1
|
Tamietti C, Stephen T, Rouvinski A, Tenebray B, Leparc‐Goffard I, de Laval F, Fernandes‐Pellerin S, Manuguerra J, Rey F, Hasan M, Badaut C, Flamand M, Matheus S, Briolant S. Prolonged Zika Virus NS1 Protein Circulation in Patient Sera Impacts Clinical Outcome Before the Rise of a Specific IgM Response. J Med Virol 2025; 97:e70368. [PMID: 40263920 PMCID: PMC12015152 DOI: 10.1002/jmv.70368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/19/2025] [Accepted: 04/14/2025] [Indexed: 04/24/2025]
Abstract
Zika virus (ZIKV) is a neurotropic virus that can be transmitted congenitally. In ZIKV-infected pregnant women, placental dysfunction is associated with the secretion of nonstructural protein 1 (NS1). In this study, the kinetics of NS1 secretion and antibody response were assessed and characterized in the serum of ZIKV-positive adult patients recruited in French Guiana. NS1 concentrations were quantified by a single molecule array (SiMoA) in 164 sequential serum samples collected from thirty patients during the first month after onset of symptoms. Serum NS1 concentrations in this cohort were unexpectedly low and ranged from 0.1 pg/mL to 380 pg/mL. The median persistence of NS1 in patients with a clinical score of 2 (6 days) was significantly lower than in patients with a clinical score of 3 (8 days). In both groups of patients, anti-NS1 IgM and IgG kinetics were similar but patients with a milder clinical score of 2 had statistically higher levels of specific IgM than those with a clinical score of 3. Herein, it was shown that NS1 circulating in patient sera is associated with clinical outcome, emphasizing the role of NS1 in ZIKV pathogenesis.
Collapse
Affiliation(s)
- Carole Tamietti
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Tharshana Stephen
- Institut PasteurUniversité Paris Cité, Single Cell Biomarkers UTechSParisFrance
| | - Alexander Rouvinski
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Bernard Tenebray
- Unité de virologieInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Centre National de Référence des ArbovirusInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Unité des Virus Emergents (UVE: Aix‐Marseille Univ, Université di Corsica, IRD 190, Inserm 1207, IRBA)France
| | - Isabelle Leparc‐Goffard
- Unité de virologieInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Centre National de Référence des ArbovirusInstitut de Recherche Biomédicale des ArméesMarseilleFrance
- Unité des Virus Emergents (UVE: Aix‐Marseille Univ, Université di Corsica, IRD 190, Inserm 1207, IRBA)France
| | - Franck de Laval
- Service de Santé des Armées, CESPACentre d'épidémiologie et de santé publique des arméesMarseilleFrance
| | | | - Jean‐Claude Manuguerra
- Institut PasteurUniversité Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) UnitParisFrance
| | - Félix Rey
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Milena Hasan
- Institut PasteurUniversité Paris Cité, Single Cell Biomarkers UTechSParisFrance
| | - Cyril Badaut
- Unité des Virus Emergents (UVE: Aix‐Marseille Univ, Université di Corsica, IRD 190, Inserm 1207, IRBA)France
- Unité de virologieInstitut de Recherche Biomédicale des Armées, Brétigny‐sur‐OrgeFrance
| | - Marie Flamand
- Institut PasteurUniversité Paris Cité, Unité de Virologie StructuraleParisFrance
| | - Séverine Matheus
- Institut PasteurUniversité Paris Cité, Laboratory for Urgent Response to Biological Threats (CIBU), Environment and Infectious Risks (ERI) UnitParisFrance
| | - Sébastien Briolant
- Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA)Unité Parasitologie et EntomologieMarseilleFrance
- Aix Marseille Université, SSA, AP‐HMMarseilleFrance
- IHU Méditerranée InfectionMarseilleFrance
| |
Collapse
|
2
|
Greenlaw C, MacRae R, Wilson-Murphy M. Powassan Virus Encephalitis in Pediatric Patients. J Child Neurol 2025:8830738251333465. [PMID: 40289568 DOI: 10.1177/08830738251333465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Powassan virus is a tickborne flavivirus that is a rare cause of encephalitis in humans. The incidence of cases is increasing in North America. We present 6 cases of Powassan virus encephalitis in pediatric patients diagnosed between 2018 and 2023 in the New England region of the United States. The age at diagnosis ranged from 14 months to 11 years. All patients presented with fever and confusion, and the majority also presented with seizures. All patients had lasting neurologic sequelae including seizures, movement disorders, behavioral problems, attention-deficit hyperactivity disorder (ADHD), learning problems, anxiety, and sleep disturbances. This is the largest pediatric case series of Powassan virus encephalitis to date. These cases demonstrate the emergence of Powassan virus as a rare, but severe, cause of encephalitis in children that has long-term neurologic consequences. We recommend increased clinical surveillance and public awareness of this increasingly prevalent tickborne disease.
Collapse
Affiliation(s)
- Celia Greenlaw
- Department of Neurology, Boston Children's Hospital, Fegan 11, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Rebecca MacRae
- Department of Neurology, Boston Children's Hospital, Fegan 11, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Molly Wilson-Murphy
- Department of Neurology, Boston Children's Hospital, Fegan 11, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
3
|
Ostrowsky JT, Katzelnick LC, Bourne N, Barrett ADT, Thomas SJ, Diamond MS, Beasley DWC, Harris E, Wilder-Smith A, Leighton T, Mehr AJ, Moua NM, Ulrich AK, Cehovin A, Fay PC, Golding JP, Moore KA, Osterholm MT, Lackritz EM. Zika virus vaccines and monoclonal antibodies: a priority agenda for research and development. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(24)00750-3. [PMID: 40024262 DOI: 10.1016/s1473-3099(24)00750-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 03/04/2025]
Abstract
The 2015-16 Zika virus epidemic in the Americas drew global attention to Zika virus infection as a cause of microcephaly and Guillain-Barré syndrome. The epidemic highlighted the urgent need for preventive measures, including vaccines and monoclonal antibodies (mAbs). However, nearly 9 years later, no licensed Zika virus vaccines or mAbs are available, leaving the world's populations unprotected from ongoing disease transmission and future epidemics. The current low Zika virus incidence and unpredictability of future outbreaks complicates prospects for evaluation, licensure, and commercial viability of Zika virus vaccines and mAbs. We conducted an extensive review of Zika virus vaccines and mAbs in development, identifying 16 vaccines in phase 1 or phase 2 trials and three mAbs in phase 1 trials, and convened a 2-day meeting of 130 global Zika virus experts to discuss research priorities to advance their development. This Series paper summarises a priority research agenda to address key knowledge gaps and accelerate the licensure of Zika virus vaccines and mAbs for global use.
