of Israel, Petach Tikva, Israel
| | - Marjolijn C. J. Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gail E. Tomlinson
- University of Texas Health Science Center at San Antonio, Department of Pediatrics, Division of Hematology-Oncology and Greehey Children’s Cancer Research Institute, San Antonio, Texas, United States
| | - Jack Brzezinski
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Uri Tabori
- Division of Paediatric Haematology & Oncology, Hospital for Sick Children, University of Toronto, Canada
| | - Gina M. Ney
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States
| | - Karen W. Gripp
- Division of Medical Genetics, Nemours Children’s Hospital, Wilmington, Delaware, United States
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States
| | - Douglas R. Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, United States
| | - Emma R. Woodward
- University of Manchester and Manchester Centre for Genomic Medicine, Manchester, United Kingdom
| | - Christian P. Kratz
- Hannover Medical School, Pediatric Hematology and Oncology, Hannover, Germany
| |
Collapse
|
7
|
Cannizzaro IR, Treccani M, Taiani A, Ambrosini E, Busciglio S, Cesarini S, Luberto A, De Sensi E, Moschella B, Gismondi P, Azzoni C, Bottarelli L, Giordano G, Corradi D, Silini EM, Zanatta V, Cennamo F, Bertolini P, Caggiati P, Martorana D, Uliana V, Percesepe A, Barili V. Proof of Concept for Genome Profiling of the Neurofibroma/Sarcoma Sequence in Neurofibromatosis Type 1. Int J Mol Sci 2024; 25:10822. [PMID: 39409151 PMCID: PMC11476461 DOI: 10.3390/ijms251910822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/27/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disorder characterized by the predisposition to develop tumors such as malignant peripheral nerve sheath tumors (MPNSTs) which represents the primary cause of death for NF1-affected patients. Regardless of the high incidence and mortality, the molecular mechanisms underneath MPNST growth and metastatic progression remain poorly understood. In this proof-of-concept study, we performed somatic whole-exome sequencing (WES) to profile the genomic alterations in four samples from a patient with NF1-associated MPNST, consisting of a benign plexiform neurofibroma, a primary MPNST, and metastases from lung and skin tissues. By comparing genomic patterns, we identified a high level of variability across samples with distinctive genetic changes which allow for the definition of profiles of the early phase with respect to the late metastatic stages. Pathogenic and likely pathogenic variants were abundant in the primary tumor, whereas the metastatic samples exhibited a high level of copy-number variations (CNVs), highlighting a possible genomic instability in the late phases. The most known MPNST-related genes, such as TP53 and SUZ12, were identified in CNVs observed within the primary tumor. Pathway analysis of altered early genes in MPNST pointed to a potential role in cell motility, division and metabolism. Moreover, we employed survival analysis with the TCGA sarcoma genomic dataset on 262 affected patients, in order to corroborate the predictive significance of the identified early and metastatic MPNST driver genes. Specifically, the expression changes related to the mutated genes, such as in RBMX, PNPLA6 and AGAP2, were associated with reduced patient survival, distinguishing them as potential prognostic biomarkers. This study underlines the relevance of integrating genomic results with clinical information for early diagnosis and prognostic understanding of tumor aggressiveness.
Collapse
Affiliation(s)
- Ilenia Rita Cannizzaro
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Mirko Treccani
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43125 Parma, Italy
| | - Antonietta Taiani
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Enrico Ambrosini
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Sabrina Busciglio
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sofia Cesarini
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Anita Luberto
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Erika De Sensi
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Barbara Moschella
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Pierpacifico Gismondi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Cinzia Azzoni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Lorena Bottarelli
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giovanna Giordano
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Domenico Corradi
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Enrico Maria Silini
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Valentina Zanatta
- Cytogenetics, Molecular Genetics and Medical Genetics Unit, Toma Advanced Biomedical Assays, 21052 Busto Arsizio, Italy
| | - Federica Cennamo
- Pediatric Hematology Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Patrizia Bertolini
- Pediatric Hematology Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | | | - Davide Martorana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Vera Uliana
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Antonio Percesepe
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Genetics, University Hospital of Parma, 43126 Parma, Italy
| | - Valeria Barili
- Medical Genetics, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
8
|
Sundby RT, Szymanski JJ, Pan AC, Jones PA, Mahmood SZ, Reid OH, Srihari D, Armstrong AE, Chamberlain S, Burgic S, Weekley K, Murray B, Patel S, Qaium F, Lucas AN, Fagan M, Dufek A, Meyer CF, Collins NB, Pratilas CA, Dombi E, Gross AM, Kim A, Chrisinger JS, Dehner CA, Widemann BC, Hirbe AC, Chaudhuri AA, Shern JF. Early Detection of Malignant and Premalignant Peripheral Nerve Tumors Using Cell-Free DNA Fragmentomics. Clin Cancer Res 2024; 30:4363-4376. [PMID: 39093127 PMCID: PMC11443212 DOI: 10.1158/1078-0432.ccr-24-0797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Early detection of neurofibromatosis type 1 (NF1)-associated peripheral nerve sheath tumors (PNST) informs clinical decision-making, enabling early definitive treatment and potentially averting deadly outcomes. In this study, we describe a cell-free DNA (cfDNA) fragmentomic approach that distinguishes nonmalignant, premalignant, and malignant forms of PNST in the cancer predisposition syndrome, NF1. EXPERIMENTAL DESIGN cfDNA was isolated from plasma samples of a novel cohort of 101 patients with NF1 and 21 healthy controls and underwent whole-genome sequencing. We investigated diagnosis-specific signatures of copy-number alterations with in silico size selection as well as fragment profiles. Fragmentomics were analyzed using complementary feature types: bin-wise fragment size ratios, end motifs, and fragment non-negative matrix factorization signatures. RESULTS The novel cohort of patients with NF1 validated that our previous cfDNA copy-number alteration-based approach identifies malignant PNST (MPNST) but cannot distinguish between benign and premalignant states. Fragmentomic methods were able to differentiate premalignant states including atypical neurofibromas (AN). Fragmentomics also adjudicated AN cases suspicious for MPNST, correctly diagnosing samples noninvasively, which could have informed clinical management. CONCLUSIONS Novel cfDNA fragmentomic signatures distinguish AN from benign plexiform neurofibromas and MPNST, enabling more precise clinical diagnosis and management. This study pioneers the early detection of malignant and premalignant PNST in NF1 and provides a blueprint for decentralizing noninvasive cancer surveillance in hereditary cancer predisposition syndromes.
Collapse
Affiliation(s)
- R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Jeffrey J. Szymanski
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota.
| | - Alexander C. Pan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Paul A. Jones
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri.
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Sana Z. Mahmood
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Olivia H. Reid
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Divya Srihari
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri.
| | - Amy E. Armstrong
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
| | - Stacey Chamberlain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Sanita Burgic
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Kara Weekley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Béga Murray
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Sneh Patel
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Faridi Qaium
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Andrea N. Lucas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Margaret Fagan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Anne Dufek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Christian F. Meyer
- Division of Medical Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Natalie B. Collins
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts.
| | - Christine A. Pratilas
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, District of Columbia.
| | - John S.A. Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri.
| | - Carina A. Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana.
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Angela C. Hirbe
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri.
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Aadel A. Chaudhuri
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota.
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
9
|
Somaiah N, Paudyal B, Winkler RE, Van Tine BA, Hirbe AC. Malignant Peripheral Nerve Sheath Tumor, a Heterogeneous, Aggressive Cancer with Diverse Biomarkers and No Targeted Standard of Care: Review of the Literature and Ongoing Investigational Agents. Target Oncol 2024; 19:665-678. [PMID: 38954182 PMCID: PMC11392982 DOI: 10.1007/s11523-024-01078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Malignant peripheral sheath tumor (MPNST) is a rare, aggressive form of soft-tissue sarcoma that presents a unique set of diagnostic and treatment challenges and is associated with major unmet treatment medical needs. OBJECTIVE The chief aim of this review is to consider the epidemiology, histology, anatomic distribution, pathologic signaling pathways, diagnosis, and management of MPNST, with a focus on potential targeted therapies. A subordinate objective was to establish benchmarks for the antitumor activity of such treatments. RESULTS MPNST has an incidence of 1:100,000 in the general population and 1:3500 among patients with the inherited condition of neurofibromatosis-1. Spindle-cell sarcomas of neural-crest origin, MPNSTs are frequently situated in the extremities and pelvis/trunk, often at the confluence of large nerve roots and bundles. Highly copy-number aberrant and enriched in chromosome 8, MPNSTs have a complex molecular pathogenesis that likely involves the interplay of multiple signaling pathways, including Ras/AKT/mTOR/MAPK, EGFR, p53, PTEN, and PRC2, as well as factors in the tumor microenvironment. A combination of magnetic resonance imaging (MRI) and positron emission tomography with 18F-fluorodeoxyglucose (FDG-PET) enables comprehensive assessment of both morphology and metabolism, while MRI- and ultrasound-guided core needle biopsy can confirm histopathology. Although surgery with wide excisional margins is now the chief curative approach to localized disease, MPNST-specific survival has not improved in decades. For advanced and metastatic MPNST, radiation and chemotherapy (chiefly with anthracyclines plus ifosfamide) have somewhat promising but still largely uncertain treatment roles, chiefly in local control, downstaging, and palliation. No single druggable target has emerged, no objective responses have been observed with a number of targeted therapies (cumulative disease control rate in our review = 22.9-34.8%), and combinatorial approaches directed toward multiple signal transduction mechanisms are hallmarks of ongoing clinical trials. CONCLUSIONS Despite advances in our understanding of the genetics and molecular biology of MPNST, further research is warranted to: (1) unravel the complex pathogenesis of this condition; (2) improve diagnostic yield; (3) delineate the appropriate roles of chemotherapy and radiation; and (4) develop a targeted therapy (or combination of such treatments) that is well tolerated and prolongs survival.
Collapse
Affiliation(s)
- Neeta Somaiah
- Chair of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Brian A Van Tine
- Medicine and of Pediatrics, Developmental Therapeutics (Phase 1) Program, Sarcoma Program, Washington University School of Medicine, Barnes and Jewish Hospital, Siteman Cancer Center, St. Louis, MO, USA
| | - Angela C Hirbe
- Medicine and Pediatrics, Adult Neurofibromatosis Clinical Program, Division of Oncology, Sarcoma Section, Couch Building, Room 3304, Washington University School of Medicine, Barnes Jewish Hospital, Siteman Cancer Center, 660 S. Euclid Avenue, Campus, Box 8076, St. Louis, MO, 63110-1010, USA.
| |
Collapse
|
10
|
Wong D, Tageldein M, Luo P, Ensminger E, Bruce J, Oldfield L, Gong H, Fischer NW, Laverty B, Subasri V, Davidson S, Khan R, Villani A, Shlien A, Kim RH, Malkin D, Pugh TJ. Cell-free DNA from germline TP53 mutation carriers reflect cancer-like fragmentation patterns. Nat Commun 2024; 15:7386. [PMID: 39191772 DOI: 10.1038/s41467-024-51529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Germline pathogenic TP53 variants predispose individuals to a high lifetime risk of developing multiple cancers and are the hallmark feature of Li-Fraumeni syndrome (LFS). Our group has previously shown that LFS patients harbor shorter plasma cell-free DNA fragmentation; independent of cancer status. To understand the functional underpinning of cfDNA fragmentation in LFS, we conducted a fragmentomic analysis of 199 cfDNA samples from 82 TP53 mutation carriers and 30 healthy TP53-wildtype controls. We find that LFS individuals exhibit an increased prevalence of A/T nucleotides at fragment ends, dysregulated nucleosome positioning at p53 binding sites, and loci-specific changes in chromatin accessibility at development-associated transcription factor binding sites and at cancer-associated open chromatin regions. Machine learning classification resulted in robust differentiation between TP53 mutant versus wildtype cfDNA samples (AUC-ROC = 0.710-1.000) and intra-patient longitudinal analysis of ctDNA fragmentation signal enabled early cancer detection. These results suggest that cfDNA fragmentation may be a useful diagnostic tool in LFS patients and provides an important baseline for cancer early detection.
