1
|
Kesarwani M, Kincaid Z, Azhar M, Menke J, Schwieterman J, Ansari S, Reaves A, Deininger ME, Levine R, Grimes HL, Azam M. MAPK-negative feedback regulation confers dependence to JAK2 V617F signaling. Leukemia 2023; 37:1686-1697. [PMID: 37430058 PMCID: PMC10976185 DOI: 10.1038/s41375-023-01959-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
Despite significant advances in developing selective JAK2 inhibitors, JAK2 kinase inhibitor (TKI) therapy is ineffective in suppressing the disease. Reactivation of compensatory MEK-ERK and PI3K survival pathways sustained by inflammatory cytokine signaling causes treatment failure. Concomitant inhibition of MAPK pathway and JAK2 signaling showed improved in vivo efficacy compared to JAK2 inhibition alone but lacked clonal selectivity. We hypothesized that cytokine signaling in JAK2V617F induced MPNs increases the apoptotic threshold that causes TKI persistence or refractoriness. Here, we show that JAK2V617F and cytokine signaling converge to induce MAPK negative regulator, DUSP1. Enhanced DUSP1 expression blocks p38 mediated p53 stabilization. Deletion of Dusp1 increases p53 levels in the context of JAK2V617F signaling that causes synthetic lethality to Jak2V617F expressing cells. However, inhibition of Dusp1 by a small molecule inhibitor (BCI) failed to impart Jak2V617F clonal selectivity due to pErk1/2 rebound caused by off-target inhibition of Dusp6. Ectopic expression of Dusp6 and BCI treatment restored clonal selectively and eradicated the Jak2V617F cells. Our study shows that inflammatory cytokines and JAK2V617F signaling converge to induce DUSP1, which downregulates p53 and establishes a higher apoptotic threshold. These data suggest that selectively targeting DUSP1 may provide a curative response in JAK2V617F-driven MPN.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Zachary Kincaid
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Mohammad Azhar
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Jacob Menke
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | | | - Sekhu Ansari
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Angela Reaves
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Michael E Deininger
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ross Levine
- Center for Hematologic Malignancies, and Molecular Cancer Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Mohammad Azam
- Division of Pathology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA.
| |
Collapse
|
2
|
The accumulation of miR-125b-5p is indispensable for efficient erythroblast enucleation. Cell Death Dis 2022; 13:886. [PMID: 36270980 PMCID: PMC9586935 DOI: 10.1038/s41419-022-05331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022]
Abstract
Erythroblast enucleation is a precisely regulated but not clearly understood process. Polycythemia shows pathological erythroblast enucleation, and we discovered a low miR-125b-5p level in terminal erythroblasts of patients with polycythemia vera (PV) compared to those of healthy controls. Exogenous upregulation of miR-125b-5p levels restored the enucleation rate to normal levels. Direct downregulation of miR-125b-5p in mouse erythroblasts simulated the enucleation issue found in patients with PV, and miR-125b-5p accumulation was found in enucleating erythroblasts, collectively suggesting the importance of miR-125b-5p accumulation for erythroblast enucleation. To elucidate the role of miR-125b-5p in enucleation, gain- and loss-of-function studies were performed. Overexpression of miR-125b-5p improved the enucleation of erythroleukemia cells and primary erythroblasts. Infused erythroblasts with higher levels of miR-125b-5p also exhibited accelerated enucleation. In contrast, miR-125b-5p inhibitors significantly suppressed erythrocyte enucleation. Intracellular imaging revealed that in addition to cytoskeletal assembly and nuclear condensation, miR-125b-5p overexpression resulted in mitochondrial reduction and depolarization. Real-time PCR, western blot analysis, luciferase reporter assays, small molecule inhibitor supplementation and gene rescue assays revealed that Bcl-2, as a direct target of miR-125b-5p, was one of the key mediators of miR-125b-5p during enucleation. Following suppression of Bcl-2, the activation of caspase-3 and subsequent activation of ROCK-1 resulted in cytoskeletal rearrangement and enucleation. In conclusion, this study is the first to reveal the pivotal role of miR-125b-5p in erythroblast enucleation.