Collapse
Affiliation(s)
- Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nigel Bourne
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Stephen J Thomas
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA; Institute for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, NY, USA
| | - Michael S Diamond
- Department of Pathology and Immunology and Center for Genome Sciences, Lab and Genomic Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - David W C Beasley
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Annelies Wilder-Smith
- Immunization, Vaccines, and Biologicals, World Health Organization, Geneva, Switzerland
| | - Tabitha Leighton
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Nicolina M Moua
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Ana Cehovin
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Petra C Fay
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | | | - Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Lackritz EM, Ng LC, Marques ETA, Rabe IB, Bourne N, Staples JE, Méndez-Rico JA, Harris E, Brault AC, Ko AI, Beasley DWC, Leighton T, Wilder-Smith A, Ostrowsky JT, Mehr AJ, Ulrich AK, Velayudhan R, Golding JP, Fay PC, Cehovin A, Moua NM, Moore KA, Osterholm MT, Barrett ADT. Zika virus: advancing a priority research agenda for preparedness and response. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(24)00794-1. [PMID: 40024263 DOI: 10.1016/s1473-3099(24)00794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 03/04/2025]
Abstract
The 2015-16 Zika virus epidemic emerged in the Americas and rapidly spread throughout the region and beyond, showing the epidemic potential of this mosquito-borne Orthoflavivirus and its capacity to cause severe congenital malformations and neurological sequelae. WHO declared the Zika virus epidemic a public health emergency of international concern in 2016. Despite this declaration, there are no licensed Zika virus vaccines, therapeutics, or diagnostic tests appropriate for routine antenatal screening. To address this absence of essential tools to detect and mitigate the threat of future Zika virus outbreaks, a group of global experts developed a priority agenda for Zika virus research and development. This Series paper summarises crucial challenges and knowledge gaps and outlines a comprehensive strategy to advance research, surveillance, global capacity, policy, and investment for Zika virus preparedness and response.
Collapse
Affiliation(s)
- Eve M Lackritz
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA.
| | - Lee-Ching Ng
- National Environment Agency, Environmental Health Institute, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Ernesto T A Marques
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Virology and Experimental Therapeutics, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | | | - Nigel Bourne
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - J Erin Staples
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Jairo A Méndez-Rico
- Pan American Health Organization, WHO Region of the Americas, Washington, DC, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California Berkeley, Berkeley, CA, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Albert I Ko
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA; Ministry of Health, Salvador, Brazil
| | - David W C Beasley
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tabitha Leighton
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | | | - Julia T Ostrowsky
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela J Mehr
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Ulrich
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Petra C Fay
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Ana Cehovin
- Infectious Disease Strategic Programme, Wellcome Trust, London, UK
| | - Nicolina M Moua
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Kristine A Moore
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Michael T Osterholm
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Alan D T Barrett
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
5
|
Kasbergen LMR, de Bruin E, Chandler F, Sigfrid L, Chan XHS, Hookham L, Wei J, Chen S, GeurtsvanKessel CH, Scherbeijn S, Charrel RN, Ayhan N, Lee JL, Corman VM, Reusken C, Loens K, Popescu CP, Lupse M, Briciu V, Văsieşiu AM, Pipero P, Harxhi A, Puca E, Ponosheci Biçaku A, Travar M, Ostojić M, Baljic R, Arapović J, Ledina D, Cekinović Grbeša Đ, Čabraja I, Kurolt IC, Halichidis S, Birlutiu V, Dumitru IM, Moroti R, Barac A, Stevanovic G, Pyrpasopoulou A, Koulouras V, Betica Radić L, Papanikolaou MN, Roilides E, Markotić A, Galal U, Denis E, Goodwin L, Turtle L, Florescu SA, Ramadani H, Goossens H, Ieven M, Drosten C, Horby PW, Sikkema RS, Koopmans MPG. Multi-antigen serology and a diagnostic algorithm for the detection of arbovirus infections as novel tools for arbovirus preparedness in southeast Europe (MERMAIDS-ARBO): a prospective observational study. THE LANCET. INFECTIOUS DISEASES 2025:S1473-3099(24)00654-6. [PMID: 39987930 DOI: 10.1016/s1473-3099(24)00654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND Arboviruses are increasingly affecting Europe, partly due to the effects of climate change. This increase in range and impact emphasises the need to improve preparedness for emerging arboviral infections that often co-circulate and might have overlapping clinical syndromes. We aimed to strengthen surveillance networks for four clinically relevant arboviruses in southeast Europe. METHODS This study reports an in-depth analysis of the MERMAIDS-ARBO prospective observational study in adults (ie, aged ≥18 years) hospitalised with an arbovirus-compatible disease syndrome in 21 hospitals in seven countries in southeast Europe over four arbovirus seasons (May 1-Oct 31, 2016-19) to obtain arbovirus prevalence outcomes. The main objectives of the MERMAIDS-ARBO study, describing the clinical management and outcomes of four arboviruses endemic to southeast Europe, including Crimean-Congo haemorrhagic fever virus (CCHFV), tick-borne encephalitis virus (TBEV), Toscana virus, and West Nile virus (WNV), are reported elsewhere. In this analysis, given the challenges associated with arbovirus diagnostics, we developed a diagnostic algorithm accounting for serology outcomes and sample timing to study arbovirus prevalence in southeast Europe. Serum samples were collected on days 0, 7, 28, and 60 after hospital admission and tested for anti-CCHFV IgG and IgM antibodies with ELISAs (confirmed with an indirect immunofluorescence test) and for IgG and IgM antibodies specific to TBEV, Toscana virus, and WNV with custom-printed protein microarrays (confirmed with virus neutralisation tests). All acute-phase samples were tested by PCR for all four viruses. Descriptive analyses were performed for virus-reactive cases by geography and year, and possible factors (eg, age, sex, and insect bites) associated with virus reactivity were assessed. FINDINGS Of 2896 individuals screened, 913 were eligible for inclusion, of whom 863 (514 men, 332 women, and 17 unknown) had samples sent to the study reference laboratories and were included in molecular and serological