1
|
Dean AAC, Berná L, Robello C, Buscaglia CA, Balouz V. An algorithm for annotation and classification of T. cruzi MASP sequences: towards a better understanding of the parasite genetic variability. BMC Genomics 2025; 26:194. [PMID: 39994548 PMCID: PMC11852901 DOI: 10.1186/s12864-025-11384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/19/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Trypanosoma cruzi, the protozoan causing Chagas disease, is responsible for a neglected tropical disease affecting millions in Latin America. Its genome contains rapidly evolving multigene families, such as mucins (TcMUC), trans-sialidases (TS), and mucin-associated surface proteins (MASP), which are essential for parasite transmission and disease mechanisms. However, methodological challenges in genome assembly and annotation have limited the characterization of these gene families, particularly MASPs. RESULTS We developed a bioinformatic pipeline for the automatic identification, characterization, and annotation of MASPs directly from T. cruzi genome assemblies. This algorithm, based on a manually curated MASP database and HMM-based identification of MASP diagnostic motifs, enables the robust classification of these molecules into canonical MASPs, MASP-related molecules (mostly pseudogenes), and chimeric sequences combining MASPs and TcMUC/TS genes. Validation against a rigorously annotated dataset demonstrated high accuracy, and allowed us to reclassify misanotated sequences and, more crucially, to accurately identify previously unrecognized canonical MASPs and MASP chimeras. This algorithm was then used to explore the MASP repertoire in the genomes of 13 parasite strains from different evolutionary lineages, revealing patterns of diversity. For instance, TcI and TcII strains exhibited higher ratios of canonical MASP/MASP-related molecules and a greater abundance of MASP chimeras, suggesting that their genomes are under strong selective pressures towards maintaining a broader panel of full-length MASP genes at the expense of pseudogenes. On the contrary, structural features of canonical MASPs, MASP-related sequences, and MASP-chimeras were largely conserved across parasite genomes. CONCLUSIONS This novel pipeline automates the annotation of MASPs, a key surface protein family unique to T. cruzi, improving genome annotation and enabling robust comparative analyses. It provides an essential tool for exploring the evolutionary dynamics of multigene families in T. cruzi and could be extended to other gene families.
Collapse
Affiliation(s)
- Aldana Alexandra Cepeda Dean
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia, Campus UNSAM, B1650HMP San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Buenos Aires, Argentina
| | - Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad Académica de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Andrés Buscaglia
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia, Campus UNSAM, B1650HMP San Martín, Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Buenos Aires, Argentina.
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas (IIBio), Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. 25 de Mayo y Francia, Campus UNSAM, B1650HMP San Martín, Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), UNSAM, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Santos LF, Rocha FDS, Lorenzo MG, Guarneri AA. Revisiting the development of Trypanosoma rangeli in the vertebrate host. Mem Inst Oswaldo Cruz 2024; 119:e240138. [PMID: 39607130 PMCID: PMC11588388 DOI: 10.1590/0074-02760240138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Trypanosoma rangeli is a haemoflagellate parasite that infects triatomine bugs and mammals in South and Central America. Trypanosoma cruzi, the etiological agent of Chagas disease, has a partially overlapping geographical distribution with T. rangeli, that leads to mixed human infections and cross-reactivity in immunodiagnosis. Although T. rangeli can be detected long after mammal infection, its multiplicative forms have not yet been described. OBJECTIVES To enhance our understanding of T. rangeli development in mammals, this study assessed various infection parameters in mice over time. METHODS The parasitaemia, body temperature, and weight of Swiss Webster mice were monitored over 120 days after exposing them to the bites of Rhodnius prolixus nymphs containing metacyclic trypomastigotes in their salivary glands. On day 132 post-infection, spleens and mesenteric lymph nodes were analysed for T. rangeli DNA using polymerase chain reaction (PCR) and quantitative PCR (qPCR). FINDINGS Parasites were detectable in mice blood since day 2 post-infection, detection peaking on day 5 and becoming undetectable by day 120. PCR and qPCR detected T. rangeli DNA in the spleens and mesenteric lymph nodes of infected mice. Infected mice showed higher body temperatures and a slower weight gain over time compared to controls. MAIN CONCLUSIONS The study confirmed that T. rangeli establishes a persistent infection in mice, detectable in lymphoid organs long after parasites had disappeared from blood. In addition, infected mice exhibited physiological changes, suggesting potential subclinical effects. These findings highlight the need for further studies on the immune response and potential impacts of T. rangeli infection in mammalian hosts.
Collapse
Affiliation(s)
- Luan Felipe Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Comportamento de Vetores e Interação com Patógenos, Belo Horizonte, MG, Brasil
| | - Flávia de Souza Rocha
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Biotecnologia Aplicada ao Estudo de Patógenos, Belo Horizonte, MG, Brasil
| | - Marcelo Gustavo Lorenzo
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Comportamento de Vetores e Interação com Patógenos, Belo Horizonte, MG, Brasil
- Instituto de Investigaciones en Biodiversidad y Biotecnología, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Mar del Plata, Argentina
| | - Alessandra Aparecida Guarneri
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Comportamento de Vetores e Interação com Patógenos, Belo Horizonte, MG, Brasil
| |
Collapse
|
3
|
Ibañez-Escribano A, Gomez-Muñoz MT, Mateo M, Fonseca-Berzal C, Gomez-Lucia E, Perez RG, Alunda JM, Carrion J. Microbial Matryoshka: Addressing the Relationship between Pathogenic Flagellated Protozoans and Their RNA Viral Endosymbionts (Family Totiviridae). Vet Sci 2024; 11:321. [PMID: 39058005 PMCID: PMC11281412 DOI: 10.3390/vetsci11070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Three genera of viruses of the family Totiviridae establish endosymbiotic associations with flagellated protozoa responsible for parasitic diseases of great impact in the context of One Health. Giardiavirus, Trichomonasvirus, and Leishmaniavirus infect the protozoa Giardia sp., Trichomonas vaginalis, and Leishmania sp., respectively. In the present work, we review the characteristics of the endosymbiotic relationships established, the advantages, and the consequences caused in mammalian hosts. Among the common characteristics of these double-stranded RNA viruses are that they do not integrate into the host genome, do not follow a lytic cycle, and do not cause cytopathic effects. However, in cases of endosymbiosis between Leishmaniavirus and Leishmania species from the Americas, and between Trichomonasvirus and Trichomonas vaginalis, it seems that it can alter their virulence (degree of pathogenicity). In a mammalian host, due to TLR3 activation of immune cells upon the recognition of viral RNA, uncontrolled inflammatory signaling responses are triggered, increasing pathological damage and the risk of failure of conventional standard treatment. Endosymbiosis with Giardiavirus can cause the loss of intestinal adherence of the protozoan, resulting in a benign disease. The current knowledge about viruses infecting flagellated protozoans is still fragmentary, and more research is required to unravel the intricacies of this three-way relationship. We need to develop early and effective diagnostic methods for further development in the field of translational medicine. Taking advantage of promising biotechnological advances, the aim is to develop ad hoc therapeutic strategies that focus not only on the disease-causing protozoan but also on the virus.
Collapse
Affiliation(s)
- Alexandra Ibañez-Escribano
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
| | - Maria Teresa Gomez-Muñoz
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Marta Mateo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Cristina Fonseca-Berzal
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
| | - Esperanza Gomez-Lucia
- Animal Viruses Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Raquel Garcia Perez
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
| | - Jose M. Alunda
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Javier Carrion
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
4
|
Ramírez JL. The Elusive Trypanosoma cruzi Disperse Gene Protein Family (DGF-1). Pathogens 2023; 12:pathogens12020292. [PMID: 36839564 PMCID: PMC9967923 DOI: 10.3390/pathogens12020292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi infections, is included in the group of neglected diseases, and efforts to develop new therapeutic or immunoprevention approaches have not been successful. After the publication of the T. cruzi genome, the number of molecular and biochemical studies on this parasite has increased considerably, many of which are focused on families of variant surface proteins, especially trans-sialidases, mucins, and mucin-associated proteins. The disperse gene protein 1 family (DGF-1) is one of the most abundant families in the T. cruzi genome; however, the large gene size, high copy numbers, and low antibody titers detected in infected humans make it an unattractive study target. However, here we argue that given the ubiquitous presence in all T. cruzi species, and physicochemical characteristics, the DGF-1 gene family may play and important role in host-parasite interactions.
Collapse
Affiliation(s)
- José Luis Ramírez
- Instituto de Estudios Avanzados, Caracas, Venezuela and Universidad Central de Venezuela, Caracas 1080, Venezuela
| |
Collapse
|
5
|
Accessing the Variability of Multicopy Genes in Complex Genomes using Unassembled Next-Generation Sequencing Reads: The Case of Trypanosoma cruzi Multigene Families. mBio 2022; 13:e0231922. [PMID: 36264102 PMCID: PMC9765020 DOI: 10.1128/mbio.02319-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive elements cause assembly fragmentation in complex eukaryotic genomes, limiting the study of their variability. The genome of Trypanosoma cruzi, the parasite that causes Chagas disease, has a high repetitive content, including multigene families. Although many T. cruzi multigene families encode surface proteins that play pivotal roles in host-parasite interactions, their variability is currently underestimated, as their high repetitive content results in collapsed gene variants. To estimate sequence variability and copy number variation of multigene families, we developed a read-based approach that is independent of gene-specific read mapping and de novo assembly. This methodology was used to estimate the copy number and variability of MASP, TcMUC, and Trans-Sialidase (TS), the three largest T. cruzi multigene families, in 36 strains, including members of all six parasite discrete typing units (DTUs). We found that these three families present a specific pattern of variability and copy number among the distinct parasite DTUs. Inter-DTU hybrid strains presented a higher variability of these families, suggesting that maintaining a larger content of their members could be advantageous. In addition, in a chronic murine model and chronic Chagasic human patients, the immune response was focused on TS antigens, suggesting that targeting TS conserved sequences could be a potential avenue to improve diagnosis and vaccine design against Chagas disease. Finally, the proposed approach can be applied to study multicopy genes in any organism, opening new avenues to access sequence variability in complex genomes. IMPORTANCE Sequences that have several copies in a genome, such as multicopy-gene families, mobile elements, and microsatellites, are among the most challenging genomic segments to study. They are frequently underestimated in genome assemblies, hampering the correct assessment of these important players in genome evolution and adaptation. Here, we developed a new methodology to estimate variability and copy numbers of repetitive genomic regions and employed it to characterize the T. cruzi multigene families MASP, TcMUC, and transsialidase (TS), which are important virulence factors in this parasite. We showed that multigene families vary in sequence and content among the parasite's lineages, whereas hybrid strains have a higher sequence variability that could be advantageous to the parasite's survivability. By identifying conserved sequences within multigene families, we showed that the mammalian host immune response toward these multigene families is usually focused on the TS multigene family. These TS conserved and immunogenic peptides can be explored in future works as diagnostic targets or vaccine candidates for Chagas disease. Finally, this methodology can be easily applied to any organism of interest, which will aid in our understanding of complex genomic regions.