Collapse
|
3
|
Lee S, Wong H, Castiglione M, Murphy M, Kaushansky K, Zhan H. JAK2V617F Mutant Megakaryocytes Contribute to Hematopoietic Aging in a Murine Model of Myeloproliferative Neoplasm. Stem Cells 2022; 40:359-370. [PMID: 35260895 PMCID: PMC9199841 DOI: 10.1093/stmcls/sxac005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022]
Abstract
Megakaryocytes (MKs) is an important component of the hematopoietic niche. Abnormal MK hyperplasia is a hallmark feature of myeloproliferative neoplasms (MPNs). The JAK2V617F mutation is present in hematopoietic cells in a majority of patients with MPNs. Using a murine model of MPN in which the human JAK2V617F gene is expressed in the MK lineage, we show that the JAK2V617F-bearing MKs promote hematopoietic stem cell (HSC) aging, manifesting as myeloid-skewed hematopoiesis with an expansion of CD41+ HSCs, a reduced engraftment and self-renewal capacity, and a reduced differentiation capacity. HSCs from 2-year-old mice with JAK2V617F-bearing MKs were more proliferative and less quiescent than HSCs from age-matched control mice. Examination of the marrow hematopoietic niche reveals that the JAK2V617F-bearing MKs not only have decreased direct interactions with hematopoietic stem/progenitor cells during aging but also suppress the vascular niche function during aging. Unbiased RNA expression profiling reveals that HSC aging has a profound effect on MK transcriptomic profiles, while targeted cytokine array shows that the JAK2V617F-bearing MKs can alter the hematopoietic niche through increased levels of pro-inflammatory and anti-angiogenic factors. Therefore, as a hematopoietic niche cell, MKs represent an important connection between the extrinsic and intrinsic mechanisms for HSC aging.
Collapse
Affiliation(s)
- Sandy Lee
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY, USA
| | - Helen Wong
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY, USA
| | | | | | - Kenneth Kaushansky
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA
- Medical Service, Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
4
|
Beyersdorf J, Bawage S, Iglesias N, Peck HE, Hobbs RA, Wroe JA, Zurla C, Gersbach CA, Santangelo PJ. Robust, Durable Gene Activation In Vivo via mRNA-Encoded Activators. ACS NANO 2022; 16:5660-5671. [PMID: 35357116 PMCID: PMC9047660 DOI: 10.1021/acsnano.1c10631] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 05/16/2023]
Abstract
Programmable control of gene expression via nuclease-null Cas9 fusion proteins has enabled the engineering of cellular behaviors. Here, both transcriptional and epigenetic gene activation via synthetic mRNA and lipid nanoparticle delivery was demonstrated in vivo. These highly efficient delivery strategies resulted in high levels of activation in multiple tissues. Finally, we demonstrate durable gene activation in vivo via transient delivery of a single dose of a gene activator that combines VP64, p65, and HSF1 with a SWI/SNF chromatin remodeling complex component SS18, representing an important step toward gene-activation-based therapeutics. This induced sustained gene activation could be inhibited via mRNA-encoded AcrIIA4, further improving the safety profile of this approach.
Collapse
Affiliation(s)
- Jared
P. Beyersdorf
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Krone Engineering Biosystems Building, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Swapnil Bawage
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Krone Engineering Biosystems Building, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Nahid Iglesias
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Hannah E. Peck
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Krone Engineering Biosystems Building, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Ryan A. Hobbs
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Krone Engineering Biosystems Building, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Jay A. Wroe
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Krone Engineering Biosystems Building, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Chiara Zurla
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Krone Engineering Biosystems Building, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Charles A. Gersbach
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Center
for Advanced Genomic Technologies, Duke
University, Durham, North Carolina 27708, United States
- Department
of Surgery, Duke University Medical Center, Durham, North Carolina 27708, United States
| | - Philip J. Santangelo
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Krone Engineering Biosystems Building, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| |
Collapse
|
5
|
Accurso V, Santoro M, Mancuso S, Vajana G, Tomasello R, Rotolo C, Camarda G, Mattana M, Siragusa S. Familial essential thrombocythemia: 6 cases from a mono-institutional series. Clin Case Rep 2022; 10:e05525. [PMID: 35251652 PMCID: PMC8886651 DOI: 10.1002/ccr3.5525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/27/2022] [Accepted: 02/14/2022] [Indexed: 02/02/2023] Open
Abstract
Rarely essential thrombocythemia (ET) is diagnosed in more than one person within a family. Familial myeloproliferative neoplasms are underdiagnosed. In this report, we describe 6 couples of familial ET, evaluating the heterogeneity of the mutational state and the clinical presentation.