analyses. Some individuals had insufficient clinical data to be included in the clinical analysis, but met the eligibility criteria for and were included here. Serum sampling was incomplete (eg, samples missing from one or more timepoints or no data on time since symptom onset) for 602 (70%) patients, and the timing of collection was often heterogeneous after symptom onset up to 40 days (average median delay of 5-6 days across all timepoints), affecting the ability to diagnose arbovirus infection by serology. By use of an interpretation table incorporating timing and completeness of sampling, one (<1%) participant had a confirmed recent infection with CCHFV, ten (1%) with TBEV, 40 (5%) with Toscana virus, and 52 (6%) with WNV. Most acute confirmed infections of Toscana virus were found in Albania (25 [63%] of 40), whereas WNV was primarily identified in Romania (36 [69%] of 52). Albania also had the highest overall Toscana virus seropositivity (168 [60%] of 282), mainly explained by patients confirmed to be exposed or previously exposed (104 [62%] of 168). Patients without antibodies to WNV or Toscana virus were significantly younger than patients with antibodies (mean difference -8·48 years [95% CI -12·31 to -4·64] for WNV, and -6·97 years [-9·59 to -4·35] for Toscana virus). We found higher odds of Toscana virus reactivity in men (odds ratio 1·56 [95% CI 1·15 to 2·11]; p=0·0055), WNV reactivity with mosquito bites versus no mosquito bites (2·47 [1·54 to 3·97]; p=0·0002), and TBEV reactivity with tick bites versus no tick bites (2·21 [1·19 to 4·11]; p=0·018). INTERPRETATION This study shows that despite incomplete and heterogeneous data, differential diagnosis of suspected arbovirus infections is possible, and the diagnostic interpretation algorithm we propose could potentially be used to strengthen routine diagnostics in clinical settings in areas at risk for arboviral diseases. Our data highlight potential hotspots for arbovirus surveillance and risk factors associated with these particular arbovirus infections. FUNDING European Commission and Versatile Emerging infectious disease Observatory. TRANSLATIONS For the Greek, Albanian, Romanian, Bosnian, Serbian, and Croatian translation of the summary see Supplementary Materials section.
Collapse
Affiliation(s)
- Louella M R Kasbergen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands.
| | - Erwin de Bruin
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Felicity Chandler
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Louise Sigfrid
- ERGO, Pandemic Sciences Institute, University of Oxford, Oxford, UK; Policy and Practice Research Group, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Xin Hui S Chan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lauren Hookham
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jia Wei
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Siyu Chen
- Nuffield Department of Medicine, University of Oxford, Oxford, UK; High Meadows Environmental Institute, Princeton University, Princeton, NJ, US
| | | | - Sandra Scherbeijn
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Remi N Charrel
- Unite des Virus Emergents, Aix-Marseille Université, Universita di Corsica, IRD 190, Inserm 1207, IRBA, Marseille, France
| | - Nazli Ayhan
- Unite des Virus Emergents, Aix-Marseille Université, Universita di Corsica, IRD 190, Inserm 1207, IRBA, Marseille, France; Centre National de Référence des Arbovirus, Inserm-IRBA, Marseille, France
| | - James L Lee
- ERGO, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Victor M Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; German Center for Infection Research (DZIF), Berlin, Germany
| | - Chantal Reusken
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands; Centre for Infectious Disease Control, National Institute for Public Health and the Environment, RIVML, Bilthoven, Netherlands
| | - Katherine Loens
- Department of Medical Microbiology, University of Antwerp UIA, Antwerp, Belgium
| | - Corneliu Petru Popescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Mihaela Lupse
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; The Teaching Hospital for Infectious Diseases, Cluj-Napoca, Romania
| | - Violeta Briciu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania; The Teaching Hospital for Infectious Diseases, Cluj-Napoca, Romania
| | - Anca Meda Văsieşiu
- Department of Infectious Diseases, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Pellumb Pipero
- Department of Infectious Diseases, Mother Teresa University Hospital Center, Tirana, Albania
| | - Arjan Harxhi
- Faculty of Medicine, Medical University of Tirana, Tirana, Albania
| | - Edmond Puca
- Department of Infectious Diseases, Mother Teresa University Hospital Center, Tirana, Albania
| | | | - Maja Travar
- Department of Microbiology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Maja Ostojić
- School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Rusmir Baljic
- Unit for Infectious Disease, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Jurica Arapović
- School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina; Department of Infectious Diseases, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina
| | - Dragan Ledina
- Department of Infectious Diseases, University Hospital Split, Split, Croatia
| | | | - Ivica Čabraja
- Department of Infectious Diseases, Dr Josip Benčević General Hospital, Slavonski Brod, Croatia
| | | | - Stela Halichidis
- Clinical Infectious Diseases Hospital, Constanța, Romania; Faculty of Medicine, Ovidius University, Constanța, Romania
| | - Victoria Birlutiu
- Faculty of Medicine, Lucian Blaga University of Sibiu, Sibiu, Romania; County Clinical Emergency Hospital, Sibiu, Romania
| | - Irina M Dumitru
- Ovidius University of Constanța, Clinical Hospital of Infectious Diseases, Academy of Romanian Scientists, Bucharest, Romania
| | - Ruxandra Moroti
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; National Institute for Infectious Diseases Matei Bals, Bucharest, Romania
| | - Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Goran Stevanovic
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia; Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Vasilios Koulouras
- Intensive Care Unit, University Hospital of Ioannina, University of Ioannina, Ioannina, Greece
| | | | | | - Emmanuel Roilides
- Infectious Diseases Unit, Hippokration General Hospital, Thessaloniki, Greece
| | - Alemka Markotić
- Dr Fran Mihaljević University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, UK
| | - Emmanuelle Denis
- ERGO, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Lynsey Goodwin
- NIHR Health Protection Research Unit for Emerging Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit for Emerging Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Simin Aysel Florescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Dr Victor Babes Clinical Hospital of Infectious and Tropical Diseases, Bucharest, Romania
| | - Hamdi Ramadani
- Clinic of Infectious Diseases, University Clinical Center of Kosovo, Prishtina, Kosovo; Department of Infectious Diseases, University Clinical Centre, Pristina, Kosovo
