1
|
Preite NW, Kaminski VDL, Borges BM, Calich VLG, Loures FV. Myeloid-derived suppressor cells are associated with impaired Th1 and Th17 responses and severe pulmonary paracoccidioidomycosis which is reversed by anti-Gr1 therapy. Front Immunol 2023; 14:1039244. [PMID: 36776848 PMCID: PMC9909482 DOI: 10.3389/fimmu.2023.1039244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Previous studies on paracoccidioidomycosis (PCM), the most prevalent systemic mycosis in Latin America, revealed that host immunity is tightly regulated by several suppressive mechanisms mediated by tolerogenic plasmacytoid dendritic cells, the enzyme 2,3 indoleamine dioxygenase (IDO-1), and regulatory T-cells (Tregs). IDO-1 orchestrates local and systemic immunosuppressive effects through the recruitment and activation of myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid cells possessing a potent ability to suppress T-cell responses. However, the involvement of MDSCs in PCM remains uninvestigated. The presence, phenotype, and immunosuppressive activity of MDSCs were evaluated at 96 h, 2 weeks, and 8 weeks of pulmonary infection in C57BL/6 mice. Disease severity and immune responses were assessed in MDSC-depleted and nondepleted mice using an anti-Gr1 antibody. Both monocytic-like MDSCs (M-MDSCs) and polymorphonuclear-like MDSCs (PMN-MDSCs) massively infiltrated the lungs during Paracoccidioides brasiliensis infection. Partial reduction of MDSC frequency led to a robust Th1/Th17 lymphocyte response, resulting in regressive disease with a reduced fungal burden on target organs, diminishing lung pathology, and reducing mortality ratio compared with control IgG2b-treated mice. The suppressive activity of MDSCs on CD4 and CD8 T-lymphocytes and Th1/Th17 cells was also demonstrated in vitro using coculture experiments. Conversely, adoptive transfer of MDSCs to recipient P. brasiliensis-infected mice resulted in a more severe disease. Taken together, our data showed that the increased influx of MDSCs into the lungs was linked to more severe disease and impaired Th1 and Th17 protective responses. However, protective immunity was rescued by anti-Gr1 treatment, resulting in a less severe disease and controlled tissue pathology. In conclusion, MDSCs have emerged as potential target cells for the adjuvant therapy of PCM.
Collapse
Affiliation(s)
- Nycolas Willian Preite
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Valéria de Lima Kaminski
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo, Brazil,*Correspondence: Flávio Vieira Loures,
| |
Collapse
|
2
|
Sharma J, Mudalagiriyappa S, Nanjappa SG. T cell responses to control fungal infection in an immunological memory lens. Front Immunol 2022; 13:905867. [PMID: 36177012 PMCID: PMC9513067 DOI: 10.3389/fimmu.2022.905867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, fungal vaccine research emanated significant findings in the field of antifungal T-cell immunity. The generation of effector T cells is essential to combat many mucosal and systemic fungal infections. The development of antifungal memory T cells is integral for controlling or preventing fungal infections, and understanding the factors, regulators, and modifiers that dictate the generation of such T cells is necessary. Despite the deficiency in the clear understanding of antifungal memory T-cell longevity and attributes, in this review, we will compile some of the existing literature on antifungal T-cell immunity in the context of memory T-cell development against fungal infections.
Collapse
Affiliation(s)
| | | | - Som Gowda Nanjappa
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
3
|
Dias LDS, Silva LBR, Nosanchuk JD, Taborda CP. Neutrophil Cells Are Essential for The Efficacy of a Therapeutic Vaccine against Paracoccidioidomycosis. J Fungi (Basel) 2021; 7:jof7060416. [PMID: 34073466 PMCID: PMC8226764 DOI: 10.3390/jof7060416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/25/2022] Open
Abstract
Paracoccidioidomycosis (PCM), caused by the Paracoccidioides species, is a systemic disease endemic in several Latin American countries, mainly in Brazil, Colombia, Argentina, and Venezuela. Current treatment approaches are challenging as they require prolonged durations of antifungal drugs that have potential toxicities, and despite antifungals, relapses are common. Hence, new therapeutic approaches, such as vaccines, are being investigated. The therapeutic vaccine consisting of peptide P10 associated with lipid cationic DODAB (P10+DODAB) is effective in murine models of PCM. However, the specific immune mechanisms required for the protective response has not been fully elucidated. The present work aims at evaluating the participation of neutrophils in the immune response induced by P10+DODAB. We found that the vaccine reduced both the influx of pulmonary neutrophils and the fungal load in comparison to infected animals that did not receive this treatment. The parenchymal architecture of the lungs of P10+DODAB-treated animals was largely preserved with only a few granulomas present, and tissue cytokine analysis showed a Th1 cytokine profile with augmented levels of IL-12, IFN-γ and TNF-α, and low levels of IL-4. When neutrophils were depleted 24 h prior to each treatment, the effectiveness of the P10+DODAB vaccine was completely lost as the fungal burdens remained high and histological examination showed a marked inflammation and fungal dissemination with a dysregulated cytokine response. In conclusion, these findings indicate that neutrophils are vital to ensure the triggering of an effective immune response to P10+DODAB.
