1
|
Jesus JA, Araujo Flores GV, Souza DCDS, Tristão DC, Serrano DR, Lalatsa A, Laurenti MD, Lago JHG, Ferraz HG, da Silva RP, Passero LFD. Dicentrine Purified from the Leaves of Ocotea puberula Controls the Intracellular Spread of L. (L.) amazonensis and L. (V.) braziliensis Amastigotes and Has Therapeutic Activity as a Topical Treatment in Experimental Cutaneous Leishmaniasis. Microorganisms 2025; 13:309. [PMID: 40005676 PMCID: PMC11858304 DOI: 10.3390/microorganisms13020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Leishmaniasis, a complex disease caused by protozoal parasites of the genus Leishmania, presents various clinical forms, particularly a cutaneous clinical form. Treatment is typically performed with pentavalent antimonial and amphotericin B, both of which have severe side effects that hinder patient compliance. This emphasizes the need for the development of new, effective, and safe treatments. In this study, the leishmanicidal activity of the methanolic extract, an alkaloid-enriched fraction and dicentrine, the main alkaloid of the leaves of Ocotea puberula (Lauraceae), a native Brazilian plant traditionally used by the indigenous population to treat skin affections, was investigated in vitro. Additionally, an in vivo study evaluated the efficacy of a topical cream containing 0.5% dicentrine. The in vitro studies demonstrated high activity and selectivity of methanolic extract, alkaloid-enriched fraction, and dicentrine against the promastigote and amastigote forms of Leishmania (Leishmnia) amazonensis and Leishmania (Viannia) braziliensis. The leishmanicidal effect of dicentrine was related to the modulation of macrophage microbicidal activity. A cream containing 0.5% dicentrine showed high stability and, in permeation studies, dicentrine was retained in a skin-mimicking artificial membrane. This cream effectively inhibited the progression of the skin lesion in BALB/c mice infected with L. (L.) amazonensis, together with a reduced parasite number. Thus, dicentrine offers a promising alternative to the treatment of skin leishmaniasis.
Collapse
Affiliation(s)
- Jéssica Adriana Jesus
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil; (J.A.J.); (G.V.A.F.)
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, SP, Brazil
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, SP, Brazil;
| | - Gabriela Venicia Araujo Flores
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil; (J.A.J.); (G.V.A.F.)
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, SP, Brazil
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, SP, Brazil;
| | - Dalete Christine da Silva Souza
- Center for Natural and Human Science (CCNH), Federal University of ABC, Santo André, São Paulo 09210-580, SP, Brazil; (D.C.d.S.S.); (D.C.T.); (J.H.G.L.)
| | - Daniela Costa Tristão
- Center for Natural and Human Science (CCNH), Federal University of ABC, Santo André, São Paulo 09210-580, SP, Brazil; (D.C.d.S.S.); (D.C.T.); (J.H.G.L.)
| | - Dolores Remedios Serrano
- Department of Pharmaceutics and Food Science, Faculty of Pharmacy, Universidad Complutense of Madrid, Plaza Ramon y Cajal s/n, 28040 Madrid, Spain;
| | - Aikaterina Lalatsa
- CRUK Formulation Unit, School of Pharmacy and Biomedical Sciences, University of Strathclyde, John Arbuthnot Building, Robertson Wing, 161 Cathedral St, Glasgow G4 0RE, UK;
| | - Márcia Dalastra Laurenti
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, SP, Brazil;
| | - João Henrique Ghilardi Lago
- Center for Natural and Human Science (CCNH), Federal University of ABC, Santo André, São Paulo 09210-580, SP, Brazil; (D.C.d.S.S.); (D.C.T.); (J.H.G.L.)
| | - Humberto Gomes Ferraz
- Pharmaceutical Development and Innovation Laboratory (Deinfar), Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Professor Lineu Prestes Avenue, Sao Paulo 05508-580, SP, Brazil; (H.G.F.); (R.P.d.S.)
| | - Rosana Pereira da Silva
- Pharmaceutical Development and Innovation Laboratory (Deinfar), Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Professor Lineu Prestes Avenue, Sao Paulo 05508-580, SP, Brazil; (H.G.F.); (R.P.d.S.)
| | - Luiz Felipe Domingues Passero
- Institute of Biosciences, São Paulo State University (UNESP), Praça Infante Dom Henrique, s/n, São Vicente 11330-900, SP, Brazil; (J.A.J.); (G.V.A.F.)
- Institute for Advanced Studies of Ocean, São Paulo State University (UNESP), Rua João Francisco Bensdorp, 1178, São Vicente 11350-011, SP, Brazil
- Laboratory of Pathology of Infectious Diseases (LIM50), Department of Pathology, Medical School, São Paulo University, São Paulo 01246-903, SP, Brazil;
| |
Collapse
|
2
|
Ferreira GR, Emond-Rheault JG, Alves L, Leprohon P, Smith MA, Papadopoulou B. Evolutionary divergent clusters of transcribed extinct truncated retroposons drive low mRNA expression and developmental regulation in the protozoan Leishmania. BMC Biol 2024; 22:249. [PMID: 39468514 PMCID: PMC11520807 DOI: 10.1186/s12915-024-02051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The Leishmania genome harbors formerly active short interspersed degenerated retroposons (SIDERs) representing the largest family of repetitive elements among trypanosomatids. Their substantial expansion in Leishmania is a strong predictor of important biological functions. In this study, we combined multilevel bioinformatic predictions with high-throughput genomic and transcriptomic analyses to gain novel insights into the diversified roles retroposons of the SIDER2 subfamily play in Leishmania genome evolution and expression. RESULTS We show that SIDER2 retroposons form various evolutionary divergent clusters, each harboring homologous SIDER2 sequences usually located nearby in the linear sequence of chromosomes. This intriguing genomic organization underscores the importance of SIDER2 proximity in shaping chromosome dynamics and co-regulation. Accordingly, we show that transcripts belonging to the same SIDER2 cluster can display similar levels of expression. SIDER2 retroposons are mostly transcribed as part of 3'UTRs and account for 13% of the Leishmania transcriptome. Genome-wide expression profiling studies underscore SIDER2 association generally with low mRNA expression. The remarkable link of SIDER2 retroposons with downregulation of gene expression supports their co-option as major regulators of mRNA abundance. SIDER2 sequences also add to the diversification of the Leishmania gene expression repertoire since ~ 35% of SIDER2-containing transcripts can be differentially regulated throughout the parasite development, with a few encoding key virulence factors. In addition, we provide evidence for a functional bias of SIDER2-containing transcripts with protein kinase and transmembrane transporter activities being most represented. CONCLUSIONS Altogether, these findings provide important conceptual advances into evolutionary innovations of transcribed extinct retroposons acting as major RNA cis-regulators.