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Margareta Ieven
- Department of Medical Microbiology, University of Antwerp UIA, Antwerp, Belgium; Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Peter W Horby
- ERGO, Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Reina S Sikkema
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Nobre T, Fenner ALD, Araújo ELL, de Araújo WN, Roux E, Handschumacher P, Gurgel H, Dallago B, Hecht M, Hagström L, Ramalho WM, Nitz N. Seroprevalence of dengue, Zika, and chikungunya in São Sebastião, Brazil (2020-2021): a population-based survey. BMC Infect Dis 2025; 25:129. [PMID: 39871200 PMCID: PMC11773905 DOI: 10.1186/s12879-025-10516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Urban arboviruses pose a significant global burden, particularly in tropical regions like Brazil. São Sebastião, a lower-middle-class urban area just 26 km from the Brazilian capital, is an endemic area for dengue. However, asymptomatic cases may obscure the actual extent of the disease. In this study, we measured the seroprevalence of dengue, Zika virus, and chikungunya, and compared these findings with surveillance data. METHODS A cross-sectional study was conducted involving 1,535 households. ELISA serological tests were performed to detect IgM and IgG antibodies against dengue, Zika virus, and chikungunya. History of previous exposure to arboviruses, data on age, gender, and education level were collected through a questionnaire. Participants who tested positive for IgM and/or IgG were classified as soropositive. Statistical analyses included tests for normality, associations, mean comparisons, and correlations. Positive serological results were compared with cases captured by local epidemiological surveillance. RESULTS The study included 1,405 individuals, divided into two groups related to pre-pandemic and pandemic COVID-19 phases. Among participants, 0.7% to 28.8% self-reported history of dengue, Zika, or chikungunya. However, the estimated overall seroprevalence was 64.3% (95% CI: 61.8-66.7) for dengue virus, 51.4% (95% CI: 48.8-53.9) for Zika virus, and 5.4% (95% CI: 4.4-6.7) for chikungunya virus. Multiple arboviruses were noted at 4.0% (95% CI: 3.1-5.1). Advancing age and lower education were associated with higher exposure to arboviruses (p < 0.05). The estimated number of urban arboviral infections was 84 times higher than reported cases. CONCLUSIONS The large gap between seroprevalence estimates and cases captured by epidemiological surveillance suggests a silent circulation of arboviruses, highlighting the need for comprehensive serological surveys in endemic regions. Addressing these discrepancies is crucial for effective resource allocation and implementation of public health interventions.
Collapse
Affiliation(s)
- Tayane Nobre
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Federal District, Brasília, Brazil
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
| | - Andre Luiz Dutra Fenner
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
| | | | - Wildo Navegantes de Araújo
- Center of Tropical Medicine, University of Brasília, Brasília, Federal District, Brazil
- Institute of Health Technology Assessment of the National Council for Scientific and Technological Development (IATS/CNPq), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Emmanuel Roux
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
- ESPACE-DEV (IRD - Univ Montpellier - Univ Guyane - Univ Reunion - Univ Antilles - Univ Avignon - Univ Perpignan Via Domitia), Montpellier, France
| | - Pascal Handschumacher
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
- UMR SESSTIM (IRD - INSERM - Univ Aix-Marseille), Marseille, France
| | - Helen Gurgel
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
- Department of Geography, University of Brasília, Brasília, Federal District, Brazil
| | - Bruno Dallago
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Federal District, Brasília, Brazil
| | - Mariana Hecht
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Federal District, Brasília, Brazil
| | - Luciana Hagström
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Federal District, Brasília, Brazil
| | - Walter Massa Ramalho
- International Joint Laboratory Sentinela, (University of Brasília, UnB - Oswaldo Cruz Foundation, Fiocruz - French national research institute for sustainable development, IRD), Brasília, Brazil; Montpellier, France; Rio de Janeiro, RJ, Federal District, Brazil
- Center of Tropical Medicine, University of Brasília, Brasília, Federal District, Brazil
| | - Nadjar Nitz
- Interdisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasília, Federal District, Brasília, Brazil.
| |
Collapse
|
7
|
Vilibic-Cavlek T, Bogdanic M, Savic V, Hruskar Z, Barbic L, Stevanovic V, Antolasic L, Milasincic L, Sabadi D, Miletic G, Coric I, Mrzljak A, Listes E, Savini G. Diagnosis of West Nile virus infections: Evaluation of different laboratory methods. World J Virol 2024; 13:95986. [PMID: 39722752 PMCID: PMC11551685 DOI: 10.5501/wjv.v13.i4.95986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/14/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The diagnosis of West Nile virus (WNV) is challenging due to short-term and low-level viremia, flavivirus cross-reactivity, and long immunoglobulin M (IgM) persistence. AIM To evaluate different methods for WNV detection [reverse transcription-polymerase chain reaction (RT-PCR), IgM/IgG antibodies, IgG avidity] in serum, cerebrospinal fluid (CSF), and urine samples of patients with confirmed WNV infection. METHODS The study included patients with confirmed WNV neuroinvasive infection (n = 62), asymptomatic WNV seropositive individuals (n = 22), and individuals with false-positive WNV IgM antibodies (n = 30). WNV RNA was detected using RT-PCR. A commercial ELISA was used to detect WNV IgM/IgG antibodies with confirmation of cross-reactive samples using a virus neutralization test (VNT). IgG-positive samples were tested for IgG avidity. RESULTS The WNV-RNA detection rates were significantly higher in the urine (54.5%)/serum (46.4%) than in CSF (32.2%). According to the sampling time, the WNV-RNA detection rates in urine collected within 7 days/8-14/≥ 15 days were 29.4/66.6/62.5% (P = 0.042). However, these differences were not observed in the CSF. The median RT-PCR cycle threshold values were significantly lower in urine (32.5, IQR = 28-34) than in CSF (34.5, IQR = 33-36). The frequency of positive WNV IgM and IgG significantly differed according to the sampling time in serum but not in CSF. Positive IgM/IgG antibodies were detected in 84.3/9.3% of serum samples collected within 7 days, 100/71.1% of samples collected 8-14, and 100% samples collected after ≥ 15 days. Recent WNV infection was confirmed by low/borderline avidity index (AI) in 13.6% of asymptomatic individuals. A correlation between ELISA and AI was strong negative for IgM and strong positive for IgG. No significant correlation between ELISA IgG and VNT was found. CONCLUSION The frequency of WNV RNA and antibody detection depends on the sampling time and type of clinical samples. IgG avidity could differentiate recent WNV infections from long-persisting IgM antibodies.