Collapse
|
6
|
Maia GA, Filho VB, Kawagoe EK, Teixeira Soratto TA, Moreira RS, Grisard EC, Wagner G. AnnotaPipeline: An integrated tool to annotate eukaryotic proteins using multi-omics data. Front Genet 2022; 13:1020100. [DOI: 10.3389/fgene.2022.1020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
Assignment of gene function has been a crucial, laborious, and time-consuming step in genomics. Due to a variety of sequencing platforms that generates increasing amounts of data, manual annotation is no longer feasible. Thus, the need for an integrated, automated pipeline allowing the use of experimental data towards validation of in silico prediction of gene function is of utmost relevance. Here, we present a computational workflow named AnnotaPipeline that integrates distinct software and data types on a proteogenomic approach to annotate and validate predicted features in genomic sequences. Based on FASTA (i) nucleotide or (ii) protein sequences or (iii) structural annotation files (GFF3), users can input FASTQ RNA-seq data, MS/MS data from mzXML or similar formats, as the pipeline uses both transcriptomic and proteomic information to corroborate annotations and validate gene prediction, providing transcription and expression evidence for functional annotation. Reannotation of the available Arabidopsis thaliana, Caenorhabditis elegans, Candida albicans, Trypanosoma cruzi, and Trypanosoma rangeli genomes was performed using the AnnotaPipeline, resulting in a higher proportion of annotated proteins and a reduced proportion of hypothetical proteins when compared to the annotations publicly available for these organisms. AnnotaPipeline is a Unix-based pipeline developed using Python and is available at: https://github.com/bioinformatics-ufsc/AnnotaPipeline.
Collapse
|
7
|
Gómez I, López MC, Rastrojo A, Lorenzo-Díaz F, Requena JM, Aguado B, Valladares B, Thomas MC. Variability of the Pr77 sequence of L1Tc retrotransposon among six T. cruzi strains belonging to different discrete typing units (DTUs). Acta Trop 2021; 222:106053. [PMID: 34273311 DOI: 10.1016/j.actatropica.2021.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
All trypanosomatid genomes are colonized by non-LTR retrotransposons which exhibit a highly conserved 77-nt sequence at their 5' ends, known as the Pr77-hallmark (Pr77). The wide distribution of Pr77 is expected to be related to the gene regulation processes in these organisms as it has promoter and HDV-like ribozyme activities at the DNA and RNA levels, respectively. The identification of Pr77 hallmark-bearing retrotransposons and the study of the associations of mobile elements with relevant genes have been analyzed in the genomes of six strains of Trypanosoma cruzi belonging to different discrete typing units (DTUs) and with different geographical origins and host/vectors. The genomes have been sequenced, assembled and annotated. BUSCO analyses indicated a good quality for the assemblies that were used in comparative analyses. The results show differences among the six genomes in the copy number of genes related to virulence processes, the abundance of retrotransposons bearing the Pr77 sequence and the presence of the Pr77 hallmarks not associated with retroelements. The analyses also show frequent associations of Pr77-bearing retrotransposons and single Pr77 hallmarks with genes coding for trans-sialidases, RHS, MASP or hypothetical proteins, showing variable proportion depending on the type of retroelement, gene class and parasite strain. These differences in the genomic distribution of active retroelements and other Pr77-containing elements have shaped the genome architecture of these six strains and might be contributing to the phenotypic variability existing among them.
Collapse
Affiliation(s)
- Inmaculada Gómez
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; PTS-Granada, Spain
| | - Manuel Carlos López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; PTS-Granada, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo-Ochoa (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabián Lorenzo-Díaz
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias. Universidad de La Laguna. La Laguna, Spain
| | - José María Requena
- Centro de Biología Molecular Severo-Ochoa (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Begoña Aguado
- Centro de Biología Molecular Severo-Ochoa (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Basilio Valladares
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias. Universidad de La Laguna. La Laguna, Spain
| | - M Carmen Thomas
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas; PTS-Granada, Spain.
| |
Collapse
|
8
|
Mansur Pontes CL, Höehr de Moraes M, Lückemeyer DD, Wagner G, Andersson B, Stoco PH, Grisard EC. Differential expression and activity of arginine kinase between the American trypanosomatids Trypanosoma rangeli and Trypanosoma cruzi. Exp Parasitol 2021; 230:108159. [PMID: 34563508 DOI: 10.1016/j.exppara.2021.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022]
Abstract
Trypanosoma rangeli is a non-virulent hemoflagellate parasite infecting humans, wild and domestic mammals in Central and Latin America. The share of genotypic, phenotypic, and biological similarities with the virulent, human-infective T. cruzi and T. brucei, allows comparative studies on mechanisms of pathogenesis. In this study, investigation of the T. rangeli Arginine Kinase (TrAK) revealed two highly similar copies of the AK gene in this taxon, and a distinct expression profile and activity between replicative and infective forms. Although TrAK expression seems stable during epimastigotes growth, the enzymatic activity increases during the exponential growth phase and decreases from the stationary phase onwards. No differences were observed in activity or expression levels of TrAK during in vitro differentiation from epimastigotes to infective forms, and no detectable AK expression was observed for blood trypomastigotes. Overexpression of TrAK by T. rangeli showed no effects on the in vitro growth pattern, differentiation to infective forms, or infectivity to mice and triatomines. Although differences in TrAK expression and activity were observed among T. rangeli strains from distinct genetic lineages, our results indicate an up-regulation during parasite replication and putative post-translational myristoylation of this enzyme. We conclude that up-regulation of TrAK activity in epimastigotes appears to improve proliferation fitness, while reduced TrAK expression in blood trypomastigotes may be related to short-term and subpatent parasitemia in mammalian hosts.
Collapse
Affiliation(s)
- Carime Lessa Mansur Pontes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Milene Höehr de Moraes
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Débora Denardin Lückemeyer
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Glauber Wagner
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Patrícia Hermes Stoco
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Edmundo Carlos Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
9
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
10
|
Talavera-López C, Messenger LA, Lewis MD, Yeo M, Reis-Cunha JL, Matos GM, Bartholomeu DC, Calzada JE, Saldaña A, Ramírez JD, Guhl F, Ocaña-Mayorga S, Costales JA, Gorchakov R, Jones K, Nolan MS, Teixeira SMR, Carrasco HJ, Bottazzi ME, Hotez PJ, Murray KO, Grijalva MJ, Burleigh B, Grisard EC, Miles MA, Andersson B. Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:614665. [PMID: 33747978 PMCID: PMC7966520 DOI: 10.3389/fcimb.2021.614665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Trypanosoma cruzi, a zoonotic kinetoplastid protozoan parasite, is the causative agent of American trypanosomiasis (Chagas disease). Having a very plastic, repetitive and complex genome, the parasite displays a highly diverse repertoire of surface molecules, with pivotal roles in cell invasion, immune evasion and pathogenesis. Before 2016, the complexity of the genomic regions containing these genes impaired the assembly of a genome at chromosomal level, making it impossible to study the structure and function of the several thousand repetitive genes encoding the surface molecules of the parasite. We here describe the genome assembly of the Sylvio X10/1 genome sequence, which since 2016 has been used as a reference genome sequence for T. cruzi clade I (TcI), produced using high coverage PacBio single-molecule sequencing. It was used to analyze deep Illumina sequence data from 34 T. cruzi TcI isolates and clones from different geographic locations, sample sources and clinical outcomes. Resolution of the surface molecule gene distribution showed the unusual duality in the organization of the parasite genome, a synteny of the core genomic region with related protozoa flanked by unique and highly plastic multigene family clusters encoding surface antigens. The presence of abundant interspersed retrotransposons in these multigene family clusters suggests that these elements are involved in a recombination mechanism for the generation of antigenic variation and evasion of the host immune response on these TcI strains. The comparative genomic analysis of the cohort of TcI strains revealed multiple cases of such recombination events involving surface molecule genes and has provided new insights into T. cruzi population structure.
Collapse
Affiliation(s)
- Carlos Talavera-López
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- European Bioinformatics Institute, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Machado Matos
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | | | - José E. Calzada
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Azael Saldaña
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Guhl
- Grupo de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Tropical Parasitology Research Center, Universidad de Los Andes, Bogotá, Colombia
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Rodion Gorchakov
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kathryn Jones
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Melissa S. Nolan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hernán José Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Peter J. Hotez
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kristy O. Murray
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Barbara Burleigh
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Edmundo C. Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Ettahi K, Lhee D, Sung JY, Simpson AGB, Park JS, Yoon HS. Evolutionary History of Mitochondrial Genomes in Discoba, Including the Extreme Halophile Pleurostomum flabellatum (Heterolobosea). Genome Biol Evol 2021; 13:evaa241. [PMID: 33185659 PMCID: PMC7900873 DOI: 10.1093/gbe/evaa241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
Data from Discoba (Heterolobosea, Euglenozoa, Tsukubamonadida, and Jakobida) are essential to understand the evolution of mitochondrial genomes (mitogenomes), because this clade includes the most primitive-looking mitogenomes known, as well some extremely divergent genome information systems. Heterolobosea encompasses more than 150 described species, many of them from extreme habitats, but only six heterolobosean mitogenomes have been fully sequenced to date. Here we complete the mitogenome of the heterolobosean Pleurostomum flabellatum, which is extremely halophilic and reportedly also lacks classical mitochondrial cristae, hinting at reduction or loss of respiratory function. The mitogenome of P. flabellatum maps as a 57,829-bp-long circular molecule, including 40 coding sequences (19 tRNA, two rRNA, and 19 orfs). The gene content and gene arrangement are similar to Naegleria gruberi and Naegleria fowleri, the closest relatives with sequenced mitogenomes. The P. flabellatum mitogenome contains genes that encode components of the electron transport chain similar to those of Naegleria mitogenomes. Homology searches against a draft nuclear genome showed that P. flabellatum has two homologs of the highly conserved Mic60 subunit of the MICOS complex, and likely lost Mic19 and Mic10. However, electron microscopy showed no cristae structures. We infer that P. flabellatum, which originates from high salinity (313‰) water where the dissolved oxygen concentration is low, possesses a mitochondrion capable of aerobic respiration, but with reduced development of cristae structure reflecting limited use of this aerobic capacity (e.g., microaerophily).
Collapse
Affiliation(s)
- Khaoula Ettahi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Duckhyun Lhee
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - Ji Yeon Sung
- Department of Oceanography, Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, South Korea
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jong Soo Park
- Department of Oceanography, Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu, South Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
12
|
Durante IM, Butenko A, Rašková V, Charyyeva A, Svobodová M, Yurchenko V, Hashimi H, Lukeš J. Large-Scale Phylogenetic Analysis of Trypanosomatid Adenylate Cyclases Reveals Associations with Extracellular Lifestyle and Host-Pathogen Interplay. Genome Biol Evol 2020; 12:2403-2416. [PMID: 33104188 PMCID: PMC7719234 DOI: 10.1093/gbe/evaa226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Receptor adenylate cyclases (RACs) on the surface of trypanosomatids are important players in the host–parasite interface. They detect still unidentified environmental signals that affect the parasites’ responses to host immune challenge, coordination of social motility, and regulation of cell division. A lesser known class of oxygen-sensing adenylate cyclases (OACs) related to RACs has been lost in trypanosomes and expanded mostly in Leishmania species and related insect-dwelling trypanosomatids. In this work, we have undertaken a large-scale phylogenetic analysis of both classes of adenylate cyclases (ACs) in trypanosomatids and the free-living Bodo saltans. We observe that the expanded RAC repertoire in trypanosomatids with a two-host life cycle is not only associated with an extracellular lifestyle within the vertebrate host, but also with a complex path through the insect vector involving several life cycle stages. In Trypanosoma brucei, RACs are split into two major clades, which significantly differ in their expression profiles in the mammalian host and the insect vector. RACs of the closely related Trypanosoma congolense are intermingled within these two clades, supporting early RAC diversification. Subspecies of T. brucei that have lost the capacity to infect insects exhibit high numbers of pseudogenized RACs, suggesting many of these proteins have become redundant upon the acquisition of a single-host life cycle. OACs appear to be an innovation occurring after the expansion of RACs in trypanosomatids. Endosymbiont-harboring trypanosomatids exhibit a diversification of OACs, whereas these proteins are pseudogenized in Leishmania subgenus Viannia. This analysis sheds light on how ACs have evolved to allow diverse trypanosomatids to occupy multifarious niches and assume various lifestyles.