Collapse
Affiliation(s)
- Gabriel Reis Ferreira
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Jean-Guillaume Emond-Rheault
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Lysangela Alves
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- , Rua Prof. Algacyr Munhoz Mader 3775, Curitiba/PR, CIC, 81310-020, Brazil
| | - Philippe Leprohon
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Martin A Smith
- CHU Sainte-Justine Research Centre, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, QC, Montreal, H3T 1J4, Canada
- School of Biotechnology and Molecular Bioscience, Faculty of Science, UNSW Sydney, NSW, Sydney, 2052, Australia
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
3
|
Albuquerque LWN, Ferreira SCA, Nunes ICM, Santos HCN, Santos MS, Varjão MTS, Silva AEDA, Leite AB, Duarte AWF, Alexandre-Moreira MS, Queiroz ACDE. In vitro evaluation against Leishmania amazonensis and Leishmania chagasi of medicinal plant species of interest to the Unified Health System. AN ACAD BRAS CIENC 2024; 96:e20230888. [PMID: 39046021 DOI: 10.1590/0001-3764202420230888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/30/2023] [Indexed: 07/25/2024] Open
Abstract
Leishmaniasis is a disease of public health relevance that demands new therapeutic alternatives due to the toxicity of conventional treatments. In this study, 27 plants of interest to the Unified Health System (SUS) were evaluated for cytotoxicity in macrophages, leishmanicidal activity and production of nitric oxide (NO). None of the species demonstrated cytotoxicity to macrophages (CC50 >100 μg/mL). Extracts from Chenopodium ambrosioides, Equisetum arvense, Maytenus ilicifolia showed greater efficacy in inducing the death of Leishmania amazonensis amastigotes with IC50 of 68.4, 82.3, 75.7 μg/mL, respectively. The species Cynara scolymus, Punica granatum and Passiflora alata were the most effective in inducing an increase in the indirect concentration of NO (41.31, 29.30 and 28.86 µM, respectively) in cultures of macrophages infected with L. amazonensis. Furthermore, Punica granatum was also the most effective species in inducing an increase in NO in macrophages infected by Leishmania chagasi (19.90 µM). The results obtained so far support the continuation of studies, with the possibility of developing safer and more effective treatments for leishmaniasis, using natural products. The identification of plants that stimulate the production of NO in macrophages infected by Leishmania opens doors for more detailed investigations of the mechanism of action of these natural products.
Collapse
Affiliation(s)
- Lilyana Waleska N Albuquerque
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Shakira C A Ferreira
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Izabelly Carollynny M Nunes
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Hilda Caroline N Santos
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Mariana S Santos
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Márcio Thomaz S Varjão
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Amanda Evelyn DA Silva
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Anderson B Leite
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Alysson W F Duarte
- Universidade Federal de Alagoas, Centro de Ciências Médicas e de Enfermagem, Laboratório de Microbiologia, Imunologia e Parasitologia, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, Bom Sucesso, 57309-005 Arapiraca, AL, Brazil
| | - Magna Suzana Alexandre-Moreira
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
| | - Aline C DE Queiroz
- Universidade Federal de Alagoas, Instituto de Ciências Biológicas e da Saúde, Laboratório de Farmacologia e Imunologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-900 Maceió, AL, Brazil
- Universidade Federal de Alagoas, Centro de Ciências Médicas e de Enfermagem, Laboratório de Microbiologia, Imunologia e Parasitologia, Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, Bom Sucesso, 57309-005 Arapiraca, AL, Brazil
| |
Collapse
|
4
|
Camargo PG, Dos Santos CR, Girão Albuquerque M, Rangel Rodrigues C, Lima CHDS. Py-CoMFA, docking, and molecular dynamics simulations of Leishmania (L.) amazonensis arginase inhibitors. Sci Rep 2024; 14:11575. [PMID: 38773273 PMCID: PMC11109165 DOI: 10.1038/s41598-024-62520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Leishmaniasis is a disease caused by a protozoan of the genus Leishmania, affecting millions of people, mainly in tropical countries, due to poor social conditions and low economic development. First-line chemotherapeutic agents involve highly toxic pentavalent antimonials, while treatment failure is mainly due to the emergence of drug-resistant strains. Leishmania arginase (ARG) enzyme is vital in pathogenicity and contributes to a higher infection rate, thus representing a potential drug target. This study helps in designing ARG inhibitors for the treatment of leishmaniasis. Py-CoMFA (3D-QSAR) models were constructed using 34 inhibitors from different chemical classes against ARG from L. (L.) amazonensis (LaARG). The 3D-QSAR predictions showed an excellent correlation between experimental and calculated pIC50 values. The molecular docking study identified the favorable hydrophobicity contribution of phenyl and cyclohexyl groups as substituents in the enzyme allosteric site. Molecular dynamics simulations of selected protein-ligand complexes were conducted to understand derivatives' interaction modes and affinity in both active and allosteric sites. Two cinnamide compounds, 7g and 7k, were identified, with similar structures to the reference 4h allosteric site inhibitor. These compounds can guide the development of more effective arginase inhibitors as potential antileishmanial drugs.
Collapse
Affiliation(s)
- Priscila Goes Camargo
- Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carine Ribeiro Dos Santos
- Laboratório de Modelagem Molecular (LabMMol), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Magaly Girão Albuquerque
- Laboratório de Modelagem Molecular (LabMMol), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carlos Rangel Rodrigues
- Faculdade de Farmácia, Departamento de Fármacos e Medicamentos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Camilo Henrique da Silva Lima
- Laboratório de Modelagem Molecular (LabMMol), Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Castro H, Rocha MI, Duarte M, Vilurbina J, Gomes-Alves AG, Leao T, Dias F, Morgan B, Deponte M, Tomás AM. The cytosolic hyperoxidation-sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biol 2024; 71:103122. [PMID: 38490068 PMCID: PMC10955670 DOI: 10.1016/j.redox.2024.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
Typical two-cysteine peroxiredoxins (2-Cys-PRXs) are H2O2-metabolizing enzymes whose activity relies on two cysteine residues. Protists of the family Trypanosomatidae invariably express one cytosolic 2-Cys-PRX (cPRX1). However, the Leishmaniinae sub-family features an additional isoform (cPRX2), almost identical to cPRX1, except for the lack of an elongated C-terminus with a Tyr-Phe (YF) motif. Previously, cytosolic PRXs were considered vital components of the trypanosomatid antioxidant machinery. Here, we shed new light on the properties, functions and relevance of cPRXs from the human pathogen Leishmania infantum. We show first that LicPRX1 is sensitive to inactivation by hyperoxidation, mirroring other YF-containing PRXs participating in redox signaling. Using genetic fusion constructs with roGFP2, we establish that LicPRX1 and LicPRX2 can act as sensors for H2O2 and oxidize protein thiols with implications for signal transduction. Third, we show that while disrupting the LicPRX-encoding genes increases susceptibility of L. infantum promastigotes to external H2O2in vitro, both enzymes are dispensable for the parasites to endure the macrophage respiratory burst, differentiate into amastigotes and initiate in vivo infections. This study introduces a novel perspective on the functions of trypanosomatid cPRXs, exposing their dual roles as both peroxidases and redox sensors. Furthermore, the discovery that Leishmania can adapt to the absence of both enzymes has significant implications for our understanding of Leishmania infections and their treatment. Importantly, it questions the conventional notion that the oxidative response of macrophages during phagocytosis is a major barrier to infection and the suitability of cPRXs as drug targets for leishmaniasis.