Collapse
Affiliation(s)
- Derek Wong
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Maha Tageldein
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ping Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Erik Ensminger
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Bruce
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Leslie Oldfield
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Haifan Gong
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | - Brianne Laverty
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vallijah Subasri
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Scott Davidson
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada
| | - Reem Khan
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada
| | - Anita Villani
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Toroton, Ontario, Canada
| | - Adam Shlien
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada
| | - Raymond H Kim
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada.
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Department of Pediatrics, University of Toronto, Torotno, Ontario, Canada.
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
| | - Trevor J Pugh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute of Cancer Research, Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Tosello V, Grassi A, Rose D, Bao LC, Zulato E, Dalle Fratte C, Polano M, Del Bianco P, Pasello G, Guarneri V, Indraccolo S, Bonanno L. Binary classification of copy number alteration profiles in liquid biopsy with potential clinical impact in advanced NSCLC. Sci Rep 2024; 14:18545. [PMID: 39122833 PMCID: PMC11316016 DOI: 10.1038/s41598-024-68229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Liquid biopsy has recently emerged as an important tool in clinical practice particularly for lung cancer patients. We retrospectively evaluated cell-free DNA analyses performed at our Institution by next generation sequencing methodology detecting the major classes of genetic alterations. Starting from the graphical representation of chromosomal alterations provided by the analysis software, we developed a support vector machine classifier to automatically classify chromosomal profiles as stable (SCP) or unstable (UCP). High concordance was found between our binary classification and tumor fraction evaluation performed using shallow whole genome sequencing. Among clinical features, UCP patients were more likely to have ≥ 3 metastatic sites and liver metastases. Longitudinal assessment of chromosomal profiles in 33 patients with lung cancer receiving immune checkpoint inhibitors (ICIs) showed that only patients that experienced early death or hyperprogressive disease retained or acquired an UCP within 3 weeks from the beginning of ICIs. UCP was not observed following ICIs among patients that experienced progressive disease or clinical benefit. In conclusion, our binary classification, applied to whole copy number alteration profiles, could be useful for clinical risk stratification during systemic treatment for non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Valeria Tosello
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Angela Grassi
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Dominic Rose
- Sequencing Solutions, Roche Diagnostics Deutschland GmbH, Mannheim, Germany
| | - Loc Carlo Bao
- Department of Surgery, Oncology, Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Elisabetta Zulato
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Chiara Dalle Fratte
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano IRCCS, Aviano, Italy
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giulia Pasello
- Department of Surgery, Oncology, Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology, Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
- Department of Surgery, Oncology, Gastroenterology, University of Padova, Padua, Italy.
| | - Laura Bonanno
- Department of Surgery, Oncology, Gastroenterology, University of Padova, Padua, Italy
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
12
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
13
|
Blake A, Perrino MR, Morin CE, Taylor L, McGee RB, Lewis S, Hines-Dowell S, Pandey A, Turner P, Kubal M, Su Y, Tang L, Howell L, Harrison LW, Abramson Z, Schechter A, Sabin ND, Nichols KE. Performance of Tumor Surveillance for Children With Cancer Predisposition. JAMA Oncol 2024; 10:1060-1067. [PMID: 38900420 PMCID: PMC11190829 DOI: 10.1001/jamaoncol.2024.1878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Importance Pediatric oncology patients are increasingly recognized as having an underlying cancer predisposition syndrome (CPS). Surveillance is often recommended to detect new tumors at their earliest and most curable stages. Data on the effectiveness and outcomes of surveillance for children with CPS are limited. Objective To evaluate the performance of surveillance across a wide spectrum of CPSs. Design, Setting, and Participants This cohort study reviewed surveillance outcomes for children and young adults from birth to age 23 years with a clinical and/or molecular CPS diagnosis from January 1, 2009, through September 31, 2021. Patients were monitored using standard surveillance regimens for their corresponding CPS at a specialty pediatric oncology center. Patients with hereditary retinoblastoma and bone marrow failure syndromes were excluded. Data were analyzed between August 1, 2021, and December 6, 2023. Exposure Cancer predisposition syndrome. Main Outcomes and Measures Outcomes of surveillance were reviewed to evaluate the incidence, spectrum, and clinical course of newly detected tumors. Surveillance modalities were classified for accuracy and assessed for common strengths and weaknesses. Results A total of 274 children and young adults (mean age, 8 years [range, birth to 23 years]; 144 female [52.6%]) with 35 different CPSs were included, with a median follow-up of 3 years (range, 1 month to 12 years). During the study period, 35 asymptomatic tumors were detected in 27 patients through surveillance (9.9% of the cohort), while 5 symptomatic tumors were detected in 5 patients (1.8% of the cohort) outside of surveillance, 2 of whom also had tumors detected through surveillance. Ten of the 35 tumors (28.6%) were identified on first surveillance imaging. Malignant solid and brain tumors identified through surveillance were more often localized (20 of 24 [83.3%]) than similar tumors detected before CPS diagnosis (71 of 125 [56.8%]; P < .001). Of the 24 tumors identified through surveillance and surgically resected, 17 (70.8%) had completely negative margins. When analyzed across all imaging modalities, the sensitivity (96.4%), specificity (99.6%), positive predictive value (94.3%), and negative predictive value (99.6%) of surveillance were high, with few false-positive (6 [0.4%]) or false-negative (5 [0.3%]) findings. Conclusions and Relevance These findings suggest that standardized surveillance enables early detection of new tumors across a wide spectrum of CPSs, allowing for complete surgical resection and successful treatment in the majority of patients.
Collapse
Affiliation(s)
- Alise Blake
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Melissa R. Perrino
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Cara E. Morin
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
- Now with Department of Radiology, Cincinnati Children’s Hospital Medical Center, Ohio
| | - Leslie Taylor
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Rose B. McGee
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sara Lewis
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Stacy Hines-Dowell
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Arti Pandey
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Paige Turner
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Manish Kubal
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yin Su
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Li Tang
- Department of Biostatistics, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Laura Howell
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lynn W. Harrison
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Zachary Abramson
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Ann Schechter
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Noah D. Sabin
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, Tennessee
| | - Kim E. Nichols
- Department of Oncology, St Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
14
|
Lian S, Lu C, Li F, Yu X, Ai L, Wu B, Gong X, Zhou W, Liang X, Zhan J, Yuan Y, Fang F, Liu Z, Ji M, Zheng Z. Monitoring Hepatocellular Carcinoma Using Tumor Content in Circulating Cell-Free DNA. Clin Cancer Res 2024; 30:2772-2779. [PMID: 38630548 DOI: 10.1158/1078-0432.ccr-23-3449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
PURPOSE The objective of the study was to evaluate the use of tumor content in circulating cell-free DNA (ccfDNA) for monitoring hepatocellular carcinoma (HCC) throughout its natural history. EXPERIMENTAL DESIGN We included 67 patients with hepatitis B virus-related HCC, of whom 17 had paired pre- and posttreatment samples, and 90 controls. Additionally, in a prospective cohort with hepatitis B virus surface antigen-positive participants recruited in 2012 and followed up biannually with blood sample collections until 2019, we included 270 repeated samples before diagnosis from 63 participants who later developed HCC (pre-HCC samples). Shallow whole-genome sequencing and the ichorCNA method were used to analyze genome-wide copy number and tumor content in ccfDNA. RESULTS High tumor content was associated with advanced tumor stage (P < 0.001) and poor survival after HCC diagnosis [HR = 12.35; 95% confidence interval (CI) = 1.413-107.9; P = 0.023]. Tumor content turned negative after surgery (P = 0.027), whereas it remained positive after transarterial chemoembolization treatment (P = 0.578). In non-HCC samples, the mean tumor content (±SD) was 0.011 (±0.007) and had a specificity of 97.8% (95% CI = 92.2%-99.7%). In pre-HCC samples, the tumor content increased from 0.014 at 4 years before diagnosis to 0.026 at 1 year before diagnosis. The sensitivity of tumor content in detecting HCC increased from 22.7% (95% CI = 11.5%-37.8%) within 1 year before diagnosis to 30.4% (95% CI = 13.2%-52.9%) at the Barcelona Clinic Liver Cancer (BCLC) stage 0/A, 81.8% (95% CI = 59.7%-94.8%) at stage B, and 95.5% (95% CI = 77.2%-99.9%) at stage C. CONCLUSIONS The tumor content in ccfDNA is correlated with tumor burden and may help in monitoring HCC 1 yearearlier than clinical diagnosis and in predicting patient prognosis.
Collapse
Affiliation(s)
- Shifeng Lian
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR, People's Republic of China
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Chenyu Lu
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Xia Yu
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Limei Ai
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR, People's Republic of China
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Biaohua Wu
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Xueyi Gong
- Department of General Surgery, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Wenjing Zhou
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| | - Xuejun Liang
- Xiaolan Public Health Service Center, Zhongshan, People's Republic of China
| | - Jiyun Zhan
- Xiaolan Public Health Service Center, Zhongshan, People's Republic of China
| | - Yong Yuan
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, Zhongshan, People's Republic of China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR, People's Republic of China
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Hirbe AC, Dehner CA, Dombi E, Eulo V, Gross AM, Sundby T, Lazar AJ, Widemann BC. Contemporary Approach to Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Am Soc Clin Oncol Educ Book 2024; 44:e432242. [PMID: 38710002 PMCID: PMC11656191 DOI: 10.1200/edbk_432242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Most malignant peripheral nerve sheath tumors (MPNSTs) are clinically aggressive high-grade sarcomas, arising in individuals with neurofibromatosis type 1 (NF1) at a significantly elevated estimated lifetime frequency of 8%-13%. In the setting of NF1, MPNSTs arise from malignant transformation of benign plexiform neurofibroma and borderline atypical neurofibromas. Composed of neoplastic cells from the Schwannian lineage, these cancers recur in approximately 50% of individuals, and most patients die within five years of diagnosis, despite surgical resection, radiation, and chemotherapy. Treatment for metastatic disease is limited to cytotoxic chemotherapy and investigational clinical trials. In this article, we review the pathophysiology of this aggressive cancer and current approaches to surveillance and treatment.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
| | - Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vanessa Eulo
- Division of Oncology, Department of Medicine, University of Alabama, Birmingham, AL
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
16
|
Church AJ, Wakefield CE, Hetherington K, Shern JF. Promise and Perils of Precision Oncology for Patients With Pediatric and Young Adult Sarcomas. Am Soc Clin Oncol Educ Book 2024; 44:e432794. [PMID: 38924707 DOI: 10.1200/edbk_432794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The completion of multiple national pediatric precision oncology platform trials and the incorporation of standardized molecular profiling into the diagnostic care of pediatric and young adult patients with sarcomas have proven the feasibility and potential of the approach. In this work, we explore the current state of the art of precision oncology for pediatric and young adults with sarcoma. We highlight important lessons learned and the challenges that should be addressed in the next generation of trials. The chapter outlines current efforts to improve standardization of molecular assays, harmonization of data collection, and novel molecular tools such as cell-free DNA analyses. Finally, we discuss the impacts and psychosocial outcomes experienced by patients and communication strategies for providers.