Collapse
Affiliation(s)
- Tatjana Vilibic-Cavlek
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Maja Bogdanic
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
| | - Vladimir Savic
- Poultry Center, Croatian Veterinary Institute, Zagreb 10000, Croatia
| | - Zeljka Hruskar
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Ljubo Barbic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine University of Zagreb, Zagreb 10000, Croatia
| | - Vladimir Stevanovic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine University of Zagreb, Zagreb 10000, Croatia
| | - Ljiljana Antolasic
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Ljiljana Milasincic
- Department of Virology, Croatian Institute of Public Health, Zagreb 10000, Croatia
| | - Dario Sabadi
- Department of Infectious Diseases, Clinical Hospital Center Osijek, Osijek 31000, Croatia
- Medical Faculty, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Gorana Miletic
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine University of Zagreb, Zagreb 10000, Croatia
| | - Ivona Coric
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine University of Zagreb, Zagreb 10000, Croatia
| | - Anna Mrzljak
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Department of Gastroenterology and Hepatology, University Hospital Center Zagreb, Zagreb 10000, Croatia
| | - Eddy Listes
- Croatian Veterinary Institute, Veterinary Institute Split, Split 21000, Croatia
| | - Giovanni Savini
- OIE Reference Center for West Nile Disease, Istituto Zooprofilattico Sperimentale, G. Caporale, Teramo 64100, Italy
| |
Collapse
|
8
|
Desai AN, Otter A, Koopmans M, Granata G, Grobusch MP, Tunali V, Astorri R, Jokelainen P, Greub G, Ergönül Ö, Valdoleiros SR, Rovers CP, Di Caro A, Pisapia R, Fusco FM, Pereira do Vale A, Krogfelt KA, Petersen E, Atkinson B. Oropouche virus: A re-emerging arbovirus of clinical significance. IJID REGIONS 2024; 13:100456. [PMID: 39507390 PMCID: PMC11539570 DOI: 10.1016/j.ijregi.2024.100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Affiliation(s)
- Angel N. Desai
- Division of Infectious Diseases, University of California Davis Health, Sacramento, CA, 95817
| | - Ashley Otter
- Emerging Pathogen Serology group, Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury, UK
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, UK
| | - Marion Koopmans
- Viroscience Department, Pandemic and Disaster Preparedness Centre, ErasmusMC, Rotterdam, The Netherlands
| | - Guido Granata
- Systemic and Immune Depression-Associated Infection Unit, Clinical and Research Department, National Institute for Infectious Diseases “L. Spallanzani”, IRCCS, 00149, Rome, Italy
| | - Martin P. Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health – Global Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Varol Tunali
- Faculty of Medicine, Department of Microbiology, Izmir University of Economics, Turkey
| | - Roberta Astorri
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy
| | - Pikka Jokelainen
- Infectious Disease Preparedness and One Health, Statens Serum Institut, Copenhagen, Denmark
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005, Lausanne, Switzerland
- Service of Infectious Diseases, University Hospital Center (CHUV), Lausanne, Switzerland
| | - Önder Ergönül
- Koç University İşbank Center for Infectious Diseases, Istanbul, Türkiye
- Department of Infectious Diseases and Clinical Microbiology, Koç University School of Medicine, Istanbul, Türkiye
| | - Sofia R. Valdoleiros
- Infectious Diseases Department, Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Chantal P. Rovers
- Department of Internal Medicine, Division of Infectious Diseases, and Radboudumc Community of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Antonino Di Caro
- Unicamillus - International University of Medical Science, 00131, Rome, Italy
- Infectious Diseases and Tropical Medicine Department, IRCCS Sacro Cuore Don Calabria Hospital, 37024, Negrar di Valpolicella (Verona), Italy
| | - Raffaella Pisapia
- Emerging and highly contagious infectious diseases Unit. "D. Cotugno" Hospital, Azienda Ospedaliera dei Colli, Naples, Italy
| | - Francesco Maria Fusco
- Systemic infection and infections of immunocompromised host "D. Cotugno" Hospital, Azienda Ospedaliera dei Colli, Naples, Italy
| | - Ana Pereira do Vale
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karen A. Krogfelt
- Department of Science and Environment, PandemiXcenter, Roskilde University, Denmark
| | - Eskild Petersen
- Department of Science and Environment, PandemiXcenter, Roskilde University, Denmark
| | - Barry Atkinson
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, UK
- Diagnostics and Pathogen Characterisation, UK Health Security Agency, Porton Down, Salisbury, UK
| |
Collapse
|
9
|
Desai AN, Otter A, Koopmans M, Granata G, Grobusch MP, Tunali V, Astorri R, Jokelainen P, Greub G, Ergönül Ö, Valdoleiros SR, Rovers CP, Caro AD, Pisapia R, Fusco FM, Vale APD, Krogfelt KA, Petersen E, Atkinson B. Oropouche virus: A re-emerging arbovirus of clinical significance. Int J Infect Dis 2024; 149:107251. [PMID: 39453835 DOI: 10.1016/j.ijid.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024] Open
Affiliation(s)
- Angel N Desai
- Division of Infectious Diseases, University of California Davis Health, Sacramento, CA 95817.