Collapse
Affiliation(s)
- Vincenzo Accurso
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Marco Santoro
- Hematology UnitDepartment of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
| | - Salvatrice Mancuso
- Hematology UnitDepartment of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
| | - Giorgia Vajana
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Riccardo Tomasello
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Cristina Rotolo
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Giulia Camarda
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Marta Mattana
- Hematology Division University Hospital Policlinico "Paolo Giaccone"PalermoItaly
| | - Sergio Siragusa
- Hematology UnitDepartment of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE)University of PalermoPalermoItaly
| |
Collapse
|
6
|
Calabresi L, Balliu M, Bartalucci N. Immunoblotting-assisted assessment of JAK/STAT and PI3K/Akt/mTOR signaling in myeloproliferative neoplasms CD34+ stem cells. Methods Cell Biol 2022; 171:81-109. [DOI: 10.1016/bs.mcb.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Zhang H, Yeware A, Lee S, Zhan H. A Murine Model With JAK2V617F Expression in Both Hematopoietic Cells and Vascular Endothelial Cells Recapitulates the Key Features of Human Myeloproliferative Neoplasm. Front Oncol 2021; 11:753465. [PMID: 34765558 PMCID: PMC8576565 DOI: 10.3389/fonc.2021.753465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The myeloproliferative neoplasms (MPNs) are characterized by an expansion of the neoplastic hematopoietic stem/progenitor cells (HSPC) and an increased risk of cardiovascular complications. The acquired kinase mutation JAK2V617F is present in hematopoietic cells in a majority of patients with MPNs. Vascular endothelial cells (ECs) carrying the JAK2V617F mutation can also be detected in patients with MPNs. In this study, we show that a murine model with both JAK2V617F-bearing hematopoietic cells and JAK2V617F-bearing vascular ECs recapitulated all the key features of the human MPN disease, which include disease transformation from essential thrombocythemia to myelofibrosis, extramedullary splenic hematopoiesis, and spontaneous cardiovascular complications. We also found that, during aging and MPN disease progression, there was a loss of both HSPC number and HSPC function in the marrow while the neoplastic hematopoiesis was relatively maintained in the spleen, mimicking the advanced phases of human MPN disease. Different vascular niche of the marrow and spleen could contribute to the different JAK2V617F mutant stem cell functions we have observed in this JAK2V617F-positive murine model. These results indicate that the spleen is functionally important for the JAK2V617F mutant neoplastic hematopoiesis during aging and MPN disease progression. Compared to other MPN murine models reported so far, our studies demonstrate that JAK2V617F-bearing vascular ECs play an important role in both the hematologic and cardiovascular abnormalities of MPN.
Collapse
Affiliation(s)
- Haotian Zhang
- Graduate Program in Molecular & Cellular Biology, Stony Brook University, Stony Brook, NY, United States
| | - Amar Yeware
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, United States
| | - Sandy Lee
- Graduate Program in Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, NY, United States
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, United States.,Medical Service, Northport VA Medical Center, Northport, NY, United States
| |
Collapse
|
8
|
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell (HSC) disorders with overproduction of mature myeloid blood cells, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). In 2005, several groups identified a single gain-of-function point mutation JAK2V617F in the majority of MPN patients. The JAK2V617F mutation confers cytokine independent proliferation to hematopoietic progenitor cells by constitutively activating canonical and non-canonical downstream pathways. In this chapter, we focus on (1) the regulation of JAK2, (2) the molecular mechanisms used by JAK2V617F to induce MPNs, (3) the factors that are involved in the phenotypic diversity in MPNs, and (4) the effects of JAK2V617F on hematopoietic stem cells (HSCs). The discovery of the JAK2V617F mutation led to a comprehensive understanding of MPN; however, the question still remains about how one mutation can give rise to three distinct disease entities. Various mechanisms have been proposed, including JAK2V617F allele burden, differential STAT signaling, and host genetic modifiers. In vivo modeling of JAK2V617F has dramatically enhanced the understanding of the pathophysiology of the disease and provided the pre-clinical platform. Interestingly, most of these models do not show an increased hematopoietic stem cell self-renewal and function compared to wildtype controls, raising the question of whether JAK2V617F alone is sufficient to give a clonal advantage in MPN patients. In addition, the advent of modern sequencing technologies has led to a broader understanding of the mutational landscape and detailed JAK2V617F clonal architecture in MPN patients.