Collapse
Affiliation(s)
- Alanna J Church
- Department of Pathology, Boston Children's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Claire E Wakefield
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Kate Hetherington
- School of Clinical Medicine, Faculty of Medicine, UNSW Sydney, Randwick, NSW, Australia
- Behavioural Sciences Unit, Kids Cancer Centre, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
17
|
Lalvani S, Brown RM. Neurofibromatosis Type 1: Optimizing Management with a Multidisciplinary Approach. J Multidiscip Healthc 2024; 17:1803-1817. [PMID: 38680880 PMCID: PMC11055545 DOI: 10.2147/jmdh.s362791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Neurofibromatosis Type I (NF1) is a complex genetic condition that affects multiple organ systems and presents a unique set of challenges for clinicians in its management. NF1 is a tumor predisposition syndrome that primarily affect the peripheral and central nervous systems via the impact of haploinsufficiency upon neural crest lineage cells including Schwann cells, melanocytes, fibroblasts, etc. NF1 can further lead to pathology of the skin, bones, visual system, and cardiovascular system, all of which can drastically reduce a patient's quality of life (QOL). This review provides a comprehensive examination of the many specialties required for the care of patients with Neurofibromatosis Type 1 (NF1). We delve into the pathogenesis and clinical presentation of NF1, highlighting its diverse manifestations and the challenges they pose in management. The review underscores the importance of a multidisciplinary approach to NF1, emphasizing how such an approach can significantly improve patient outcomes and overall QOL. Central to this approach is the role of the NF expert, who guides a multidisciplinary team (MDT) comprising healthcare professionals from many areas of expertise. The MDT collaboratively addresses the multifaceted needs of NF1 patients, ensuring comprehensive and personalized care. This review highlights the need for further investigation to optimize the workflow for NF1 patients in an MDT setting, and to improve implementation and efficacy.
Collapse
Affiliation(s)
- Shaan Lalvani
- Department of Neurology, The Mount Sinai Hospital, New York, NY, USA
| | - Rebecca M Brown
- Department of Neurology, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
18
|
Ewongwo A, Hui C, Moding EJ. Opportunity in Complexity: Harnessing Molecular Biomarkers and Liquid Biopsies for Personalized Sarcoma Care. Semin Radiat Oncol 2024; 34:195-206. [PMID: 38508784 DOI: 10.1016/j.semradonc.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Due to their rarity and complexity, sarcomas represent a substantial therapeutic challenge. However, the incredible diversity within and across sarcoma subtypes presents an opportunity for personalized care to maximize efficacy and limit toxicity. A deeper understanding of the molecular alterations that drive sarcoma development and treatment response has paved the way for molecular biomarkers to shape sarcoma treatment. Genetic, transcriptomic, and protein biomarkers have become critical tools for diagnosis, prognostication, and treatment selection in patients with sarcomas. In the future, emerging biomarkers like circulating tumor DNA analysis offer the potential to improve early detection, monitoring response to treatment, and identifying mechanisms of resistance to personalize sarcoma treatment. Here, we review the current state of molecular biomarkers for sarcomas and highlight opportunities and challenges for the implementation of new technologies in the future.
Collapse
Affiliation(s)
- Agnes Ewongwo
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Caressa Hui
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, CA.; Stanford Cancer Institute, Stanford University, Stanford, CA..
| |
Collapse
|
19
|
Taylor Sundby R, Szymanski JJ, Pan A, Jones PA, Mahmood SZ, Reid OH, Srihari D, Armstrong AE, Chamberlain S, Burgic S, Weekley K, Murray B, Patel S, Qaium F, Lucas AN, Fagan M, Dufek A, Meyer CF, Collins NB, Pratilas CA, Dombi E, Gross AM, Kim A, Chrisinger JSA, Dehner CA, Widemann BC, Hirbe AC, Chaudhuri AA, Shern JF. Early detection of malignant and pre-malignant peripheral nerve tumors using cell-free DNA fragmentomics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.18.24301053. [PMID: 38293154 PMCID: PMC10827240 DOI: 10.1101/2024.01.18.24301053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Early detection of neurofibromatosis type 1 (NF1) associated peripheral nerve sheath tumors (PNST) informs clinical decision-making, potentially averting deadly outcomes. Here, we describe a cell-free DNA (cfDNA) fragmentomic approach which distinguishes non-malignant, pre-malignant and malignant forms of NF1 PNST. Using plasma samples from a novel cohort of 101 NF1 patients and 21 healthy controls, we validated that our previous cfDNA copy number alteration (CNA)-based approach identifies malignant peripheral nerve sheath tumor (MPNST) but cannot distinguish among benign and premalignant states. We therefore investigated the ability of fragment-based cfDNA features to differentiate NF1-associated tumors including binned genome-wide fragment length ratios, end motif analysis, and non-negative matrix factorization deconvolution of fragment lengths. Fragmentomic methods were able to differentiate pre-malignant states including atypical neurofibromas (AN). Fragmentomics also adjudicated AN cases suspicious for MPNST, correctly diagnosing samples noninvasively, which could have informed clinical management. Overall, this study pioneers the early detection of malignant and premalignant peripheral nerve sheath tumors in NF1 patients using plasma cfDNA fragmentomics. In addition to screening applications, this novel approach distinguishes atypical neurofibromas from benign plexiform neurofibromas and malignant peripheral nerve sheath tumors, enabling more precise clinical diagnosis and management.
Collapse
Affiliation(s)
- R Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey J Szymanski
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| | - Alexander Pan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A Jones
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sana Z Mahmood
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Olivia H Reid
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Divya Srihari
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amy E Armstrong
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stacey Chamberlain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sanita Burgic
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kara Weekley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Béga Murray
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sneh Patel
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Faridi Qaium
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea N Lucas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret Fagan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne Dufek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian F Meyer
- Division of Medical Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalie B Collins
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - John S A Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela C Hirbe
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aadel A Chaudhuri
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Mitchell DK, Burgess B, White EE, Smith AE, Potchanant EAS, Mang H, Hickey BE, Lu Q, Qian S, Bessler W, Li X, Jiang L, Brewster K, Temm C, Horvai A, Albright EA, Fishel ML, Pratilas CA, Angus SP, Clapp DW, Rhodes SD. Spatial Gene-Expression Profiling Unveils Immuno-oncogenic Programs of NF1-Associated Peripheral Nerve Sheath Tumor Progression. Clin Cancer Res 2024; 30:1038-1053. [PMID: 38127282 PMCID: PMC11095977 DOI: 10.1158/1078-0432.ccr-23-2548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Plexiform neurofibromas (PNF) are benign peripheral nerve sheath tumors (PNST) associated with neurofibromatosis type 1 (NF1). Despite similar histologic appearance, these neoplasms exhibit diverse evolutionary trajectories, with a subset progressing to malignant peripheral nerve sheath tumor (MPNST), the leading cause of premature death in individuals with NF1. Malignant transformation of PNF often occurs through the development of atypical neurofibroma (ANF) precursor lesions characterized by distinct histopathologic features and CDKN2A copy-number loss. Although genomic studies have uncovered key driver events promoting tumor progression, the transcriptional changes preceding malignant transformation remain poorly defined. EXPERIMENTAL DESIGN Here we resolve gene-expression profiles in PNST across the neurofibroma-to-MPNST continuum in NF1 patients and mouse models, revealing early molecular features associated with neurofibroma evolution and transformation. RESULTS Our findings demonstrate that ANF exhibit enhanced signatures of antigen presentation and immune response, which are suppressed as malignant transformation ensues. MPNST further displayed deregulated survival and mitotic fidelity pathways, and targeting key mediators of these pathways, CENPF and BIRC5, disrupted the growth and viability of human MPNST cell lines and primary murine Nf1-Cdkn2a-mutant Schwann cell precursors. Finally, neurofibromas contiguous with MPNST manifested distinct alterations in core oncogenic and immune surveillance programs, suggesting that early molecular events driving disease progression may precede histopathologic evidence of malignancy. CONCLUSIONS If validated prospectively in future studies, these signatures may serve as molecular diagnostic tools to augment conventional histopathologic diagnosis by identifying neurofibromas at high risk of undergoing malignant transformation, facilitating risk-adapted care.
Collapse
Affiliation(s)
- Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Breanne Burgess
- Medical Scientist Training Program, Indiana University School of Medicine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Abbi E. Smith
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | | | - Henry Mang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Brooke E. Hickey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Qingbo Lu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Shaomin Qian
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Waylan Bessler
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Xiaohong Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Li Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Kylee Brewster
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Constance Temm
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Andrew Horvai
- Department of Pathology and Laboratory Medicine, University of California San Francisco
| | - Eric A. Albright
- Department of Clinical Pathology and Laboratory Medicine, Indiana University School of Medicine
| | - Melissa L. Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Christine A. Pratilas
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Steven P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - D. Wade Clapp
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| |
Collapse
|
21
|
Cui P, Zhou X, Xu S, He W, Huang G, Xiong Y, Zhang C, Chang T, Feng M, Lai H, Pan Y. Prediction of methylation status using WGS data of plasma cfDNA for multi-cancer early detection (MCED). Clin Epigenetics 2024; 16:34. [PMID: 38414068 PMCID: PMC10898085 DOI: 10.1186/s13148-024-01646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Cell-free DNA (cfDNA) contains a large amount of molecular information that can be used for multi-cancer early detection (MCED), including changes in epigenetic status of cfDNA, such as cfDNA fragmentation profile. The fragmentation of cfDNA is non-random and may be related to cfDNA methylation. This study provides clinical evidence for the feasibility of inferring cfDNA methylation levels based on cfDNA fragmentation patterns. We performed whole-genome bisulfite sequencing and whole-genome sequencing (WGS) on both healthy individuals and cancer patients. Using the information of whole-genome methylation levels, we investigated cytosine-phosphate-guanine (CpG) cleavage profile and validated the method of predicting the methylation level of individual CpG sites using WGS data. RESULTS We conducted CpG cleavage profile biomarker analysis on data from both healthy individuals and cancer patients. We obtained unique or shared potential biomarkers for each group and built models accordingly. The modeling results proved the feasibility to predict the methylation status of single CpG sites in cfDNA using cleavage profile model from WGS data. CONCLUSION By combining cfDNA cleavage profile of CpG sites with machine learning algorithms, we have identified specific CpG cleavage profile as biomarkers to predict the methylation status of individual CpG sites. Therefore, methylation profile, a widely used epigenetic biomarker, can be obtained from a single WGS assay for MCED.