| | - Ashley Otter
- Emerging Pathogen Serology group, Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury, UK; NIHR Health Protection Research Unit in Emerging Zoonotic Infections, UK
| | - Marion Koopmans
- Viroscience Department, Pandemic and Disaster Preparedness Centre, ErasmusMC, Rotterdam, The Netherlands
| | - Guido Granata
- Systemic and Immune Depression-Associated Infection Unit, Clinical and Research Department, National Institute for Infectious Diseases "L. Spallanzani", IRCCS, 00149 Rome, Italy
| | - Martin P Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Amsterdam University Medical Centers, location University of Amsterdam, Amsterdam Infection & Immunity, Amsterdam Public Health - Global Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Varol Tunali
- Faculty of Medicine, Department of Microbiology, Izmir University of Economics, Turkey
| | - Roberta Astorri
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania "Luigi Vanvitelli", 80131 Naples, Italy
| | - Pikka Jokelainen
- Infectious Disease Preparedness and One Health, Statens Serum Institut, Copenhagen, Denmark
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center (CHUV), 1005 Lausanne, Switzerland; Service of Infectious Diseases, University Hospital Center (CHUV), Lausanne, Switzerland
| | - Önder Ergönül
- Koç University İşbank Center for Infectious Diseases, Istanbul, Türkiye; Department of Infectious Diseases and Clinical Microbiology, Koç University School of Medicine, Istanbul, Türkiye
| | - Sofia R Valdoleiros
- Infectious Diseases Department, Centro Hospitalar Universitário de São João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
| | - Chantal P Rovers
- Department of Internal Medicine, Division of Infectious Diseases, and Radboudumc Community of Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Antonino Di Caro
- Unicamillus - International University of Medical Science, 00131 Rome, Italy; Infectious Diseases and Tropical Medicine Department, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| | - Raffaella Pisapia
- Emerging and highly contagious infectious diseases Unit. "D. Cotugno" Hospital, Azienda Ospedaliera dei Colli, Naples, Italy
| | - Francesco Maria Fusco
- Systemic infection and infections of immunocompromised host "D. Cotugno" Hospital, Azienda Ospedaliera dei Colli, Naples, Italy
| | - Ana Pereira do Vale
- Veterinary Sciences Centre, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karen A Krogfelt
- Department of Science and Environment, PandemiXcenter, Roskilde University, Denmark
| | - Eskild Petersen
- Department of Science and Environment, PandemiXcenter, Roskilde University, Denmark
| | - Barry Atkinson
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, UK; Diagnostics and Pathogen Characterisation, UK Health Security Agency, Porton Down, Salisbury, UK
| |
Collapse
|
10
|
de la Calle-Prieto F, Arsuaga M, Rodríguez-Sevilla G, Paiz NS, Díaz-Menéndez M. The current status of arboviruses with major epidemiological significance in Europe. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:516-526. [PMID: 39505461 DOI: 10.1016/j.eimce.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/10/2024] [Indexed: 11/08/2024]
Abstract
Currently, an increasing impact of some arboviruses has been observed in Europe, mainly Dengue (DENV), Chikungunya (CHIKV), Zika (ZIKV), West Nile (WNV), and Crimean-Congo hemorrhagic fever (CCHFV) analyzed through a One Health perspective that considers their expansion across the continent. Arboviruses are primarily transmitted by vectors such as mosquitoes and ticks, with human activities and climate change playing crucial roles in their spread. The review highlights the ecological and epidemiological aspects of arboviruses, emphasizing the roles of diverse hosts and reservoirs, including humans, animals, and vectors, in their life cycles. The influence of climate change on the ecology of the vector, which potentially favors the arbovirus transmission, is also reviewed. Focusing on diagnosis, prevention and in the absence of specific treatments, the importance of understanding vector-host interactions and environmental impacts to develop effective control and prevention strategies is emphasized. Ongoing research on vaccines and therapies is crucial to mitigate the public health impact of these diseases.
Collapse
Affiliation(s)
- Fernando de la Calle-Prieto
- National Referral Unit for Imported Diseases and International Health, High Level Isolation Unit, La Paz-Carlos III-CB University Hospital, Madrid, Spain; CIBERINFEC, Spain.