Collapse
|
9
|
Waksal JA, Tremblay D, Mascarenhas J. Clinical Utility of Fedratinib in Myelofibrosis. Onco Targets Ther 2021; 14:4509-4521. [PMID: 34456572 PMCID: PMC8387309 DOI: 10.2147/ott.s267001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Myelofibrosis (MF) is a clonal hematologic malignancy characterized by bone marrow fibrosis, extramedullary hematopoiesis, splenomegaly, and constitutional symptoms with a propensity towards leukemic transformation. Constitutive activation of the JAK/STAT pathway is a well-described pathogenic feature of MF. Allogeneic stem cell transplant is the only curative therapy, but due to high morbidity and mortality this option is not available for most patients. There are two approved targeted therapy options for MF, ruxolitinib and fedratinib. In this review, we discuss the clinical utility of fedratinib in the myelofibrosis treatment paradigm. Fedratinib has shown impressive pre-clinical and clinical efficacy in patients with untreated MF as well as in those with ruxolitinib intolerance and those with relapsed/refractory MF. Here, we review the pre-clinical and clinical trials that led to the approval of fedratinib, and the ongoing late-phase trials. We highlight several areas regarding the clinical utility of fedratinib that remain unanswered. We discuss the limitations of fedratinib and address areas that are understudied and require further clinical evaluation and research. The approval of fedratinib has provided a significant expansion to the very limited treatment armamentarium available to patients with MF.
Collapse
Affiliation(s)
- Julian A Waksal
- Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John Mascarenhas
- Department of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Benlabiod C, Dagher T, Marty C, Villeval JL. Lessons from mouse models of MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:125-185. [PMID: 35153003 DOI: 10.1016/bs.ircmb.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past decades, a variety of MPN mouse models have been developed to express in HSC the main mutations identified in patients: JAK2V617F, CALRdel52 or ins5 and MPLW515L. These models mimic quite faithfully human PV or ET with their natural evolutions into MF and their hemostasis complications, demonstrating the driver function of these mutations in MPN. Here, we review these models and show how they have improved our general understanding of MPN regarding (1) the mechanisms of fibrosis, thrombosis/hemorrhages and disease initiation, (2) the roles of additional mutations and signaling pathways in disease progression and (3) the preclinical development of novel therapies. We also address controversial results between these models and remind how these models may differ from human MPN onset and also how basically mice are not humans, encouraging caution when one draw lessons from mice to humans. Furthermore, the contribution of germline genetic predisposition, HSC and niche aging, metabolic, oxidative, replicative or genotoxic stress, inflammation, immune escape and additional mutations need to be considered in further investigations to encompass the full complexity of human MPN in mice.
Collapse
Affiliation(s)
- Camelia Benlabiod
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Tracy Dagher
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| | - Jean-Luc Villeval
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| |
Collapse
|
11
|
Baik R, Wyman SK, Kabir S, Corn JE. Genome editing to model and reverse a prevalent mutation associated with myeloproliferative neoplasms. PLoS One 2021; 16:e0247858. [PMID: 33661998 PMCID: PMC7932127 DOI: 10.1371/journal.pone.0247858] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) cause the over-production of blood cells such as erythrocytes (polycythemia vera) or platelets (essential thrombocytosis). JAK2 V617F is the most prevalent somatic mutation in many MPNs, but previous modeling of this mutation in mice relied on transgenic overexpression and resulted in diverse phenotypes that were in some cases attributed to expression level. CRISPR-Cas9 engineering offers new possibilities to model and potentially cure genetically encoded disorders via precise modification of the endogenous locus in primary cells. Here we develop "scarless" Cas9-based reagents to create and reverse the JAK2 V617F mutation in an immortalized human erythroid progenitor cell line (HUDEP-2), CD34+ adult human hematopoietic stem and progenitor cells (HSPCs), and immunophenotypic long-term hematopoietic stem cells (LT-HSCs). We find no overt in vitro increase in proliferation associated with an endogenous JAK2 V617F allele, but co-culture with wild type cells unmasks a competitive growth advantage provided by the mutation. Acquisition of the V617F allele also promotes terminal differentiation of erythroid progenitors, even in the absence of hematopoietic cytokine signaling. Taken together, these data are consistent with the gradually progressive manifestation of MPNs and reveals that endogenously acquired JAK2 V617F mutations may yield more subtle phenotypes as compared to transgenic overexpression models.