Collapse
Affiliation(s)
- Pin Cui
- Shenzhen Rapha Biotechnology Incorporate, Shenzhen, 518118, China.
| | - Xiaozhou Zhou
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, 518033, China
| | - Shu Xu
- Department of Oncology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, 518106, China
| | - Weihuang He
- Shenzhen Rapha Biotechnology Incorporate, Shenzhen, 518118, China
| | - Guozeng Huang
- Department of Hepatobiliary Gastrointestinal Surgery, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, 518106, China
| | - Yong Xiong
- Department of Hepatobiliary Gastrointestinal Surgery, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, 518106, China
| | - Chuxin Zhang
- Department of Gastroenterology, Shenzhen Hospital, University of Chinese Academy of Sciences, Shenzhen, 518106, China
| | - Tingmin Chang
- Department of Endoscopy, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Mingji Feng
- Shenzhen Rapha Biotechnology Incorporate, Shenzhen, 518118, China
| | - Hanming Lai
- Shenzhen Rapha Biotechnology Incorporate, Shenzhen, 518118, China
| | - Yi Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
22
|
Sundby RT, Rhodes SD, Komlodi-Pasztor E, Sarnoff H, Grasso V, Upadhyaya M, Kim A, Evans DG, Blakeley JO, Hanemann CO, Bettegowda C. Recommendations for the collection and annotation of biosamples for analysis of biomarkers in neurofibromatosis and schwannomatosis clinical trials. Clin Trials 2024; 21:40-50. [PMID: 37904489 PMCID: PMC10922556 DOI: 10.1177/17407745231203330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
INTRODUCTION Neurofibromatosis 1 and schwannomatosis are characterized by potential lifelong morbidity and life-threatening complications. To date, however, diagnostic and predictive biomarkers are an unmet need in this patient population. The inclusion of biomarker discovery correlatives in neurofibromatosis 1/schwannomatosis clinical trials enables study of low-incidence disease. The implementation of a common data model would further enhance biomarker discovery by enabling effective concatenation of data from multiple studies. METHODS The Response Evaluation in Neurofibromatosis and Schwannomatosis biomarker working group reviewed published data on emerging trends in neurofibromatosis 1 and schwannomatosis biomarker research and developed recommendations in a series of consensus meetings. RESULTS Liquid biopsy has emerged as a promising assay for neurofibromatosis 1/schwannomatosis biomarker discovery and validation. In addition, we review recommendations for a range of biomarkers in clinical trials, neurofibromatosis 1/schwannomatosis-specific data annotations, and common data models for data integration. CONCLUSION These Response Evaluation in Neurofibromatosis and Schwannomatosis consensus guidelines are intended to provide best practices for the inclusion of biomarker studies in neurofibromatosis 1/schwannomatosis clinical trials, data, and sample annotation and to lay a framework for data harmonization and concatenation between trials.
Collapse
Affiliation(s)
- R Taylor Sundby
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Steven D Rhodes
- Division of Hematology/Oncology/Stem Cell Transplant, Department of Pediatrics, Herman B Wells Center for Pediatric Research, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Edina Komlodi-Pasztor
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, USA
| | - Herb Sarnoff
- Research and Development, Infixion Bioscience, Inc., San Diego, CA, USA
- Patient Representative, REiNS International Collaboration, San Diego, CA, USA
| | - Vito Grasso
- Neural Stem Cell Institute, Rensselaer, NY, USA
- Patient Representative, REiNS International Collaboration, Troy, NY, USA
| | - Meena Upadhyaya
- Division of Cancer and Genetics, Cardiff University, Wales, UK
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester Academic Health Sciences Centre (MAHSC), ERN GENTURIS, Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Jaishri O Blakeley
- Division of Neuro-Oncology, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Chetan Bettegowda
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Wong D, Luo P, Oldfield LE, Gong H, Brunga L, Rabinowicz R, Subasri V, Chan C, Downs T, Farncombe KM, Luu B, Norman M, Sobotka JA, Uju P, Eagles J, Pedersen S, Wellum J, Danesh A, Prokopec SD, Stutheit-Zhao EY, Znassi N, Heisler LE, Jovelin R, Lam B, Lujan Toro BE, Marsh K, Sundaravadanam Y, Torti D, Man C, Goldenberg A, Xu W, Veit-Haibach P, Doria AS, Malkin D, Kim RH, Pugh TJ. Early Cancer Detection in Li-Fraumeni Syndrome with Cell-Free DNA. Cancer Discov 2024; 14:104-119. [PMID: 37874259 PMCID: PMC10784744 DOI: 10.1158/2159-8290.cd-23-0456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
People with Li-Fraumeni syndrome (LFS) harbor a germline pathogenic variant in the TP53 tumor suppressor gene, face a near 100% lifetime risk of cancer, and routinely undergo intensive surveillance protocols. Liquid biopsy has become an attractive tool for a range of clinical applications, including early cancer detection. Here, we provide a proof-of-principle for a multimodal liquid biopsy assay that integrates a targeted gene panel, shallow whole-genome, and cell-free methylated DNA immunoprecipitation sequencing for the early detection of cancer in a longitudinal cohort of 89 LFS patients. Multimodal analysis increased our detection rate in patients with an active cancer diagnosis over uni-modal analysis and was able to detect cancer-associated signal(s) in carriers prior to diagnosis with conventional screening (positive predictive value = 67.6%, negative predictive value = 96.5%). Although adoption of liquid biopsy into current surveillance will require further clinical validation, this study provides a framework for individuals with LFS. SIGNIFICANCE By utilizing an integrated cell-free DNA approach, liquid biopsy shows earlier detection of cancer in patients with LFS compared with current clinical surveillance methods such as imaging. Liquid biopsy provides improved accessibility and sensitivity, complementing current clinical surveillance methods to provide better care for these patients. See related commentary by Latham et al., p. 23. This article is featured in Selected Articles from This Issue, p. 5.
Collapse
Affiliation(s)
- Derek Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ping Luo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Leslie E. Oldfield
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Haifan Gong
- The Hospital for Sick Children, Toronto, Canada
| | | | | | - Vallijah Subasri
- The Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Clarissa Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tiana Downs
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Beatrice Luu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Maia Norman
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Julia A. Sobotka
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Precious Uju
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jenna Eagles
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Stephanie Pedersen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Johanna Wellum
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | - Nadia Znassi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | - Bernard Lam
- Ontario Institute for Cancer Research, Toronto, Canada
| | | | - Kayla Marsh
- Ontario Institute for Cancer Research, Toronto, Canada
| | | | - Dax Torti
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Carina Man
- The Hospital for Sick Children, Toronto, Canada
| | - Anna Goldenberg
- The Hospital for Sick Children, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Wei Xu
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada
| | | | - David Malkin
- The Hospital for Sick Children, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Raymond H. Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- The Hospital for Sick Children, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Trevor J. Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute for Cancer Research, Toronto, Canada
| |
Collapse
|
24
|
Eoli M. Management of neurofibromatosis type 1 associated tumors of central and peripheral nervous system. Curr Opin Oncol 2023; 35:558-563. [PMID: 37820091 DOI: 10.1097/cco.0000000000000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW In recent years emerging evidence suggests that some tumor types, extremely rare in general population and understudied, can be observed in NF1 and neoplasms related with this condition harbor peculiar genetic and epigenetic features. The aim of this review is to summarize recent advances that, delving into the tumor complexity, have identified new diagnostic tools and potential tumor subtype that may have been associated with clinical implications. RECENT FINDINGS The available data confirmed the presence of peculiar molecular signatures in those tumors, different from those observed in sporadic neoplasms and suggest that a specific reference to NF1 associated neoplasms would deserve to be mentioned in tumor WHO classification. Comprehensive multiomic analysis shows that the histologic assessment does not always match the methylation group assignment and facilitates tumor subclassification into categories predictive of clinical behavior. The non-invasive assessment of tumor genetic profiles by the analysis of plasma ctDNA is representative of tumor features, may help differential diagnosis and may identify malignant transformation, sparing the patient from repeated biopsies. SUMMARY A better knowledge of NF1 associated tumors at the molecular level may suggest changes in the clinical management of the disease and open new frontiers of personalized treatment.
Collapse
Affiliation(s)
- Marica Eoli
- Experimental Neuro-Oncology Unit Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
25
|
Farncombe KM, Wong D, Norman ML, Oldfield LE, Sobotka JA, Basik M, Bombard Y, Carile V, Dawson L, Foulkes WD, Malkin D, Karsan A, Parkin P, Penney LS, Pollett A, Schrader KA, Pugh TJ, Kim RH. Current and new frontiers in hereditary cancer surveillance: Opportunities for liquid biopsy. Am J Hum Genet 2023; 110:1616-1627. [PMID: 37802042 PMCID: PMC10577078 DOI: 10.1016/j.ajhg.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023] Open
Abstract
At least 5% of cancer diagnoses are attributed to a causal pathogenic or likely pathogenic germline genetic variant (hereditary cancer syndrome-HCS). These individuals are burdened with lifelong surveillance monitoring organs for a wide spectrum of cancers. This is associated with substantial uncertainty and anxiety in the time between screening tests and while the individuals are awaiting results. Cell-free DNA (cfDNA) sequencing has recently shown potential as a non-invasive strategy for monitoring cancer. There is an opportunity for high-yield cancer early detection in HCS. To assess clinical validity of cfDNA in individuals with HCS, representatives from eight genetics centers from across Canada founded the CHARM (cfDNA in Hereditary and High-Risk Malignancies) Consortium in 2017. In this perspective, we discuss operationalization of this consortium and early data emerging from the most common and well-characterized HCSs: hereditary breast and ovarian cancer, Lynch syndrome, Li-Fraumeni syndrome, and Neurofibromatosis type 1. We identify opportunities for the incorporation of cfDNA sequencing into surveillance protocols; these opportunities are backed by examples of earlier cancer detection efficacy in HCSs from the CHARM Consortium. We seek to establish a paradigm shift in early cancer surveillance in individuals with HCSs, away from highly centralized, regimented medical screening visits and toward more accessible, frequent, and proactive care for these high-risk individuals.