| | - Marta Arsuaga
- National Referral Unit for Imported Diseases and International Health, High Level Isolation Unit, La Paz-Carlos III-CB University Hospital, Madrid, Spain; CIBERINFEC, Spain
| | | | - Nancy Sandoval Paiz
- Internal Medicine-Infectious Diseases MSc, Tropical Parasitic Diseases, Roosevelt Hospital, Guatemala City, GT, United States
| | - Marta Díaz-Menéndez
- National Referral Unit for Imported Diseases and International Health, High Level Isolation Unit, La Paz-Carlos III-CB University Hospital, Madrid, Spain; CIBERINFEC, Spain
| |
Collapse
|
11
|
Bangoura ST, Sidibé S, Kaba L, Mbaye A, Hounmenou CG, Diallo A, Camara SC, Diaby M, Kadio KJJO, D’Ortenzio E, Camara A, Vanhems P, Delamou A, Delaporte E, Keita AK, Ottmann M, Touré A, Khanafer N. Seroprevalence of seven arboviruses of public health importance in sub-Saharan Africa: a systematic review and meta-analysis. BMJ Glob Health 2024; 9:e016589. [PMID: 39486798 PMCID: PMC11529691 DOI: 10.1136/bmjgh-2024-016589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/26/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND The arboviruses continue to be a threat to public health and socioeconomic development in sub-Saharan Africa (SSA). Seroprevalence surveys can be used as a population surveillance strategy for arboviruses in the absence of treatment and vaccines for most arboviruses, guiding the public health interventions. The objective of this study was to analyse the seroprevalence of arboviruses in SSA through a systematic review and meta-analysis. METHODS We searched PubMed/MEDLINE, Web of Science, Embase, Scopus and ScienceDirect databases for articles published between 2000 and 2022 reporting the seroprevalence of immunoglobulin G (IgG) antibodies to seven arboviruses in various human populations residing in SSA. The included studies were assessed using the checklist for assessing the risk of bias in prevalence studies, and the data were extracted using a standard form. A random effects model was used to estimate pooled seroprevalences. The potential sources of heterogeneity were explored through subgroup analyses and meta-regression. The protocol had been previously registered on International Prospective Register of Systematic Reviews with the identifier: CRD42022377946. RESULTS A total of 165 studies from 27 countries, comprising 186 332 participants, were included. Of these, 141 were low-risk and 24 were moderate-risk. The pooled IgG seroprevalence was 23.7% (17.9-30.0%) for Chikungunya virus, 22.7% (17.5-28.4%) for dengue virus, 22.6% (14.1-32.5%) for West Nile virus, 16.4% (7.1-28.5%) for yellow fever virus, 13.1% (6.4-21.7%) for Zika virus, 9.2% (6.5-12.3%) for Rift Valley fever virus and 6.0% (3.1-9.7) for Crimean-Congo haemorrhagic fever virus. Subgroup and meta-regression analyses showed that seroprevalence differed considerably between countries, study populations, specific age categories, sample sizes and laboratory methods. CONCLUSION This SRMA provides information on the significant circulation of various arboviruses in SSA, which is essential for the adoption and planning of vaccines. These findings suggest the need to invest in surveillance and research activities on arbovirus in SSA countries to increase our understanding of their epidemiology to prevent and respond to future epidemics.
Collapse
Affiliation(s)
- Salifou Talassone Bangoura
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Sidikiba Sidibé
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Lanceï Kaba
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
| | - Aminata Mbaye
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
| | | | - Alhassane Diallo
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | | | - Maladho Diaby
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Kadio Jean-Jacques Olivier Kadio
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Eric D’Ortenzio
- ANRS Maladies infectieuses émergentes (ANRS MIE), Inserm, Paris, France
- AP-HP, Hôpital Bichat, Service de maladies infectieuses et tropicales, Paris, France
| | - Alioune Camara
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Philippe Vanhems
- Infection Control Unit, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- PHE3ID team, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon 1 University, Lyon, France
| | - Alexandre Delamou
- African Centre of Excellence in the Prevention and Control of Communicable Diseases (CEA-PCMT), Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
- National Center for Training and Research in Rural Health of Maferinyah, Forécariah, Guinea
| | - Eric Delaporte
- TransVIHMI, Université de Montpellier-INSERM-IRD, Montpellier, France
| | - Alpha-Kabinet Keita
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
| | - Michèle Ottmann
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Abdoulaye Touré
- Centre de Recherche et de Formation en Infectiologie de Guinée, Conakry, Guinea
- Public Health Department, Faculty of Sciences and Health Techniques, Gamal Abdel Nasser University, Conakry, Guinea
| | - Nagham Khanafer
- Infection Control Unit, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
- PHE3ID team, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, ENS de Lyon, Lyon 1 University, Lyon, France
| |
Collapse
|
12
|
De Kesel W, Vanden Broecke B, Borremans B, Fourchault L, Willems E, Ceulemans A, Sabuni C, Massawe A, Makundi RH, Leirs H, Peeters M, Verheyen E, Gryseels S, Mariën J, Ariën KK. Antibodies against medically relevant arthropod-borne viruses in the ubiquitous African rodent Mastomys natalensis. PLoS Negl Trop Dis 2024; 18:e0012233. [PMID: 39231158 PMCID: PMC11404846 DOI: 10.1371/journal.pntd.0012233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/16/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Over the past decades, the number of arthropod-borne virus (arbovirus) outbreaks has increased worldwide. Knowledge regarding the sylvatic cycle (i.e., non-human hosts/environment) of arboviruses is limited, particularly in Africa, and the main hosts for virus maintenance are unknown. Previous studies have shown the presence of antibodies against certain arboviruses (i.e., chikungunya-, dengue-, and Zika virus) in African non-human primates and bats. We hypothesize that small mammals, specifically rodents, may function as amplifying hosts in anthropogenic environments. The detection of RNA of most arboviruses is complicated by the viruses' short viremic period within their hosts. An alternative to determine arbovirus hosts is by detecting antibodies, which can persist several months. Therefore, we developed a high-throughput multiplex immunoassay to detect antibodies against 15 medically relevant arboviruses. We used this assay to assess approximately 1,300 blood samples of the multimammate mouse, Mastomys natalensis from Tanzania. In 24% of the samples, we detected antibodies against at least one of the tested arboviruses, with high seroprevalences of antibodies reacting against dengue virus serotype one (7.6%) and two (8.4%), and chikungunya virus (6%). Seroprevalence was higher in females and increased with age, which could be explained by inherent immunity and behavioral differences between sexes, and the increased chance of exposure to an arbovirus with age. We evaluated whether antibodies against multiple arboviruses co-occur more often than randomly and found that this may be true for some members of the Flaviviridae and Togaviridae. In conclusion, the development of an assay against a wide diversity of medically relevant arboviruses enabled the analysis of a large sample collection of one of the most abundant African small mammals. Our findings highlight that Mastomys natalensis is involved in the transmission cycle of multiple arboviruses and provide a solid foundation to better understand the role of this ubiquitous rodent in arbovirus outbreaks.