Collapse
Affiliation(s)
- Ignacio Miguel Durante
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Anzhelika Butenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia
| | - Vendula Rašková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Arzuv Charyyeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia
| | - Michaela Svobodová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Czechia.,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russian Federation
| | - Hassan Hashimi
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czechia.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czechia
| |
Collapse
|
13
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
14
|
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma Cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes (Basel) 2020; 11:E1196. [PMID: 33066599 PMCID: PMC7602482 DOI: 10.3390/genes11101196] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
Chagas disease caused by the parasite Trypanosoma cruzi affects millions of people. Although its first genome dates from 2005, its complexity hindered a complete assembly and annotation. However, the new sequencing methods have improved genome annotation of some strains elucidating the broad genetic diversity and complexity of this parasite. Here, we reviewed the genomic structure and regulation, the genetic diversity, and the analysis of the principal multi-gene families of the recent genomes for several strains. The telomeric and sub-telomeric regions are sites with high recombination events, the genome displays two different compartments, the core and the disruptive, and the genome plasticity seems to play a key role in the survival and the infection process. Trypanosoma cruzi (T. cruzi) genome is composed mainly of multi-gene families as the trans-sialidases, mucins, and mucin-associated surface proteins. Trans-sialidases are the most abundant genes in the genome and show an important role in the effectiveness of the infection and the parasite survival. Mucins and MASPs are also important glycosylated proteins of the surface of the parasite that play a major biological role in both insect and mammal-dwelling stages. Altogether, these studies confirm the complexity of T. cruzi genome revealing relevant concepts to better understand Chagas disease.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
15
|
Watanabe Costa R, Batista MF, Meneghelli I, Vidal RO, Nájera CA, Mendes AC, Andrade-Lima IA, da Silveira JF, Lopes LR, Ferreira LRP, Antoneli F, Bahia D. Comparative Analysis of the Secretome and Interactome of Trypanosoma cruzi and Trypanosoma rangeli Reveals Species Specific Immune Response Modulating Proteins. Front Immunol 2020; 11:1774. [PMID: 32973747 PMCID: PMC7481403 DOI: 10.3389/fimmu.2020.01774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/04/2022] Open
Abstract
Chagas disease, a zoonosis caused by the flagellate protozoan Trypanosoma cruzi, is a chronic and systemic parasitic infection that affects ~5–7 million people worldwide, mainly in Latin America. Chagas disease is an emerging public health problem due to the lack of vaccines and effective treatments. According to recent studies, several T. cruzi secreted proteins interact with the human host during cell invasion. Moreover, some comparative studies with T. rangeli, which is non-pathogenic in humans, have been performed to identify proteins directly involved in the pathogenesis of the disease. In this study, we present an integrated analysis of canonical putative secreted proteins (PSPs) from both species. Additionally, we propose an interactome with human host and gene family clusters, and a phylogenetic inference of a selected protein. In total, we identified 322 exclusively PSPs in T. cruzi and 202 in T. rangeli. Among the PSPs identified in T. cruzi, we found several trans-sialidases, mucins, MASPs, proteins with phospholipase 2 domains (PLA2-like), and proteins with Hsp70 domains (Hsp70-like) which have been previously characterized and demonstrated to be related to T. cruzi virulence. PSPs found in T. rangeli were related to protozoan metabolism, specifically carboxylases and phosphatases. Furthermore, we also identified PSPs that may interact with the human immune system, including heat shock and MASP proteins, but in a lower number compared to T. cruzi. Interestingly, we describe a hypothetical hybrid interactome of PSPs which reveals that T. cruzi secreted molecules may be down-regulating IL-17 whilst T. rangeli may enhance the production of IL-15. These results will pave the way for a better understanding of the pathophysiology of Chagas disease and may ultimately lead to the identification of molecular targets, such as key PSPs, that could be used to minimize the health outcomes of Chagas disease by modulating the immune response triggered by T. cruzi infection.
Collapse
Affiliation(s)
- Renata Watanabe Costa
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina Ferreira Batista
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela Meneghelli
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ramon Oliveira Vidal
- The Berlin Institute for Medical Systems Biology-Max Delbrück Center for Molecular Medicine in the Helmholtz Association in Berlin, Berlin, Germany.,Laboratorio Nacional de Biociências (LNBio), Campinas, São Paulo, Brazil
| | - Carlos Alcides Nájera
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Augusta Andrade-Lima
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luciano Rodrigo Lopes
- Departamento de Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- RNA Systems Biology Lab (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernando Antoneli
- Departamento de Informática em Saúde, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Diana Bahia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.,Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Sloan MA, Brooks K, Otto TD, Sanders MJ, Cotton JA, Ligoxygakis P. Transcriptional and genomic parallels between the monoxenous parasite Herpetomonas muscarum and Leishmania. PLoS Genet 2019; 15:e1008452. [PMID: 31710597 PMCID: PMC6872171 DOI: 10.1371/journal.pgen.1008452] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/21/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatid parasites are causative agents of important human and animal diseases such as sleeping sickness and leishmaniasis. Most trypanosomatids are transmitted to their mammalian hosts by insects, often belonging to Diptera (or true flies). These are called dixenous trypanosomatids since they infect two different hosts, in contrast to those that infect just insects (monoxenous). However, it is still unclear whether dixenous and monoxenous trypanosomatids interact similarly with their insect host, as fly-monoxenous trypanosomatid interaction systems are rarely reported and under-studied-despite being common in nature. Here we present the genome of monoxenous trypanosomatid Herpetomonas muscarum and discuss its transcriptome during in vitro culture and during infection of its natural insect host Drosophila melanogaster. The H. muscarum genome is broadly syntenic with that of human parasite Leishmania major. We also found strong similarities between the H. muscarum transcriptome during fruit fly infection, and those of Leishmania during sand fly infections. Overall this suggests Drosophila-Herpetomonas is a suitable model for less accessible insect-trypanosomatid host-parasite systems such as sand fly-Leishmania.
Collapse
Affiliation(s)
- Megan A. Sloan
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Karen Brooks
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Thomas D. Otto
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Mandy J. Sanders
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - James A. Cotton
- The Wellcome Sanger Institute, Wellcome Genome Campus, Hixton, Cambridgeshire, United Kingdom
| | - Petros Ligoxygakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
17
|
Pineda M, Corvo L, Callejas-Hernández F, Fresno M, Bonay P. Trypanosoma cruzi cleaves galectin-3 N-terminal domain to suppress its innate microbicidal activity. Clin Exp Immunol 2019; 199:216-229. [PMID: 31593356 DOI: 10.1111/cei.13379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2019] [Indexed: 12/01/2022] Open
Abstract
Galectin-3 is the best-characterized member of galectins, an evolutionary conserved family of galactoside-binding proteins that play central roles in infection and immunity, regulating inflammation, cell migration and cell apoptosis. Differentially expressed by cells and tissues with immune privilege, they bind not only to host ligands, but also to glycans expressed by pathogens. In this regard, we have previously shown that human galectin-3 recognizes several genetic lineages of the protozoan parasite Trypanosoma cruzi, the causal agent of Chagas' disease or American trypanosomiasis. Herein we describe a molecular mechanism developed by T. cruzi to proteolytically process galectin-3 that generates a truncated form of the protein lacking its N-terminal domain - required for protein oligomerization - but still conserves a functional carbohydrate recognition domain (CRD). Such processing relies on specific T. cruzi proteases, including Zn-metalloproteases and collagenases, and ultimately conveys profound changes in galectin-3-dependent effects, as chemical inhibition of parasite proteases allows galectin-3 to induce parasite death in vitro. Thus, T. cruzi might have established distinct mechanisms to counteract galectin-3-mediated immunity and microbicide properties. Interestingly, non-pathogenic T. rangeli lacked the ability to cleave galectin-3, suggesting that during evolution two genetically similar organisms have developed different molecular mechanisms that, in the case of T. cruzi, favoured its pathogenicity, highlighting the importance of T. cruzi proteases to avoid immune mechanisms triggered by galectin-3 upon infection. This study provides the first evidence of a novel strategy developed by T. cruzi to abrogate signalling mechanisms associated with galectin-3-dependent innate immunity.
Collapse
Affiliation(s)
- M Pineda
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - L Corvo
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - F Callejas-Hernández
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - M Fresno
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| | - P Bonay
- Centro de Biología Molecular 'Severo Ochoa', Universidad Autónoma de Madrid, Nicolás Cabrera 1, Madrid, Spain
| |
Collapse
|
18
|
Santos RERDS, Naves LL, Fajardo EF, Ramirez LE, Lages-Silva E, Pedrosa AL, Ferreira KAM. Trypanosoma rangeli 28Sβ Ribosomal Gene Allows Intra and Interspecific Molecular Differentiation. Vector Borne Zoonotic Dis 2019; 20:117-124. [PMID: 31638479 DOI: 10.1089/vbz.2019.2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trypanosoma rangeli is an avirulent flagellate protozoan that could mislead correct diagnosis of Trypanosoma cruzi infection, the causative agent of Chagas' disease, given their high similarity. Besides, T. rangeli presents two genetic groups, whose differentiation is achieved mainly by molecular approaches. In this context, ribosomal DNA (rDNA) is a useful target for intra and interspecific molecular differentiation. Analyzing the rDNA of T. rangeli and comparison with other trypanosomatid species, two highly divergent regions (Trβ1 and Trβ2) within the 28Sβ gene were found. Those regions were amplified and sequenced in KP1(+) and KP1(-) strains of T. rangeli, revealing group-specific polymorphisms useful for intraspecific distinction through restriction fragment length polymorphism technique. Also, amplification of Trβ1 allowed differentiation between T. rangeli and T. cruzi. Trβ2 predicted restriction length profile, allowed differentiation between T. rangeli, T. cruzi, Trypanosoma brucei, and Leishmania braziliensis, increasing the use of Trβ1 and Trβ2 beyond a molecular approach for T. rangeli genotyping, but also as a useful target for trypanosomatid classification.
Collapse
Affiliation(s)
- Renato Elias Rodrigues de Souza Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), Ribeirão Preto, Brasil.,Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | - Lucila Langoni Naves
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | - Emanuella Francisco Fajardo
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | - Luis Eduardo Ramirez
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | - Eliane Lages-Silva
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | - André Luiz Pedrosa
- Instituto de Ciências Biológicas e Naturais (ICBN), Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, Brasil
| | | |
Collapse
|
19
|
Brandão EMV, Xavier SCC, Carvalhaes JG, D’Andrea PS, Lemos FG, Azevedo FC, Cássia-Pires R, Jansen AM, Roque ALR. Trypanosomatids in Small Mammals of an Agroecosystem in Central Brazil: Another Piece in the Puzzle of Parasite Transmission in an Anthropogenic Landscape. Pathogens 2019; 8:pathogens8040190. [PMID: 31615153 PMCID: PMC6963188 DOI: 10.3390/pathogens8040190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
We surveyed infection by Trypanosoma spp. and Leishmania spp. in small wild mammals from Cumari, Goiás State aiming to investigate the diversity of trypanosomatid in a modified landscape of the Brazilian Cerrado (and possible infection overlapping with canids from the same area). Blood, skin, spleen, and liver samples were collected for parasitological, serological, and molecular assays. Gracilinanus agilis was the most abundant species (N = 70; 48.6%) and it was the only one with patent parasitemia. Characterization by mini-exon and 18SrDNA targets were achieved in 7/10 hemocultures with positive fresh blood examination, which confirmed the T. cruzi infection by Discrete Typing Units (DTU) TcI in single (N = 2) and mixed infections with other DTUs (N = 5). T. rangeli and T. dionisii were detected in skin fragments from Didelphis albiventris and Oecomys cleberi, respectively. G. agilis were found to be infected by L. braziliensis and L. guyanensis, while Leishmania sp. DNA was detected in the liver of Oligoryzomys nigripes and Calomys expulsus. Subpatent infection by T. cruzi and Leishmania sp. was serologically detected in 15% and 9% of the small mammal fauna, respectively. Small mammals from Cumari are included in T. cruzi and Leshmania spp. transmission cycles, showing a higher diversity of trypanosomatid species and/or genotypes than that observed in canids of the same agroecosystem.
