1
|
Yasin N, Rahman H, Qasim M, Nisa I, Sarwar Y, Khan N, Alzahrani KJ, Alsuwat MA, Alzahrani FM, Aljohani A. Metabolic Proteins Expression Up-Regulated in Blood-Borne Extensively Drug-Resistant Salmonella Typhi Isolates from Pakistan. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1404. [PMID: 39336445 PMCID: PMC11433874 DOI: 10.3390/medicina60091404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
Background and Objectives: In the undertaken study, proteomics alterations of blood-borne XDR S. Typhi isolated from Pakistan were investigated using mass spectrometry. Materials and Methods: MDR and XDR S. Typhi total protein lysates were fractionated, digested, and processed for nanoflow LC-LTQ-Orbitrap MS analysis. Results: Among the 1267 identified proteins, 37 were differentially regulated, of which 28 were up-regulated, and 9 were down-regulated in XDR S. Typhi as compared to MDR S. Typhi. Based on the functional annotation, proteins found up-regulated are involved mainly in metabolic pathways (ManA, FadB, DacC, GpmA, AphA, PfkB, TalA, FbaB, OtsA, 16504242), the biosynthesis of secondary metabolites (ManA, FadB, GlpB, GpmA, PfkB, TalA, FbaB, OtsA), microbial metabolism in diverse environments (FadB, GpmA, PfkB, NfnB, TalA, FbaB), and ABC transporters (PstS, YbeJ, MglB, RbsB, ArtJ). Proteins found down-regulated are involved mainly in carbon metabolism (FadB, GpmA, PfkB, FalA, FbaB) and the biosynthesis of amino acids (GpmA, PfkB, TalA, FbaB). Most of the identified differential proteins were predicted to be antigenic, and matched with resistome data. Conclusions: A total of 28 proteins were up-regulated, and 9 were down-regulated in XDR S. Typhi. Further characterization of the identified proteins will help in understanding the molecular signaling involved in the emergence of XDR S. Typhi.
Collapse
Affiliation(s)
- Nusrat Yasin
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan; (N.Y.); (M.Q.)
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan; (N.Y.); (M.Q.)
| | - Iqbal Nisa
- Department of Microbiology, Women University Swabi, Swabi 23430, Pakistan;
| | - Yasra Sarwar
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan;
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.J.A.); (M.A.A.); (F.M.A.)
| | - Meshari A. Alsuwat
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.J.A.); (M.A.A.); (F.M.A.)
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.J.A.); (M.A.A.); (F.M.A.)
| | - Abrar Aljohani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (K.J.A.); (M.A.A.); (F.M.A.)
| |
Collapse
|
2
|
Mumtaz MN, Irfan M, Siraj S, Khan A, Khan H, Imran M, Khan IA, Khan A. Whole-genome sequencing of extensively drug-resistant Salmonella enterica serovar Typhi clinical isolates from the Peshawar region of Pakistan. J Infect Public Health 2024; 17:271-282. [PMID: 38134602 DOI: 10.1016/j.jiph.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Typhoid fever, caused by Salmonella enterica serovar Typhi, is a significant public health concern due to the escalating of antimicrobial resistance (AMR), with limited treatment options for extensively drug-resistant (XDR) S. Typhi strains pose a serious threat to disease management and control. This study aimed to investigate the genomic characteristics, epidemiology and AMR genes of XDR S. Typhi strains from typhoid fever patients in Pakistan. METHODOLOGY We assessed 200 patients with enteric fever symptoms, confirming 65 S. Typhi cases through culturing and biochemical tests. Subsequent antimicrobial susceptibility testing revealed 40 cases of extensively drug-resistant (XDR) and 25 cases of multi-drug resistance (MDR). Thirteen XDR strains were selected for whole-genome sequencing, to analyze their sequence type, phylogenetics, resistance genes, pathogenicity islands, and plasmid sequences using variety of data analysis resources. Pangenome analysis was conducted for 140 XDR strains, including thirteen in-house and 127 strains reported from other regions of Pakistan, to assess their genetic diversity and functional annotation. RESULTS MLST analysis classified all isolates as sequence type 1 (ST-1) with 4.3.1.1. P1 genotype characterization. Prophage and Salmonella Pathogenicity Island (SPI) analysis identified intact prophages and eight SPIs involved in Salmonella's invasion and replication within host cells. Genome data analysis revealed numerous AMR genes including dfrA7, sul1, qnrS1, TEM-1, Cat1, and CTX-M-15, and SNPs associated with antibiotics resistance. IncY, IncQ1, pMAC, and pAbTS2 plasmids, conferring antimicrobial resistance, were detected in a few XDR S. Typhi strains. Phylogenetic analysis inferred a close epidemiological linkage among XDR strains from different regions of Pakistan. Pangenome was noted closed among these strains and functional annotation highlighted genes related to metabolism and pathogenesis. CONCLUSION This study revealed a uniform genotypic background among XDR S. Typhi strains in Pakistan, signifying a persistence transmission of a single, highly antibiotic-resistant clone. The closed pan-genome observed underscores limited genetic diversity and highlights the importance of genomic surveillance for combating drug-resistant typhoid infections.
Collapse
Affiliation(s)
- Mah Noor Mumtaz
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Muhammad Irfan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Sami Siraj
- Institute of Pharmaceutical Sciences, Khyber Medical University (KMU), Peshawar, Pakistan
| | - Aslam Khan
- Department of Pathology, Medical Teaching Institution MTI, Hayatabad Medical Complex (HMC), Peshawar, Pakistan
| | - Hizbullah Khan
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Imran
- Research center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan.