Collapse
Affiliation(s)
- Ron Baik
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- New York University School of Medicine, New York, NY, United States of America
| | - Stacia K. Wyman
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
| | - Shaheen Kabir
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, United States of America
- * E-mail: (JEC); (SK)
| | - Jacob E. Corn
- Innovative Genomics Institute, University of California, Berkeley, CA, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States of America
- * E-mail: (JEC); (SK)
| |
Collapse
|
12
|
Mestrum SGC, de Wit NCJ, Drent RJM, Hopman AHN, Ramaekers FCS, Leers MPG. Proliferative activity is disturbed in myeloproliferative neoplasms (MPN), myelodysplastic syndrome (MDS), and MDS/MPN diseases. Differences between MDS and MDS/MPN. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:322-330. [PMID: 32857909 PMCID: PMC8247351 DOI: 10.1002/cyto.b.21946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
The proliferation marker Ki-67 is widely used within the field of diagnostic histopathology as a prognostic marker for solid cancers. However, Ki-67 is hardly used for prognostic and diagnostic purposes in flow cytometric analyses of hematologic neoplasms. In the present study, we investigated to what extent the proliferative activity, as determined by Ki-67 expression, is disturbed in myeloproliferative neoplasms (MPN), myelodysplastic syndrome (MDS), and MDS/MPN diseases. Bone marrow aspirates from 74 patients suffering from MPN, MDS, or MDS/MPN, and aspirates from 50 non-malignant cases were analyzed by flow cytometry for Ki-67 expression in the erythro-, myelo-, and monopoiesis. Ki-67 expression was used to investigate the proliferative activity during the various maturation steps within these hematopoietic cell lineages. In the MPN patient cohort, the proliferative activity of all cell lineages is significantly higher during almost all maturation stages compared to those of the benign control cohort. In the MDS and MDS/MPN cohort, a significantly lower proliferative activity is observed in the early maturation stages. In the MDS/MPN patient cohort, increased proliferative activity is seen in the later stages of the maturation. MDS and MDS/MPN display a distinct pattern in the proliferating fraction of maturing hematopoietic cells. This could become of added value in order to classify these malignancies based on their biological background and behavior, as well as in gaining a better understanding into the pathobiology of these malignancies.
Collapse
Affiliation(s)
- Stefan G C Mestrum
- Department of Molecular Cell Biology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - Norbert C J de Wit
- Central Diagnostic Laboratory (CDL), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Roosmarie J M Drent
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| | - Anton H N Hopman
- Department of Molecular Cell Biology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Frans C S Ramaekers
- Department of Molecular Cell Biology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands.,Nordic-MUbio, Susteren, The Netherlands
| | - Math P G Leers
- Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Sittard-Geleen, The Netherlands
| |
Collapse
|
13
|
Jacquelin S, Kramer F, Mullally A, Lane SW. Murine Models of Myelofibrosis. Cancers (Basel) 2020; 12:cancers12092381. [PMID: 32842500 PMCID: PMC7563264 DOI: 10.3390/cancers12092381] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 01/22/2023] Open
Abstract
Myelofibrosis (MF) is subtype of myeloproliferative neoplasm (MPN) characterized by a relatively poor prognosis in patients. Understanding the factors that drive MF pathogenesis is crucial to identifying novel therapeutic approaches with the potential to improve patient care. Driver mutations in three main genes (janus kinase 2 (JAK2), calreticulin (CALR), and myeloproliferative leukemia virus oncogene (MPL)) are recurrently mutated in MPN and are sufficient to engender MPN using animal models. Interestingly, animal studies have shown that the underlying molecular mutation and the acquisition of additional genetic lesions is associated with MF outcome and transition from early stage MPN such as essential thrombocythemia (ET) and polycythemia vera (PV) to secondary MF. In this issue, we review murine models that have contributed to a better characterization of MF pathobiology and identification of new therapeutic opportunities in MPN.