Collapse
Affiliation(s)
- Helena Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Maria Inês Rocha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Margarida Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Jordi Vilurbina
- Fachbereich Chemie, Abteilung Biochemie, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Ana Georgina Gomes-Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Teresa Leao
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Filipa Dias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruce Morgan
- Institut für Biochemie, Zentrum für Human und Molekularbiologie (ZHMB), Universität des Saarlandes, D-66123, Saarbrücken, Germany
| | - Marcel Deponte
- Fachbereich Chemie, Abteilung Biochemie, RPTU Kaiserslautern, D-67663, Kaiserslautern, Germany
| | - Ana Maria Tomás
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Reyaz E, Puri N, Selvapandiyan A. Global Remodeling of Host Proteome in Response to Leishmania Infection. ACS Infect Dis 2024; 10:5-19. [PMID: 38084821 DOI: 10.1021/acsinfecdis.3c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The protozoan parasite Leishmania possesses an intrinsic ability to modulate a multitude of pathways in the host, toward aiding its own proliferation. In response, the host reprograms its cellular, immunological, and metabolic machinery to evade the parasite's lethal impact. Besides inducing various antioxidant signaling pathways to counter the elevated stress response proteins like heme oxygenase-1 (HO-1), Leishmania also attempts to delay host cell apoptosis by promoting anti-apoptotic proteins like Bcl-2. The downstream modulation of apoptotic proteins is regulated by effector pathways, including the PI3K/Akt survival pathway, the mitogen-activated protein kinases (MAPKs) signaling pathway, and STAT phosphorylation. In addition, Leishmania assists in its infection in a time-dependent manner by modulating the level of various proteins of autophagic machinery. Immune effector cells, such as mast cells and neutrophils, entrap and kill the pathogen by secreting various granular proteins. In contrast, the host macrophages exert their leishmanicidal effect by secreting various cytokines, such as IL-2, IL-12, etc. An interplay of various signaling pathways occurs in an organized network that is highly specific to both pathogen and host species. This Review analyzes the modulation of expression of proteins, including the cytokines, providing a realistic approach toward understanding the pathophysiology of disease and predicting some prominent markers for disease intervention and vaccine support strategies.
Collapse
Affiliation(s)
- Enam Reyaz
- Department of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
7
|
Ali V, Behera S, Nawaz A, Equbal A, Pandey K. Unique thiol metabolism in trypanosomatids: Redox homeostasis and drug resistance. ADVANCES IN PARASITOLOGY 2022; 117:75-155. [PMID: 35878950 DOI: 10.1016/bs.apar.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Trypanosomatids are mainly responsible for heterogeneous parasitic diseases: Leishmaniasis, Sleeping sickness, and Chagas disease and control of these diseases implicates serious challenges due to the emergence of drug resistance. Redox-active biomolecules are the endogenous substances in organisms, which play important role in the regulation of redox homeostasis. The redox-active substances like glutathione, trypanothione, cysteine, cysteine persulfides, etc., and other inorganic intermediates (hydrogen peroxide, nitric oxide) are very useful as defence mechanism. In the present review, the suitability of trypanothione and other essential thiol molecules of trypanosomatids as drug targets are described in Leishmania and Trypanosoma. We have explored the role of tryparedoxin, tryparedoxin peroxidase, ascorbate peroxidase, superoxide dismutase, and glutaredoxins in the anti-oxidant mechanism and drug resistance. Up-regulation of some proteins in trypanothione metabolism helps the parasites in survival against drug pressure (sodium stibogluconate, Amphotericin B, etc.) and oxidative stress. These molecules accept electrons from the reduced trypanothione and donate their electrons to other proteins, and these proteins reduce toxic molecules, neutralize reactive oxygen, or nitrogen species; and help parasites to cope with oxidative stress. Thus, a better understanding of the role of these molecules in drug resistance and redox homeostasis will help to target metabolic pathway proteins to combat Leishmaniasis and trypanosomiases.
Collapse
Affiliation(s)
- Vahab Ali
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India.
| | - Sachidananda Behera
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Afreen Nawaz
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| | - Asif Equbal
- Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India; Department of Botany, Araria College, Purnea University, Purnia, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, ICMR-Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Patna, Bihar, India
| |
Collapse
|
8
|
Gomes PS, Carneiro MPD, Machado PDA, de Andrade-Neto VV, da Fonseca-Martins AM, Goundry A, Pereira da Silva JVM, Gomes DCO, Lima APCDA, Ennes-Vidal V, Sodero ACR, De-Simone SG, de Matos Guedes HL. Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. Curr Issues Mol Biol 2022; 44:2089-2106. [PMID: 35678670 PMCID: PMC9164065 DOI: 10.3390/cimb44050141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
Subtilisin proteases, found in all organisms, are enzymes important in the post-translational steps of protein processing. In Leishmania major and L. donovani, this enzyme has been described as essential to their survival; however, few compounds that target subtilisin have been investigated for their potential as an antileishmanial drug. In this study, we first show, by electron microscopy and flow cytometry, that subtilisin has broad localization throughout the cytoplasm and membrane of the parasite in the promastigote form with foci in the flagellar pocket. Through in silico analysis, the similarity between subtilisin of different Leishmania species and that of humans were determined, and based on molecular docking, we evaluated the interaction capacity of a serine protease inhibitor against both life cycle forms of Leishmania. The selected inhibitor, known as PF-429242, has already been used against the dengue virus, arenaviruses, and the hepatitis C virus. Moreover, it proved to have antilipogenic activity in a mouse model and caused hypolipidemia in human cells in vitro. Here, PF-429242 significantly inhibited the growth of L. amazonensis promastigotes of four different strains (IC50 values = 3.07 ± 0.20; 0.83 ± 0.12; 2.02 ± 0.27 and 5.83 ± 1.2 µM against LTB0016, PH8, Josefa and LV78 strains) whilst having low toxicity in the host macrophages (CC50 = 170.30 µM). We detected by flow cytometry that there is a greater expression of subtilisin in the amastigote form; however, PF-429242 had a low effect against this intracellular form with an IC50 of >100 µM for intracellular amastigotes, as well as against axenic amastigotes (94.12 ± 2.8 µM for the LV78 strain). In conclusion, even though PF-429242 does not affect the intracellular forms, this drug will serve as a tool to explore pharmacological and potentially leishmanicidal targets.