Collapse
Affiliation(s)
- Lucas dos Santos Dias
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (L.d.S.D.); (L.B.R.S.)
| | - Leandro B. R. Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (L.d.S.D.); (L.B.R.S.)
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases), Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (L.d.S.D.); (L.B.R.S.)
- Laboratory of Medical Mycology, Tropical Medicine Institute USP-LIM53, University of São Paulo, São Paulo 05403-000, Brazil
- Correspondence:
| |
Collapse
|
4
|
Burger E. Paracoccidioidomycosis Protective Immunity. J Fungi (Basel) 2021; 7:jof7020137. [PMID: 33668671 PMCID: PMC7918802 DOI: 10.3390/jof7020137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/26/2022] Open
Abstract
Protective immunity against Paracoccidioides consists of a stepwise activation of numerous effector mechanisms that comprise many cellular and soluble components. At the initial phase of non-specific innate immunity, resistance against Paracoccidioides comes from phagocytic polymorphonuclear neutrophils, natural killer (NK) cells and monocytes, supplemented by soluble factors such as cytokines and complement system components. Invariant receptors (Toll-like receptors (TLRs), Dectins) which are present in cells of the immune system, detect patterns present in Paracoccidioides (but not in the host) informing the hosts cells that there is an infection in progress, and that the acquired immunity must be activated. The role of components involved in the innate immunity of paracoccidioidomycosis is herein presented. Humoral immunity, represented by specific antibodies which control the fungi in the blood and body fluids, and its role in paracoccidioidomycosis (which was previously considered controversial) is also discussed. The protective mechanisms (involving various components) of cellular immunity are also discussed, covering topics such as: lysis by activated macrophages and cytotoxic T lymphocytes, the participation of lytic products, and the role of cytokines secreted by T helper lymphocytes in increasing the efficiency of Paracoccidioides, lysis.
Collapse
Affiliation(s)
- Eva Burger
- Department of Microbiology and Immunology, Universidade Federal de Alfenas, Alfenas 37130-001, Brazil
| |
Collapse
|
5
|
Jannuzzi GP, de Almeida JRF, Amarante-Mendes GP, Romera LMD, Kaihami GH, Vasconcelos JR, Ferreira CP, de Almeida SR, Ferreira KS. TLR3 Is a Negative Regulator of Immune Responses Against Paracoccidioides brasiliensis. Front Cell Infect Microbiol 2019; 8:426. [PMID: 30687643 PMCID: PMC6335947 DOI: 10.3389/fcimb.2018.00426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) comprise the best-characterized pattern-recognition receptor (PRR) family able to activate distinct immune responses depending on the receptor/adaptor set assembled. TLRs, such as TLR2, TLR4 and TLR9, and their signaling were shown to be important in Paracoccidioides brasiliensis infections. However, the role of the endosomal TLR3 in experimental paracoccidioidomycosys remains obscure. In vitro assays, macrophages of the bone marrow of WT or TLR3−/− mice were differentiated for evaluation of their microbicidal activity. In vivo assays, WT or TLR3−/− mice were infected intratracheally with Paracoccidioides brasiliensis yeasts for investigation of the lung response type induced. The cytotoxic activity of CD8+ T cells was assessed by cytotoxicity assay. To confirm the importance of CD8+ T cells in the control of infection in the absence of tlr3, a depletion assay of these cells was performed. Here, we show for the first time that TLR3 modulate the infection against Paracoccidioides brasiliensis by dampening pro-inflammatory response, NO production, IFN+CD8+T, and IL-17+CD8+T cell activation and cytotoxic function, associated with granzyme B and perforin down regulation. As conclusion, we suggest that TLR3 could be used as an escape mechanism of the fungus in an experimental paracoccidioidomycosis.