Collapse
Affiliation(s)
- Elida M. V. Brandão
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (E.M.V.B.); (S.C.C.X.); (A.M.J.)
| | - Samanta C. C. Xavier
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (E.M.V.B.); (S.C.C.X.); (A.M.J.)
| | - Jeiel G. Carvalhaes
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (J.G.C.); (P.S.D.)
| | - Paulo S. D’Andrea
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (J.G.C.); (P.S.D.)
| | - Frederico G. Lemos
- Programa de Conservação Mamíferos do Cerrado (PCMC)–Unidade Acadêmica Especial de Biotecnologia, Universidade Federal de Goiás/Regional Catalão, Catalão, GO 75704020, Brasil; (F.G.L.); (F.C.A.)
| | - Fernanda C. Azevedo
- Programa de Conservação Mamíferos do Cerrado (PCMC)–Unidade Acadêmica Especial de Biotecnologia, Universidade Federal de Goiás/Regional Catalão, Catalão, GO 75704020, Brasil; (F.G.L.); (F.C.A.)
| | - Renata Cássia-Pires
- Laboratório de Biologia de Parasitos, Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, RN 59012570, Brasil;
| | - Ana M. Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (E.M.V.B.); (S.C.C.X.); (A.M.J.)
| | - André L. R. Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (E.M.V.B.); (S.C.C.X.); (A.M.J.)
- Correspondence: ; Tel.: +55-21-2562-1416; Fax: +55-21-2562-1609
| |
Collapse
|
20
|
Prestes EB, Stoco PH, de Moraes MH, Moura H, Grisard EC. Messenger RNA levels of the Polo-like kinase gene (PLK) correlate with cytokinesis in the Trypanosoma rangeli cell cycle. Exp Parasitol 2019; 204:107727. [PMID: 31344389 DOI: 10.1016/j.exppara.2019.107727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/06/2019] [Accepted: 07/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Trypanosoma rangeli is a protozoan parasite that is non-virulent to the mammalian host and is morphologically and genomically related to Trypanosoma cruzi, whose proliferation within the mammalian host is controversially discussed. OBJECTIVES We aimed to investigate the T. rangeli cell cycle in vitro and in vivo by characterizing the timespan of the parasite life cycle and by proposing a molecular marker to assess cytokinesis. METHODOLOGY The morphological events and their timing during the cell cycle of T. rangeli epimastigotes were assessed using DNA staining, flagellum labelling and bromodeoxyuridine incorporation. Messenger RNA levels of four genes previously associated with the cell cycle of trypanosomatids (AUK1, PLK, MOB1 and TRACK) were evaluated in the different T. rangeli forms. FINDINGS T. rangeli epimastigotes completed the cell cycle in vitro in 20.8 h. PLK emerged as a potential molecular marker for cell division, as its mRNA levels were significantly increased in exponentially growing epimastigotes compared with growth-arrested parasites or in vitro-differentiated trypomastigotes. PLK expression in T. rangeli can be detected near the flagellum protrusion site, reinforcing its role in the cell cycle. Interestingly, T. rangeli bloodstream trypomastigotes exhibited very low mRNA levels of PLK and were almost entirely composed of parasites in G1 phase. MAIN CONCLUSIONS Our work is the first to describe the T. rangeli cell cycle in vitro and proposes that PLK mRNA levels could be a useful tool to investigate the T. rangeli ability to proliferate within the mammalian host bloodstream.
Collapse
Affiliation(s)
- Elisa Beatriz Prestes
- Laboratórios de Protozoologia e de Bioinformática, MIP/CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratório de Inflamação e Imunidade, IMPG/CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Patrícia Hermes Stoco
- Laboratórios de Protozoologia e de Bioinformática, MIP/CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Milene Höehr de Moraes
- Laboratórios de Protozoologia e de Bioinformática, MIP/CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Hércules Moura
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Edmundo Carlos Grisard
- Laboratórios de Protozoologia e de Bioinformática, MIP/CCB, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
21
|
Ribeiro YC, Robe LJ, Veluza DS, Dos Santos CMB, Lopes ALK, Krieger MA, Ludwig A. Study of VIPER and TATE in kinetoplastids and the evolution of tyrosine recombinase retrotransposons. Mob DNA 2019; 10:34. [PMID: 31391870 PMCID: PMC6681497 DOI: 10.1186/s13100-019-0175-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
Background Kinetoplastids are a flagellated group of protists, including some parasites, such as Trypanosoma and Leishmania species, that can cause diseases in humans and other animals. The genomes of these species enclose a fraction of retrotransposons including VIPER and TATE, two poorly studied transposable elements that encode a tyrosine recombinase (YR) and were previously classified as DIRS elements. This study investigated the distribution and evolution of VIPER and TATE in kinetoplastids to understand the relationships of these elements with other retrotransposons. Results We observed that VIPER and TATE have a discontinuous distribution among Trypanosomatidae, with several events of loss and degeneration occurring during a vertical transfer evolution. We were able to identify the terminal repeats of these elements for the first time, and we showed that these elements are potentially active in some species, including T. cruzi copies of VIPER. We found that VIPER and TATE are strictly related elements, which were named in this study as VIPER-like. The reverse transcriptase (RT) tree presented a low resolution, and the origin and relationships among YR groups remain uncertain. Conversely, for RH, VIPER-like grouped with Hepadnavirus, whereas for YR, VIPER-like sequences constituted two different clades that are closely allied to Crypton. Distinct topologies among RT, RH and YR trees suggest ancient rearrangements/exchanges in domains and a modular pattern of evolution with putative independent origins for each ORF. Conclusions Due to the presence of both elements in Bodo saltans, a nontrypanosomatid species, we suggested that VIPER and TATE have survived and remained active for more than 400 million years or were reactivated during the evolution of the host species. We did not find clear evidence of independent origins of VIPER-like from the other YR retroelements, supporting the maintenance of the DIRS group of retrotransposons. Nevertheless, according to phylogenetic findings and sequence structure obtained by this study and other works, we proposed separating DIRS elements into four subgroups: DIRS-like, PAT-like, Ngaro-like, and VIPER-like. Electronic supplementary material The online version of this article (10.1186/s13100-019-0175-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasmin Carla Ribeiro
- 1Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR Brazil
| | - Lizandra Jaqueline Robe
- 2Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | | | | | - Ana Luisa Kalb Lopes
- 1Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR Brazil
| | | | - Adriana Ludwig
- 4Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR Brazil
| |
Collapse
|
22
|
Urrea DA, Triana-Chavez O, Alzate JF. Mitochondrial genomics of human pathogenic parasite Leishmania ( Viannia) panamensis. PeerJ 2019; 7:e7235. [PMID: 31304069 PMCID: PMC6611448 DOI: 10.7717/peerj.7235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background The human parasite Leishmania (V.) panamensis is one of the pathogenic species responsible for cutaneous leishmaniasis in Central and South America. Despite its importance in molecular parasitology, its mitochondrial genome, divided into minicircles and maxicircles, haven’t been described so far. Methods Using NGS-based sequencing (454 and ILLUMINA), and combining de novo genome assembly and mapping strategies, we report the maxicircle kDNA annotated genome of L. (V.) panamensis, the first reference of this molecule for the subgenus Viannia. A comparative genomics approach is performed against other Leishmania and Trypanosoma species. Results The results show synteny of mitochondrial genes of L. (V.) panamensis with other kinetoplastids. It was also possible to identify nucleotide variants within the coding regions of the maxicircle, shared among some of them and others specific to each strain. Furthermore, we compared the minicircles kDNA sequences of two strains and the results show that the conserved and divergent regions of the minicircles exhibit strain-specific associations.
Collapse
Affiliation(s)
- Daniel Alfonso Urrea
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Departamento de Biología, Facultad de Ciencias, Universidad del Tolima, Ibague, Tolima, Colombia.,Grupo Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Omar Triana-Chavez
- Grupo Biología y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica -CNSG, Sede de Investigación Universitaria -SIU. Grupo de Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| |
Collapse
|
23
|
Gupta S, Salgado-Jiménez B, Lokugamage N, Vázquez-Chagoyán JC, Garg NJ. TcG2/TcG4 DNA Vaccine Induces Th1 Immunity Against Acute Trypanosoma cruzi Infection: Adjuvant and Antigenic Effects of Heterologous T. rangeli Booster Immunization. Front Immunol 2019; 10:1456. [PMID: 31293599 PMCID: PMC6606718 DOI: 10.3389/fimmu.2019.01456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Chagas cardiomyopathy is caused by Trypanosoma cruzi (Tc). Two antigenic candidates, TcG2 and TcG4, are recognized by antibodies in naturally infected dogs and humans; and these vaccine candidates provided protection from Tc infection in mice and dogs. Trypanosoma rangeli (Tr) is non-pathogenic to mammals and shown to elicit cross-reactive anti-Tc antibodies. In this study, we investigated if fixed Tr (fTr) can further enhance the efficacy of the TcG2/TcG4 DNA vaccine. Methods and Results: C57BL/6 mice were immunized with TcG2/TcG4 DNA vaccine and fTr (delivered as an adjuvant or in prime-boost approach), and challenged with Tc. Serology studies showed that fTr (±quil-A) elicited Tc- and Tr-reactive IgGs that otherwise were not stimulated by TcG2/TcG4 vaccine only, and quil-A had suppressive effects on fTr-induced IgGs. After challenge infection, TcG2/TcG4-vaccinated mice exhibited potent expansion of antigen- and Tc-specific IgGs that were not boosted by fTr±quil-A. Flow cytometry analysis showed that TcG2/TcG4-induced dendritic cells (DC) and macrophages (Mφ) responded to challenge infection by expression of markers of antigen uptake, processing, and presentation, and production of pro-inflammatory cytokines. TcG2/TcG4-induced CD4+T cells acquired Th1 phenotype and expressed markers that orchestrate adaptive immunity. A fraction of vaccine-induced CD4+T cells exhibited iTreg phenotype responsible for aversion of self-injurious immune responses. Further, TcG2/TcG4-vaccinated mice exhibited potent expansion of poly-functional CD8+T cells with TNF-α/IFN-γ production and cytolytic phenotype post-infection. Subsequently, tissue parasites and pathology were hardly detectable in TcG2/TcG4-vaccinated/infected mice. Inclusion of fTr±quil-A had no clear additive effects in improving the Tc-specific adaptive immunity and parasite control than was noted in mice vaccinated with TcG2/TcG4 alone. Non-vaccinated mice lacked sufficient activation of Th1 CD4+/CD8+T cells, and exhibited >10-fold higher levels of tissue parasite burden than was noted in vaccinated/infected mice. Conclusion:TcG2/TcG4 vaccine elicits highly effective immunity, and inclusion of fTr is not required to improve the efficacy of DNA vaccine against acute Tc infection in mice.