Collapse
Affiliation(s)
- Sebastien Jacquelin
- Cancer program QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Correspondence: (S.J.); (S.W.L.)
| | - Frederike Kramer
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.K.); (A.M.)
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (F.K.); (A.M.)
| | - Steven W. Lane
- Cancer program QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
- Cancer Care Services, The Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
- University of Queensland, St Lucia, QLD 4072, Australia
- Correspondence: (S.J.); (S.W.L.)
| |
Collapse
|
14
|
Bartalucci N, Guglielmelli P, Vannucchi AM. Polycythemia vera: the current status of preclinical models and therapeutic targets. Expert Opin Ther Targets 2020; 24:615-628. [PMID: 32366208 DOI: 10.1080/14728222.2020.1762176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Polycythemia vera (PV) is the most common myeloproliferative neoplasm (MPN). PV is characterized by erythrocytosis, leukocytosis, thrombocytosis, increased hematocrit, and hemoglobin in the peripheral blood. Splenomegaly and myelofibrosis often occur in PV patients. Almost all PV patients harbor a mutation in the JAK2 gene, mainly represented by the JAK2V617F point mutation. AREAS COVERED This article examines the recent in vitro and in vivo available models of PV and moreover, it offers insights on emerging biomarkers and therapeutic targets. The evidence from mouse models, resembling a PV-like phenotype generated by different technical approaches, is discussed. The authors searched PubMed, books, and clinicaltrials.gov for original and review articles and drugs development status including the terms Myeloproliferative Neoplasms, Polycythemia Vera, erythrocytosis, hematocrit, splenomegaly, bone marrow fibrosis, JAK2V617F, Hematopoietic Stem Cells, MPN cytoreductive therapy, JAK2 inhibitor, histone deacetylase inhibitor, PV-like phenotype, JAK2V617F BMT, transgenic JAK2V617F mouse, JAK2 physiologic promoter. EXPERT OPINION Preclinical models of PV are valuable tools for enabling an understanding of the pathophysiology and the molecular mechanisms of the disease. These models provide new biological insights on the contribution of concomitant mutations and the efficacy of novel drugs in a 'more faithful' setting. This may facilitate an enhanced understanding of pathogenetic mechanisms and targeted therapy.
Collapse
Affiliation(s)
- Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| | - Paola Guglielmelli
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, Center Research and Innovation of Myeloproliferative Neoplasms - CRIMM, Azienda Ospedaliera Universitaria Careggi, University of Florence , Florence, Italy
| |
Collapse
|
15
|
Description of a knock-in mouse model of JAK2V617F MPN emerging from a minority of mutated hematopoietic stem cells. Blood 2020; 134:2383-2387. [PMID: 31697834 DOI: 10.1182/blood.2019001163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022] Open
Abstract
The major weakness of most knock-in JAK2V617F mouse models is the presence of the JAK2 mutation in all rather than in a few hematopoietic stem cells (HSC), such as in human "early-stage" myeloproliferative neoplasms (MPN). Understanding the mechanisms of disease initiation is critical as underscored by the incidence of clonal hematopoiesis of indeterminate potential associated with JAK2V617F. Currently, such studies require competitive transplantation. Here, we report a mouse model obtained by crossing JAK2V617F/WT knock-in mice with PF4iCre transgenic mice. As expected, PF4iCre;JAK2V617F/WT mice developed an early thrombocytosis resulting from the expression of JAK2V617F in the megakaryocytes. However, these mice then developed a polycythemia vera-like phenotype at 10 weeks of age. Using mT/mG reporter mice, we demonstrated that Cre recombination was present in all hematopoietic compartments, including in a low number of HSC. The frequency of mutated cells increased along hematopoietic differentiation mimicking the clonal expansion observed in essential thrombocythemia and polycythemia vera patients. This model thus mimics the HSC compartment observed in early-stage MPN, with a small number of JAK2V617F HSC competing with a majority of JAK2WT HSC. PF4iCre;JAK2V617F/WT mice are a promising tool to investigate the mechanisms that regulate clonal dominance and progression to myelofibrosis.