Collapse
Affiliation(s)
- Kirsten M Farncombe
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Derek Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Maia L Norman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Leslie E Oldfield
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Julia A Sobotka
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mark Basik
- Department of Surgery, McGill University Medical School, Montreal, QC, Canada; Department of Oncology, McGill University Medical School, Montreal, QC, Canada
| | - Yvonne Bombard
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada; Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Victoria Carile
- Jewish General Hospital Stroll Cancer Prevention Centre, Montreal, QC, Canada
| | - Lesa Dawson
- Memorial University, St. John's, NL, Canada; Eastern Health Authority, St. John's, NL, Canada
| | - William D Foulkes
- Jewish General Hospital Stroll Cancer Prevention Centre, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - David Malkin
- Division of Hematology-Oncology, Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | | - Patricia Parkin
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada; Division of Pediatric Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | - Kasmintan A Schrader
- BC Cancer, Vancouver, BC, Canada; University of British Columbia, Vancouver, BC, Canada
| | - Trevor J Pugh
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Raymond H Kim
- Ontario Institute for Cancer Research, Toronto, ON, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Sinai Health System, Toronto, ON, Canada; Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
26
|
Goetsch Weisman A, Weiss McQuaid S, Radtke HB, Stoll J, Brown B, Gomes A. Neurofibromatosis- and schwannomatosis-associated tumors: Approaches to genetic testing and counseling considerations. Am J Med Genet A 2023; 191:2467-2481. [PMID: 37485904 DOI: 10.1002/ajmg.a.63346] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/25/2023]
Abstract
Neurofibromatosis (NF) and schwannomatosis (SWN) are genetic conditions characterized by the risk of developing nervous system tumors. Recently revised diagnostic criteria include the addition of genetic testing to confirm a pathogenic variant, as well as to detect the presence of mosaicism. Therefore, the use and interpretation of both germline and tumor-based testing have increasing importance in the diagnostic approach, treatment decisions, and risk stratification of these conditions. This focused review discusses approaches to genetic testing of NF- and SWN-related tumor types, which are somewhat rare and perhaps lesser known to non-specialized clinicians. These include gastrointestinal stromal tumors, breast cancer, plexiform neurofibromas with or without transformation to malignant peripheral nerve sheath tumors, gliomas, and schwannomas, and emphasizes the need for inclusion of genetic providers in patient care and appropriate pre- and post-test education, genetic counseling, and focused evaluation by a medical geneticist or other healthcare provider familiar with clinical manifestations of these disorders.
Collapse
Affiliation(s)
- Allison Goetsch Weisman
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shelly Weiss McQuaid
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Heather B Radtke
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Tumor Foundation, New York, New York, USA
| | | | - Bryce Brown
- Medical Genomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alicia Gomes
- Medical Genomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
27
|
González-Muñoz T, Di Giannatale A, García-Silva S, Santos V, Sánchez-Redondo S, Savini C, Graña-Castro O, Blanco-Aparicio C, Fischer S, De Wever O, Creus-Bachiller E, Ortega-Bertran S, Pisapia DJ, Rodríguez-Peralto JL, Fernández-Rodríguez J, Pérez-Portabella CR, Alaggio R, Benassi MS, Pazzaglia L, Scotlandi K, Ratner N, Yohay K, Theuer CP, Peinado H. Endoglin, a Novel Biomarker and Therapeutical Target to Prevent Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis. Clin Cancer Res 2023; 29:3744-3758. [PMID: 37432984 DOI: 10.1158/1078-0432.ccr-22-2462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGFβ coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis, were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma-circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.
Collapse
Affiliation(s)
- Teresa González-Muñoz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Claudia Savini
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Patients in Science, Medical Writing and Communication, Valencia, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Suzanne Fischer
- Laboratory of Experimental Cancer Research, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Edgar Creus-Bachiller
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Ortega-Bertran
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - David J Pisapia
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Jose L Rodríguez-Peralto
- Department of Dermatology, 12 de Octubre University Hospital, Complutense University of Madrid, Investigation institute I+12, CIBERONC, Madrid, Spain
| | - Juana Fernández-Rodríguez
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Plataforma Mouse Lab, Servicios Científico-Técnicos, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Medical-Surgical Sciences and Biotechnologies La Sapienza University, Rome, Italy
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Pazzaglia
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nancy Ratner
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kaleb Yohay
- New York University Grossman School of Medicine, New York, New York
| | | | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
28
|
Akshintala S, Sundby RT, Bernstein D, Glod JW, Kaplan RN, Yohe ME, Gross AM, Derdak J, Lei H, Pan A, Dombi E, Palacio-Yance I, Herrera KR, Miettinen MM, Chen HX, Steinberg SM, Helman LJ, Mascarenhas L, Widemann BC, Navid F, Shern JF, Heske CM. Phase I trial of Ganitumab plus Dasatinib to Cotarget the Insulin-Like Growth Factor 1 Receptor and Src Family Kinase YES in Rhabdomyosarcoma. Clin Cancer Res 2023; 29:3329-3339. [PMID: 37398992 PMCID: PMC10529967 DOI: 10.1158/1078-0432.ccr-23-0709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Antibodies against insulin-like growth factor (IGF) type 1 receptor have shown meaningful but transient tumor responses in patients with rhabdomyosarcoma (RMS). The SRC family member YES has been shown to mediate IGF type 1 receptor (IGF-1R) antibody acquired resistance, and cotargeting IGF-1R and YES resulted in sustained responses in murine RMS models. We conducted a phase I trial of the anti-IGF-1R antibody ganitumab combined with dasatinib, a multi-kinase inhibitor targeting YES, in patients with RMS (NCT03041701). PATIENTS AND METHODS Patients with relapsed/refractory alveolar or embryonal RMS and measurable disease were eligible. All patients received ganitumab 18 mg/kg intravenously every 2 weeks. Dasatinib dose was 60 mg/m2/dose (max 100 mg) oral once daily [dose level (DL)1] or 60 mg/m2/dose (max 70 mg) twice daily (DL2). A 3+3 dose escalation design was used, and maximum tolerated dose (MTD) was determined on the basis of cycle 1 dose-limiting toxicities (DLT). RESULTS Thirteen eligible patients, median age 18 years (range 8-29) enrolled. Median number of prior systemic therapies was 3; all had received prior radiation. Of 11 toxicity-evaluable patients, 1/6 had a DLT at DL1 (diarrhea) and 2/5 had a DLT at DL2 (pneumonitis, hematuria) confirming DL1 as MTD. Of nine response-evaluable patients, one had a confirmed partial response for four cycles, and one had stable disease for six cycles. Genomic studies from cell-free DNA correlated with disease response. CONCLUSIONS The combination of dasatinib 60 mg/m2/dose daily and ganitumab 18 mg/kg every 2 weeks was safe and tolerable. This combination had a disease control rate of 22% at 5 months.
Collapse
Affiliation(s)
- Srivandana Akshintala
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Donna Bernstein
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - John W. Glod
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Rosandra N. Kaplan
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, Maryland
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Joanne Derdak
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Alexander Pan
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Isabel Palacio-Yance
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Kailey R. Herrera
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Markku M. Miettinen
- Laboratory of Pathology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Helen X. Chen
- Cancer Therapy Evaluation Program (CTEP), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Seth M. Steinberg
- Biostatistics and Data Management, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Lee J. Helman
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
- The Osteosarcoma Institute, Dallas, Texas
| | - Leo Mascarenhas
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Fariba Navid
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles (CHLA), Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| | - Christine M. Heske
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland
| |
Collapse
|
29
|
Ma Y, Gan J, Bai Y, Cao D, Jiao Y. Minimal residual disease in solid tumors: an overview. Front Med 2023; 17:649-674. [PMID: 37707677 DOI: 10.1007/s11684-023-1018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/24/2023] [Indexed: 09/15/2023]
Abstract
Minimal residual disease (MRD) is termed as the small numbers of remnant tumor cells in a subset of patients with tumors. Liquid biopsy is increasingly used for the detection of MRD, illustrating the potential of MRD detection to provide more accurate management for cancer patients. As new techniques and algorithms have enhanced the performance of MRD detection, the approach is becoming more widely and routinely used to predict the prognosis and monitor the relapse of cancer patients. In fact, MRD detection has been shown to achieve better performance than imaging methods. On this basis, rigorous investigation of MRD detection as an integral method for guiding clinical treatment has made important advances. This review summarizes the development of MRD biomarkers, techniques, and strategies for the detection of cancer, and emphasizes the application of MRD detection in solid tumors, particularly for the guidance of clinical treatment.
Collapse
Affiliation(s)
- Yarui Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingbo Gan
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yinlei Bai
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Dandan Cao
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Yuchen Jiao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
30
|
Chaudhuri AA. Cell-Free DNA Liquid Biopsy: The Epitome of Personalized Precision Oncology. Radiat Res 2023; 200:92-95. [PMID: 37084268 PMCID: PMC10425279 DOI: 10.1667/rade-23-00044.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Affiliation(s)
- Aadel A. Chaudhuri
- Department of Radiation Oncology, Division of Biology and Biomedical Sciences, Department of Genetics, Department of Biomedical Engineering, Department of Computer Science and Engineering, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Earland N, Chen K, Semenkovich NP, Chauhan PS, Zevallos JP, Chaudhuri AA. Emerging Roles of Circulating Tumor DNA for Increased Precision and Personalization in Radiation Oncology. Semin Radiat Oncol 2023; 33:262-278. [PMID: 37331781 DOI: 10.1016/j.semradonc.2023.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Recent breakthroughs in circulating tumor DNA (ctDNA) technologies present a compelling opportunity to combine this emerging liquid biopsy approach with the field of radiogenomics, the study of how tumor genomics correlate with radiotherapy response and radiotoxicity. Canonically, ctDNA levels reflect metastatic tumor burden, although newer ultrasensitive technologies can be used after curative-intent radiotherapy of localized disease to assess ctDNA for minimal residual disease (MRD) detection or for post-treatment surveillance. Furthermore, several studies have demonstrated the potential utility of ctDNA analysis across various cancer types managed with radiotherapy or chemoradiotherapy, including sarcoma and cancers of the head and neck, lung, colon, rectum, bladder, and prostate . Additionally, because peripheral blood mononuclear cells are routinely collected alongside ctDNA to filter out mutations associated with clonal hematopoiesis, these cells are also available for single nucleotide polymorphism analysis and could potentially be used to detect patients at high risk for radiotoxicity. Lastly, future ctDNA assays will be utilized to better assess locoregional MRD in order to more precisely guide adjuvant radiotherapy after surgery in cases of localized disease, and guide ablative radiotherapy in cases of oligometastatic disease.
Collapse
Affiliation(s)
- Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Kevin Chen
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Pradeep S Chauhan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Jose P Zevallos
- Department of Otolaryngology, University of Pittsburgh Medical School, Pittsburgh, PA
| | - Aadel A Chaudhuri
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO; Department of Genetics, Washington University School of Medicine, St. Louis, MO; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO; Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO.
| |
Collapse
|
32
|
Semenkovich NP, Szymanski JJ, Earland N, Chauhan PS, Pellini B, Chaudhuri AA. Genomic approaches to cancer and minimal residual disease detection using circulating tumor DNA. J Immunother Cancer 2023; 11:e006284. [PMID: 37349125 PMCID: PMC10314661 DOI: 10.1136/jitc-2022-006284] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/24/2023] Open
Abstract
Liquid biopsies using cell-free circulating tumor DNA (ctDNA) are being used frequently in both research and clinical settings. ctDNA can be used to identify actionable mutations to personalize systemic therapy, detect post-treatment minimal residual disease (MRD), and predict responses to immunotherapy. ctDNA can also be isolated from a range of different biofluids, with the possibility of detecting locoregional MRD with increased sensitivity if sampling more proximally than blood plasma. However, ctDNA detection remains challenging in early-stage and post-treatment MRD settings where ctDNA levels are minuscule giving a high risk for false negative results, which is balanced with the risk of false positive results from clonal hematopoiesis. To address these challenges, researchers have developed ever-more elegant approaches to lower the limit of detection (LOD) of ctDNA assays toward the part-per-million range and boost assay sensitivity and specificity by reducing sources of low-level technical and biological noise, and by harnessing specific genomic and epigenomic features of ctDNA. In this review, we highlight a range of modern assays for ctDNA analysis, including advancements made to improve the signal-to-noise ratio. We further highlight the challenge of detecting ultra-rare tumor-associated variants, overcoming which will improve the sensitivity of post-treatment MRD detection and open a new frontier of personalized adjuvant treatment decision-making.