Collapse
Affiliation(s)
- Wim De Kesel
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bram Vanden Broecke
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Benny Borremans
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Wildlife Health Ecology Research Organization, San Diego, California, United States of America
| | - Léa Fourchault
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Elisabeth Willems
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ann Ceulemans
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Virus Ecology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christopher Sabuni
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Apia Massawe
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rhodes H Makundi
- Institute of Pest Management, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
| | - Martine Peeters
- TransVIHMI, University of Montpellier, Institut de Recherche pour le Développement (IRD), INSERM, Montpellier, France
| | - Erik Verheyen
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Sophie Gryseels
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- OD Taxonomy & Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Joachim Mariën
- Evolutionary Ecology Group, Department of Biology, Faculty of Science, University of Antwerp, Antwerp, Belgium
- Virus Ecology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Nigussie E, Atlaw D, Negash G, Gezahegn H, Baressa G, Tasew A, Zembaba D. A dengue virus infection in Ethiopia: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:297. [PMID: 38448847 PMCID: PMC10918862 DOI: 10.1186/s12879-024-09142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Dengue is caused by a positive-stranded RNA virus called dengue virus, which is spread by Aedes mosquito species. It is a fast-growing acute febrile disease with potentially lethal consequences that is a global public health problem, mostly in tropical and subtropical countries. In Ethiopia, dengue fever is understudied, although the virus is still being transmitted and viral infection rates are rising. This systematic review and meta-analysis was aimed at estimating the pooled prevalence of DENV infection in Ethiopia. METHODS A literature search was done on the PubMed, Hinari and Google Scholar databases to identify studies published before July, 2023. Random effects and fixed effects models were used to estimate the pooled prevalence of all three markers. The Inconsistency Index was used to assess the level of heterogeneity. RESULTS A total of 11 studies conducted on suspected individuals with dengue fever and acutely febrile participants were included in this review. The majority of the studies had a moderate risk of bias and no study had a high risk of bias. A meta-analysis estimated a pooled IgG prevalence of 21% (95% CI: 19-23), a pooled IgM prevalence of 9% (95%CI: 4-13) and a pooled DENV-RNA prevalence of 48% (95% CI: 33-62). There is evidence of possible publication bias in IgG but not in the rest of the markers. CONCLUSION Dengue is prevalent among the dengue fever suspected and febrile population in Ethiopia. Healthcare providers, researchers and policymakers should give more attention to dengue fever.
Collapse
Affiliation(s)
- Eshetu Nigussie
- Department of Medical Laboratory Science, School of Medicine, Madda Walabu University, Addis Ababa, Ethiopia.
| | - Daniel Atlaw
- Department of Biomedical Science, School of Medicine, Madda Walabu University, Addis Ababa, Ethiopia
| | - Getahun Negash
- Department of Medical Laboratory Science, School of Medicine, Madda Walabu University, Addis Ababa, Ethiopia
| | - Habtamu Gezahegn
- Department of Biomedical Science, School of Medicine, Madda Walabu University, Addis Ababa, Ethiopia
| | - Girma Baressa
- Department of Public Health, School of Health Science, Madda Walabu University, Addis Ababa, Ethiopia
| | - Alelign Tasew
- Department of Public Health, School of Health Science, Madda Walabu University, Addis Ababa, Ethiopia
| | - Demisu Zembaba
- Department of Public Health, School of Health Science, Madda Walabu University, Addis Ababa, Ethiopia
| |
Collapse
|
14
|
Merakou C, Amendola A, Fortuna C, Marsili G, Fiorentini C, Argentini C, Benedetti E, Rezza G, Maraglino F, Del Manso M, Bella A, Pezzotti P, Riccardo F, Palamara AT, Venturi G, Group TAW. Diagnosis of Imported Dengue and Zika Virus Infections in Italy from November 2015 to November 2022: Laboratory Surveillance Data from a National Reference Laboratory. Viruses 2023; 16:50. [PMID: 38257751 PMCID: PMC10818496 DOI: 10.3390/v16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Dengue (DENV) and Zika (ZIKV) viruses are mosquito-borne human pathogens. In Italy, the presence of the competent vector Aedes albopictus increases the risk of autochthonous transmission, and a national plan for arboviruses prevention, surveillance, and response (PNA 2020-2025) is in place. The results of laboratory diagnosis of both viruses by the National Reference Laboratory for arboviruses (NRLA) from November 2015 to November 2022 are presented. Samples from 655 suspected cases were tested by both molecular and serological assays. Virus and antibody kinetics, cross-reactivity, and diagnostic performance of IgM ELISA systems were analysed. Of 524 cases tested for DENV, 146 were classified as confirmed, 7 as probable, while 371 were excluded. Of 619 cases tested for ZIKV, 44 were classified as confirmed, while 492 were excluded. All cases were imported. Overall, 75.3% (110/146) of DENV and 50% (22/44) of ZIKV cases were confirmed through direct virus detection methods. High percentages of cross reactivity were observed between the two viruses. The median lag time from symptoms onset to sample collection was 7 days for both DENV molecular (range 0-20) and NS1 ELISA (range 0-48) tests, with high percentages of positivity also after 7 days (39% and 67%, respectively). For ZIKV, the median lag time was 5 days (range 0-22), with 16% positivity after 7 days. Diagnostic performance was assessed with negative predictive values ranging from 92% to 95% for the anti-DENV systems, and of 97% for the ZIKV one. Lower positive predictive values were seen in the tested population (DENV: 55% to 91%, ZIKV: 50%). DENV and ZIKV diagnosis by molecular test is the gold standard, but sample collection time is a limitation. Serological tests, including Plaque Reduction Neutralization Test, are thus necessary. Co-circulation and cross-reactivity between the two viruses increase diagnostic difficulty. Continuous evaluation of diagnostic strategies is essential to improve laboratory testing.
Collapse
Affiliation(s)
- Christina Merakou
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
- ECDC Fellowship Programme, Public Health Microbiology Path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), 16973 Stockholm, Sweden
| | - Antonello Amendola
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Claudia Fortuna
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Giulia Marsili
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Cristiano Fiorentini
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Claudio Argentini
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Eleonora Benedetti
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Gianni Rezza
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Francesco Maraglino
- General Directorate for Health Prevention, Prevention of the Communicable Diseases and International Prophylaxis, Ministry of Health, 00144 Rome, Italy
| | - Martina Del Manso
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Antonino Bella
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Patrizio Pezzotti
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Flavia Riccardo
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | - Giulietta Venturi
- Department of Infectious Diseases, Italian National Institute of Health (ISS), 00161 Rome, Italy (A.A.); (C.A.); (A.B.)
| | | |
Collapse
|