Collapse
Affiliation(s)
- Grasielle Pereira Jannuzzi
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | | | - Gustavo P Amarante-Mendes
- Departamento de Imunologia, do Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lavínia Maria Dal'Mas Romera
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - Gilberto Hideo Kaihami
- Departamento de Química, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Camila Pontes Ferreira
- Centro de Terapia Molecular e Celular do Departamento de Microbiologia, Imunologia e Parasitologia da Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sandro Rogério de Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - Karen Spadari Ferreira
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil.,Departamento de Imunologia, do Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Química, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Biociências da Universidade Federal de São Paulo, São Paulo, Brazil.,Centro de Terapia Molecular e Celular do Departamento de Microbiologia, Imunologia e Parasitologia da Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
de Araújo EF, Feriotti C, Galdino NADL, Preite NW, Calich VLG, Loures FV. The IDO-AhR Axis Controls Th17/Treg Immunity in a Pulmonary Model of Fungal Infection. Front Immunol 2017; 8:880. [PMID: 28791025 PMCID: PMC5523665 DOI: 10.3389/fimmu.2017.00880] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022] Open
Abstract
In infectious diseases, the enzyme indoleamine 2,3 dioxygenase-1 (IDO1) that catalyzes the tryptophan (Trp) degradation along the kynurenines (Kyn) pathway has two main functions, the control of pathogen growth by reducing available Trp and immune regulation mediated by the Kyn-mediated expansion of regulatory T (Treg) cells via aryl hydrocarbon receptor (AhR). In pulmonary paracoccidioidomycosis (PCM) caused by the dimorphic fungus Paracoccidioides brasiliensis, IDO1 was shown to control the disease severity of both resistant and susceptible mice to the infection; however, only in resistant mice, IDO1 is induced by TGF-β signaling that confers a stable tolerogenic phenotype to dendritic cells (DCs). In addition, in pulmonary PCM, the tolerogenic function of plasmacytoid dendritic cells was linked to the IDO1 activity. To further evaluate the function of IDO1 in pulmonary PCM, IDO1-deficient (IDO1-/-) C57BL/6 mice were intratracheally infected with P. brasiliensis yeasts and the infection analyzed at three postinfection periods regarding several parameters of disease severity and immune response. The fungal loads and tissue pathology of IDO1-/- mice were higher than their wild-type controls resulting in increased mortality rates. The evaluation of innate lymphoid cells showed an upregulated differentiation of the innate lymphoid cell 3 phenotype accompanied by a decreased expansion of ILC1 and NK cells in the lungs of infected IDO1-/- mice. DCs from these mice expressed elevated levels of costimulatory molecules and cytokine IL-6 associated with reduced production of IL-12, TNF-α, IL-1β, TGF-β, and IL-10. This response was concomitant with a marked reduction in AhR production. The absence of IDO1 expression caused an increased influx of activated Th17 cells to the lungs with a simultaneous reduction in Th1 and Treg cells. Accordingly, the suppressive cytokines IL-10, TGF-β, IL-27, and IL-35 appeared in reduced levels in the lungs of IDO1-/- mice. In conclusion, the immunological balance mediated by the axis IDO/AhR is fundamental to determine the balance between Th17/Treg cells and control the severity of pulmonary PCM.