Collapse
Affiliation(s)
- Nicholas P Semenkovich
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey J Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Noah Earland
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
33
|
Cortes-Ciriano I, Steele CD, Piculell K, Al-Ibraheemi A, Eulo V, Bui MM, Chatzipli A, Dickson BC, Borcherding DC, Feber A, Galor A, Hart J, Jones KB, Jordan JT, Kim RH, Lindsay D, Miller C, Nishida Y, Proszek PZ, Serrano J, Sundby RT, Szymanski JJ, Ullrich NJ, Viskochil D, Wang X, Snuderl M, Park PJ, Flanagan AM, Hirbe AC, Pillay N, Miller DT. Genomic Patterns of Malignant Peripheral Nerve Sheath Tumor (MPNST) Evolution Correlate with Clinical Outcome and Are Detectable in Cell-Free DNA. Cancer Discov 2023; 13:654-671. [PMID: 36598417 PMCID: PMC9983734 DOI: 10.1158/2159-8290.cd-22-0786] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
Malignant peripheral nerve sheath tumor (MPNST), an aggressive soft-tissue sarcoma, occurs in people with neurofibromatosis type 1 (NF1) and sporadically. Whole-genome and multiregional exome sequencing, transcriptomic, and methylation profiling of 95 tumor samples revealed the order of genomic events in tumor evolution. Following biallelic inactivation of NF1, loss of CDKN2A or TP53 with or without inactivation of polycomb repressive complex 2 (PRC2) leads to extensive somatic copy-number aberrations (SCNA). Distinct pathways of tumor evolution are associated with inactivation of PRC2 genes and H3K27 trimethylation (H3K27me3) status. Tumors with H3K27me3 loss evolve through extensive chromosomal losses followed by whole-genome doubling and chromosome 8 amplification, and show lower levels of immune cell infiltration. Retention of H3K27me3 leads to extensive genomic instability, but an immune cell-rich phenotype. Specific SCNAs detected in both tumor samples and cell-free DNA (cfDNA) act as a surrogate for H3K27me3 loss and immune infiltration, and predict prognosis. SIGNIFICANCE MPNST is the most common cause of death and morbidity for individuals with NF1, a relatively common tumor predisposition syndrome. Our results suggest that somatic copy-number and methylation profiling of tumor or cfDNA could serve as a biomarker for early diagnosis and to stratify patients into prognostic and treatment-related subgroups. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Christopher D. Steele
- Research Department of Pathology, University College London Cancer Institute, Bloomsbury, London, United Kingdom
| | - Katherine Piculell
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Vanessa Eulo
- Division of Oncology, Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marilyn M. Bui
- Department of Pathology, Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Aikaterini Chatzipli
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Brendan C. Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Dana C. Borcherding
- Division of Oncology, Departments of Internal Medicine and Pediatrics, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew Feber
- Clinical Genomics Translational Research, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Alon Galor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jesse Hart
- Department of Pathology, Lifespan Laboratories, Rhode Island Hospital, Providence, Rhode Island
| | - Kevin B. Jones
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Justin T. Jordan
- Pappas Center for Neuro-oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Raymond H. Kim
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Sinai Health System, Toronto, Ontario, Canada
- Hospital for Sick Children, University of Toronto, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Daniel Lindsay
- Department of Histopathology, Royal National Orthopaedic Hospital, NHS Trust, Middlesex, United Kingdom
| | - Colin Miller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, United Kingdom
| | - Yoshihiro Nishida
- Department of Rehabilitation Medicine, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Paula Z. Proszek
- Clinical Genomics Translational Research, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Jonathan Serrano
- Department of Pathology, New York University Langone Health, Perlmutter Cancer Center, New York City, New York
| | - R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jeffrey J. Szymanski
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Nicole J. Ullrich
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - David Viskochil
- Division of Medical Genetics, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Xia Wang
- GeneHome, Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, Perlmutter Cancer Center, New York City, New York
| | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts
| | - Adrienne M. Flanagan
- Research Department of Pathology, University College London Cancer Institute, Bloomsbury, London, United Kingdom
- Department of Histopathology, Royal National Orthopaedic Hospital, NHS Trust, Middlesex, United Kingdom
| | - Angela C. Hirbe
- Division of Oncology, Departments of Internal Medicine and Pediatrics, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Nischalan Pillay
- Research Department of Pathology, University College London Cancer Institute, Bloomsbury, London, United Kingdom
- Department of Histopathology, Royal National Orthopaedic Hospital, NHS Trust, Middlesex, United Kingdom
| | - David T. Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts
| | | |
Collapse
|
34
|
Combined low-pass whole genome and targeted sequencing in liquid biopsies for pediatric solid tumors. NPJ Precis Oncol 2023; 7:21. [PMID: 36805676 PMCID: PMC9941464 DOI: 10.1038/s41698-023-00357-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
We designed a liquid biopsy (LB) platform employing low-pass whole genome sequencing (LP-WGS) and targeted sequencing of cell-free (cf) DNA from plasma to detect genome-wide copy number alterations (CNAs) and gene fusions in pediatric solid tumors. A total of 143 plasma samples were analyzed from 19 controls and 73 patients, including 44 bone or soft-tissue sarcomas and 12 renal, 10 germ cell, five hepatic, and two thyroid tumors. cfDNA was isolated from plasma collected at diagnosis, during and after therapy, and/or at relapse. Twenty-six of 37 (70%) patients enrolled at diagnosis without prior therapy (radiation, surgery, or chemotherapy) had circulating tumor DNA (ctDNA), based on the detection of CNAs from LP-WGS, including 18 of 27 (67%) patients with localized disease and eight of 10 (80%) patients with metastatic disease. None of the controls had detectable somatic CNAs. There was a high concordance of CNAs identified by LP-WGS to CNAs detected by chromosomal microarray analysis in the matching tumors. Mutations identified in tumor samples with our next-generation sequencing (NGS) panel, OncoKids®, were also detected by LP-WGS of ctDNA in 14 of 26 plasma samples. Finally, we developed a hybridization-based capture panel to target EWSR1 and FOXO1 fusions from patients with Ewing sarcoma or alveolar rhabdomyosarcoma (ARMS), respectively. Fusions were detected in the plasma from 10 of 12 patients with Ewing sarcoma and in two of two patients with ARMS. Combined, these data demonstrate the clinical applicability of our LB platform to evaluate pediatric patients with a variety of solid tumors.
Collapse
|
35
|
Wong D, Luo P, Znassi N, Arteaga DP, Gray D, Danesh A, Han M, Zhao EY, Pedersen S, Prokopec S, Sundaravadanam Y, Torti D, Marsh K, Keshavarzi S, Xu W, Krema H, Joshua AM, Butler MO, Pugh TJ. Integrated, Longitudinal Analysis of Cell-free DNA in Uveal Melanoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:267-280. [PMID: 36860651 PMCID: PMC9973415 DOI: 10.1158/2767-9764.crc-22-0456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Uveal melanomas are rare tumors arising from melanocytes that reside in the eye. Despite surgical or radiation treatment, approximately 50% of patients with uveal melanoma will progress to metastatic disease, most often to the liver. Cell-free DNA (cfDNA) sequencing is a promising technology due to the minimally invasive sample collection and ability to infer multiple aspects of tumor response. We analyzed 46 serial cfDNA samples from 11 patients with uveal melanoma over a 1-year period following enucleation or brachytherapy (n = ∼4/patient) using targeted panel, shallow whole genome, and cell-free methylated DNA immunoprecipitation sequencing. We found detection of relapse was highly variable using independent analyses (P = 0.06-0.46), whereas a logistic regression model integrating all cfDNA profiles significantly improved relapse detection (P = 0.02), with greatest power derived from fragmentomic profiles. This work provides support for the use of integrated analyses to improve the sensitivity of circulating tumor DNA detection using multi-modal cfDNA sequencing. Significance Here, we demonstrate integrated, longitudinal cfDNA sequencing using multi-omic approaches is more effective than unimodal analysis. This approach supports the use of frequent blood testing using comprehensive genomic, fragmentomic, and epigenomic techniques.
Collapse
Affiliation(s)
- Derek Wong
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ping Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nadia Znassi
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Diana P. Arteaga
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Diana Gray
- Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ming Han
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Eric Y. Zhao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Pedersen
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Stephenie Prokopec
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Dax Torti
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Kayla Marsh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Sareh Keshavarzi
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Wei Xu
- Biostatistics Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Hatem Krema
- Department of Ocular Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Canada
| | - Anthony M. Joshua
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Oncology, Kinghorn Cancer Centre, St. Vincent's Hospital and Garvan Institute of Medical Research, Sydney, Australia.,Faculty of Medicine, St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Marcus O. Butler
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Ontario, Canada.,Corresponding Authors: Trevor J. Pugh, Princess Margaret Cancer Centre, University Health Network, MaRS Centre, 101 College Street, Princess Margaret Cancer Research Tower, Room 9-305, Toronto, Ontario M5G 1L7, Canada. Phone: 416-581-7689; E-mail: ; and Marcus Butler, Princess Margaret Cancer Centre, 610 University Avenue, OPG 7-815, Toronto, Ontario M5G 2M9. Phone: 416-946-4501 x5485;
| | - Trevor J. Pugh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada and Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Corresponding Authors: Trevor J. Pugh, Princess Margaret Cancer Centre, University Health Network, MaRS Centre, 101 College Street, Princess Margaret Cancer Research Tower, Room 9-305, Toronto, Ontario M5G 1L7, Canada. Phone: 416-581-7689; E-mail: ; and Marcus Butler, Princess Margaret Cancer Centre, 610 University Avenue, OPG 7-815, Toronto, Ontario M5G 2M9. Phone: 416-946-4501 x5485;
| |
Collapse
|
36
|
Chauhan PS, Shiang A, Alahi I, Sundby RT, Feng W, Gungoren B, Nawaf C, Chen K, Babbra RK, Harris PK, Qaium F, Hatscher C, Antiporda A, Brunt L, Mayer LR, Shern JF, Baumann BC, Kim EH, Reimers MA, Smith ZL, Chaudhuri AA. Urine cell-free DNA multi-omics to detect MRD and predict survival in bladder cancer patients. NPJ Precis Oncol 2023; 7:6. [PMID: 36658307 PMCID: PMC9852243 DOI: 10.1038/s41698-022-00345-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
Circulating tumor DNA (ctDNA) sensitivity remains subpar for molecular residual disease (MRD) detection in bladder cancer patients. To remedy this problem, we focused on the biofluid most proximal to the disease, urine, and analyzed urine tumor DNA in 74 localized bladder cancer patients. We integrated ultra-low-pass whole genome sequencing (ULP-WGS) with urine cancer personalized profiling by deep sequencing (uCAPP-Seq) to achieve sensitive MRD detection and predict overall survival. Variant allele frequency, inferred tumor mutational burden, and copy number-derived tumor fraction levels in urine cell-free DNA (cfDNA) significantly predicted pathologic complete response status, far better than plasma ctDNA was able to. A random forest model incorporating these urine cfDNA-derived factors with leave-one-out cross-validation was 87% sensitive for predicting residual disease in reference to gold-standard surgical pathology. Both progression-free survival (HR = 3.00, p = 0.01) and overall survival (HR = 4.81, p = 0.009) were dramatically worse by Kaplan-Meier analysis for patients predicted by the model to have MRD, which was corroborated by Cox regression analysis. Additional survival analyses performed on muscle-invasive, neoadjuvant chemotherapy, and held-out validation subgroups corroborated these findings. In summary, we profiled urine samples from 74 patients with localized bladder cancer and used urine cfDNA multi-omics to detect MRD sensitively and predict survival accurately.