Collapse
Affiliation(s)
- Shivali Gupta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Berenice Salgado-Jiménez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nandadeva Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Juan Carlos Vázquez-Chagoyán
- Facultad de Medicina Veterinaria y Zootecnia, Centro de Investigación y Estudios Avanzados en Salud Animal, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
24
|
Vesteg M, Hadariová L, Horváth A, Estraño CE, Schwartzbach SD, Krajčovič J. Comparative molecular cell biology of phototrophic euglenids and parasitic trypanosomatids sheds light on the ancestor of Euglenozoa. Biol Rev Camb Philos Soc 2019; 94:1701-1721. [PMID: 31095885 DOI: 10.1111/brv.12523] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/23/2023]
Abstract
Parasitic trypanosomatids and phototrophic euglenids are among the most extensively studied euglenozoans. The phototrophic euglenid lineage arose relatively recently through secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga that evolved into the euglenid secondary chloroplast. The parasitic trypanosomatids (i.e. Trypanosoma spp. and Leishmania spp.) and the freshwater phototrophic euglenids (i.e. Euglena gracilis) are the most evolutionary distant lineages in the Euglenozoa phylogenetic tree. The molecular and cell biological traits they share can thus be considered as ancestral traits originating in the common euglenozoan ancestor. These euglenozoan ancestral traits include common mitochondrial presequence motifs, respiratory chain complexes containing various unique subunits, a unique ATP synthase structure, the absence of mitochondria-encoded transfer RNAs (tRNAs), a nucleus with a centrally positioned nucleolus, closed mitosis without dissolution of the nuclear membrane and nucleoli, a nuclear genome containing the unusual 'J' base (β-D-glucosyl-hydroxymethyluracil), processing of nucleus-encoded precursor messenger RNAs (pre-mRNAs) via spliced-leader RNA (SL-RNA) trans-splicing, post-transcriptional gene silencing by the RNA interference (RNAi) pathway and the absence of transcriptional regulation of nuclear gene expression. Mitochondrial uridine insertion/deletion RNA editing directed by guide RNAs (gRNAs) evolved in the ancestor of the kinetoplastid lineage. The evolutionary origin of other molecular features known to be present only in either kinetoplastids (i.e. polycistronic transcripts, compaction of nuclear genomes) or euglenids (i.e. monocistronic transcripts, huge genomes, many nuclear cis-spliced introns, polyproteins) is unclear.
Collapse
Affiliation(s)
- Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, 974 01, Banská Bystrica, Slovakia
| | - Lucia Hadariová
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), 252 50, Vestec, Czech Republic.,Department of Parasitology, Faculty of Science, Charles University in Prague, 128 44, Prague, Czech Republic
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, 842 15, Bratislava, Slovakia
| | - Carlos E Estraño
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Steven D Schwartzbach
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152-3560, USA
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| |
Collapse
|
25
|
Zhang X, Li SJ, Li Z, He CY, Hide G, Lai DH, Lun ZR. Cell cycle and cleavage events during in vitro cultivation of bloodstream forms of Trypanosoma lewisi, a zoonotic pathogen. Cell Cycle 2019; 18:552-567. [PMID: 30712435 PMCID: PMC6464594 DOI: 10.1080/15384101.2019.1577651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 01/12/2023] Open
Abstract
Trypanosoma (Herpetosoma) lewisi is a globally distributed rat trypanosome, currently considered as a zoonotic pathogen; however, a detailed understanding of the morphological events occurring during the cell cycle is lacking. This study aimed to investigate the cell cycle morphology and cleavage events of Trypanosoma lewisi (T. lewisi) during in vitro cultivation. By establishing in vitro cultivation of T. lewisi at 37°C, various cell morphologies and stages could be observed. We have provided a quantitative analysis of the morphological events during T. lewisi proliferation. We confirmed a generation time of 12.14 ± 0.79 hours, which is similar to that in vivo (12.21 ± 0.14 hours). We also found that there are two distinct cell cycles, with a two-way transformation connection in the developmental status of this parasite, which was contrasted with the previous model of multiple division patterns seen in T. lewisi. We quantified the timing of cell cycle phases (G1n, 0.56 U; Sn, 0.14 U; G2n, 0.16 U; M, 0.06 U; C, 0.08 U; G1k, 0.65 U; Sk, 0.10 U; G2k, 0.17 U; D, 0.03 U; A, 0.05 U) and their morphological characteristics, particularly with respect to the position of kinetoplast(s) and nucleus/nuclei. Interestingly, we found that both nuclear synthesis initiation and segregation in T. lewisi occurred prior to kinetoplast, different to the order of replication found in Trypanosoma brucei and Trypanosoma cruzi, implicating a distinct cell cycle control mechanism in T. lewisi. We characterized the morphological events during the T. lewisi cell cycle and presented evidence to support the existence of two distinct cell cycles with two-way transformation between them. These results provide insights into the differentiation and evolution of this parasite and its related species.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Su-Jin Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX, USA
| | - Cynthia Y. He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Geoff Hide
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford UK
| | - De-Hua Lai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhao-Rong Lun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford UK
| |
Collapse
|
26
|
Lobo M, Balouz V, Melli L, Carlevaro G, Cortina ME, Cámara MDLM, Cánepa GE, Carmona SJ, Altcheh J, Campetella O, Ciocchini AE, Agüero F, Mucci J, Buscaglia CA. Molecular and antigenic characterization of Trypanosoma cruzi TolT proteins. PLoS Negl Trop Dis 2019; 13:e0007245. [PMID: 30870417 PMCID: PMC6435186 DOI: 10.1371/journal.pntd.0007245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/26/2019] [Accepted: 02/14/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND TolT was originally described as a Trypanosoma cruzi molecule that accumulated on the trypomastigote flagellum bearing similarity to bacterial TolA colicins receptors. Preliminary biochemical studies indicated that TolT resolved in SDS-PAGE as ~3-5 different bands with sizes between 34 and 45 kDa, and that this heterogeneity could be ascribed to differences in polypeptide glycosylation. However, the recurrent identification of TolT-deduced peptides, and variations thereof, in trypomastigote proteomic surveys suggested an intrinsic TolT complexity, and prompted us to undertake a thorough reassessment of this antigen. METHODS/PRINCIPLE FINDINGS Genome mining exercises showed that TolT constitutes a larger-than-expected family of genes, with at least 12 polymorphic members in the T. cruzi CL Brener reference strain and homologs in different trypanosomes. According to structural features, TolT deduced proteins could be split into three robust groups, termed TolT-A, TolT-B, and TolT-C, all of them showing marginal sequence similarity to bacterial TolA proteins and canonical signatures of surface localization/membrane association, most of which were herein experimentally validated. Further biochemical and microscopy-based characterizations indicated that this grouping may have a functional correlate, as TolT-A, TolT-B and TolT-C molecules showed differences in their expression profile, sub-cellular distribution, post-translational modification(s) and antigenic structure. We finally used a recently developed fluorescence magnetic beads immunoassay to validate a recombinant protein spanning the central and mature region of a TolT-B deduced molecule for Chagas disease serodiagnosis. CONCLUSION/SIGNIFICANCE This study unveiled an unexpected genetic and biochemical complexity within the TolT family, which could be exploited for the development of novel T. cruzi biomarkers with diagnostic/therapeutic applications.
Collapse
Affiliation(s)
- Maite Lobo
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Luciano Melli
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Giannina Carlevaro
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - María E Cortina
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - María de Los Milagros Cámara
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Gaspar E Cánepa
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Santiago J Carmona
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Jaime Altcheh
- Servicio de Parasitología-Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Andrés E Ciocchini
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| |
Collapse
|
27
|
Reis-Cunha JL, Bartholomeu DC. Trypanosoma cruzi Genome Assemblies: Challenges and Milestones of Assembling a Highly Repetitive and Complex Genome. Methods Mol Biol 2019; 1955:1-22. [PMID: 30868515 DOI: 10.1007/978-1-4939-9148-8_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trypanosoma cruzi present one of the most complex parasite genomes sequenced to date. Among its features are 600-kb-long repetitive multigene families' clusters, hybrid strains, and aneuploidies, which hampered genome assembly completeness and contiguity. Several approaches, such as Sanger sequencing in 2005, next-generation sequencing in 2011 and third-generation sequencing in 2018, were used to improve draft assemblies of different strains of this parasite. Hence, the study of T. cruzi genome assemblies' history is an excellent way to describe the evolution of genome sequencing methodologies and compare their efficiency and limitations to assembly complex genomes. In this book chapter, we summarize the principal findings and methodologies of T. cruzi genome assembly projects to date, highlighting the improvements and limitations of each approach.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniella C Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
28
|
Bradwell KR, Koparde VN, Matveyev AV, Serrano MG, Alves JMP, Parikh H, Huang B, Lee V, Espinosa-Alvarez O, Ortiz PA, Costa-Martins AG, Teixeira MMG, Buck GA. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. BMC Genomics 2018; 19:770. [PMID: 30355302 PMCID: PMC6201504 DOI: 10.1186/s12864-018-5112-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
Background Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host. Results Here we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21–25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi. Conclusions Our analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids. Electronic supplementary material The online version of this article (10.1186/s12864-018-5112-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katie R Bradwell
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Present address: Institute for Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - Vishal N Koparde
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrey V Matveyev
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Myrna G Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - João M P Alves
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | - Hardik Parikh
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Bernice Huang
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Vladimir Lee
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Paola A Ortiz
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marta M G Teixeira
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | - Gregory A Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
29
|
Kelly S, Ivens A, Mott GA, O'Neill E, Emms D, Macleod O, Voorheis P, Tyler K, Clark M, Matthews J, Matthews K, Carrington M. An Alternative Strategy for Trypanosome Survival in the Mammalian Bloodstream Revealed through Genome and Transcriptome Analysis of the Ubiquitous Bovine Parasite Trypanosoma (Megatrypanum) theileri. Genome Biol Evol 2018; 9:2093-2109. [PMID: 28903536 PMCID: PMC5737535 DOI: 10.1093/gbe/evx152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2017] [Indexed: 12/19/2022] Open
Abstract
There are hundreds of Trypanosoma species that live in the blood and tissue spaces of their vertebrate hosts. The vast majority of these do not have the ornate system of antigenic variation that has evolved in the small number of African trypanosome species, but can still maintain long-term infections in the face of the vertebrate adaptive immune system. Trypanosoma theileri is a typical example, has a restricted host range of cattle and other Bovinae, and is only occasionally reported to cause patent disease although no systematic survey of the effect of infection on agricultural productivity has been performed. Here, a detailed genome sequence and a transcriptome analysis of gene expression in bloodstream form T. theileri have been performed. Analysis of the genome sequence and expression showed that T. theileri has a typical kinetoplastid genome structure and allowed a prediction that it is capable of meiotic exchange, gene silencing via RNA interference and, potentially, density-dependent growth control. In particular, the transcriptome analysis has allowed a comparison of two distinct trypanosome cell surfaces, T. brucei and T. theileri, that have each evolved to enable the maintenance of a long-term extracellular infection in cattle. The T. theileri cell surface can be modeled to contain a mixture of proteins encoded by four novel large and divergent gene families and by members of a major surface protease gene family. This surface composition is distinct from the uniform variant surface glycoprotein coat on African trypanosomes providing an insight into a second mechanism used by trypanosome species that proliferate in an extracellular milieu in vertebrate hosts to avoid the adaptive immune response.