| |
Collapse
|
3
|
Burciaga S, Trachsel JM, Sockett D, Aulik N, Monson MS, Anderson CL, Bearson SMD. Genomic and phenotypic comparison of two variants of multidrug-resistant Salmonella enterica serovar Heidelberg isolated during the 2015-2017 multi-state outbreak in cattle. Front Microbiol 2023; 14:1282832. [PMID: 37928690 PMCID: PMC10623430 DOI: 10.3389/fmicb.2023.1282832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Salmonella enterica subspecies enterica serovar Heidelberg (Salmonella Heidelberg) has caused several multistate foodborne outbreaks in the United States, largely associated with the consumption of poultry. However, a 2015-2017 multidrug-resistant (MDR) Salmonella Heidelberg outbreak was linked to contact with dairy beef calves. Traceback investigations revealed calves infected with outbreak strains of Salmonella Heidelberg exhibited symptoms of disease frequently followed by death from septicemia. To investigate virulence characteristics of Salmonella Heidelberg as a pathogen in bovine, two variants with distinct pulse-field gel electrophoresis (PFGE) patterns that differed in morbidity and mortality during the multistate outbreak were genotypically and phenotypically characterized and compared. Strain SX 245 with PFGE pattern JF6X01.0523 was identified as a dominant and highly pathogenic variant causing high morbidity and mortality in affected calves, whereas strain SX 244 with PFGE pattern JF6X01.0590 was classified as a low pathogenic variant causing less morbidity and mortality. Comparison of whole-genome sequences determined that SX 245 lacked ~200 genes present in SX 244, including genes associated with the IncI1 plasmid and phages; SX 244 lacked eight genes present in SX 245 including a second YdiV Anti-FlhC(2)FlhD(4) factor, a lysin motif domain containing protein, and a pentapeptide repeat protein. RNA-sequencing revealed fimbriae-related, flagella-related, and chemotaxis genes had increased expression in SX 245 compared to SX 244. Furthermore, SX 245 displayed higher invasion of human and bovine epithelial cells than SX 244. These data suggest that the presence and up-regulation of genes involved in type 1 fimbriae production, flagellar regulation and biogenesis, and chemotaxis may play a role in the increased pathogenicity and host range expansion of the Salmonella Heidelberg isolates involved in the bovine-related outbreak.
Collapse
Affiliation(s)
- Selma Burciaga
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
- Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, United States
| | - Julian M. Trachsel
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| | - Donald Sockett
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin, Madison, WI, United States
| | - Nicole Aulik
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin, Madison, WI, United States
| | - Melissa S. Monson
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| | - Christopher L. Anderson
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| | - Shawn M. D. Bearson
- United States Department of Agriculture, Agriculture Research Services, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
4
|
Tawfick MM, Rosser A, Rajakumar K. Heterologous expression of the Salmonella enterica serovar Paratyphi A stk fimbrial operon suggests a potential for repeat sequence-mediated low-frequency phase variation. INFECTION GENETICS AND EVOLUTION 2020; 85:104508. [PMID: 32835875 DOI: 10.1016/j.meegid.2020.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Fimbriae mediate adhesion of Salmonella enterica organisms to the intestinal epithelium, which is an essential step in the pathogenesis process preceding invasion and/or systemic spread. In addition, Salmonella fimbrial genes transcripts were detected in the blood samples from Salmonella infected human patients, which supports the proposal that fimbriae play a role in invasive Salmonella infections. In this study, BlastN-based interrogation of the NCBI bacterial genome database and PCR investigation of Salmonella serovars have shown that the S. Paratyphi A stkF gene and/or the whole stk fimbrial gene cluster is present in about ~30% of S. enterica serovars investigated up to date. Furthermore, bioinformatics and phenotypic characterization have revealed that the stk fimbrial operon belongs to the chaperone/usher-γ4- fimbrial clade and that it encodes a mannose-sensitive hemagglutinating fimbrial structure. The latter trait is typical of type 1 fimbriae, in which fimbrial phase variation is common. The observed intragenic, 26 bp tandem repeat triplication event in stkF would suggest that slipped-strand mispairing and/or recombination within a signature stkF-borne tandem repeat motif as a likely mechanism for a form of low-frequency phase switching at the translational level leading to allelic OFF forms, hence the inability of production and/or absence of fimbriae by EM-examination on E. coli HB101/pUCstk-stkFOFFv2. The in vitro profile of marked anti-StkF-mediated opsonophagocytosis and complement-mediated killing activity observed coupled with the mice immunogenicity profile strongly supports further investigation of StkF as a potential Salmonella vaccine candidate.
Collapse
Affiliation(s)
- Mahmoud M Tawfick
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Andrew Rosser
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Kumar Rajakumar
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
5
|
Salerno-Gonçalves R, Tettelin H, Luo D, Guo Q, Ardito MT, Martin WD, De Groot AS, Sztein MB. Differential functional patterns of memory CD4 + and CD8 + T-cells from volunteers immunized with Ty21a typhoid vaccine observed using a recombinant Escherichia coli system expressing S. Typhi proteins. Vaccine 2019; 38:258-270. [PMID: 31629569 DOI: 10.1016/j.vaccine.2019.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 02/01/2023]
Abstract
It is widely accepted that CD4+ and CD8+ T-cells play a significant role in protection against Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever. However, the antigen specificity of these T-cells remains largely unknown. Previously, we demonstrated the feasibility of using a recombinant Escherichia coli (E. coli) expression system to uncover the antigen specificity of CD4+ and CD8+ T cells. Here, we expanded these studies to include the evaluation of 12 additional S. Typhi proteins: 4 outer membrane proteins (OmpH, OmpL, OmpR, OmpX), 3 Vi-polysaccharide biosynthesis proteins (TviA, TviB, TviE), 3 cold shock proteins (CspA, CspB, CspC), and 2 conserved hypothetical proteins (Chp 1 and Chp2), all selected based on the bioinformatic analyses of the content of putative T-cell epitopes. CD4+ and CD8+ T cells from 15 adult volunteers, obtained before and 42 days after immunization with oral live attenuated Ty21a vaccine, were assessed for their functionality (i.e., production of cytokines and cytotoxic expression markers in response to stimulation with selected antigens) as measured by flow cytometry. Although volunteers differed on their T-cell antigen specificity, we observed T-cell immune responses against all S. Typhi proteins evaluated. These responses included 9 proteins, OmpH, OmpR, TviA, TviE, CspA, CspB, CspC, Chp 1 and Chp 2, which have not been previously reported to elicit T-cell responses. Interestingly, we also observed that, regardless of the protein, the functional patterns of the memory T-cells were different between CD4+ and CD8+ T cells. In sum, these studies demonstrated the feasibility of using bioinformatic analysis and the E. coli expressing system described here to uncover novel immunogenic T-cell proteins that could serve as potential targets for the production of protein-based vaccines.