Collapse
Affiliation(s)
- Eliseu Frank de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudia Feriotti
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Nycolas Willian Preite
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Flávio Vieira Loures
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Feriotti C, de Araújo EF, Loures FV, da Costa TA, Galdino NADL, Zamboni DS, Calich VLG. NOD-Like Receptor P3 Inflammasome Controls Protective Th1/Th17 Immunity against Pulmonary Paracoccidioidomycosis. Front Immunol 2017; 8:786. [PMID: 28740491 PMCID: PMC5502381 DOI: 10.3389/fimmu.2017.00786] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022] Open
Abstract
The NOD-like receptor P3 (NLRP3) inflammasome is an intracellular multimeric complex that triggers the activation of inflammatory caspases and the maturation of IL-1β and IL-18, important cytokines for the innate immune response against pathogens. The functional NLRP3 inflammasome complex consists of NLRP3, the adaptor protein apoptosis-associated speck-like protein, and caspase-1. Various molecular mechanisms were associated with NLRP3 activation including the presence of extracellular ATP, recognized by the cell surface P2X7 receptor (P2X7R). Several pattern recognition receptors on innate immune cells recognize Paracoccidioides brasiliensis components resulting in diverse responses that influence adaptive immunity and disease outcome. However, the role of NLRP3 inflammasome was scantily investigated in pulmonary paracoccidioidomycosis (PCM), leading us to use an intratracheal (i.t.) model of infection to study the influence of this receptor in anti-fungal immunity and severity of infection. For in vivo studies, C57BL/6 mice deficient for several NLRP3 inflammasome components (Nlrp3−/−, Casp1/11−/−, Asc−/−) as well as deficient for ATP receptor (P2x7r−/−) were infected via i.t. with P. brasiliensis and several parameters of immunity and disease severity analyzed at the acute and chronic periods of infection. Pulmonary PCM was more severe in Nlrp3−/−, Casp1/11−/−, Asc−/−, and P2x7r−/− mice as demonstrated by the increased fungal burdens, mortality rates and tissue pathology developed. The more severe disease developed by NLRP3, ASC, and Caspase-1/11 deficient mice was associated with decreased production of IL-1β and IL-18 and reduced inflammatory reactions mediated by PMN leukocytes and activated CD4+ and CD8+ T cells. The decreased T cell immunity was concomitant with increased expansion of CD4+CD25+Foxp3 regulatory T (Treg) cells. Characterization of intracellular cytokines showed a persistent reduction of CD4+ and CD8+ T cells expressing IFN-γ and IL-17 whereas those producing IL-4 and TGF-β appeared in increased frequencies. Histopathological studies showed that all deficient mouse strains developed more severe lesions containing elevated numbers of budding yeast cells resulting in increased mortality rates. Altogether, these findings led us to conclude that the activation of the NLRP3 inflammasome has a crucial role in the immunoprotection against pulmonary PCM by promoting the expansion of Th1/Th17 immunity and reducing the suppressive control mediated by Treg cells.
Collapse
Affiliation(s)
- Claudia Feriotti
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | - Dario Simões Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
8
|
Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediators Inflamm 2017; 2017:9870679. [PMID: 28694566 PMCID: PMC5485324 DOI: 10.1155/2017/9870679] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/28/2017] [Accepted: 05/23/2017] [Indexed: 12/30/2022] Open
Abstract
Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs.
Collapse
|
9
|
de Araújo EF, Medeiros DH, Galdino NADL, Condino-Neto A, Calich VLG, Loures FV. Tolerogenic Plasmacytoid Dendritic Cells Control Paracoccidioides brasiliensis Infection by Inducting Regulatory T Cells in an IDO-Dependent Manner. PLoS Pathog 2016; 12:e1006115. [PMID: 27992577 PMCID: PMC5215616 DOI: 10.1371/journal.ppat.1006115] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/04/2017] [Accepted: 12/09/2016] [Indexed: 11/26/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), considered critical for immunity against viruses, were recently associated with defense mechanisms against fungal infections. However, the immunomodulatory function of pDCs in pulmonary paracoccidiodomycosis (PCM), an endemic fungal infection of Latin America, has been poorly defined. Here, we investigated the role of pDCs in the pathogenesis of PCM caused by the infection of 129Sv mice with 1 x 106P. brasiliensis-yeasts. In vitro experiments showed that P. brasiliensis infection induces the maturation of pDCs and elevated synthesis of TNF-α and IFN-β. The in vivo infection caused a significant influx of pDCs to the lungs and increased levels of pulmonary type I IFN. Depletion of pDCs by a specific monoclonal antibody resulted in a less severe infection, reduced tissue pathology and increased survival time of infected mice. An increased influx of macrophages and neutrophils and elevated presence of CD4+ and CD8+ T lymphocytes expressing IFN-γ and IL-17 in the lungs of pDC-depleted mice were also observed. These findings were concomitant with decreased frequency of Treg cells and reduced levels of immunoregulatory cytokines such as IL-10, TGF-β, IL-27 and IL-35. Importantly, P. brasilienis infection increased the numbers of pulmonary pDCs expressing indoleamine 2,3-dioxygenase-1 (IDO), an enzyme with immunoregulatory properties, that were reduced following pDC depletion. In agreement, an increased immunogenic activity of infected pDCs was observed when IDO-deficient or IDO-inhibited pDCs were employed in co-cultures with lymphocytes Altogether, our results suggest that in pulmonary PCM pDCs exert a tolerogenic