Collapse
Affiliation(s)
- Steven Kelly
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - G Adam Mott
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Ellis O'Neill
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - David Emms
- Department of Plant Sciences, University of Oxford, United Kingdom
| | - Olivia Macleod
- Department of Biochemistry, University of Cambridge, United Kingdom
| | - Paul Voorheis
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Kevin Tyler
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Matthew Clark
- Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| | - Jacqueline Matthews
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, United Kingdom
| | - Keith Matthews
- Centre for Immunity, Infection and Evolution and Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, United Kingdom
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, United Kingdom
| |
Collapse
|
30
|
Villafraz O, Rondón-Mercado R, Cáceres AJ, Concepción JL, Quiñones W. Molecular and biochemical characterization of natural and recombinant phosphoglycerate kinase B from Trypanosoma rangeli. Exp Parasitol 2018. [PMID: 29526574 DOI: 10.1016/j.exppara.2018.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
T. rangeli epimastigotes contain only a single detectable phosphoglycerate kinase (PGK) enzyme in their cytosol. Analysis of this parasite's recently sequenced genome showed a gene predicted to code for a PGK with the same molecular mass as the natural enzyme, and with a cytosolic localization as well. In this work, we have partially purified the natural PGK from T. rangeli epimastigotes. Furthermore, we cloned the predicted PGK gene and expressed it as a recombinant active enzyme. Both purified enzymes were kinetically characterized and displayed similar substrate affinities, with KmATP values of 0.13 mM and 0.5 mM, and Km3PGA values of 0.28 mM and 0.71 mM, for the natural and recombinant enzyme, respectively. The optimal pH for activity of both enzymes was in the range of 8-10. Like other PGKs, TrPGK is monomeric with a molecular mass of approximately 44 kDa. The enzyme's kinetic characteristics are comparable with those of cytosolic PGK isoforms from related trypanosomatid species, indicating that, most likely, this enzyme is equivalent with the PGKB that is responsible for generating ATP in the cytosol of other trypanosomatids. This is the first report of a glycolytic enzyme characterization from T. rangeli.
Collapse
Affiliation(s)
- O Villafraz
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - R Rondón-Mercado
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - A J Cáceres
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - J L Concepción
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - W Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela.
| |
Collapse
|
31
|
Trypanosoma rangeli is phylogenetically closer to Old World trypanosomes than to Trypanosoma cruzi. Int J Parasitol 2018; 48:569-584. [PMID: 29544703 DOI: 10.1016/j.ijpara.2017.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/15/2022]
Abstract
Trypanosoma rangeli and Trypanosoma cruzi are generalist trypanosomes sharing a wide range of mammalian hosts; they are transmitted by triatomine bugs, and are the only trypanosomes infecting humans in the Neotropics. Their origins, phylogenetic relationships, and emergence as human parasites have long been subjects of interest. In the present study, taxon-rich analyses (20 trypanosome species from bats and terrestrial mammals) using ssrRNA, glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH), heat shock protein-70 (HSP70) and Spliced Leader RNA sequences, and multilocus phylogenetic analyses using 11 single copy genes from 15 selected trypanosomes, provide increased resolution of relationships between species and clades, strongly supporting two main sister lineages: lineage Schizotrypanum, comprising T. cruzi and bat-restricted trypanosomes, and Tra[Tve-Tco] formed by T. rangeli, Trypanosoma vespertilionis and Trypanosoma conorhini clades. Tve comprises European T. vespertilionis and African T. vespertilionis-like of bats and bat cimicids characterised in the present study and Trypanosoma sp. Hoch reported in monkeys and herein detected in bats. Tco included the triatomine-transmitted tropicopolitan T. conorhini from rats and the African NanDoum1 trypanosome of civet (carnivore). Consistent with their very close relationships, Tra[Tve-Tco] species shared highly similar Spliced Leader RNA structures that were highly divergent from those of Schizotrypanum. In a plausible evolutionary scenario, a bat trypanosome transmitted by cimicids gave origin to the deeply rooted Tra[Tve-Tco] and Schizotrypanum lineages, and bat trypanosomes of diverse genetic backgrounds jumped to new hosts. A long and independent evolutionary history of T. rangeli more related to Old World trypanosomes from bats, rats, monkeys and civets than to Schizotrypanum spp., and the adaptation of these distantly related trypanosomes to different niches of shared mammals and vectors, is consistent with the marked differences in transmission routes, life-cycles and host-parasite interactions, resulting in T. cruzi (but not T. rangeli) being pathogenic to humans.
Collapse
|
32
|
Reis-Cunha JL, Valdivia HO, Bartholomeu DC. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Curr Genomics 2018; 19:87-97. [PMID: 29491737 PMCID: PMC5814966 DOI: 10.2174/1389202918666170911161311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Trypanosomatids are a group of kinetoplastid parasites including some of great public health importance, causing debilitating and life-long lasting diseases that affect more than 24 million people worldwide. Among the trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the Leishmania genus are the most well studied parasites, due to their high prevalence in human infections. These parasites have an extreme genomic and phenotypic variability, with a massive expansion in the copy number of species-specific multigene families enrolled in host-parasite interactions that mediate cellular invasion and immune evasion processes. As most trypanosomatids are heteroxenous, and therefore their lifecycles involve the transition between different hosts, these parasites have developed several strategies to ensure a rapid adaptation to changing environments. Among these strategies, a rapid shift in the repertoire of expressed genes, genetic variability and genome plasticity are key mechanisms. Trypanosomatid genomes are organized into large directional gene clusters that are transcribed polycistronically, where genes derived from the same polycistron may have very distinct mRNA levels. This particular mode of transcription implies that the control of gene expression operates mainly at post-transcriptional level. In this sense, gene duplications/losses were already associated with changes in mRNA levels in these parasites. Gene duplications also allow the generation of sequence variability, as the newly formed copy can diverge without loss of function of the original copy. Recently, aneuploidies have been shown to occur in several Leishmania species and T. cruzi strains. Although aneuploidies are usually associated with debilitating phenotypes in superior eukaryotes, recent data shows that it could also provide increased fitness in stress conditions and generate drug resistance in unicellular eukaryotes. In this review, we will focus on gene and chromosomal copy number variations and their relevance to the evolution of trypanosomatid parasites.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Hugo O. Valdivia
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| | - Daniella Castanheira Bartholomeu
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| |
Collapse
|
33
|
de Souza DAS, Pavoni DP, Krieger MA, Ludwig A. Evolutionary analyses of myosin genes in trypanosomatids show a history of expansion, secondary losses and neofunctionalization. Sci Rep 2018; 8:1376. [PMID: 29358582 PMCID: PMC5778035 DOI: 10.1038/s41598-017-18865-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Myosins are motor proteins that comprise a large and diversified family important for a broad range of functions. Two myosin classes, I and XIII, were previously assigned in Trypanosomatids, based mainly on the studies of Trypanosoma cruzi, T. brucei and Leishmania major, and important human pathogenic species; seven orphan myosins were identified in T. cruzi. Our results show that the great variety of T. cruzi myosins is also present in some closely related species and in Bodo saltans, a member of an early divergent branch of Kinetoplastida. Therefore, these myosins should no longer be considered "orphans". We proposed the classification of a kinetoplastid-specific myosin group into a new class, XXXVI. Moreover, our phylogenetic data suggest that a great repertoire of myosin genes was present in the last common ancestor of trypanosomatids and B. saltans, mainly resulting from several gene duplications. These genes have since been predominantly maintained in synteny in some species, and secondary losses explain the current distribution. We also found two interesting genes that were clearly derived from myosin genes, demonstrating that possible redundant or useless genes, instead of simply being lost, can serve as raw material for the evolution of new genes and functions.
Collapse
Affiliation(s)
- Denise Andréa Silva de Souza
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil.,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil
| | - Daniela Parada Pavoni
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil.,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil
| | - Marco Aurélio Krieger
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Instituto de Biologia Molecular do Paraná, Curitiba, 81350-010, Brazil.
| | - Adriana Ludwig
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Instituto de Biologia Molecular do Paraná, Curitiba, 81350-010, Brazil.
| |
Collapse
|
34
|
Naves LL, da Silva MV, Fajardo EF, da Silva RB, De Vito FB, Rodrigues V, Lages-Silva E, Ramírez LE, Pedrosa AL. DNA content analysis allows discrimination between Trypanosoma cruzi and Trypanosoma rangeli. PLoS One 2017; 12:e0189907. [PMID: 29261763 PMCID: PMC5736184 DOI: 10.1371/journal.pone.0189907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi, a human protozoan parasite, is the causative agent of Chagas disease. Currently the species is divided into six taxonomic groups. The genome of the CL Brener clone has been estimated to be 106.4-110.7 Mb, and DNA content analyses revealed that it is a diploid hybrid clone. Trypanosoma rangeli is a hemoflagellate that has the same reservoirs and vectors as T. cruzi; however, it is non-pathogenic to vertebrate hosts. The haploid genome of T. rangeli was previously estimated to be 24 Mb. The parasitic strains of T. rangeli are divided into KP1(+) and KP1(-). Thus, the objective of this study was to investigate the DNA content in different strains of T. cruzi and T. rangeli by flow cytometry. All T. cruzi and T. rangeli strains yielded cell cycle profiles with clearly identifiable G1-0 (2n) and G2-M (4n) peaks. T. cruzi and T. rangeli genome sizes were estimated using the clone CL Brener and the Leishmania major CC1 as reference cell lines because their genome sequences have been previously determined. The DNA content of T. cruzi strains ranged from 87,41 to 108,16 Mb, and the DNA content of T. rangeli strains ranged from 63,25 Mb to 68,66 Mb. No differences in DNA content were observed between KP1(+) and KP1(-) T. rangeli strains. Cultures containing mixtures of the epimastigote forms of T. cruzi and T. rangeli strains resulted in cell cycle profiles with distinct G1 peaks for strains of each species. These results demonstrate that DNA content analysis by flow cytometry is a reliable technique for discrimination between T. cruzi and T. rangeli isolated from different hosts.
Collapse
Affiliation(s)
- Lucila Langoni Naves
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brasil
| | - Marcos Vinícius da Silva
- Departamento de Imunologia, Microbiologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brasil
| | - Emanuella Francisco Fajardo
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brasil
| | - Raíssa Bernardes da Silva
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brasil
| | - Fernanda Bernadelli De Vito
- Departamento de Clínica Médica—Disciplina de Hematologia e Hemoterapia, Universidade Federal do Triângulo Mineiro, Uberaba, Brasil
| | - Virmondes Rodrigues
- Departamento de Imunologia, Microbiologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brasil
| | - Eliane Lages-Silva
- Departamento de Imunologia, Microbiologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brasil
| | - Luis Eduardo Ramírez
- Departamento de Imunologia, Microbiologia e Parasitologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brasil
| | - André Luiz Pedrosa
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brasil
- * E-mail:
| |
Collapse
|
35
|
Rojas-Pirela M, Rigden DJ, Michels PA, Cáceres AJ, Concepción JL, Quiñones W. Structure and function of Per-ARNT-Sim domains and their possible role in the life-cycle biology of Trypanosoma cruzi. Mol Biochem Parasitol 2017; 219:52-66. [PMID: 29133150 DOI: 10.1016/j.molbiopara.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/12/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
Per-ARNT-Sim (PAS) domains of proteins play important roles as modules for signalling and cellular regulation processes in widely diverse organisms such as Archaea, Bacteria, protists, plants, yeasts, insects and vertebrates. These domains are present in many proteins where they are used as sensors of stimuli and modules for protein interactions. Characteristically, they can bind a broad spectrum of molecules. Such binding causes the domain to trigger a specific cellular response or to make the protein containing the domain susceptible to responding to additional physical or chemical signals. Different PAS proteins have the ability to sense redox potential, light, oxygen, energy levels, carboxylic acids, fatty acids and several other stimuli. Such proteins have been found to be involved in cellular processes such as development, virulence, sporulation, adaptation to hypoxia, circadian cycle, metabolism and gene regulation and expression. Our analysis of the genome of different kinetoplastid species revealed the presence of PAS domains also in different predicted kinases from these protists. Open-reading frames coding for these PAS-kinases are unusually large. In addition, the products of these genes appear to contain in their structure combinations of domains uncommon in other eukaryotes. The physiological significance of PAS domains in these parasites, specifically in Trypanosoma cruzi, is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, Scotland, United Kingdom
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| |
Collapse
|
36
|
Rondón-Mercado R, Acosta H, Cáceres AJ, Quiñones W, Concepción JL. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli. Mol Biochem Parasitol 2017. [PMID: 28645481 DOI: 10.1016/j.molbiopara.2017.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The velocity of glucose consumption is about 40% higher than that of procyclic Trypanosoma brucei, and four times faster than by T. cruzi epimastigotes under the same culture conditions.