Collapse
Affiliation(s)
- Rosângela Salerno-Gonçalves
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA.
| | - Hervé Tettelin
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, 670 West Baltimore Street, HSF3, Baltimore, MD 21201, USA
| | - David Luo
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA
| | - Qin Guo
- Department of Microbiology and Immunology and Institute for Genome Sciences (IGS), University of Maryland School of Medicine, 670 West Baltimore Street, HSF3, Baltimore, MD 21201, USA
| | - Matthew T Ardito
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - William D Martin
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - Anne S De Groot
- Institute for Immunology and Informatics (iCubed), Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington Street, Providence, RI, USA; EpiVax, Inc., 188 Valley Street Suite 424, Providence, RI, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health (CVD), Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore Street, HSF1, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Antony L, Behr M, Sockett D, Miskimins D, Aulik N, Christopher-Hennings J, Nelson E, Allard MW, Scaria J. Genome divergence and increased virulence of outbreak associated Salmonella enterica subspecies enterica serovar Heidelberg. Gut Pathog 2018; 10:53. [PMID: 30603048 PMCID: PMC6304783 DOI: 10.1186/s13099-018-0279-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/15/2018] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serotype Heidelberg is primarily a poultry adapted serotype of Salmonella that can also colonize other hosts and cause human disease. In this study, we compared the genomes of outbreak associated non-outbreak causing Salmonella ser. Heidelberg strains from diverse hosts and geographical regions. Human outbreak associated strains in this study were from a 2015 multistate outbreak of Salmonella ser. Heidelberg involving 15 states in the United States which originated from bull calves. Our clinicopathologic examination revealed that cases involving Salmonella ser. Heidelberg strains were predominantly young, less than weeks-old, dairy calves. Pre-existing or concurrent disease was found in the majority of the calves. Detection of Salmonella ser. Heidelberg correlated with markedly increased death losses clinically comparable to those seen in herds infected with S. Dublin, a known serious pathogen of cattle. Whole genome based single nucleotide polymorphism based analysis revealed that these calf isolates formed a distinct cluster along with outbreak associated human isolates. The defining feature of the outbreak associated strains, when compared to older isolates of S. Heidelberg, is that all isolates in this cluster contained Saf fimbrial genes which are generally absent in S. Heidelberg. The acquisition of several single nucleotide polymorphisms and the gain of Saf fimbrial genes may have contributed to the increased disease severity of these Salmonella ser. Heidelberg strains.
Collapse
Affiliation(s)
- Linto Antony
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD USA
| | - Melissa Behr
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA
| | - Donald Sockett
- 3Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin, Madison, WI USA
| | - Dale Miskimins
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA
| | - Nicole Aulik
- 3Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin, Madison, WI USA
| | - Jane Christopher-Hennings
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD USA
| | - Eric Nelson
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD USA
| | - Marc W Allard
- 4Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Nutrition, U.S. Food and Drug Administration, College Park, MD USA
| | - Joy Scaria
- 1Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD USA.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD USA
| |
Collapse
|
7
|
Barton AJ, Hill J, Pollard AJ, Blohmke CJ. Transcriptomics in Human Challenge Models. Front Immunol 2017; 8:1839. [PMID: 29326715 PMCID: PMC5741696 DOI: 10.3389/fimmu.2017.01839] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Human challenge models, in which volunteers are experimentally infected with a pathogen of interest, provide the opportunity to directly identify both natural and vaccine-induced correlates of protection. In this review, we highlight how the application of transcriptomics to human challenge studies allows for the identification of novel correlates and gives insight into the immunological pathways required to develop functional immunity. In malaria challenge trials for example, innate immune pathways appear to play a previously underappreciated role in conferring protective immunity. Transcriptomic analyses of samples obtained in human challenge studies can also deepen our understanding of the immune responses preceding symptom onset, allowing characterization of innate immunity and early gene signatures, which may influence disease outcome. Influenza challenge studies demonstrate that these gene signatures have diagnostic potential in the context of pandemics, in which presymptomatic diagnosis of at-risk individuals could allow early initiation of antiviral treatment and help limit transmission. Furthermore, gene expression analysis facilitates the identification of host factors contributing to disease susceptibility, such as C4BPA expression in enterotoxigenic Escherichia coli infection. Overall, these studies highlight the exceptional value of transcriptional data generated in human challenge trials and illustrate the broad impact molecular data analysis may have on global health through rational vaccine design and biomarker discovery.
Collapse
Affiliation(s)
- Amber J Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
8
|
Analysis of Spleen-Induced Fimbria Production in Recombinant Attenuated Salmonella enterica Serovar Typhimurium Vaccine Strains. mBio 2017; 8:mBio.01189-17. [PMID: 28830946 PMCID: PMC5565968 DOI: 10.1128/mbio.01189-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Salmonella enterica serovar Typhimurium genome encodes 13 fimbrial operons. Most of the fimbriae encoded by these operons are not produced under laboratory conditions but are likely to be synthesized in vivo. We used an in vivo expression technology (IVET) strategy to identify four fimbrial operons, agf, saf, sti, and stc that are expressed in the spleen. When any three of these operons were deleted, the strain retained wild-type virulence. However, when all four operons were deleted, the resulting strain was completely attenuated, indicating that these four fimbriae play functionally redundant roles critical for virulence. In mice, oral doses of as low as 1 × 105 CFU of the strain with four fimbrial operons deleted provided 100% protection against challenge with 1 × 109 CFU of wild-type S. Typhimurium. We also examined the possible effect of these fimbriae on the ability of a Salmonella vaccine strain to deliver a guest antigen. We modified one of our established attenuated vaccine strains, χ9088, to delete three fimbrial operons while the fourth operon was constitutively expressed. Each derivative was modified to express the Streptococcus pneumoniae antigen PspA. Strains that constitutively expressed saf or stc elicited a strong Th1 response with significantly greater levels of anti-PspA serum IgG and greater protective efficacy than strains carrying saf or stc deletions. The isogenic strain in which all four operons were deleted generated the lowest anti-PspA levels and did not protect against challenge with virulent S. pneumoniae. Our results indicate that these fimbriae play important roles, as yet not understood, in Salmonella virulence and immunogenicity. Salmonella enterica is the leading cause of bacterial food-borne infection in the United States. S. Typhimurium is capable of producing up to 13 distinct surface structures called fimbriae that presumably mediate its adherence to surfaces. The roles of most of these fimbriae in disease are unknown. Identifying fimbriae produced during infection will provide important insights into how these bacterial structures contribute to disease and potentially induce protective immunity to Salmonella infection. We identified four fimbriae that are produced during infection. Deletion of all four of these fimbriae results in a significant reduction in virulence. We explored ways in which the expression of these fimbriae may be exploited for use in recombinant Salmonella vaccine strains and found that production of Saf and Stc fimbriae are important for generating a strong immune response against a vectored antigen. This work provides new insight into the role of fimbriae in disease and their potential for improving the efficacy of Salmonella-based vaccines.