function by an IDO-mediated mechanism that increases Treg activity. The fungus Paracoccidioides brasiliensis causes paracoccidioidomycosis (PCM), the most relevant deep mycosis in Latin America. The plasmacytoid dendritic cells (pDCs) are important immune cells involved in protection against viral infections, but their role in fungal infections remains unclear. Here, we investigated the role of pDCs in the pathogenesis of pulmonary PCM using a monoclonal antibody to deplete this DC subset. pDCs depletion leads to a less severe PCM associated with increased T cell response mainly mediated by Th1 and Th17 cells. The lung homogenates of depleted mice showed diminished levels of type I IFN and anti-inflammatory cytokines. In addition, a reduced number of regulatory T cells (Treg) paralleled a diminished number pDCs expressing IDO, a potent immunoregulatory enzyme. In agreement, pDCs of IDO-/- mice or IDO-inhibited pDCs stimulated by P. brasiliensis yeasts expanded elevated numbers of T cells concomitant with a reduced expansion of Treg cells. Taken together, our results demonstrate a tolerogenic activity of pDCs that enhances the severity of a pulmonary mycosis mediated by the concerted action of IDO and Treg cells. These results reveal a new function for pDCs in primary fungal infections and open new perspectives for immunotherapeutic procedures of PCM involving the control of IDO and Treg activity.
Collapse
Affiliation(s)
- Eliseu Frank de Araújo
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniella Helena Medeiros
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Antônio Condino-Neto
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávio Vieira Loures
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
10
|
Marcos CM, de Oliveira HC, da Silva JDF, Assato PA, Yamazaki DS, da Silva RAM, Santos CT, Santos-Filho NA, Portuondo DL, Mendes-Giannini MJS, Fusco-Almeida AM. Identification and characterisation of elongation factor Tu, a novel protein involved in Paracoccidioides brasiliensis-host interaction. FEMS Yeast Res 2016; 16:fow079. [PMID: 27634774 DOI: 10.1093/femsyr/fow079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/16/2022] Open
Abstract
Paracoccidioides spp., which are temperature-dependent dimorphic fungi, are responsible for the most prevalent human systemic mycosis in Latin America, the paracoccidioidomycosis. The aim of this study was to characterise the involvement of elongation factor Tu (EF-Tu) in Paracoccidioides brasiliensis-host interaction. Adhesive properties were examined using recombinant PbEF-Tu proteins and the respective polyclonal anti-rPbEF-Tu antibody. Immunogold analysis demonstrated the surface location of EF-Tu in P. brasiliensis. Moreover, PbEF-Tu was found to bind to fibronectin and plasminogen by enzyme-linked immunosorbent assay, and it was determined that the binding to plasminogen is at least partly dependent on lysine residues and ionic interactions. To verify the participation of EF-Tu in the interaction of P. brasiliensis with pneumocytes, we blocked the respective protein with an anti-rPbEF-Tu antibody and evaluated the consequences on the interaction index by flow cytometry. During the interaction, we observed a decrease of 2- and 3-fold at 8 and 24 h, respectively, suggesting the contribution of EF-Tu in fungal adhesion/invasion.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Patricia Akemi Assato
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Daniella Sayuri Yamazaki
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Rosângela Aparecida Moraes da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Cláudia Tavares Santos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Norival Alves Santos-Filho
- Instituto de Química, UNESP - Univ Estadual Paulista, Departamento de Bioquímica e Tecnologia Química, Unidade de Síntese, Estrutura e Caracterização de Peptídeos e Proteínas, Araraquara, São Paulo, Brasil
| | - Deivys Leandro Portuondo
- Faculdade de Ciências Farmacéuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Imunologia Clínica, Araraquara, São Paulo, Brasil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Departamento de Análises Clínicas, Laboratório de Micologia Clínica, Araraquara, São Paulo, Brasil
| |
Collapse
|
11
|
de Lacorte Singulani J, Scorzoni L, de Paula E Silva ACA, Fusco-Almeida AM, Mendes-Giannini MJS. Evaluation of the efficacy of antifungal drugs against Paracoccidioides brasiliensis and Paracoccidioides lutzii in a Galleria mellonella model. Int J Antimicrob Agents 2016; 48:292-7. [PMID: 27444116 DOI: 10.1016/j.ijantimicag.2016.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/17/2016] [Accepted: 05/22/2016] [Indexed: 10/21/2022]
Abstract
Paracoccidioides brasiliensis and P. lutzii belong to a group of thermodimorphic fungi and cause paracoccidioidomycosis (PCM), which is a human systemic mycosis endemic in South and Central America. Patients with this mycosis are commonly treated with amphotericin B (AmB) and azoles. The study of fungal virulence and the efficacy and toxicity of antifungal drugs has been successfully performed in a Galleria mellonella infection model. In this work, G. mellonella larvae were infected with two Paracoccidioides spp. and the efficacy and toxicity of AmB and itraconazole were evaluated in this model for the first time. AmB and itraconazole treatments were effective in increasing larval survival and reducing the fungal burden. The fungicidal and fungistatic effects of AmB and itraconazole, respectively, were observed in the model. Furthermore, these effects were independent of changes in haemocyte number. G. mellonella can serve as a rapid model for the screening of new antifungal compounds against Paracoccidioides and can contribute to a reduction in experimental animal numbers in the study of PCM.