Collapse
Affiliation(s)
- Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander Shiang
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Irfan Alahi
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - R Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenjia Feng
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bilge Gungoren
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Cayce Nawaf
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin Chen
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramandeep K Babbra
- Wilmot Institute Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Peter K Harris
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Faridi Qaium
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Casey Hatscher
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Antiporda
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey Brunt
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lindsey R Mayer
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian C Baumann
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Eric H Kim
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Melissa A Reimers
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary L Smith
- Division of Urology, Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
37
|
Ney G, Gross A, Livinski A, Kratz CP, Stewart DR. Cancer incidence and surveillance strategies in individuals with RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:530-540. [PMID: 36533693 PMCID: PMC9825668 DOI: 10.1002/ajmg.c.32018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 12/24/2022]
Abstract
RASopathies are a set of clinical syndromes that have molecular and clinical overlap. Genetically, these syndromes are defined by germline pathogenic variants in RAS/MAPK pathway genes resulting in activation of this pathway. Clinically, their common molecular signature leads to comparable phenotypes, including cardiac anomalies, neurologic disorders and notably, elevated cancer risk. Cancer risk in individuals with RASopathies has been estimated from retrospective reviews and cohort studies. For example, in Costello syndrome, cancer incidence is significantly elevated over the general population, largely due to solid tumors. In some forms of Noonan syndrome, cancer risk is also elevated over the general population and is enriched for hematologic malignancies. Thus, cancer surveillance guidelines have been developed to monitor for the occurrence of such cancers in individuals with some RASopathies. These include abdominal ultrasound and urinalyses for individuals with Costello syndrome, while complete blood counts and splenic examination are recommended in Noonan syndrome. Improved cancer risk estimates and refinement of surveillance recommendations will improve the care of individuals with RASopathies.
Collapse
Affiliation(s)
- Gina Ney
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland, USA
| | - Andrea Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Alicia Livinski
- National Institutes of Health Library, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Rockville, Maryland, USA
| |
Collapse
|
38
|
Sivars L, Palsdottir K, Crona Guterstam Y, Falconer H, Hellman K, Tham E. The current status of cell‐free human papillomavirus
DNA
as a biomarker in cervical cancer and other
HPV
‐associated tumors: A review. Int J Cancer 2022; 152:2232-2242. [PMID: 36274628 DOI: 10.1002/ijc.34333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
Tumor cells release fragments of their DNA into the circulation, so called cell-free tumor DNA (ctDNA), allowing for analysis of tumor DNA in a simple blood test, that is, liquid biopsy. Cervical cancer is one of the most common malignancies among women worldwide and high-risk human papillomavirus (HR-HPV) is the cause of the majority of cases. HR-HPV integrates into the host genome and is often present in multiple copies per cell and should thus also be released as ctDNA. Such ctHPV DNA is therefore a possible biomarker in cervical cancer. In this review, we first give a background on ctDNA in general and then a comprehensive review of studies on ctHPV DNA in cervical cancer and pre-malignant lesions that may develop in cervical cancer. Furthermore, studies on ctHPV DNA in other HPV related malignancies (eg, head-and-neck and anogenital cancers) are briefly reviewed. We conclude that detection of ctHPV DNA in plasma from patients with cervical cancer is feasible, although optimized protocols and ultra-sensitive techniques are required for sufficient sensitivity. Results from retrospective studies in both cervical cancer and other HPV-related malignancies suggests that ctHPV DNA is a promising prognostic biomarker, for example, for detecting relapses early. This paves the way for larger, preferably prospective studies investigating the clinical value of ctHPV DNA as a biomarker in cervical cancer. However, there are conflicting results whether ctHPV DNA can be found in blood from patients with pre-malignant lesions and further studies are needed to fully elucidate this question.
Collapse
Affiliation(s)
- Lars Sivars
- Department of Molecular Medicine and Surgery, Karolinska Institutet Stockholm Sweden
| | - Kolbrun Palsdottir
- Department of Women's and Children's Health Karolinska Instituet Stockholm Sweden
- Department of Gynaecologic Cancer, Theme Cancer Karolinska University Hospital Stockholm Sweden
| | - Ylva Crona Guterstam
- Department of Clinical Science, Intervention and Technology Karolinska Institutet Stockholm Sweden
- Department of Gynaecology and Reproductive Medicine Karolinska University Hospital Huddinge Sweden
| | - Henrik Falconer
- Department of Women's and Children's Health Karolinska Instituet Stockholm Sweden
- Department of Gynaecologic Cancer, Theme Cancer Karolinska University Hospital Stockholm Sweden
| | - Kristina Hellman
- Department of Women's and Children's Health Karolinska Instituet Stockholm Sweden
- Department of Gynaecologic Cancer, Theme Cancer Karolinska University Hospital Stockholm Sweden
| | - Emma Tham
- Department of Molecular Medicine and Surgery, Karolinska Institutet Stockholm Sweden
- Department of Clinical Genetics Karolinska University Hospital Stockholm Sweden
| |
Collapse
|
39
|
Read Count Patterns and Detection of Cancerous Copy Number Alterations in Plasma Cell-Free DNA Whole Exome Sequencing Data for Advanced Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms232112932. [DOI: 10.3390/ijms232112932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 11/17/2022] Open
Abstract
Plasma cell-free DNA (cfDNA) sequencing data have been widely studied for early diagnosis and treatment response or recurrence monitoring of cancers because of the non-invasive benefits. In cancer studies, whole exome sequencing (WES) is mostly used for discovering single nucleotide variants (SNVs), but it also has the potential to detect copy number alterations (CNAs) that are mostly discovered by whole genome sequencing or microarray. In clinical settings where the quantity of the acquired blood from the patients is limited and where various sequencing experiments are not possible, providing various types of mutation information such as CNAs and SNVs using only WES will be helpful in the treatment decision. Here, we questioned whether the plasma cfDNA WES data for patients with advanced non-small cell lung cancer (NSCLC) could be exploited for CNA detection. When the read count (RC) signals of the WES data were investigated, a similar fluctuation pattern was observed among the signals of different samples, and it can be a major challenge hindering CNA detection. When these RC patterns among cfDNA were suppressed by the method we proposed, the cancerous CNAs were more distinguishable in some samples with higher cfDNA quantity. Although the potential to detect CNAs using the plasma cfDNA WES data for NSCLC patients was studied here, further studies with other cancer types, with more samples, and with more sophisticated techniques for bias correction are required to confirm our observation. In conclusion, the detection performance for cancerous CNAs can be improved by controlling RC bias, but it depends on the quantity of cfDNA in plasma.
Collapse
|
40
|
Chen JL, Miller DT, Schmidt LS, Malkin D, Korf BR, Eng C, Kwiatkowski DJ, Giannikou K. Mosaicism in Tumor Suppressor Gene Syndromes: Prevalence, Diagnostic Strategies, and Transmission Risk. Annu Rev Genomics Hum Genet 2022; 23:331-361. [PMID: 36044908 DOI: 10.1146/annurev-genom-120121-105450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A mosaic state arises when pathogenic variants are acquired in certain cell lineages during postzygotic development, and mosaic individuals may present with a generalized or localized phenotype. Here, we review the current state of knowledge regarding mosaicism for eight common tumor suppressor genes-NF1, NF2, TSC1, TSC2, PTEN, VHL, RB1, and TP53-and their related genetic syndromes/entities. We compare and discuss approaches for comprehensive diagnostic genetic testing, the spectrum of variant allele frequency, and disease severity. We also review affected individuals who have no mutation identified after conventional genetic analysis, as well as genotype-phenotype correlations and transmission risk for each tumor suppressor gene in full heterozygous and mosaic patients. This review provides new insight into similarities as well as marked differences regarding the appreciation of mosaicism in these tumor suppressor syndromes.
Collapse
Affiliation(s)
- Jillian L Chen
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; .,Boston University School of Medicine, Boston, Massachusetts, USA
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.,Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - David Malkin
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.,Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - David J Kwiatkowski
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; .,Division of Hematology and Oncology, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Los Angeles, California, USA;
| |
Collapse
|
41
|
Shen C, Li J, Li R, Ma Z, Tao Y, Zhang Q, Wang Z. Effects of Tumor-Derived DNA on CXCL12-CXCR4 and CCL21-CCR7 Axes of Hepatocellular Carcinoma Cells and the Regulation of Sinomenine Hydrochloride. Front Oncol 2022; 12:901705. [PMID: 35860597 PMCID: PMC9289293 DOI: 10.3389/fonc.2022.901705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, chemokines and their receptors, CXCL12-CXCR4 and CCL21-CCR7 axes, are deemed vital factors in the modulation of angiogenesis and are crucial for the growth and development of liver cancer. Tumor-derived DNA can be recognized by immune cells to induce an autoimmune response. In this study, we demonstrated the mechanism of tumor-derived DNA on the CXCL12-CXCR4 and CCL21-CCR7 axes of hepatocellular carcinoma (HCC) cells and the regulatory effect of sinomenine hydrochloride. Tumor-derived DNA was separated from HCCLM cell lines. Tumor-derived DNA was transfected into SK-Hep1 cells by Lipofectamine 2000. We found that sinomenine hydrochloride reduced the expression of CXCR4, CXCR12, CCR7, and CCL21 in HCC cells, suppressed the growth and invasion of HCC cells, and increased apoptosis. In contrast to the controls, the protein expressions of CXCR4, CXCL12, CCR7, CCL21, P-ERK1/2, MMP-9, and MMP-2 in SK-Hep1 cells were significantly increased after transfection of tumor-derived DNA, while the increase was reversed by sinobine hydrochloride. Acid sinomenine interferes with tumor-derived DNA and affects ERK/MMP signaling via the CXCL12/CXCR4 axis in HCC cells. CXCR4 siRNA and CCR7 siRNA attenuated tumor-derived DNA activation of ERK1/2/MMP2/9 signaling pathways in HCC cells. CXCR4-oe and CCR7-OE enhance the stimulation of erK1/2/MMP2/9 signaling pathway by tumor-derived DNA in HCC cells. Tumor-derived DNA reduced apoptosis and increased invasion of SK-Hep1 cells by CXCL12-CXCR4 axis and CCL21-CCR7 axis, and sinobine hydrochloride reversed this regulation. These results strongly suggest that tumor-derived DNA can increase the growth and invasion of oncocytes via the upregulation of the expression of CXCL12-CXCR4 and CCL21-CCR7 axis and through ERK1/2/MMP2/9 signaling pathway in HCC cells, and sinobine hydrochloride can inhibit this signaling pathway, thus inhibiting HCC cells. These results provide new potential therapeutic targets for blocking the progression of HCC induced by CXCL12-CXCR4 axis and CCL21-CCR7.