Collapse
Affiliation(s)
- Pollyanna Stephanie Gomes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Monique Pacheco Duarte Carneiro
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | - Patrícia de Almeida Machado
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Valter Viana de Andrade-Neto
- Laboratório de Bioquímica de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Alessandra Marcia da Fonseca-Martins
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Amy Goundry
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | | | | | - Ana Paula Cabral de Araujo Lima
- Laboratório de Bioquímica e Biologia Molecular de Proteases, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (A.G.); (A.P.C.d.A.L.)
| | - Vítor Ennes-Vidal
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
| | - Ana Carolina Rennó Sodero
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil; (J.V.M.P.d.S.); (A.C.R.S.)
| | - Salvatore Giovanni De-Simone
- Center for Technological Development in Health (CDTS), National Institute of Science and Technology for Innovation on Diseases Neglected Population (INCT-IDPN), FIOCRUZ, Rio de Janeiro 21040-900, Brazil;
- Epidemiology and Molecular Systematic Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Cellular and Molecular Biology Department, Biology Institute, Federal Fluminense University, Niterói 24020-141, Brazil
| | - Herbert L. de Matos Guedes
- Laboratório de Imunologia Clínica, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz—Fiocruz, Rio de Janeiro 21040-360, Brazil; (P.S.G.); (M.P.D.C.); (P.d.A.M.); (A.M.d.F.-M.)
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
- Laboratório de Imunobiotecnologia, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
9
|
Escrivani DO, Charlton RL, Caruso MB, Burle-Caldas GA, Borsodi MPG, Zingali RB, Arruda-Costa N, Palmeira-Mello MV, de Jesus JB, Souza AMT, Abrahim-Vieira B, Freitag-Pohl S, Pohl E, Denny PW, Rossi-Bergmann B, Steel PG. Chalcones identify cTXNPx as a potential antileishmanial drug target. PLoS Negl Trop Dis 2021; 15:e0009951. [PMID: 34780470 PMCID: PMC8664226 DOI: 10.1371/journal.pntd.0009951] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/10/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
With current drug treatments failing due to toxicity, low efficacy and resistance; leishmaniasis is a major global health challenge that desperately needs new validated drug targets. Inspired by activity of the natural chalcone 2’,6’-dihydroxy-4’-methoxychalcone (DMC), the nitro-analogue, 3-nitro-2’,4’,6’- trimethoxychalcone (NAT22, 1c) was identified as potent broad spectrum antileishmanial drug lead. Structural modification provided an alkyne containing chemical probe that labelled a protein within the parasite that was confirmed as cytosolic tryparedoxin peroxidase (cTXNPx). Crucially, labelling is observed in both promastigote and intramacrophage amastigote life forms, with no evidence of host macrophage toxicity. Incubation of the chalcone in the parasite leads to ROS accumulation and parasite death. Deletion of cTXNPx, by CRISPR-Cas9, dramatically impacts upon the parasite phenotype and reduces the antileishmanial activity of the chalcone analogue. Molecular docking studies with a homology model of in-silico cTXNPx suggest that the chalcone is able to bind in the putative active site hindering access to the crucial cysteine residue. Collectively, this work identifies cTXNPx as an important target for antileishmanial chalcones. Leishmaniasis is an insect vector-borne parasitic disease. With >350 million people world wide considered at risk, 12 million people currently infected and an economic cost that can be estimated in terms of >3.3 million working life years lost, leishmaniasis is a major global health challenge. The disease is of particular importance in Brazil. Current treatment of leishmaniasis is difficult requiring a long, costly course of drug treatment using old drugs with poor safety indications requiring close medical supervision. Moreover, resistance to current antileishmanials is growing, emphasising a major need for new drug targets. In earlier work we had identified a naturally inspired chalcone which had promising antileishmanial activity but with no known mode of action. In this work we use an analogue of this molecule as an activity based probe to identify a protein target of the chalcone. This protein, cTXNPx, has a major role in protecting the parasite against attack by reactive oxygen species in the host cell. By inhibiting this protein the parasite can no longer survive in the host. Collectively this work validates cTXNPx as a drug target with the chalcone as a lead structure for future drug discovery programmes.
Collapse
Affiliation(s)
- Douglas O. Escrivani
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Rebecca L. Charlton
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Marjolly B. Caruso
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela A. Burle-Caldas
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Maria Paula G. Borsodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Russolina B. Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis (IBqM), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natalia Arruda-Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Jéssica B. de Jesus
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Stefanie Freitag-Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, United Kingdom
| | - Bartira Rossi-Bergmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (BR-B); (PGS)
| | - Patrick G. Steel
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, United Kingdom
- * E-mail: (BR-B); (PGS)
| |
Collapse
|
10
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Leishmania donovani Metacyclic Promastigotes Impair Phagosome Properties in Inflammatory Monocytes. Infect Immun 2021; 89:e0000921. [PMID: 33875473 DOI: 10.1128/iai.00009-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leishmaniasis, a debilitating disease with clinical manifestations ranging from self-healing ulcers to life-threatening visceral pathologies, is caused by protozoan parasites of the Leishmania genus. These professional vacuolar pathogens are transmitted by infected sand flies to mammalian hosts as metacyclic promastigotes and are rapidly internalized by various phagocyte populations. Classical monocytes are among the first myeloid cells to migrate to infection sites. Recent evidence shows that recruitment of these cells contributes to parasite burden and the establishment of chronic disease. However, the nature of Leishmania-inflammatory monocyte interactions during the early stages of host infection has not been well investigated. Here, we aimed to assess the impact of Leishmania donovani metacyclic promastigotes on antimicrobial responses within these cells. Our data showed that inflammatory monocytes are readily colonized by L. donovani metacyclic promastigotes, while infection with Escherichia coli is efficiently cleared. Upon internalization, metacyclic promastigotes inhibited superoxide production at the parasitophorous vacuole (PV) through a mechanism involving exclusion of NADPH oxidase subunits gp91phox and p47phox from the PV membrane. Moreover, we observed that unlike phagosomes enclosing zymosan particles, vacuoles containing parasites acidify poorly. Interestingly, whereas the parasite surface coat virulence glycolipid lipophosphoglycan (LPG) was responsible for the inhibition of PV acidification, impairment of the NADPH oxidase assembly was independent of LPG and GP63. Collectively, these observations indicate that permissiveness of inflammatory monocytes to L. donovani may thus be related to the ability of this parasite to impair the microbicidal properties of phagosomes.
Collapse
|
12
|
Regulation of macrophage subsets and cytokine production in leishmaniasis. Cytokine 2020; 147:155309. [PMID: 33334669 DOI: 10.1016/j.cyto.2020.155309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
Macrophages are host cells for parasites of the genus Leishmania where they multiply inside parasitophorous vacuoles. Paradoxically, macrophages are also the cells responsible for killing or controlling parasite growth, if appropriately activated. In this review, we will cover the patterns of macrophage activation and the mechanisms used by the parasite to circumvent being killed. We will highlight the impacts of the vector bite on macrophage activation. Finally, we will discuss the ontogeny of macrophages that are infected by Leishmania spp.