Collapse
Affiliation(s)
- Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú Km 1, Araraquara, São Paulo CEP: 14801-902, Brazil
| | - Liliana Scorzoni
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú Km 1, Araraquara, São Paulo CEP: 14801-902, Brazil
| | - Ana Carolina Alves de Paula E Silva
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú Km 1, Araraquara, São Paulo CEP: 14801-902, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú Km 1, Araraquara, São Paulo CEP: 14801-902, Brazil
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara-Jaú Km 1, Araraquara, São Paulo CEP: 14801-902, Brazil.
| |
Collapse
|
12
|
Gonzalez A, Hernandez O. New insights into a complex fungal pathogen: the case of Paracoccidioides spp. Yeast 2016; 33:113-28. [PMID: 26683539 DOI: 10.1002/yea.3147] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 11/30/2015] [Indexed: 01/31/2023] Open
Abstract
Paracoccidioidomycosis is a systemic mycosis endemic to Latin America, with Paracoccidioides brasiliensis and P. lutzii being the causal agents of this disorder. Several issues have been raised in the 100 years since its discovery and in this article we discuss features of this fascinating fungal pathogen, including its biology, eco-epidemiology and aspects of its pathogenicity. We also consider some of its virulence determinants, the most recent advances in the study of its metabolic pathways and the molecular and genetic research tools developed for this research. We also review the animal models used to study host-fungal interactions and how the host defence mechanisms against this pathogen work.
Collapse
Affiliation(s)
- Angel Gonzalez
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Orville Hernandez
- Basic and Applied Microbiology Research Group (MICROBA), School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
13
|
Marcos CM, da Silva JDF, de Oliveira HC, Assato PA, Singulani JDL, Lopez AM, Tamayo DP, Hernandez-Ruiz O, McEwen JG, Mendes-Giannini MJS, Fusco-Almeida AM. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis. Virulence 2015; 7:72-84. [PMID: 26646480 PMCID: PMC4994830 DOI: 10.1080/21505594.2015.1122166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 10/22/2022] Open
Abstract
The interaction between the fungal pathogen Paracoccidioides brasiliensis and host cells is usually mediated by specific binding events between adhesins on the fungal surface and receptors on the host extracellular matrix or cell surface. One molecule implicated in the P. brasiliensis-host interaction is the 14-3-3 protein. The 14-3-3 protein belongs to a family of conserved regulatory molecules that are expressed in all eukaryotic cells and are involved in diverse cellular functions. Here, we investigated the relevance of the 14-3-3 protein to the virulence of P. brasiliensis. Using antisense RNA technology and Agrobacterium tumefaciens-mediated transformation, we generated a 14-3-3-silenced strain (expression reduced by ˜55%). This strain allowed us to investigate the interaction between 14-3-3 and the host and to correlate the functions of P. brasiliensis 14-3-3 with cellular features, such as morphological characteristics and virulence, that are important for pathogenesis.