Collapse
|
9
|
Induction of immunomodulatory miR-146a and miR-155 in small intestinal epithelium of Vibrio cholerae infected patients at acute stage of cholera. PLoS One 2017; 12:e0173817. [PMID: 28319200 PMCID: PMC5358779 DOI: 10.1371/journal.pone.0173817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
The potential immunomodulatory role of microRNAs in small intestine of patients with acute watery diarrhea caused by Vibrio cholerae O1 or enterotoxigenic Escherichia coli (ETEC) infection was investigated. Duodenal biopsies were obtained from study-participants at the acute (day 2) and convalescent (day 21) stages of disease, and from healthy individuals. Levels of miR-146a, miR-155 and miR-375 and target gene (IRAK1, TRAF6, CARD10) and 11 cytokine mRNAs were determined by qRT-PCR. The cellular source of microRNAs in biopsies was analyzed by in situ hybridization. The ability of V. cholerae bacteria and their secreted products to cause changes in microRNA- and mRNA levels in polarized tight monolayers of intestinal epithelial cells was investigated. miR-146a and miR-155 were expressed at significantly elevated levels at acute stage of V. cholerae infection and declined to normal at convalescent stage (P<0.009 versus controls; P = 0.03 versus convalescent stage, pairwise). Both microRNAs were mainly expressed in the epithelium. Only marginal down-regulation of target genes IRAK1 and CARD10 was seen and a weak cytokine-profile was identified in the acute infected mucosa. No elevation of microRNA levels was seen in ETEC infection. Challenge of tight monolayers with the wild type V. cholerae O1 strain C6706 and clinical isolates from two study-participants, caused significant increase in miR-155 and miR-146a by the strain C6706 (P<0.01). One clinical isolate caused reduction in IRAK1 levels (P<0.05) and none of the strains induced inflammatory cytokines. In contrast, secreted factors from these strains caused markedly increased levels of IL-8, IL-1β, and CARD10 (P<0.001), without inducing microRNA expression. Thus, miR-146a and miR-155 are expressed in the duodenal epithelium at the acute stage of cholera. The inducer is probably the V. cholerae bacterium. By inducing microRNAs the bacterium can limit the innate immune response of the host, including inflammation evoked by its own secreted factors, thereby decreasing the risk of being eliminated.
Collapse
|
10
|
Park KS, Chung HJ, Khanam F, Lee H, Rashu R, Bhuiyan MT, Berger A, Harris JB, Calderwood SB, Ryan ET, Qadri F, Weissleder R, Charles RC. A magneto-DNA nanoparticle system for the rapid and sensitive diagnosis of enteric fever. Sci Rep 2016; 6:32878. [PMID: 27605393 PMCID: PMC5015101 DOI: 10.1038/srep32878] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/16/2016] [Indexed: 11/09/2022] Open
Abstract
There is currently no widely available optimal assay for diagnosing patients with enteric fever. Here we present a novel assay designed to detect amplified Salmonella nucleic acid (mRNA) using magneto-DNA probes and a miniaturized nuclear magnetic resonance device. We designed primers for genes specific to S. Typhi, S. Paratyphi A, and genes conserved among Salmonella enterica spp. and utilized strongly magnetized nanoparticles to enhance the detection signal. Blood samples spiked with in vitro grown S. Typhi, S. Paratyphi A, S. Typhimurium, and E. coli were used to confirm the specificity of each probe-set, and serial 10-fold dilutions were used to determine the limit of the detection of the assay, 0.01-1.0 CFU/ml. For proof of principle, we applied our assay to 0.5 mL blood samples from 5 patients with culture-confirmed enteric fever from Bangladesh in comparison to 3 healthy controls. We were able to detect amplified target cDNA in all 5 cases of enteric fever; no detectable signal was seen in the healthy controls. Our results suggest that a magneto-DNA nanoparticle system, with an assay time from blood collection of 3.5 hours, may be a promising platform for the rapid and culture-free diagnosis of enteric fever and non-typhoidal Salmonella bacteremia.
Collapse
Affiliation(s)
- Ki Soo Park
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, US
| | - Hyun Jung Chung
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, US
| | - Rasheduzzaman Rashu
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Taufiqur Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Amanda Berger
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, US.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin Microbiol Rev 2015; 28:901-37. [PMID: 26180063 PMCID: PMC4503790 DOI: 10.1128/cmr.00002-15] [Citation(s) in RCA: 700] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Salmonella enterica infections are common causes of bloodstream infection in low-resource areas, where they may be difficult to distinguish from other febrile illnesses and may be associated with a high case fatality ratio. Microbiologic culture of blood or bone marrow remains the mainstay of laboratory diagnosis. Antimicrobial resistance has emerged in Salmonella enterica, initially to the traditional first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole. Decreased fluoroquinolone susceptibility and then fluoroquinolone resistance have developed in association with chromosomal mutations in the quinolone resistance-determining region of genes encoding DNA gyrase and topoisomerase IV and also by plasmid-mediated resistance mechanisms. Resistance to extended-spectrum cephalosporins has occurred more often in nontyphoidal than in typhoidal Salmonella strains. Azithromycin is effective for the management of uncomplicated typhoid fever and may serve as an alternative oral drug in areas where fluoroquinolone resistance is common. In 2013, CLSI lowered the ciprofloxacin susceptibility breakpoints to account for accumulating clinical, microbiologic, and pharmacokinetic-pharmacodynamic data suggesting that revision was needed for contemporary invasive Salmonella infections. Newly established CLSI guidelines for azithromycin and Salmonella enterica serovar Typhi were published in CLSI document M100 in 2015.
Collapse
Affiliation(s)
- John A Crump
- Centre for International Health, University of Otago, Dunedin, Otago, New Zealand Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Sjölund-Karlsson
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Melita A Gordon
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Christopher M Parry
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
12
|
Park KS, Charles RC, Ryan ET, Weissleder R, Lee H. Fluorescence Polarization Based Nucleic Acid Testing for Rapid and Cost-Effective Diagnosis of Infectious Disease. Chemistry 2015; 21:16359-63. [PMID: 26420633 DOI: 10.1002/chem.201502934] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Indexed: 12/22/2022]
Abstract
A new nucleic acid detection method was developed for a rapid and cost-effective diagnosis of infectious disease. This approach relies on the three unique elements: 1) detection probes that regulate DNA polymerase activity in response to the complementary target DNA; 2) universal reporters conjugated with a single fluorophore; and 3) fluorescence polarization (FP) detection. As a proof-of-concept, the assay was used to detect and sub-type Salmonella bacteria with sensitivities down to a single bacterium in less than three hours.
Collapse
Affiliation(s)
- Ki Soo Park
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (USA)
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 (USA)
- Department of Medicine, Harvard Medical School, Boston, MA 02114 (USA)
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114 (USA)
- Department of Medicine, Harvard Medical School, Boston, MA 02114 (USA)
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (USA).
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115 (USA).