Collapse
|
13
|
Vitamin D increases killing of intracellular Leishmania amazonensis in vitro independently of macrophage oxidative mechanisms. Parasitology 2020; 147:1792-1800. [PMID: 32958098 DOI: 10.1017/s0031182020001791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin D has been reported to activate macrophage microbicidal mechanisms by inducing the production of antimicrobial peptides and nitric oxide (NO), but conversely has been shown to contribute to a greater susceptibility to Leishmania amazonensis infection in mice. Thus, this study aimed to evaluate the role of vitamin D during intracellular infection with L. amazonensis by examining its effect on macrophage oxidative mechanisms and parasite survival in vitro. Vitamins D2 and D3 significantly inhibited promastigote and amastigote growth in vitro. Vitamin D3 was not able to induce NO and reactive oxygen species (ROS) production in uninfected macrophages or macrophages infected with L. amazonensis. In addition, vitamin D3 in combination with interferon (IFN)-γ did not enhance amastigote killing and in fact, significantly reduced NO and ROS production when compared with the effect of IFN-γ alone. In this study, we demonstrated that vitamin D directly reduces parasite growth in infected macrophages (approximately 50-60% at 50 μm) but this effect is independent of the activation of macrophage oxidative mechanisms. These findings will contribute to a better understanding of the role of vitamin D in cutaneous leishmaniasis.
Collapse
|
14
|
Cabral FV, Pelegrino MT, Sauter IP, Seabra AB, Cortez M, Ribeiro MS. Nitric oxide-loaded chitosan nanoparticles as an innovative antileishmanial platform. Nitric Oxide 2019; 93:25-33. [DOI: 10.1016/j.niox.2019.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/04/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
15
|
de Menezes JPB, Khouri R, Oliveira CVS, Petersen ALDOA, de Almeida TF, Mendes FRL, Rebouças ADAD, Lorentz AL, Luz NF, Lima JB, Ramos PIP, Soares RP, Rugani JN, Buck GA, Krieger MA, Marchini FK, Vivarini ÁDC, Lopes UG, Borges VDM, Veras PST. Proteomic Analysis Reveals a Predominant NFE2L2 (NRF2) Signature in Canonical Pathway and Upstream Regulator Analysis of Leishmania-Infected Macrophages. Front Immunol 2019; 10:1362. [PMID: 31316499 PMCID: PMC6611007 DOI: 10.3389/fimmu.2019.01362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
CBA mice macrophages (MØ) control infection by Leishmania major and are susceptive to Leishmania amazonensis, suggesting that both parasite species induce distinct responses that play important roles in infection outcome. To evaluate the MØ responses to infection arising from these two Leishmania species, a proteomic study using a Multidimensional Protein Identification Technology (MudPIT) approach with liquid chromatography tandem mass spectrometry (LC-MS/MS) was carried out on CBA mice bone-marrow MØ (BMMØ). Following SEQUEST analysis, which revealed 2,838 proteins detected in BMMØ, data mining approach found six proteins significantly associated with the tested conditions. To investigate their biological significance, enrichment analysis was performed using Ingenuity Pathway Analysis (IPA). A three steps IPA approach revealed 4 Canonical Pathways (CP) and 7 Upstream Transcriptional Factors (UTFs) strongly associated with the infection process. NRF2 signatures were present in both CPs and UTFs pathways. Proteins involved in iron metabolism, such as heme oxigenase 1 (HO-1) and ferritin besides sequestosome (SQSMT1 or p62) were found in the NRF2 CPs and the NRF2 UTFs. Differences in the involvement of iron metabolism pathway in Leishmania infection was revealed by the presence of HO-1 and ferritin. Noteworty, HO-1 was strongly associated with L. amazonensis infection, while ferritin was regulated by both species. As expected, higher HO-1 and p62 expressions were validated in L. amazonensis-infected BMMØ, in addition to decreased expression of ferritin and nitric oxide production. Moreover, BMMØ incubated with L. amazonensis LPG also expressed higher levels of HO-1 in comparison to those stimulated with L. major LPG. In addition, L. amazonensis-induced uptake of holoTf was higher than that induced by L. major in BMMØ, and holoTf was also detected at higher levels in vacuoles induced by L. amazonensis. Taken together, these findings indicate that NRF2 pathway activation and increased HO-1 production, together with higher levels of holoTf uptake, may promote permissiveness to L. amazonensis infection. In this context, differences in protein signatures triggered in the host by L. amazonensis and L. major infection could drive the outcomes in distinct clinical forms of leishmaniasis.
Collapse
Affiliation(s)
| | - Ricardo Khouri
- Laboratory of Vector Born Infectious Diseases, Gonçalo Moniz Institute, Salvador, Brazil.,Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Bahia, Salvador, Brazil
| | | | | | - Tais Fontoura de Almeida
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador, Brazil.,Laboratory of Physiopathology, Federal University of Rio de Janeiro, Macaé, Brazil
| | - Flávia R L Mendes
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador, Brazil
| | | | - Amanda Lopes Lorentz
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador, Brazil
| | - Nívea Farias Luz
- Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Salvador, Brazil
| | - Jonilson Berlink Lima
- Centro de Ciências Biológicas e da Saúde, Federal University of the Western of Bahia, Barreiras, Brazil
| | - Pablo Ivan Pereira Ramos
- Center for Data and Knowledge Integration for Health, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador, Brazil
| | | | | | - Gregory A Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, United States
| | | | | | - Áislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Center of Health Science, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Center of Health Science, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Salvador, Brazil.,National Institute of Science and Technology of Tropical Disease, Patos, Brazil
| |
Collapse
|
16
|
Pessoa CC, Reis LC, Ramos-Sanchez EM, Orikaza CM, Cortez C, de Castro Levatti EV, Badaró ACB, Yamamoto JUDS, D’Almeida V, Goto H, Mortara RA, Real F. ATP6V0d2 controls Leishmania parasitophorous vacuole biogenesis via cholesterol homeostasis. PLoS Pathog 2019; 15:e1007834. [PMID: 31199856 PMCID: PMC6594656 DOI: 10.1371/journal.ppat.1007834] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/26/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
V-ATPases are part of the membrane components of pathogen-containing vacuoles, although their function in intracellular infection remains elusive. In addition to organelle acidification, V-ATPases are alternatively implicated in membrane fusion and anti-inflammatory functions controlled by ATP6V0d2, the d subunit variant of the V-ATPase complex. Therefore, we evaluated the role of ATP6V0d2 in the biogenesis of pathogen-containing vacuoles using ATP6V0d2 knock-down macrophages infected with the protozoan parasite Leishmania amazonensis. These parasites survive within IFNγ/LPS-activated inflammatory macrophages, multiplying in large/fusogenic parasitophorous vacuoles (PVs) and inducing ATP6V0d2 upregulation. ATP6V0d2 knock-down decreased macrophage cholesterol levels and inhibited PV enlargement without interfering with parasite multiplication. However, parasites required ATP6V0d2 to resist the influx of oxidized low-density lipoprotein (ox-LDL)-derived cholesterol, which restored PV enlargement in ATP6V0d2 knock-down macrophages by replenishing macrophage cholesterol pools. Thus, we reveal parasite-mediated subversion of host V-ATPase function toward cholesterol retention, which is required for establishing an inflammation-resistant intracellular parasite niche.