Collapse
|
16
|
Craver BM, Nguyen TK, Nguyen J, Nguyen H, Huynh C, Morse SJ, Fleischman AG. The SMAC mimetic LCL-161 selectively targets JAK2 V617F mutant cells. Exp Hematol Oncol 2020; 9:1. [PMID: 31908904 PMCID: PMC6941266 DOI: 10.1186/s40164-019-0157-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Background Evasion from programmed cell death is a hallmark of cancer and can be achieved in cancer cells by overexpression of inhibitor of apoptosis proteins (IAPs). Second mitochondria-derived activator of caspases (SMAC) directly bind to IAPs and promote apoptosis; thus, SMAC mimetics have been investigated in a variety of cancer types. particularly in diseases with high inflammation and NFĸB activation. Given that elevated TNFα levels and NFĸB activation is a characteristic feature of myeloproliferative neoplasms (MPN), we investigated the effect of the SMAC mimetic LCL-161 on MPN cell survival in vitro and disease development in vivo. Methods To investigate the effect of the SMAC mimetic LCL-161 in vitro, we utilized murine and human cell lines to perform cell viability assays as well as primary bone marrow from mice or humans with JAK2V617F-driven MPN to interrogate myeloid colony formation. To elucidate the effect of the SMAC mimetic LCL-161 in vivo, we treated a JAK2V617F-driven mouse model of MPN with LCL-161 then assessed blood counts, splenomegaly, and myelofibrosis. Results We found that JAK2V617F-mutated cells are hypersensitive to the SMAC mimetic LCL-161 in the absence of exogenous TNFα. JAK2 kinase activity and NFĸB activation is required for JAK2V617F-mediated sensitivity to LCL-161, as JAK or NFĸB inhibitors diminished the differential sensitivity of JAK2V617F mutant cells to IAP inhibition. Finally, LCL-161 reduces splenomegaly and may reduce fibrosis in a mouse model of JAK2V617F-driven MPN. Conclusion LCL-161 may be therapeutically useful in MPN, in particular when exogenous TNFα signaling is blocked. NFĸB activation is a characteristic feature of JAK2V617F mutant cells and this sensitizes them to SMAC mimetic induced killing even in the absence of TNFα. However, when exogenous TNFα is added, NFĸB is activated in both mutant and wild-type cells, abolishing the differential sensitivity. Moreover, JAK kinase activity is required for the differential sensitivity of JAK2V617F mutant cells, suggesting that the addition of JAK2 inhibitors to SMAC mimetics would detract from the ability of SMAC mimetics to selectively target JAK2V617F mutant cells. Instead, combination therapy with other agents that reduce inflammatory cytokines but preserve JAK2 signaling in mutant cells may be a more beneficial combination therapy in MPN.
Collapse
Affiliation(s)
- Brianna M Craver
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Thanh Kim Nguyen
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Jenny Nguyen
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Hellen Nguyen
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Christy Huynh
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Sarah J Morse
- 1Department of Biological Chemistry, University of California, Irvine, CA USA
| | - Angela G Fleischman
- 1Department of Biological Chemistry, University of California, Irvine, CA USA.,2Division of Hematology/Oncology, Department of Medicine, University of California, 839 Health Sciences Road, Irvine, CA 92697 USA.,3Chao Family Comprehensive Cancer Center, University of California, Irvine, CA USA
| |
Collapse
|
17
|
Shide K. The role of driver mutations in myeloproliferative neoplasms: insights from mouse models. Int J Hematol 2019; 111:206-216. [PMID: 31865539 DOI: 10.1007/s12185-019-02803-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/11/2023]
Abstract
High frequency of JAK2V617F or CALR exon 9 mutations is a main molecular feature of myeloproliferative neoplasms (MPNs). Analysis of mouse models driven by these mutations suggests that they are a direct cause of MPNs and that the expression levels of the mutated genes define the disease phenotype. The function of MPN-initiating cells has also been elucidated by these mouse models. Such mouse models also play an important role in modeling disease to investigate the effects and action mechanisms of therapeutic drugs, such as JAK2 inhibitors and interferon α, against MPNs. The mutation landscape of hematological tumors has already been clarified by next-generation sequencing technology, and the importance of functional analysis of mutant genes in vivo should increase further in the future.