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 (USA).
| |
Collapse
|
13
|
Sztein MB, Salerno-Goncalves R, McArthur MA. Complex adaptive immunity to enteric fevers in humans: lessons learned and the path forward. Front Immunol 2014; 5:516. [PMID: 25386175 PMCID: PMC4209864 DOI: 10.3389/fimmu.2014.00516] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/03/2014] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, and S. Paratyphi A and B, causative agents of paratyphoid fever, are major public health threats throughout the world. Although two licensed typhoid vaccines are currently available, they are only moderately protective and immunogenic necessitating the development of novel vaccines. A major obstacle in the development of improved typhoid, as well as paratyphoid vaccines is the lack of known immunological correlates of protection in humans. Considerable progress has been made in recent years in understanding the complex adaptive host responses against S. Typhi. Although the induction of S. Typhi-specific antibodies (including their functional properties) and memory B cells, as well as their cross-reactivity with S. Paratyphi A and S. Paratyphi B has been shown, the role of humoral immunity in protection remains undefined. Cell mediated immunity (CMI) is likely to play a dominant role in protection against enteric fever pathogens. Detailed measurements of CMI performed in volunteers immunized with attenuated strains of S. Typhi have shown, among others, the induction of lymphoproliferation, multifunctional type 1 cytokine production, and CD8(+) cytotoxic T-cell responses. In addition to systemic responses, the local microenvironment of the gut is likely to be of paramount importance in protection from these infections. In this review, we will critically assess current knowledge regarding the role of CMI and humoral immunity following natural S. Typhi and S. Paratyphi infections, experimental challenge, and immunization in humans. We will also address recent advances regarding cross-talk between the host's gut microbiota and immunization with attenuated S. Typhi, mechanisms of systemic immune responses, and the homing potential of S. Typhi-specific B- and T-cells to the gut and other tissues.
Collapse
Affiliation(s)
- Marcelo B Sztein
- Department of Pediatrics, Center for Vaccine Development (CVD), University of Maryland School of Medicine , Baltimore, MD , USA
| | - Rosangela Salerno-Goncalves
- Department of Pediatrics, Center for Vaccine Development (CVD), University of Maryland School of Medicine , Baltimore, MD , USA
| | - Monica A McArthur
- Department of Pediatrics, Center for Vaccine Development (CVD), University of Maryland School of Medicine , Baltimore, MD , USA
| |
Collapse
|
14
|
Teh CSJ, Chua KH, Thong KL. Paratyphoid fever: splicing the global analyses. Int J Med Sci 2014; 11:732-41. [PMID: 24904229 PMCID: PMC4045793 DOI: 10.7150/ijms.7768] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 03/05/2014] [Indexed: 11/24/2022] Open
Abstract
The incidence of enteric fever caused by Salmonella enterica serovar Paratyphi A (S. Paratyphi A) is increasing in many parts of the world. Although there is no major outbreak of paratyphoid fever in recent years, S. Paratyphi A infection still remains a public health problem in many tropical countries. Therefore, surveillance studies play an important role in monitoring infections and the emergence of multidrug resistance, especially in endemic countries such as India, Nepal, Pakistan and China. In China, enteric fever was caused predominantly by S. Paratyphi A rather than by Salmonella enterica serovar Typhi (S. Typhi). Sometimes, S. Paratyphi A infection can evolve into a carrier state which increases the risk of transmission for travellers. Hence, paratyphoid fever is usually classified as a "travel-associated" disease. To date, diagnosis of paratyphoid fever based on the clinical presentation is not satisfactory as it resembles other febrile illnesses, and could not be distinguished from S. Typhi infection. With the availability of Whole Genome Sequencing technology, the genomes of S. Paratyphi A could be studied in-depth and more specific targets for detection will be revealed. Hence, detection of S. Paratyphi A with Polymerase Chain Reaction (PCR) method appears to be a more reliable approach compared to the Widal test. On the other hand, due to increasing incidence of S. Paratyphi A infections worldwide, the need to produce a paratyphoid vaccine is essential and urgent. Hence various vaccine projects that involve clinical trials have been carried out. Overall, this review provides the insights of S. Paratyphi A, including the bacteriology, epidemiology, management and antibiotic susceptibility, diagnoses and vaccine development.
Collapse
Affiliation(s)
- Cindy Shuan Ju Teh
- 1. Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur
| | - Kek Heng Chua
- 2. Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur
| | - Kwai Lin Thong
- 3. Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur
| |
Collapse
|
15
|
Yao Y, Cui X, Chen Q, Huang X, Elmore B, Pan Q, Wang S, Liu J. Multiple-locus variable number of tandem repeats analysis of Salmonella enterica serotype paratyphi A from Yuxi and comparison with isolates from the Chinese Medical Culture Collection Center. Mol Med Rep 2014; 10:68-74. [PMID: 24788795 PMCID: PMC4068728 DOI: 10.3892/mmr.2014.2187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 03/18/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to genotype Salmonella enterica serotype paratyphi A (SPA) isolated from Yuxi, China, in a multiple-locus variable number of tandem repeats (VNTRs) analysis (MLVA) and to compare them with isolates from the Chinese Medical Culture Collection Center (CMCC). Potential VNTRs were screened from the genomes of ATCC9150 and AKU_12601 using the Tandem Repeats Finder program. Nine VNTRs were established for MLVA typing of 195 SPA isolates from Yuxi and 20 isolates from CMCC. The dendogram for MLVA profiles and minimum spanning tree (MST) were drawn using the categorical coefficient calculated by BioNumerics software. A total of 23 MLVA types were identified in 215 SPA isolates and were grouped into six distinct cluster groups A, B, C, D, E and F. A total of 195 Yuxi SPA isolates were exclusively grouped into cluster C with nine MLVA genotypes. A total of 20 CMCC isolates were grouped in clusters A B, D, E and F with the other 14 MLVA types. The MLVA with nine VNTR loci, which was exploited in the present study, represents a successful strategy for genotyping SPA. Furthermore, the 195 Yuxi isolates appear to be closely related to each other and distinct from the 20 CMCC strains.