Collapse
Affiliation(s)
- Caroline Maria Marcos
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Haroldo Cesar de Oliveira
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Patrícia Akemi Assato
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Angela Maria Lopez
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
| | - Diana Patricia Tamayo
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
| | - Orville Hernandez-Ruiz
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
- Escuela de Microbiología; Universidad de Antioquia; Medellín, Colombia
| | - Juan G McEwen
- Unidad de Biología Celular y Molecular; Corporación para Investigaciones Biológicas (CIB) - Medellín, Colombia
- Facultad de Medicina; Universidad de Antioquia; Medellín, Colombia
| | - Maria José Soares Mendes-Giannini
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas de Araraquara; UNESP - Univ Estadual Paulista; Departamento de Análises Clínicas; Laboratório de Micologia Clínica; Araraquara, São Paulo, Brazil
| |
Collapse
|
14
|
Lipoxin Inhibits Fungal Uptake by Macrophages and Reduces the Severity of Acute Pulmonary Infection Caused by Paracoccidioides brasiliensis. Mediators Inflamm 2015; 2015:852574. [PMID: 26635449 PMCID: PMC4618125 DOI: 10.1155/2015/852574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/20/2015] [Indexed: 01/01/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) and lipoxins (LXs) are lipid mediators that control inflammation, with the former inducing and the latter inhibiting this process. Because the role played by these mediators in paracoccidioidomycosis was not investigated, we aimed to characterize the role of CysLT in the pulmonary infection developed by resistant (A/J) and susceptible (B10.A) mice. 48 h after infection, elevated levels of pulmonary LTC4 and LXA4 were produced by both mouse strains, but higher levels were found in the lungs of susceptible mice. Blocking the CysLTs receptor by MTL reduced fungal loads in B10.A, but not in A/J mice. In susceptible mice, MLT treatment led to reduced influx of PMN leukocytes, increased recruitment of monocytes, predominant synthesis of anti-inflammatory cytokines, and augmented expression of 5- and 15-lipoxygenase mRNA, suggesting a prevalent LXA4 activity. In agreement, MTL-treated macrophages showed reduced fungal burdens associated with decreased ingestion of fungal cells. Furthermore, the addition of exogenous LX reduced, and the specific blockade of the LX receptor increased the fungal loads of B10.A macrophages. This study showed for the first time that inhibition of CysLTs signaling results in less severe pulmonary paracoccidioidomycosis that occurs in parallel with elevated LX activity and reduced infection of macrophages.
Collapse
|
15
|
de Oliveira HC, da Silva JDF, Scorzoni L, Marcos CM, Rossi SA, de Paula E Silva ACA, Assato PA, da Silva RAM, Fusco-Almeida AM, Mendes-Giannini MJS. Importance of adhesins in virulence of Paracoccidioides spp. Front Microbiol 2015; 6:303. [PMID: 25914695 PMCID: PMC4392702 DOI: 10.3389/fmicb.2015.00303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/27/2015] [Indexed: 12/26/2022] Open
Abstract
Members of the Paracoccidioides genus are the etiologic agents of paracoccidioidomycosis (PCM). This genus is composed of two species: Paracoccidioides brasiliensis and Paracoccidioides lutzii. The correct molecular taxonomic classification of these fungi has created new opportunities for studying and understanding their relationships with their hosts. Paracoccidioides spp. have features that permit their growth under adverse conditions, enable them to adhere to and invade host tissues and may contribute to disease development. Cell wall proteins called adhesins facilitate adhesion and are capable of mediating fungi-host interactions during infection. This study aimed to evaluate the adhesion profile of two species of the genus Paracoccidioides, to analyze the expression of adhesin-encoding genes by real-time PCR and to relate these results to the virulence of the species, as assessed using a survival curve in mice and in Galleria mellonella after blocking the adhesins. A high level of heterogeneity was observed in adhesion and adhesin expression, showing that the 14-3-3 and enolase molecules are the most highly expressed adhesins during pathogen-host interaction. Additionally, a survival curve revealed a correlation between the adhesion rate and survival, with P. brasiliensis showing higher adhesion and adhesin expression levels and greater virulence when compared with P. lutzii. After blocking 14-3-3 and enolase adhesins, we observed modifications in the virulence of these two species, revealing the importance of these molecules during the pathogenesis of members of the Paracoccidioides genus. These results revealed new insights into the host-pathogen interaction of this genus and may enhance our understanding of different isolates that could be useful for the treatment of this mycosis.