Collapse
|
42
|
Somatilaka BN, Sadek A, McKay RM, Le LQ. Malignant peripheral nerve sheath tumor: models, biology, and translation. Oncogene 2022; 41:2405-2421. [PMID: 35393544 PMCID: PMC9035132 DOI: 10.1038/s41388-022-02290-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 01/29/2023]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.
Collapse
Affiliation(s)
- Bandarigoda N. Somatilaka
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Ali Sadek
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Renee M. McKay
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| | - Lu Q. Le
- Department of Dermatology, University of Texas Southwestern
Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Simmons Comprehensive Cancer Center, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,UTSW Comprehensive Neurofibromatosis Clinic, University of
Texas Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA,Hamon Center for Regenerative Science and Medicine,
University of Texas Southwestern Medical Center at Dallas, Dallas, Texas,
75390-9069, USA,O’Donnell Brain Institute, University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, 75390-9069, USA
| |
Collapse
|
43
|
Mattox AK, Douville C, Silliman N, Ptak J, Dobbyn L, Schaefer J, Popoli M, Blair C, Judge K, Pollard K, Pratilas C, Blakeley J, Rodriguez F, Papadopoulos N, Belzberg A, Bettegowda C. Detection of malignant peripheral nerve sheath tumors in patients with neurofibromatosis using aneuploidy and mutation identification in plasma. eLife 2022; 11:e74238. [PMID: 35244537 PMCID: PMC9094745 DOI: 10.7554/elife.74238] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNST) are the deadliest cancer that arises in individuals diagnosed with neurofibromatosis and account for nearly 5% of the 15,000 soft tissue sarcomas diagnosed in the United States each year. Comprised of neoplastic Schwann cells, primary risk factors for developing MPNST include existing plexiform neurofibromas (PN), prior radiotherapy treatment, and expansive germline mutations involving the entire NF1 gene and surrounding genes. PN develop in nearly 30-50% of patients with neurofibromatosis type 1 (NF1) and most often grow rapidly in the first decade of life. One of the most important aspects of clinical care for NF1 patients is monitoring PN for signs of malignant transformation to MPNST that occurs in 10-15% of patients. We perform aneuploidy analysis on ctDNA from 883 ostensibly healthy individuals and 28 patients with neurofibromas, including 7 patients with benign neurofibroma, 9 patients with PN and 12 patients with MPNST. Overall sensitivity for detecting MPNST using genome wide aneuploidy scoring was 33%, and analysis of sub-chromosomal copy number alterations (CNAs) improved sensitivity to 50% while retaining a high specificity of 97%. In addition, we performed mutation analysis on plasma cfDNA for a subset of patients and identified mutations in NF1, NF2, RB1, TP53BP2, and GOLGA2. Given the high throughput and relatively low sequencing coverage required by our assay, liquid biopsy represents a promising technology to identify incipient MPNST.
Collapse
Affiliation(s)
- Austin K Mattox
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Christopher Douville
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Natalie Silliman
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Janine Ptak
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Lisa Dobbyn
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Joy Schaefer
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Maria Popoli
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Cherie Blair
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kathy Judge
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Kai Pollard
- Department of Pediatrics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins UniversityBaltimoreUnited States
| | - Christine Pratilas
- Department of Pediatrics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jaishri Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, MD School of MedicineBaltimoreUnited States
| | - Fausto Rodriguez
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Nickolas Papadopoulos
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pathology, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Allan Belzberg
- Department of Neurosurgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Chetan Bettegowda
- Ludwig Center for Cancer Genetics and Therapeutics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Oncology, Sidney Kimmel Comprehensive Cancer, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neurosurgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
44
|
Pellini B, Chaudhuri AA. Circulating Tumor DNA Minimal Residual Disease Detection of Non-Small-Cell Lung Cancer Treated With Curative Intent. J Clin Oncol 2022; 40:567-575. [PMID: 34985936 PMCID: PMC8853615 DOI: 10.1200/jco.21.01929] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor DNA (ctDNA) minimal residual disease (MRD) is a powerful biomarker with the potential to improve survival outcomes for non-small-cell lung cancer (NSCLC). Multiple groups have shown the ability to detect MRD following curative-intent NSCLC treatment using next-generation sequencing-based assays of plasma cell-free DNA. These studies have been modest in size, largely retrospective, and without thorough prospective clinical validation. Still, when restricting measurement to the first post-treatment timepoint to assess the clinical performance of ctDNA MRD detection, they have demonstrated sensitivity for predicting disease relapse ranging between 36% and 100%, and specificity ranging between 71% and 100%. When considering all post-treatment follow-up timepoints (surveillance), including those beyond the initial post-treatment measurement, these assays' performances improve with sensitivity and specificity for identifying relapse ranging from 82% to 100% and 70% to 100%, respectively. In this manuscript, we review the evidence available to date regarding ctDNA MRD detection in patients with NSCLC undergoing curative-intent treatment and the ongoing prospective studies involving ctDNA MRD detection in this patient population.
Collapse
Affiliation(s)
- Bruna Pellini
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Aadel A. Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St Louis, MO
- Department of Genetics, Washington University School of Medicine, St Louis, MO
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO
- Department of Computer Science and Engineering, Washington University in St Louis, St Louis, MO
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Liquid biopsies have emerged as a noninvasive alternative to tissue biopsy with potential applications during all stages of pediatric oncology care. The purpose of this review is to provide a survey of pediatric cell-free DNA (cfDNA) studies, illustrate their potential applications in pediatric oncology, and to discuss technological challenges and approaches to overcome these hurdles. RECENT FINDINGS Recent literature has demonstrated liquid biopsies' ability to inform treatment selection at diagnosis, monitor clonal evolution during treatment, sensitively detect minimum residual disease following local control, and provide sensitive posttherapy surveillance. Advantages include reduced procedural anesthesia, molecular profiling unbiased by tissue heterogeneity, and ability to track clonal evolution. Challenges to wider implementation in pediatric oncology, however, include blood volume restrictions and relatively low mutational burden in childhood cancers. Multiomic approaches address challenges presented by low-mutational burden, and novel bioinformatic analyses allow a single assay to yield increasing amounts of information, reducing blood volume requirements. SUMMARY Liquid biopsies hold tremendous promise in pediatric oncology, enabling noninvasive serial surveillance with adaptive care. Already integrated into adult care, recent advances in technologies and bioinformatics have improved applicability to the pediatric cancer landscape.
Collapse
Affiliation(s)
- R Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
46
|
Chen K, Shields MD, Chauhan PS, Ramirez RJ, Harris PK, Reimers MA, Zevallos JP, Davis AA, Pellini B, Chaudhuri AA. Commercial ctDNA Assays for Minimal Residual Disease Detection of Solid Tumors. Mol Diagn Ther 2021; 25:757-774. [PMID: 34725800 PMCID: PMC9016631 DOI: 10.1007/s40291-021-00559-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/20/2022]
Abstract
The detection of circulating tumor DNA via liquid biopsy has become an important diagnostic test for patients with cancer. While certain commercial liquid biopsy platforms designed to detect circulating tumor DNA have been approved to guide clinical decisions in advanced solid tumors, the clinical utility of these assays for detecting minimal residual disease after curative-intent treatment of nonmetastatic disease is currently limited. Predicting disease response and relapse has considerable potential for increasing the effective implementation of neoadjuvant and adjuvant therapies. As a result, many companies are rapidly investing in the development of liquid biopsy platforms to detect circulating tumor DNA in the minimal residual disease setting. In this review, we discuss the development and clinical implementation of commercial liquid biopsy platforms for circulating tumor DNA minimal residual disease detection of solid tumors. Here, we aim to highlight the technological features that enable highly sensitive detection of tumor-derived genomic alterations, the factors that differentiate these commercial platforms, and the ongoing trials that seek to increase clinical implementation of liquid biopsies using circulating tumor DNA-based minimal residual disease detection.
Collapse
Affiliation(s)
- Kevin Chen
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Avenue, St. Louis, MO, 63108, USA
| | - Misty D Shields
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Pradeep S Chauhan
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Avenue, St. Louis, MO, 63108, USA
| | - Ricardo J Ramirez
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Peter K Harris
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Avenue, St. Louis, MO, 63108, USA
| | - Melissa A Reimers
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA
| | - Jose P Zevallos
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew A Davis
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA.
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO, 63110, USA.
| | - Bruna Pellini
- Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- Department of Thoracic Oncology, Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Aadel A Chaudhuri
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, 4511 Forest Park Avenue, St. Louis, MO, 63108, USA.
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
47
|
Odeny B. Cancer Special Issue: Early detection and minimal residual disease. PLoS Med 2021; 18:e1003794. [PMID: 34637442 PMCID: PMC8509857 DOI: 10.1371/journal.pmed.1003794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Beryne Odeny discusses PLOS Medicine's Special Issue on early cancer detection and minimal residual disease.
Collapse
Affiliation(s)
- Beryne Odeny
- PLOS Medicine, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
van der Laan P, van Houdt WJ, van den Broek D, Steeghs N, van der Graaf WTA. Liquid Biopsies in Sarcoma Clinical Practice: Where Do We Stand? Biomedicines 2021; 9:1315. [PMID: 34680432 PMCID: PMC8533081 DOI: 10.3390/biomedicines9101315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Sarcomas are rare tumors of bone and soft tissue with a mesenchymal origin. This uncommon type of cancer is marked by a high heterogeneity, consisting of over 70 subtypes. Because of this broad spectrum, their treatment requires a subtype-specific therapeutic approach. Tissue biopsy is currently the golden standard for sarcoma diagnosis, but it has its limitations. Over the recent years, methods to detect, characterize, and monitor cancer through liquid biopsy have evolved rapidly. The analysis of circulating biomarkers in peripheral blood, such as circulating tumor cells (CTC) or circulating tumor DNA (ctDNA), could provide real-time information on tumor genetics, disease state, and resistance mechanisms. Furthermore, it traces tumor evolution and can assess tumor heterogeneity. Although the first results in sarcomas are encouraging, there are technical challenges that need to be addressed for implementation in clinical practice. Here, we summarize current knowledge about liquid biopsies in sarcomas and elaborate on different strategies to integrate liquid biopsy into sarcoma clinical care.
Collapse
Affiliation(s)
- Pia van der Laan
- Department of Surgical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (P.v.d.L.); (W.J.v.H.)
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Winan J. van Houdt
- Department of Surgical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; (P.v.d.L.); (W.J.v.H.)
| | - Daan van den Broek
- Department of Laboratory Medicine, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Neeltje Steeghs
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| | - Winette T. A. van der Graaf
- Department of Medical Oncology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|