Collapse
Affiliation(s)
- Rocío Rondón-Mercado
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Héctor Acosta
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela.
| |
Collapse
|
37
|
Bayer-Santos E, Marini MM, da Silveira JF. Non-coding RNAs in Host-Pathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites. Front Microbiol 2017; 8:474. [PMID: 28377760 PMCID: PMC5359270 DOI: 10.3389/fmicb.2017.00474] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
Pathogens have evolved mechanisms to modulate host cell functions and avoid recognition and destruction by the host damage response. For many years, researchers have focused on proteins as the main effectors used by pathogens to hijack host cell pathways, but only recently with the development of deep RNA sequencing these molecules were brought to light as key players in infectious diseases. Protozoan parasites such as those from the genera Plasmodium, Toxoplasma, Leishmania, and Trypanosoma cause life-threatening diseases and are responsible for 1000s of deaths worldwide every year. Some of these parasites replicate intracellularly when infecting mammalian hosts, whereas others can survive and replicate extracellularly in the bloodstream. Each of these parasites uses specific evasion mechanisms to avoid being killed by the host defense system. An increasing number of studies have shown that these pathogens can transfer non-coding RNA molecules to the host cells to modulate their functions. This transference usually happens via extracellular vesicles, which are small membrane vesicles secreted by the microorganism. In this mini-review we will combine published work regarding several protozoan parasites that were shown to use non-coding RNAs in inter-kingdom communication and briefly discuss future perspectives in the field.
Collapse
Affiliation(s)
- Ethel Bayer-Santos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo São Paulo, Brazil
| | - Marjorie M Marini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - José F da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|
38
|
Fajardo EF, Cabrine-Santos M, Ferreira KAM, Lages-Silva E, Ramírez LE, Pedrosa AL. Semisolid liver infusion tryptose supplemented with human urine allows growth and isolation of Trypanosoma cruzi and Trypanosoma rangeli clonal lineages. Rev Soc Bras Med Trop 2017; 49:369-72. [PMID: 27384837 DOI: 10.1590/0037-8682-0190-2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 05/11/2016] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION This work shows that 3% (v/v) human urine (HU) in semisolid Liver Infusion Tryptose (SSL) medium favors the growth of Trypanosoma cruzi and T. rangeli. METHODS Parasites were plated as individual or mixed strains on SSL medium and on SSL medium with 3% human urine (SSL-HU). Isolate DNA was analyzed using polymerase chain reaction (PCR) and pulsed-field gel electrophoresis (PFGE). RESULTS SSL-HU medium improved clone isolation. PCR revealed that T. cruzi strains predominate on mixed-strain plates. PFGE confirmed that isolated parasites share the same molecular karyotype as parental cell lines. CONCLUSIONS SSL-HU medium constitutes a novel tool for obtaining T. cruzi and T. rangeli clonal lineages.
Collapse
Affiliation(s)
- Emanuella Francisco Fajardo
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Marlene Cabrine-Santos
- Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | | | - Eliane Lages-Silva
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - Luis Eduardo Ramírez
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| | - André Luiz Pedrosa
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brasil
| |
Collapse
|
39
|
The Evolutionary Loss of RNAi Key Determinants in Kinetoplastids as a Multiple Sporadic Phenomenon. J Mol Evol 2017; 84:104-115. [PMID: 28210761 DOI: 10.1007/s00239-017-9780-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/28/2017] [Indexed: 12/11/2022]
Abstract
We screened the genomes of a broad panel of kinetoplastid protists for genes encoding proteins associated with the RNA interference (RNAi) system using probes from the Argonaute (AGO1), Dicer1 (DCL1), and Dicer2 (DCL2) genes of Leishmania brasiliensis and Crithidia fasciculata. We identified homologs for all the three of these genes in the genomes of a subset of these organisms. However, several of these organisms lacked evidence for any of these genes, while others lacked only DCL2. The open reading frames encoding these putative proteins were structurally analyzed in silico. The alignments indicated that the genes are homologous with a high degree of confidence, and three-dimensional structural models strongly supported a functional relationship to previously characterized AGO1, DCL1, and DCL2 proteins. Phylogenetic analysis of these putative proteins showed that these genes, when present, evolved in parallel with other nuclear genes, arguing that the RNAi system genes share a common progenitor, likely across all Kinetoplastea. In addition, the genome segments bearing these genes are highly conserved and syntenic, even among those taxa in which they are absent. However, taxa in which these genes are apparently absent represent several widely divergent branches of kinetoplastids, arguing that these genes were independently lost at least six times in the evolutionary history of these organisms. The mechanisms responsible for the apparent coordinate loss of these RNAi system genes independently in several lineages of kinetoplastids, while being maintained in other related lineages, are currently unknown.
Collapse
|
40
|
Guarneri AA, Lorenzo MG. Triatomine physiology in the context of trypanosome infection. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:66-76. [PMID: 27401496 DOI: 10.1016/j.jinsphys.2016.07.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/24/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Abstract
Triatomines are hematophagous insects that feed on the blood of vertebrates from different taxa, but can occasionally also take fluids from invertebrate hosts, including other insects. During the blood ingestion process, these insects can acquire diverse parasites that can later be transmitted to susceptible vertebrates if they complete their development inside bugs. Trypanosoma cruzi, the etiological agent of Chagas disease, and Trypanosoma rangeli are protozoan parasites transmitted by triatomines, the latter only transmitted by Rhodnius spp. The present work makes an extensive revision of studies evaluating triatomine-trypanosome interaction, with special focus on Rhodnius prolixus interacting with the two parasites. The sequences of events encompassing the development of these trypanosomes inside bugs and the consequent responses of insects to this infection, as well as many pathological effects produced by the parasites are discussed.
Collapse
Affiliation(s)
- Alessandra Aparecida Guarneri
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil.
| | - Marcelo Gustavo Lorenzo
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou, Fiocruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
41
|
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, Mello CB, Castro DP, Ratcliffe NA. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:45-65. [PMID: 27866813 DOI: 10.1016/j.jinsphys.2016.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.
Collapse
Affiliation(s)
- P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - E S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M S Gonzalez
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - C B Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - N A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales, United Kingdom.
| |
Collapse
|
42
|
Ludwig A, Krieger MA. Genomic and phylogenetic evidence of VIPER retrotransposon domestication in trypanosomatids. Mem Inst Oswaldo Cruz 2016; 111:765-769. [PMID: 27849219 PMCID: PMC5146736 DOI: 10.1590/0074-02760160224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/25/2016] [Indexed: 12/02/2022] Open
Abstract
Transposable elements are important residents of eukaryotic genomes and eventually
the host can domesticate them to serve cellular functions. We reported here a
possible domestication event of the vestigial interposed retroelement (VIPER) in
trypanosomatids. We found a large gene in a syntenic location in Leishmania
braziliensis, L. panamensis, Leptomanas
pyrrhocoris, and Crithidia fasciculata whose products
share similarity in the C-terminal portion with the third protein of VIPER. No
remnants of other VIPER regions surrounding the gene sequence were found. We
hypothesise that the domestication event occurred more than 50 mya and the
conservation of this gene suggests it might perform some function in the host
species.
Collapse
Affiliation(s)
- Adriana Ludwig
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil.,Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brasil
| | - Marco Aurelio Krieger
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil.,Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
43
|
Beltrame-Botelho IT, Talavera-López C, Andersson B, Grisard EC, Stoco PH. A Comparative In Silico Study of the Antioxidant Defense Gene Repertoire of Distinct Lifestyle Trypanosomatid Species. Evol Bioinform Online 2016; 12:263-275. [PMID: 27840574 PMCID: PMC5100842 DOI: 10.4137/ebo.s40648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/24/2022] Open
Abstract
Kinetoplastids are an ancestral group of protists that contains free-living species and parasites with distinct mechanisms in response to stress. Here, we compared genes involved in antioxidant defense (AD), proposing an evolution model among trypanosomatids. All genes were identified in Bodo saltans, suggesting that AD mechanisms have evolved prior to adaptation for parasitic lifestyles. While most of the monoxenous and dixenous parasites revealed minor differences from B. saltans, the endosymbiont-bearing species have an increased number of genes. The absence of these genes was mainly observed in the extracellular parasites of the genera Phytomonas and Trypanosoma. In trypanosomes, a distinction was observed between stercorarian and salivarian parasites, except for Trypanosoma rangeli. Our analyses indicate that the variability of AD among trypanosomatids at the genomic level is not solely due to the geographical isolation, being mainly related to specific adaptations of their distinct biological cycles within insect vectors and to a parasitism of a wide range of hosts.
Collapse
Affiliation(s)
- Ingrid Thaís Beltrame-Botelho
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
- Universidade do Sul de Santa Catarina, Palhoça, SC, Brazil
| | | | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Edmundo Carlos Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Patricia Hermes Stoco
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| |
Collapse
|
44
|
Catta-Preta CMC, Dos Santos Pascoalino B, de Souza W, Mottram JC, Motta MCM, Schenkman S. Reduction of Tubulin Expression in Angomonas deanei by RNAi Modifies the Ultrastructure of the Trypanosomatid Protozoan and Impairs Division of Its Endosymbiotic Bacterium. J Eukaryot Microbiol 2016; 63:794-803. [PMID: 27194398 DOI: 10.1111/jeu.12326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/03/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
Abstract
In the last two decades, RNA interference pathways have been employed as a useful tool for reverse genetics in trypanosomatids. Angomonas deanei is a nonpathogenic trypanosomatid that maintains an obligatory endosymbiosis with a bacterium related to the Alcaligenaceae family. Studies of this symbiosis can help us to understand the origin of eukaryotic organelles. The recent elucidation of both the A. deanei and the bacterium symbiont genomes revealed that the host protozoan codes for the enzymes necessary for RNAi activity in trypanosomatids. Here, we tested the functionality of the RNAi machinery by transfecting cells with dsRNA to a reporter gene (green fluorescent protein), which had been previously expressed in the parasite and to α-tubulin, an endogenous gene. In both cases, protein expression was reduced by the presence of specific dsRNA, inducing, respectively, a decreased GFP fluorescence and the formation of enlarged cells with modified arrangement of subpellicular microtubules. Furthermore, symbiont division was impaired. These results indicate that the RNAi system is active in A. deanei and can be used to further explore gene function in symbiont-containing trypanosomatids and to clarify important aspects of symbiosis and cell evolution.
Collapse
Affiliation(s)
- Carolina Moura Costa Catta-Preta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, bloco G/SS, 21949-900, Rio de Janeiro, RJ, Brazil.,Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom.,Department of Biology, Centre for Immunology and Infection, University of York, York, YO10 5DD, United Kingdom
| | - Bruno Dos Santos Pascoalino
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo 669, L6A, 04039-032, São Paulo, Brazil
| | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, bloco G/SS, 21949-900, Rio de Janeiro, RJ, Brazil
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, United Kingdom.,Department of Biology, Centre for Immunology and Infection, University of York, York, YO10 5DD, United Kingdom
| | - Maria Cristina M Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, bloco G/SS, 21949-900, Rio de Janeiro, RJ, Brazil.