Collapse
Affiliation(s)
- Yingbo Yao
- Center for Disease Control and Prevention of Yuxi City, Yuxi, Yunnan 653100, P.R. China
| | - Xiaoyan Cui
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200065, P.R. China
| | - Qingshan Chen
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xinrong Huang
- Huanggang Maternal and Child Care Service Centre, Huanggang, Hubei 438100, P.R. China
| | - Bradley Elmore
- College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Qing Pan
- Department of Medical Microbiology, Yongzhou Vocational and Technical College,Yongzhou, Hunan 425006, P.R. China
| | - Shukun Wang
- Center for Disease Control and Prevention of Yuxi City, Yuxi, Yunnan 653100, P.R. China
| | - Jie Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of Medicine, Shanghai 200065, P.R. China
| |
Collapse
|
16
|
Immunoproteomic analysis of antibody in lymphocyte supernatant in patients with typhoid fever in Bangladesh. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:280-5. [PMID: 24371257 DOI: 10.1128/cvi.00661-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have previously shown that an assay based on detection of anti-Salmonella enterica serotype Typhi antibodies in supernatant of lymphocytes harvested from patients presenting with typhoid fever (antibody in lymphocyte supernatant [ALS] assay) can identify 100% of patients with blood culture-confirmed typhoid fever in Bangladesh. In order to define immunodominant proteins within the S. Typhi membrane preparation used as antigen in these prior studies and to identify potential biomarkers unique to S. Typhi bacteremic patients, we probed microarrays containing 2,724 S. Typhi proteins with ALS collected at the time of clinical presentation from 10 Bangladeshis with acute typhoid fever. We identified 62 immunoreactive antigens when evaluating both the IgG and IgA responses. Immune responses to 10 of these antigens discriminated between individuals with acute typhoid infection and healthy control individuals from areas where typhoid infection is endemic, as well as Bangladeshi patients presenting with fever who were subsequently confirmed to have a nontyphoid illness. Using an ALS enzyme-linked immunosorbent assay (ELISA) format and purified antigen, we then confirmed that immune responses against the antigen with the highest immunoreactivity (hemolysin E [HlyE]) correctly identified individuals with acute typhoid or paratyphoid fever in Dhaka, Bangladesh. These observations suggest that purified antigens could be used with ALS and corresponding acute-phase activated B lymphocytes in diagnostic platforms to identify acutely infected patients, even in areas where enteric fever is endemic.
Collapse
|
17
|
Lee SJ, Gebru Awji E, Kim MH, Park SC. BaeR protein from Salmonella enterica serovar Paratyphi A induces inflammatory response in murine and human cell lines. Microbes Infect 2013; 15:951-7. [PMID: 24055826 DOI: 10.1016/j.micinf.2013.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
BaeR is the response regulator of the two-component system, BaeSR, found in Escherichia coli (E. coli) and Salmonella. Several biological functions of BaeR, related to multidrug efflux and bacterial virulence, have been described. Herein, we report a putative function of BaeR during inflammatory response of the host by using BaeR protein of Salmonella enterica Paratyphi A (S. Paratyphi A) origin overexpressed in E. coli, and RAW 264.7 and THP-1 cells as in vitro models. BaeR (3 μg/ml) upregulated iNOS mRNA expression in both cell lines, and induced significant production of NO. Greater than ten-fold (TNF-α), 24-fold (IL-1β) and 156-fold (IL-6) increases in mRNA expression levels were observed in THP-1 cells treated with BaeR, compared to untreated controls. Furthermore, an eight-fold (IL-1β), 12-fold (IL-6) and 41-fold (TNF-α) higher protein concentrations were observed in RAW 264.7 cells stimulated with BaeR, compared to control cells. Immunoblot analysis showed BaeR-induced phosphorylation of the MAPKs (ERK 1/2, JNK and p38 MAPK) in RAW 264.7 cells. Pharmacological inhibition of the three MAPKs using specific inhibitors resulted in significant reduction of BaeR-induced NO production and iNOS mRNA expression by inhibitors of JNK and p38 MAPK. Also, all inhibitors of the MAPKs significantly attenuated BaeR-induced IL-1β, IL-6 and TNF-α at both transcript and protein levels with different degrees of inhibition. Taken together, our data suggest that BaeR is a putative inducer of inflammatory response and the MAPKs are involved in the process.
Collapse
Affiliation(s)
- Seung Jin Lee
- Laboratory of Veterinary Pharmacokinetics & Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | |
Collapse
|
18
|
Charles RC, Sultana T, Alam MM, Yu Y, Wu-Freeman Y, Bufano MK, Rollins SM, Tsai L, Harris JB, LaRocque RC, Leung DT, Brooks WA, Nga TVT, Dongol S, Basnyat B, Calderwood SB, Farrar J, Khanam F, Gunn JS, Qadri F, Baker S, Ryan ET. Identification of immunogenic Salmonella enterica serotype Typhi antigens expressed in chronic biliary carriers of S. Typhi in Kathmandu, Nepal. PLoS Negl Trop Dis 2013; 7:e2335. [PMID: 23936575 PMCID: PMC3731212 DOI: 10.1371/journal.pntd.0002335] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/12/2013] [Indexed: 11/21/2022] Open
Abstract
Background Salmonella enterica serotype Typhi can colonize and persist in the biliary tract of infected individuals, resulting in a state of asymptomatic chronic carriage. Chronic carriers may act as persistent reservoirs of infection within a community and may introduce infection to susceptible individuals and new communities. Little is known about the interaction between the host and pathogen in the biliary tract of chronic carriers, and there is currently no reliable diagnostic assay to identify asymptomatic S. Typhi carriage. Methodology/Principal Findings To study host-pathogen interactions in the biliary tract during S. Typhi carriage, we applied an immunoscreening technique called in vivo-induced antigen technology (IVIAT), to identify potential biomarkers unique to carriers. IVIAT identifies humorally immunogenic bacterial antigens expressed uniquely in the in vivo environment, and we hypothesized that S. Typhi surviving in the biliary tract of humans may express a distinct antigenic profile. Thirteen S. Typhi antigens that were immunoreactive in carriers, but not in healthy individuals from a typhoid endemic area, were identified. The identified antigens included a number of putative membrane proteins, lipoproteins, and hemolysin-related proteins. YncE (STY1479), an uncharacterized protein with an ATP-binding motif, gave prominent responses in our screen. The response to YncE in patients whose biliary tract contained S. Typhi was compared to responses in patients whose biliary tract did not contain S. Typhi, patients with acute typhoid fever, and healthy controls residing in a typhoid endemic area. Seven of 10 (70%) chronic carriers, 0 of 8 bile culture-negative controls (0%), 0 of 8 healthy Bangladeshis (0%), and 1 of 8 (12.5%) Bangladeshis with acute typhoid fever had detectable anti-YncE IgG in blood. IgA responses were also present. Conclusions/Significance Further evaluation of YncE and other antigens identified by IVIAT could lead to the development of improved diagnostic assays to identify asymptomatic S. Typhi carriers. Salmonella enterica serotype Typhi is the cause of typhoid fever and infects over 21 million individuals and causes 200,000 deaths each year. With adequate treatment, most patients recover from their acute stage of illness and clear infection. However, a small percentage of S. Typhi infected individuals develop a chronic but asymptomatic infection in the biliary tract that can persist for decades. Since S. Typhi is a human-restricted pathogen, chronic carriers may act as reservoirs of infection. Correctly identifying and treating asymptomatic chronic carriers could be critical for ultimate control of typhoid fever. Using an immunoscreening technique called in vivo-induced antigen technology (IVIAT), we have identified potential biomarkers unique to S. Typhi chronic carriers. Further evaluation of these antigens could lead to the development of improved diagnostic assays to detect asymptomatic S. Typhi carriers in typhoid endemic zones, and to an improved understanding of the pathogenesis of S. Typhi in the chronic carrier state.