Collapse
Affiliation(s)
- Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Suelen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Rosângela A M da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP - Universidade Estadual Paulista Araraquara, Brazil
| |
Collapse
|
16
|
Ketelut-Carneiro N, Silva GK, Rocha FA, Milanezi CM, Cavalcanti-Neto FF, Zamboni DS, Silva JS. IL-18 triggered by the Nlrp3 inflammasome induces host innate resistance in a pulmonary model of fungal infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:4507-17. [PMID: 25825440 DOI: 10.4049/jimmunol.1402321] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/25/2015] [Indexed: 12/23/2022]
Abstract
Pathogens are sensed by innate immune receptors that initiate an efficient adaptive immune response upon activation. The elements of the innate immune recognition process for Paracoccidioides brasiliensis include TLR-2, TLR-4, and dectin-1. However, there are additional receptors necessary for the host immune responses to P. brasiliensis. The nucleotide-binding oligomerization domain-like receptor (NLRs), which activate inflammasomes, are candidate receptors that deserve renewed investigation. After pathogen infection, the NLRs form large signaling platforms called inflammasomes, which lead to caspase-1 activation and maturation of proinflammatory cytokines (IL-18 and IL-1β). In this study, we showed that NLR family pyrin domain-containing 3 (Nlrp3) is required to induce caspase-1 activation and further secretion of IL-1β and IL-18 by P. brasiliensis-infected macrophages. Additionally, potassium efflux and lysosomal acidification induced by the fungus were important steps in the caspase-1 activation mechanism. Notably, Nlrp3 and caspase-1 knockout mice were more susceptible to infection than were the wild-type animals, suggesting that the Nlrp3-dependent inflammasomes contribute to host protection against P. brasiliensis. This protective effect occurred owing to the inflammatory response mediated by IL-18, as shown by an augmented fungus burden in IL-18 knockout mice. Taken together, our results show that the Nlrp3 inflammasome is essential for resistance against P. brasiliensis because it orchestrates robust caspase-1 activation and triggers an IL-18-dependent proinflammatory response.
Collapse
Affiliation(s)
- Natália Ketelut-Carneiro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Grace Kelly Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Fernanda Agostini Rocha
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - Cristiane Maria Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | | | - Dario Simões Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, São Paulo, Brazil;
| |
Collapse
|
17
|
Li T, Wang W, Zhao JH, Zhou X, Li YM, Chen H. Pseudolaric acid B inhibits T-cell mediated immune response in vivo via p38MAPK signal cascades and PPARγ activation. Life Sci 2014; 121:88-96. [PMID: 25497712 DOI: 10.1016/j.lfs.2014.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 11/25/2022]
Abstract
AIMS Pseudolaric acid B (PAB) has been prescribed for its potent immunomodulatory effect. However, the detail of mechanism remains to be demonstrated. The purpose of this study is to further clarify the mechanism of PAB on T-cell mediated immune response in vivo. MAIN METHODS Investigations were carried to ascertain the pharmacological effect of PAB in a delayed-type hypersensitivity (DTH) mouse model of T-cell mediated immune response. Histological assessment was examined by hematoxylin and eosin staining. Affymetrix GeneChip® Mouse Genome 430 2.0 arrays were employed to evaluate the expression profile of PAB. Western blot was performed to detect p38MAPK signal cascades, including p38MAPK, ATF-2, MK2, and HSP27. Finally, TNF-α level was analyzed by ELISA, and Jurkat T cells were treated with PAB to determine its role on PPARγ activation using a reporter gene assay. KEY FINDINGS The results showed that PAB (5, 10, and 20mg/kg) could lead to a marked improvement for ear swelling and inflammatory infiltrate in DTH mice dose-dependently. According to the associated biological pathways from microarray analysis, PAB resulted in the restoration of abnormal immune-related gene expression linked to MAPK and PPAR signaling pathways. Moreover, PAB inhibited the activation of p38MAPK, ATF-2, MK2, and HSP27 significantly, as well as the production of TNF-α, which was reversed by GW9662, a specific antagonist for PPARγ. In addition, treatment with PAB also increased the transcriptional activity of PPARγ in a dose-dependent manner. SIGNIFICANCE These results provide us with novel insights into pharmacological action of PAB as a potential immunomodulator for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Tan Li
- Department of Pathogen Biology and Immunology, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China.
| | - Wei Wang
- Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, PR China
| | - Ji-hong Zhao
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China; Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, PR China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China; Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, PR China
| | - Yu-ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China
| | - Hong Chen
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China; Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China.
| |
Collapse
|
18
|
Nanjappa SG, Klein BS. Vaccine immunity against fungal infections. Curr Opin Immunol 2014; 28:27-33. [PMID: 24583636 DOI: 10.1016/j.coi.2014.01.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/26/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Som G Nanjappa
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States.
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States; Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States; Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, United States.
| |
Collapse
|