Collapse
Affiliation(s)
- Carina Carraro Pessoa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Luiza Campos Reis
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brasil
| | - Eduardo Milton Ramos-Sanchez
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brasil
| | - Cristina Mary Orikaza
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Cristian Cortez
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago de Chile, Chile
| | | | - Ana Carolina Benites Badaró
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | | | - Vânia D’Almeida
- Departamento de Psicobiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Hiro Goto
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brasil
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
| | - Fernando Real
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
17
|
Prakash AS, Kabli AMF, Bulleid N, Burchmore R. Mix-and-Match Proteomics: Using Advanced Iodoacetyl Tandem Mass Tag Multiplexing To Investigate Cysteine Oxidation Changes with Respect to Protein Expression. Anal Chem 2018; 90:14173-14180. [DOI: 10.1021/acs.analchem.8b02517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aruna S. Prakash
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Glasgow, United Kingdom G61 1QH
| | - Abdulbaset M. F. Kabli
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Glasgow, United Kingdom G61 1QH
| | - Neil Bulleid
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Davidson Building, Glasgow, United Kingdom G12 8QQ
| | - Richard Burchmore
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Garscube Estate, Glasgow, United Kingdom G61 1QH
| |
Collapse
|
18
|
Nandan D, Zhang N, Yu Y, Schwartz B, Chen S, Kima PE, Reiner NE. Miransertib (ARQ 092), an orally-available, selective Akt inhibitor is effective against Leishmania. PLoS One 2018; 13:e0206920. [PMID: 30399177 PMCID: PMC6219794 DOI: 10.1371/journal.pone.0206920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/22/2018] [Indexed: 12/25/2022] Open
Abstract
Leishmaniasis is amongst the most important neglected diseases, afflicting more than 12 million people in 88 countries. There is an urgent need for safe orally bioavailable and cost-effective drugs for the treatment of leishmaniasis. It has recently been shown that Leishmania activates host macrophage serine/threonine kinase Akt, to promote survival of both parasites and infected cells. Here, we sought to evaluate a compound, Miransertib (ARQ 092), an orally bioavailable and selective allosteric Akt inhibitor currently in clinical trials for patients with PI3K/Akt-driven tumors or Proteus syndrome. Miransertib was tested against Leishmania donovani and Leishmania amazonensis, causative agents of visceral and cutaneous leishmaniasis, respectively. Cultured promastigotes were susceptible to Miransertib. In addition, Miransertib was markedly effective against intracellular amastigotes of L. donovani or L. amazonensis-infected macrophages. Miransertib also enhanced mTOR dependent autophagy in Leishmania-infected macrophages, which may represent one mechanism of Miransertib-mediated killing of intracellular Leishmania. Whereas parasite clearance in the spleen of mice infected with L. donovani and treated with Miransertib was comparable to that when treated with miltefosine, Miransertib caused a greater reduction in the parasite load in the liver. In the cutaneous leishmaniasis infection model, lesions were reduced by 40% as compared to mock treated mice. Together, these results provide direct evidence to support the conclusion that Miransertib is an excellent lead compound for the development of a new oral drug therapy for visceral and cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Devki Nandan
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Naixin Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Yi Yu
- ArQule, Inc, Burlington, Massachusetts, United States of America
| | - Brian Schwartz
- ArQule, Inc, Burlington, Massachusetts, United States of America
| | - Stella Chen
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Peter E. Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Neil E. Reiner
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
19
|
Vijayakumar S, Das P. Recent progress in drug targets and inhibitors towards combating leishmaniasis. Acta Trop 2018; 181:95-104. [PMID: 29452111 DOI: 10.1016/j.actatropica.2018.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/24/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
Lesihmaniasis is one of the major neglected tropical disease caused by the parasite of the genus Leishmania. The disease has more than one clinical forms and the visceral form is considered fatal. With the lack of potential vaccine, chemotherapy is the major treatment source considered for the control of the disease in the infected people. Drugs including amphotericin B and miltefosine are widely used for the treatment, however, development of resistance by the parasite towards the administered drug and high-toxicity of the drug are of major concern. Hence, more attention has been shown on identifying new targets, effective inhibitors, and better drug delivery system against the disease. This review deals with recent studies on drug targets and exploring their essentiality for the survival of Leishmania. Further, new inhibitors for those targets, novel anti-leishmanial peptides and vaccines against leishmaniasis were discussed. We believe that this pool of information will ease the researchers to gain knowledge and help in choosing right targets and design of new inhibitors against Leishmaniasis.
Collapse
|
20
|
Vivarini ÁDC, Calegari-Silva TC, Saliba AM, Boaventura VS, França-Costa J, Khouri R, Dierckx T, Dias-Teixeira KL, Fasel N, Barral AMP, Borges VM, Van Weyenbergh J, Lopes UG. Systems Approach Reveals Nuclear Factor Erythroid 2-Related Factor 2/Protein Kinase R Crosstalk in Human Cutaneous Leishmaniasis. Front Immunol 2017; 8:1127. [PMID: 28959260 PMCID: PMC5605755 DOI: 10.3389/fimmu.2017.01127] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/28/2017] [Indexed: 01/15/2023] Open
Abstract
Leishmania parasites infect macrophages, causing a wide spectrum of human diseases, from cutaneous to visceral forms. In search of novel therapeutic targets, we performed comprehensive in vitro and ex vivo mapping of the signaling pathways upstream and downstream of antioxidant transcription factor [nuclear factor erythroid 2-related factor 2 (Nrf2)] in cutaneous leishmaniasis (CL), by combining functional assays in human and murine macrophages with a systems biology analysis of in situ (skin biopsies) CL patient samples. First, we show the PKR pathway controls the expression and activation of Nrf2 in Leishmania amazonensis infection in vitro. Nrf2 activation also required PI3K/Akt signaling and autophagy mechanisms. Nrf2- or PKR/Akt-deficient macrophages exhibited increased levels of ROS/RNS and reduced expression of Sod1 Nrf2-dependent gene and reduced parasite load. L. amazonensis counteracted the Nrf2 inhibitor Keap1 through the upregulation of p62 via PKR. This Nrf2/Keap1 observation was confirmed in situ in skin biopsies from Leishmania-infected patients. Next, we explored the ex vivo transcriptome in CL patients, as compared to healthy controls. We found the antioxidant response element/Nrf2 signaling pathway was significantly upregulated in CL, including downstream target p62. In silico enrichment analysis confirmed upstream signaling by interferon and PI3K/Akt, and validated our in vitro findings. Our integrated in vitro, ex vivo, and in silico approach establish Nrf2 as a central player in human cutaneous leishmaniasis and reveal Nrf2/PKR crosstalk and PI3K/Akt pathways as potential therapeutic targets.