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Pedro de Toledo 669, L6A, 04039-032, São Paulo, Brazil.
| |
Collapse
|
45
|
Sá ARN, Dias GBM, Kimoto KY, Steindel M, Grisard EC, Toledo MJO, Gomes ML. Genotyping of Trypanosoma cruzi DTUs and Trypanosoma rangeli genetic groups in experimentally infected Rhodnius prolixus by PCR-RFLP. Acta Trop 2016; 156:115-21. [PMID: 26792202 DOI: 10.1016/j.actatropica.2016.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/22/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Abstract
The specific detection and genetic typing of trypanosomes that infect humans, mammalian reservoirs, and vectors is crucial for diagnosis and epidemiology. We utilized a PCR-RFLP assay that targeted subunit II of cytochrome oxidase and 24Sα-rDNA to simultaneously detect and discriminate six Trypanosoma cruzi discrete typing units (DTUs) and two genetic groups of Trypanosoma rangeli (KP1+/KP1-) in intestinal contents of experimentally infected Rhodnius prolixus. The PCR assays showed that in 23 of 29 (79.4%) mixed infections with the six T. cruzi DTUs and mixed infections with individual DTUs and/or groups KP1+ and KP1-, both parasites were successfully detected. In six mixed infections that involved TcIII, the TcI, TcII, TcV, and TcVI DTUs predominated to the detriment of TcIII, indicating the selection of genetic groups. Interactions between different genetic groups and vectors may lead to genetic selection over TcIII. The elimination of this DTU by the immune system of the vector appears unlikely because TcIII was present in other mixed infections (TcIII/TcIV and TcIII/KP1+). Both molecular markers used in this study were sensitive and specific, demonstrating their usefulness in a wide geographical area where distinct genotypes of these two species are sympatric. Although the cellular and molecular mechanisms that are involved in parasite-vector interactions are still poorly understood, our results indicate a dynamic selection toward specific T. cruzi DTUs in R. prolixus during mixed genotype infections.
Collapse
Affiliation(s)
- Amanda R N Sá
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná 87020-900, Brazil; Docente do curso de Biomedicina, Faculdade Integrado, Campo Mourão, Rodovia BR 158, KM 207, Campo Mourão, Paraná 87300-970, Brazil.
| | - Greicy B M Dias
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Campus João David Ferreira Lima, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil.
| | - Karen Y Kimoto
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná 87020-900, Brazil.
| | - Mário Steindel
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Campus João David Ferreira Lima, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil.
| | - Edmundo C Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina (UFSC), Campus João David Ferreira Lima, Trindade, Florianópolis, Santa Catarina 88040-900, Brazil.
| | - Max Jean O Toledo
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná 87020-900, Brazil.
| | - Mônica L Gomes
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790, Jardim Universitário, Maringá, Paraná 87020-900, Brazil.
| |
Collapse
|
46
|
Ocaña-Mayorga S, Aguirre-Villacis F, Pinto CM, Vallejo GA, Grijalva MJ. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador. Vector Borne Zoonotic Dis 2015; 15:732-42. [PMID: 26645579 DOI: 10.1089/vbz.2015.1794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.
Collapse
Affiliation(s)
- Sofia Ocaña-Mayorga
- 1 Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador , and Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University , Athens, Ohio
| | - Fernanda Aguirre-Villacis
- 2 Life Sciences Department, University of the Army Forces-ESPE, Sangolqui, Ecuador, and Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador , Quito, Ecuador
| | - C Miguel Pinto
- 3 Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC; Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York; and Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador , Quito, Ecuador
| | - Gustavo A Vallejo
- 4 Laboratorio de Investigaciones en Parasitología Tropical, Facultad de Ciencias, Departamento de Biología, Universidad de Tolima , Ibagué, Colombia
| | - Mario J Grijalva
- 5 Tropical Disease Institute, Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, and Center for Infectious and Chronic Disease Research, School of Biological Sciences, Pontifical Catholic University of Ecuador , Quito, Ecuador
| |
Collapse
|
47
|
The diversity and expansion of the trans-sialidase gene family is a common feature in Trypanosoma cruzi clade members. INFECTION GENETICS AND EVOLUTION 2015; 37:266-74. [PMID: 26640033 DOI: 10.1016/j.meegid.2015.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023]
Abstract
Trans-sialidase (TS) is a polymorphic protein superfamily described in members of the protozoan genus Trypanosoma. Of the eight TS groups recently described, TS group I proteins (some of which have catalytic activity) are present in the distantly related Trypanosoma brucei and Trypanosoma cruzi phylogenetic clades, whereas other TS groups have only been described in some species belonging to the T. cruzi clade. In the present study we analyzed the repertoire, distribution and phylogenetic relationships of TS genes among species of the T. cruzi clade based on sequence similarity, multiple sequence alignment and tree-reconstruction approaches using TS sequences obtained with the aid of PCR-based strategies or retrieved from genome databases. We included the following representative isolates of the T. cruzi clade from South America: T. cruzi, T. cruzi Tcbat, Trypanosoma cruzi marinkellei, Trypanosoma dionisii, Trypanosoma rangeli and Trypanosoma conorhini. The cloned sequences encoded conserved TS protein motifs Asp-box and VTVxNVxLYNR but lacked the FRIP motif (conserved in TS group I). The T. conorhini sequences were the most divergent. The hybridization patterns of TS probes with chromosomal bands confirmed the abundance of these sequences in species in the T. cruzi clade. Divergence and relationship analysis placed most of the TS sequences in the groups defined in T. cruzi. Further examination of members of TS group II, which includes T. cruzi surface glycoproteins implicated in host cell attachment and invasion, showed that sequences of T. cruzi Tcbat grouped with those of T. cruzi genotype TcI. Our analysis indicates that different members of the T. cruzi clade, with different vertebrate hosts, vectors and pathogenicity, share the extensive expansion and sequence diversification of the TS gene family. Altogether, our results are congruent with the evolutionary history of the T. cruzi clade and represent a contribution to the understanding of the molecular evolution and role of TS proteins in trypanosomes.
Collapse
|
48
|
d’Avila-Levy CM, Boucinha C, Kostygov A, Santos HLC, Morelli KA, Grybchuk-Ieremenko A, Duval L, Votýpka J, Yurchenko V, Grellier P, Lukeš J. Exploring the environmental diversity of kinetoplastid flagellates in the high-throughput DNA sequencing era. Mem Inst Oswaldo Cruz 2015; 110:956-65. [PMID: 26602872 PMCID: PMC4708014 DOI: 10.1590/0074-02760150253] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/01/2015] [Indexed: 12/12/2022] Open
Abstract
The class Kinetoplastea encompasses both free-living and parasitic species from a wide range of hosts. Several representatives of this group are responsible for severe human diseases and for economic losses in agriculture and livestock. While this group encompasses over 30 genera, most of the available information has been derived from the vertebrate pathogenic genera Leishmaniaand Trypanosoma. Recent studies of the previously neglected groups of Kinetoplastea indicated that the actual diversity is much higher than previously thought. This article discusses the known segment of kinetoplastid diversity and how gene-directed Sanger sequencing and next-generation sequencing methods can help to deepen our knowledge of these interesting protists.
Collapse
Affiliation(s)
- Claudia Masini d’Avila-Levy
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Carolina Boucinha
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Alexei Kostygov
- University of Ostrava, Life Science Research Centre, Ostrava, Czech
Republic
- Russian Academy of Sciences, Zoological Institute, Laboratory of
Molecular Systematics, St Petersburg, Russia
| | - Helena Lúcia Carneiro Santos
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Karina Alessandra Morelli
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Estudos
Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
- Universidade do Estado do Rio de Janeiro, Instituto de Biologia Roberto
Alcântara Gomes, Departamento de Ecologia, Rio de Janeiro, RJ, Brasil
| | | | - Linda Duval
- Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre
National de la Recherche Scientifique, Unité Molécules de Communication et Adaptation
des Microorganisme, Unités Mixte de Recherche 7245, Paris, France
| | - Jan Votýpka
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
- Charles University, Faculty of Science, Department of Parasitology,
Prague, Czech Republic
| | - Vyacheslav Yurchenko
- University of Ostrava, Life Science Research Centre, Ostrava, Czech
Republic
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
| | - Philippe Grellier
- Sorbonne Universités, Muséum National d’Histoire Naturelle, Centre
National de la Recherche Scientifique, Unité Molécules de Communication et Adaptation
des Microorganisme, Unités Mixte de Recherche 7245, Paris, France
| | - Julius Lukeš
- Czech Academy of Sciences, Institute of Parasitology, Biology Centre,
České Budejovice, Czech Republic
- University of South Bohemia, Faculty of Sciences, České Budejovice,
Czech Republic
- Canadian Institute for Advanced Research, Toronto, Canada
| |
Collapse
|
49
|
Neglected Tropical Diseases in the Post-Genomic Era. Trends Genet 2015; 31:539-555. [DOI: 10.1016/j.tig.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023]
|
50
|
Marliére NP, Latorre-Estivalis JM, Lorenzo MG, Carrasco D, Alves-Silva J, Rodrigues JDO, Ferreira LDL, Lara LDM, Lowenberger C, Guarneri AA. Trypanosomes Modify the Behavior of Their Insect Hosts: Effects on Locomotion and on the Expression of a Related Gene. PLoS Negl Trop Dis 2015; 9:e0003973. [PMID: 26291723 PMCID: PMC4546274 DOI: 10.1371/journal.pntd.0003973] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/12/2015] [Indexed: 11/23/2022] Open
Abstract
Background As a result of evolution, the biology of triatomines must have been significantly adapted to accommodate trypanosome infection in a complex network of vector-vertebrate-parasite interactions. Arthropod-borne parasites have probably developed mechanisms, largely still unknown, to exploit the vector-vertebrate host interactions to ensure their transmission to suitable hosts. Triatomines exhibit a strong negative phototaxis and nocturnal activity, believed to be important for insect survival against its predators. Methodology/Principal Findings In this study we quantified phototaxis and locomotion in starved fifth instar nymphs of Rhodnius prolixus infected with Trypanosoma cruzi or Trypanosoma rangeli. T. cruzi infection did not alter insect phototaxis, but induced an overall 20% decrease in the number of bug locomotory events. Furthermore, the significant differences induced by this parasite were concentrated at the beginning of the scotophase. Conversely, T. rangeli modified both behaviors, as it significantly decreased bug negative phototaxis, while it induced a 23% increase in the number of locomotory events in infected bugs. In this case, the significant effects were observed during the photophase. We also investigated the expression of Rpfor, the triatomine ortholog of the foraging gene known to modulate locomotion in other insects, and found a 4.8 fold increase for T. rangeli infected insects. Conclusions/Significance We demonstrated for the first time that trypanosome infection modulates the locomotory activity of the invertebrate host. T. rangeli infection seems to be more broadly effective, as besides affecting the intensity of locomotion this parasite also diminished negative phototaxis and the expression of a behavior-associated gene in the triatomine vector. The control of Chagas disease, an infection that affects ca. 8 million people in Latin America, is mostly based on vector control activities. Understanding vector biology and how these insects interact with their environment, hosts and pathogens is crucial to improve vector control strategies. The behavior of triatomines has been largely studied, yet few reports have focused on the behavioral effects of the interaction that these insects endure with their natural parasites. Trypanosoma cruzi and Trypanosoma rangeli are two protozoan parasites found naturally infecting Rhodnius species. In this study, we showed for the first time that the locomotory activity of Rhodnius prolixus, a relevant vector of Chagas disease, is affected by trypanosome infection. T. cruzi was found to decrease bug locomotory activity during night hours, while T. rangeli promoted a generally increased insect locomotion. In addition, we searched for the R. prolixus orthologue (Rpfor) of a gene associated with the modulation of insect activity (foraging gene) and found that Rpfor expression was also affected by trypanosome infection.
Collapse
Affiliation(s)
- Newmar Pinto Marliére
- Centro de Pesquisas René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marcelo Gustavo Lorenzo
- Centro de Pesquisas René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | - David Carrasco
- Chemical Ecology Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Juliana Alves-Silva
- Centro de Pesquisas René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Luisa de Melo Lara
- Centro de Pesquisas René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | - Carl Lowenberger
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alessandra Aparecida Guarneri
- Centro de Pesquisas René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|