Collapse
Affiliation(s)
- Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Khanam F, Sheikh A, Sayeed MA, Bhuiyan MS, Choudhury FK, Salma U, Pervin S, Sultana T, Ahmed D, Goswami D, Hossain ML, Mamun KZ, Charles RC, Brooks WA, Calderwood SB, Cravioto A, Ryan ET, Qadri F. Evaluation of a typhoid/paratyphoid diagnostic assay (TPTest) detecting anti-Salmonella IgA in secretions of peripheral blood lymphocytes in patients in Dhaka, Bangladesh. PLoS Negl Trop Dis 2013; 7:e2316. [PMID: 23951368 PMCID: PMC3708850 DOI: 10.1371/journal.pntd.0002316] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/03/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rapid and reliable diagnostic assays for enteric (typhoid and paratyphoid) fever are urgently needed. We report the characterization of novel approach utilizing lymphocyte secretions, for diagnosing patients with enteric fever by the TPTest procedure. METHODOLOGY TPTest detects Salmonella-specific IgA responses in lymphocyte culture supernatant. We utilized TPTest in patients with suspected enteric fever, patients with other illnesses, and healthy controls. We also evaluated simplified modifications of TPTest for adaptation in laboratories with limited facilities and equipment. PRINCIPAL FINDINGS TPTest was positive in 39 (27 typhoid and 12 paratyphoid A) patients confirmed by blood culture and was negative in 74 healthy individuals. Among 32 individuals with other illnesses, 29 were negative by TPTest. Of 204 individuals with suspected enteric fever who were negative by blood culture, 44 were positive by TPTest and the patients were clinically indistinguishable from patients with confirmed bacteremia, except they were more likely to be under 5 years of age. We evaluated simplifications in TPTest, including showing that lymphocytes could be recovered using lysis buffer or buffy coat method as opposed to centrifugation, that incubation of cells at 37°C did not require supplemental CO2, and that results were available for majority of samples within 24 hours. Positive results by TPTest are transient and revert to negative during convalescence, supporting use of the test in endemic areas. The results can also be read using immunodot blot approach as opposed to ELISA. Since no true gold standard currently exists, we used a number of definitions of true positives and negatives. TPTest had sensitivity of 100% compared to blood culture, and specificity that ranged from 78-97% (73-100, 95% CI), depending on definition of true negative. CONCLUSION The TPTest is useful for identification of patients with enteric fever in an endemic area, and additional development of simplified TPTest is warranted.
Collapse
Affiliation(s)
- Farhana Khanam
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - Alaullah Sheikh
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - Md. Abu Sayeed
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - Md. Saruar Bhuiyan
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - Feroza Kaneez Choudhury
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - Umme Salma
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - Shahnaz Pervin
- Department of Microbiology, Dhaka Medical College and Hospital (DMCH), Dhaka, Bangladesh
| | - Tania Sultana
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - Dilruba Ahmed
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - Doli Goswami
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - Md. Lokman Hossain
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - K. Z. Mamun
- Department of Microbiology, Dhaka Medical College and Hospital (DMCH), Dhaka, Bangladesh
| | - Richelle C. Charles
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - W. Abdullah Brooks
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
| | - Stephen B. Calderwood
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Edward T. Ryan
- Division of Infectious Disease, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research (icddr,b), Bangladesh, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
20
|
Identification of in vivo-induced bacterial proteins during human infection with Salmonella enterica serotype Paratyphi A. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:712-9. [PMID: 23486419 DOI: 10.1128/cvi.00054-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Salmonella enterica serotype Paratyphi A is a human-restricted pathogen and the cause of paratyphoid A fever. Using a high-throughput immunoscreening technique, in vivo-induced antigen technology (IVIAT), we identified 20 immunogenic bacterial proteins expressed in humans who were bacteremic with S. Paratyphi A but not those expressed in S. Paratyphi A grown under standard laboratory conditions. The majority of these proteins have known or potential roles in the pathogenesis of S. enterica. These include proteins implicated in cell adhesion, fimbrial structure, adaptation to atypical conditions, oxidoreductase activity, proteolysis, antimicrobial resistance, and ion transport. Of particular interest among these in vivo-expressed proteins were S. Paratyphi A (SPA)2397, SPA2612, and SPA1604. SPA2397 and SPA2612 are prophage related, and SPA1604 is in Salmonella pathogenicity island 11 (SPI-11). Using real-time quantitative PCR (RT-qPCR), we confirmed increased levels of mRNA expressed by genes identified by IVIAT in a comparison of mRNA levels in organisms in the blood of bacteremic patients to those in in vitro cultures. Comparing convalescent- to acute-phase samples, we also detected a significant increase in the reaction of convalescent-phase antibodies with two proteins identified by IVIAT: SPA2397 and SPA0489. SPA2397 is a phage-related lysozyme, Gp19, and SPA0489 encodes a protein containing NlpC/P60 and cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domains. In a previous study utilizing a different approach, we found that transcripts for 11 and 7 of the genes identified by IVIAT were detectable in organisms in the blood of humans in Bangladesh who were bacteremic with S. Paratyphi A and Salmonella enterica serovar Typhi, respectively. S. Paratyphi A antigens identified by IVIAT warrant further evaluation for their contributions to pathogenesis and might have diagnostic, therapeutic, or preventive relevance.