Collapse
Affiliation(s)
- Áislan de Carvalho Vivarini
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Biophysics Institute, Center of Health Science, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Teresa Cristina Calegari-Silva
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Biophysics Institute, Center of Health Science, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra Mattos Saliba
- Department of Microbiology, Immunology and Parasitology - FCM/UERJ, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviane Sampaio Boaventura
- Integrated Laboratory of Microbiology and Immunoregulation, Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Jaqueline França-Costa
- Integrated Laboratory of Microbiology and Immunoregulation, Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Ricardo Khouri
- Integrated Laboratory of Microbiology and Immunoregulation, Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Tim Dierckx
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Karina Luiza Dias-Teixeira
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Biophysics Institute, Center of Health Science, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nicolas Fasel
- Faculty of Biology and Medicine, Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Aldina Maria Prado Barral
- Integrated Laboratory of Microbiology and Immunoregulation, Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Valéria Matos Borges
- Integrated Laboratory of Microbiology and Immunoregulation, Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Salvador, Bahia, Brazil
| | - Johan Van Weyenbergh
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Carlos Chagas Filho Biophysics Institute, Center of Health Science, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLoS Negl Trop Dis 2017; 11:e0005782. [PMID: 28742133 PMCID: PMC5542692 DOI: 10.1371/journal.pntd.0005782] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/03/2017] [Accepted: 07/06/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Leishmania virulence factors responsible for the complicated epidemiology of the various leishmaniases remain mainly unidentified. This study is a characterization of a gene previously identified as upregulated in two of three overlapping datasets containing putative factors important for Leishmania's ability to establish mammalian intracellular infection and to colonize the gut of an insect vector. METHODOLOGY/PRINCIPAL FINDINGS The investigated gene encodes ATP/GTP binding motif-containing protein related to Leishmania development 1 (ALD1), a cytosolic protein that contains a cryptic ATP/GTP binding P-loop. We compared differentiation, growth rates, and infective abilities of wild-type and ALD1 null mutant cell lines of L. mexicana. Loss of ALD1 results in retarded growth kinetics but not defects in differentiation in axenic culture. Similarly, when mice and the sand fly vector were infected with the ALD1 null mutant, the primary difference in infection and colonization phenotype relative to wild type was an inability to achieve maximal host pathogenicity. While ability of the ALD1 null mutant cells to infect macrophages in vitro was not affected, replication within macrophages was clearly curtailed. CONCLUSIONS/SIGNIFICANCE L. mexicana ALD1, encoding a protein with no assigned functional domains or motifs, was identified utilizing multiple comparative analyses with the related and often experimentally overlooked monoxenous flagellates. We found that it plays a role in Leishmania infection and colonization in vitro and in vivo. Results suggest that ALD1 functions in L. mexicana's general metabolic network, rather than function in specific aspect of virulence as anticipated from the compared datasets. This result validates our comparative genomics approach for finding relevant factors, yet highlights the importance of quality laboratory-based analysis of genes tagged by these methods.
Collapse
|
22
|
Antileishmanial activity of verbascoside: Selective arginase inhibition of intracellular amastigotes of Leishmania (Leishmania) amazonensis with resistance induced by LPS plus IFN-γ. Biochem Pharmacol 2017; 127:28-33. [DOI: 10.1016/j.bcp.2016.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
|
23
|
Figliuolo VR, Chaves SP, Savio LEB, Thorstenberg MLP, Machado Salles É, Takiya CM, D'Império-Lima MR, de Matos Guedes HL, Rossi-Bergmann B, Coutinho-Silva R. The role of the P2X7 receptor in murine cutaneous leishmaniasis: aspects of inflammation and parasite control. Purinergic Signal 2016; 13:143-152. [PMID: 27866341 DOI: 10.1007/s11302-016-9544-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 10/25/2016] [Indexed: 11/28/2022] Open
Abstract
Leishmania amazonensis is the etiological agent of diffuse cutaneous leishmaniasis. The immunopathology of leishmaniasis caused by L. amazonensis infection is dependent on the pathogenic role of effector CD4+ T cells. Purinergic signalling has been implicated in resistance to infection by different intracellular parasites. In this study, we evaluated the role of the P2X7 receptor in modulating the immune response and susceptibility to infection by L. amazonensis. We found that P2X7-deficient mice are more susceptible to L. amazonensis infection than wild-type (WT) mice. P2X7 deletion resulted in increased lesion size and parasite load. Our histological analysis showed an increase in cell infiltration in infected footpads of P2X7-deficient mice. Analysis of the cytokine profile in footpad homogenates showed increased levels of IFN-γ and decreased TGF-β production in P2X7-deficient mice, suggesting an exaggerated pro-inflammatory response. In addition, we observed that CD4+ and CD8+ T cells from infected P2X7-deficient mice exhibit a higher proliferative capacity than infected WT mice. These data suggest that P2X7 receptor plays a key role in parasite control by regulating T effector cells and inflammation during L. amazonensis infection.
Collapse
Affiliation(s)
- Vanessa Ribeiro Figliuolo
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Suzana Passos Chaves
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Maria Luiza Prates Thorstenberg
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Christina Maeda Takiya
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | | | - Herbert Leonel de Matos Guedes
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Bartira Rossi-Bergmann
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Institute of Biophysics Carlos Chagas Filho, IBCCF/Federal University of Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Translational Research in Health and Environment in the Amazon Region (INPeTAm), Rio de Janeiro, Brazil. .,Instituto de Biofísica Carlos Chagas Filho - UFRJ, Edifício do Centro de Ciências da Saúde, Bloco G. Av. Carlos Chagas Filho, 373. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
24
|
Pérez-Fonseca A, Alcala-Canto Y, Salem AZM, Alberti-Navarro AB. Anticoccidial efficacy of naringenin and a grapefruit peel extract in growing lambs naturally-infected with Eimeria spp. Vet Parasitol 2016; 232:58-65. [PMID: 27890083 DOI: 10.1016/j.vetpar.2016.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 11/19/2022]
Abstract
The current study aimed to determine the anti-Eimeria efficacy of an extract of grapefruit peels (GF) and commercial naringenin (NAR) in naturally-infected lambs, as well as the influence of these flavonoids on the oxidative status during ovine coccidiosis. Pharmacokinetic profiles were also determined. Extracts were administered per os to Eimeria naturally infected growing lambs during 90 consecutive days. The commercial anticoccidial drug toltrazuril (TTZ) was included in this trial as a standard. Twenty-four lambs were divided into four groups: NAR, lambs given a daily dose of 5mg of a commercial naringenin extract of 98% higher purity per kg body weight; GF, lambs that recived a daily dose of 5mg of ethanolic extract of grapefruit peels per kg body weight; TTZ, lambs treated with 20mg of toltrazuril/kg body weight on days 0 and 15 of the experiment; and CTRL, untreated lambs that received daily dose of 30ml of water. Daily doses of GF and NAR were dissolved in 30ml of water and orally given to animals; whereas toltrazuril was administered as a single dose of an undiluted suspension to lambs of the TTZ group. The CTRL group received 30ml of water; as well as the TTZ group for the period after the single dose administration. Fecal and serum samples were collected from all lambs. Anticoccidial efficacy was estimated by coprological techniques. Generation of nitric oxide levels and the antioxidant capacity of the experimental compounds were determined by the Griess and ABTS assays, respectively. The pharmacokinetic parameters of NAR and the GF extract were obtained. On day 30 post-ingestion, anticoccidial efficacy was 91.76% (NAR) and 89.65% (GF); whereas 99.63% of efficacy was achieved with TTZ 15days after treatment. NAR, GF and TTZ significantly reduced oxidative stress in infected animals. The mean daily weight gain for each group was 122g (NAR), 122g (GF), 143g (TTZ) and 98g (CTRL). Following the oral administration of NAR and GF, values in plasma approached maximum concentrations within 2.1 to 2.5h. In conclusion, the administration of NAR and the GF extract reduced Eimeria oocyst output, oxidative stress and promoted higher mean daily weight gains in infected lambs.
Collapse
Affiliation(s)
- Agustín Pérez-Fonseca
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yazmin Alcala-Canto
- Departamento de Parasitología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Abdelfattah Z M Salem
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico.
| | - Aldo B Alberti-Navarro
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
25
|
De Luca PM, Macedo ABB. Cutaneous Leishmaniasis Vaccination: A Matter of Quality. Front Immunol 2016; 7:151. [PMID: 27148270 PMCID: PMC4838622 DOI: 10.3389/fimmu.2016.00151] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/07/2016] [Indexed: 11/25/2022] Open
Abstract
There have been exhaustive efforts to develop an efficient vaccine against leishmaniasis. Factors like host and parasite genetic characteristics, virulence, epidemiological scenarios, and, mainly, diverse immune responses triggered by Leishmania species make the achievement of this aim a complex task. It is already clear that the induction of a Th1, pro-inflammatory response, is important in the protection against Leishmania infection. However, many questions must still be answered to fully understand Leishmania immunopathology, especially regarding Leishmania-specific Th1 response induction, regulation, and persistence. A large number of Leishmania antigens able to induce pro-inflammatory response have been selected so far, but none of them demonstrated efficiency in protection assays. A possible explanation is that CD4 T cells display marked heterogeneity at a single-cell level especially regarding the production of Th1-defining cytokines and multifunctionality. It has been established in the literature that Th1 cells undergo a differentiation process, which can generate cells with diverse phenotypes and survival capabilities. Despite that, only a few studies evaluate this heterogenic response and the amount of multifunctional CD4 T cells induced by Leishmania vaccine candidates, missing what can be a crucial point in defining a correlate of protection after vaccination. Moreover, most of the knowledge involving the development of cutaneous leishmaniasis (CL) vaccines comes from the mouse model of infection with Leishmania major, which cannot be fully applied to New World Leishmaniasis. For this reason, the immune response triggered by infection with New World Leishmania species, as well as vaccine candidates, need further studies. In this review, we will reinforce the importance of evaluating the quality of immune response against Leishmania, using a multiparametric analysis in order to understand better this complex host-parasite interaction, discussing the differences in the responses triggered by different New World Leishmania species, as well as the impact on the development of an effective vaccine against CL.
Collapse
Affiliation(s)
- Paula Mello De Luca
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ , Rio de Janeiro , Brazil
| | - Amanda Beatriz Barreto Macedo
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine , Salt Lake City, UT , USA
| |
Collapse
|
26
|
Carlsen ED, Jie Z, Liang Y, Henard CA, Hay C, Sun J, de Matos Guedes H, Soong L. Interactions between Neutrophils and Leishmania braziliensis Amastigotes Facilitate Cell Activation and Parasite Clearance. J Innate Immun 2015; 7:354-63. [PMID: 25766649 PMCID: PMC4485586 DOI: 10.1159/000373923] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/08/2015] [Accepted: 01/08/2015] [Indexed: 01/14/2023] Open
Abstract
Leishmania braziliensis and Leishmania amazonensis are both causative agents of cutaneous leishmaniasis in South America. However, patient prognosis and the host immune response differ considerably depending on the infecting parasite species. The mechanisms underlying these differences appear to be multifactorial, with both host and parasite components contributing to disease outcome. As neutrophils are a prominent component of the inflammatory infiltrate in chronic cutaneous, diffuse cutaneous and mucocutaneous lesions, we examined neutrophil activation and microbicidal activity against amastigotes of L. amazonensis and L. braziliensis. We found that murine neutrophils internalized L. braziliensis amastigotes with greater efficiency than did L. amazonensis amastigotes. Additionally, L. braziliensis infection was a potent trigger for neutrophil activation, oxidative burst, degranulation and the production of interleukin (IL)-22 and IL-10, while L. amazonensis amastigotes poorly induced these responses. Finally, neutrophils were able to kill L. braziliensis amastigotes, especially when cells were activated with phorbol myristate acetate. L. amazonensis amastigotes, however, were highly resistant to neutrophil microbicidal mechanisms. This study reveals, for the first time, differential neutrophil responsiveness to distinct species of Leishmania amastigotes and highlights the complexity of neutrophil-amastigote interactions during chronic leishmaniasis.
Collapse
Affiliation(s)
- Eric D. Carlsen
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, Tex., USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex., USA
| | - Zuliang Jie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex., USA
| | - Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex., USA
| | - Calvin A. Henard
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex., USA
| | - Christie Hay
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex., USA
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex., USA
| | - Herbert de Matos Guedes
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Polo avançado de Xerém, Rio de Janeiro, Brazil
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Tex., USA
| |
Collapse
|
27
|
Kima PE. Leishmania molecules that mediate intracellular pathogenesis. Microbes Infect 2014; 16:721-6. [PMID: 25107580 DOI: 10.1016/j.micinf.2014.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/27/2014] [Accepted: 07/28/2014] [Indexed: 10/25/2022]
Abstract
Parasites of the Leishmania genus are the causative agents of a complex disease called leishmaniasis. Many activities of infected cells including their responses to a range of stimuli are modulated by Leishmania parasites. This review will profile some of the parasite molecules that target host cell processes for which there has been recent progress.
Collapse
Affiliation(s)
- Peter E Kima
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA.
| |
Collapse
|