Collapse
|
21
|
Goudeau DM, Parker CT, Zhou Y, Sela S, Kroupitski Y, Brandl MT. The salmonella transcriptome in lettuce and cilantro soft rot reveals a niche overlap with the animal host intestine. Appl Environ Microbiol 2013; 79:250-62. [PMID: 23104408 PMCID: PMC3536078 DOI: 10.1128/aem.02290-12] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/20/2012] [Indexed: 11/20/2022] Open
Abstract
Fresh vegetables have been recurrently associated with salmonellosis outbreaks, and Salmonella contamination of retail produce has been correlated positively with the presence of soft rot disease. We observed that population sizes of Salmonella enterica serovar Typhimurium SL1344 increased 56-fold when inoculated alone onto cilantro leaves, versus 2,884-fold when coinoculated with Dickeya dadantii, a prevalent pathogen that macerates plant tissue. A similar trend in S. enterica populations was observed for soft-rotted lettuce leaves. Transcriptome analysis of S. enterica cells that colonized D. dadantii-infected lettuce and cilantro leaves revealed a clear shift toward anaerobic metabolism and catabolism of substrates that are available due to the degradation of plant cells by the pectinolytic pathogen. Twenty-nine percent of the genes that were upregulated in cilantro macerates were also previously observed to have increased expression levels in the chicken intestine. Furthermore, multiple genes induced in soft rot lesions are also involved in the colonization of mouse, pig, and bovine models of host infection. Among those genes, the operons for ethanolamine and propanediol utilization as well as for the synthesis of cobalamin, a cofactor in these pathways, were the most highly upregulated genes in lettuce and cilantro lesions. In S. Typhimurium strain LT2, population sizes of mutants deficient in propanediol utilization or cobalamin synthesis were 10- and 3-fold lower, respectively, than those of the wild-type strain in macerated cilantro (P < 0.0002); in strain SL1344, such mutants behaved similarly to the parental strain. Anaerobic conditions and the utilization of nutrients in macerated plant tissue that are also present in the animal intestine indicate a niche overlap that may explain the high level of adaptation of S. enterica to soft rot lesions, a common postharvest plant disease.
Collapse
Affiliation(s)
- Danielle M. Goudeau
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Yaguang Zhou
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Shlomo Sela
- Microbial Food Safety Research Unit, Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, ARO, The Volcani Center, Beth-Dagan, Israel
| | - Yulia Kroupitski
- Microbial Food Safety Research Unit, Department of Food Quality and Safety, Institute for Postharvest and Food Sciences, ARO, The Volcani Center, Beth-Dagan, Israel
| | - Maria T. Brandl
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| |
Collapse
|
22
|
Gopinath S, Carden S, Monack D. Shedding light on Salmonella carriers. Trends Microbiol 2012; 20:320-7. [DOI: 10.1016/j.tim.2012.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/03/2012] [Accepted: 04/10/2012] [Indexed: 01/10/2023]
|
23
|
Role of antigens and virulence factors of Salmonella enterica serovar Typhi in its pathogenesis. Microbiol Res 2012; 167:199-210. [DOI: 10.1016/j.micres.2011.08.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 12/25/2022]
|
24
|
Sheikh A, Charles RC, Sharmeen N, Rollins SM, Harris JB, Bhuiyan MS, Arifuzzaman M, Khanam F, Bukka A, Kalsy A, Porwollik S, Leung DT, Brooks WA, LaRocque RC, Hohmann EL, Cravioto A, Logvinenko T, Calderwood SB, McClelland M, Graham JE, Qadri F, Ryan ET. In vivo expression of Salmonella enterica serotype Typhi genes in the blood of patients with typhoid fever in Bangladesh. PLoS Negl Trop Dis 2011; 5:e1419. [PMID: 22180799 PMCID: PMC3236720 DOI: 10.1371/journal.pntd.0001419] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 10/21/2011] [Indexed: 11/24/2022] Open
Abstract
Background Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few data exist on S. Typhi gene expression in humans. Methodology/Principal Findings We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS), and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44% of the S. Typhi genome) in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046 detected transcripts, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR. Conclusions/Significance We report the first characterization of bacterial transcriptional profiles in the blood of patients with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory studies. Our results suggest that S. Typhi uses a largely uncharacterized genetic repertoire to survive within cells and utilize alternate energy sources during infection. Salmonella enterica serotype Typhi is the cause of typhoid fever and infects over 21 million cases and causes 200,000 deaths each year. S. Typhi only infects humans and this has greatly limited studies of S. Typhi pathogenesis. To study bacterial gene expression in human hosts, we used Selective Capture of Transcribed Sequences (SCOTS) and array hybridization to identify S. Typhi mRNAs expressed in the blood of 5 patients with S. Typhi infection. In total, we detected the expression of 2,046 S. Typhi genes (44% of the S. Typhi genome) in human blood; of these, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures. Our results provide insight into S. Typhi pathogenesis, identifying both previously described and novel interactions occurring between host and microbe during the natural course of human infection. Further study of these genes, especially those of unknown function, may further our understanding of S. Typhi pathogenesis and aid in vaccine, diagnostic, and/or drug target development.
Collapse
Affiliation(s)
- Alaullah Sheikh
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Nusrat Sharmeen
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Sean M. Rollins
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Md. Saruar Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Mohammad Arifuzzaman
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Farhana Khanam
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Archana Bukka
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Anuj Kalsy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Steffen Porwollik
- The Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - Daniel T. Leung
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - W. Abdullah Brooks
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizabeth L. Hohmann
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Alejandro Cravioto
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Tanya Logvinenko
- Division of Biostatistics, Institute for Clinical Research and Health Policy Studies (ICRHPS), Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael McClelland
- The Vaccine Research Institute of San Diego, San Diego, California, United States of America
| | - James E. Graham
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
25
|
Antimicrobial peptides in the duodenum at the acute and convalescent stages in patients with diarrhea due to Vibrio cholerae O1 or enterotoxigenic Escherichia coli infection. Microbes Infect 2011; 13:1111-20. [PMID: 21782033 DOI: 10.1016/j.micinf.2011.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 01/29/2023]
Abstract
Patients with acute watery diarrhea caused by Vibrio cholerae O1 or enterotoxigenic Escherichia coli (ETEC) were analyzed for innate immune factors produced by the epithelium during the disease process. Duodenal biopsies were obtained from study participants at the acute (day 2) and convalescent (day 21) stages of disease. Levels of α-defensin (HD-5 and -6), β-defensin (hBD-1-4), and cathelicidin (LL-37) mRNAs were determined by real-time qRT-PCR. hBD-2, HD-5, LL-37 peptides were analyzed in duodenal epithelium by immunomorphometry. Concentration of hBD-2 in stool was determined by ELISA. Specimens from healthy controls were also analyzed. hBD-2 mRNA levels were significantly increased at acute stage of diarrhea; hBD-2 peptide was detected in fecal specimens but barely in duodenal epithelium at acute stage. Immunomorphometry analysis showed that Paneth cells contain significantly higher amounts of HD-5 pre/propeptide at convalescence (P<0.01) and in healthy controls (P<0.001) compared to acute stage, LL-37 peptide levels also decreased at acute stage while mRNA levels remained unchanged. mRNA expression levels of the other antimicrobial peptides remained unchanged with higher levels of α-defensins than β-defensins. V. cholerae induced an innate immune response at the acute stage of disease characterized by increased expression of hBD-2, and continued expression of hBD-1, HD-5-6, and LL-37.
Collapse
|