Collapse
Affiliation(s)
- Kotaro Shide
- Department of Gastroenterology and Hematology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
| |
Collapse
|
18
|
Experimental Modeling of Myeloproliferative Neoplasms. Genes (Basel) 2019; 10:genes10100813. [PMID: 31618985 PMCID: PMC6826898 DOI: 10.3390/genes10100813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 12/25/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are genetically very complex and heterogeneous diseases in which the acquisition of a somatic driver mutation triggers three main myeloid cytokine receptors, and phenotypically expresses as polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The course of the diseases may be influenced by germline predispositions, modifying mutations, their order of acquisition and environmental factors such as aging and inflammation. Deciphering these contributory elements, their mutual interrelationships, and their contribution to MPN pathogenesis brings important insights into the diseases. Animal models (mainly mouse and zebrafish) have already significantly contributed to understanding the role of several acquired and germline mutations in MPN oncogenic signaling. Novel technologies such as induced pluripotent stem cells (iPSCs) and precise genome editing (using CRISPR/Cas9) contribute to the emerging understanding of MPN pathogenesis and clonal architecture, and form a convenient platform for evaluating drug efficacy. In this overview, the genetic landscape of MPN is briefly described, with an attempt to cover the main discoveries of the last 15 years. Mouse and zebrafish models of the driver mutations are discussed and followed by a review of recent progress in modeling MPN with patient-derived iPSCs and CRISPR/Cas9 gene editing.
Collapse
|
19
|
Chapeau EA, Mandon E, Gill J, Romanet V, Ebel N, Powajbo V, Andraos-Rey R, Qian Z, Kininis M, Zumstein-Mecker S, Ito M, Hynes NE, Tiedt R, Hofmann F, Eshkind L, Bockamp E, Kinzel B, Mueller M, Murakami M, Baffert F, Radimerski T. A conditional inducible JAK2V617F transgenic mouse model reveals myeloproliferative disease that is reversible upon switching off transgene expression. PLoS One 2019; 14:e0221635. [PMID: 31600213 PMCID: PMC6786561 DOI: 10.1371/journal.pone.0221635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of the JAK/STAT pathway is thought to be the critical event in the pathogenesis of the chronic myeloproliferative neoplasms, polycythemia vera, essential thrombocythemia and primary myelofibrosis. The most frequent genetic alteration in these pathologies is the activating JAK2V617F mutation, and expression of the mutant gene in mouse models was shown to cause a phenotype resembling the human diseases. Given the body of genetic evidence, it has come as a sobering finding that JAK inhibitor therapy only modestly suppresses the JAK2V617F allele burden, despite showing clear benefits in terms of reducing splenomegaly and constitutional symptoms in patients. To gain a better understanding if JAK2V617F is required for maintenance of myeloproliferative disease once it has evolved, we generated a conditional inducible transgenic JAK2V617F mouse model using the SCL-tTA-2S tet-off system. Our model corroborates that expression of JAK2V617F in hematopoietic stem and progenitor cells recapitulates key hallmarks of human myeloproliferative neoplasms, and exhibits gender differences in disease manifestation. The disease was found to be transplantable, and importantly, reversible when transgenic JAK2V617F expression was switched off. Our results indicate that mutant JAK2V617F-specific inhibitors should result in profound disease modification by disabling the myeloproliferative clone bearing mutant JAK2.
Collapse
Affiliation(s)
- Emilie A. Chapeau
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
- * E-mail:
| | - Emeline Mandon
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jason Gill
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Vincent Romanet
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nicolas Ebel
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Violetta Powajbo
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Rita Andraos-Rey
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Zhiyan Qian
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Miltos Kininis
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Moriko Ito
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ralph Tiedt
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Francesco Hofmann
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Leonid Eshkind
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ernesto Bockamp
- Institute for Translational Immunology and Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kinzel
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Matthias Mueller
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Masato Murakami
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Fabienne Baffert
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Thomas Radimerski
- Disease Area Oncology, Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
20
|
Abstract
Chronic myeloproliferative neoplasms (MPN) characteristically arise from a somatic mutation in the pluripotent hematopoietic stem cell, and most common recurring mutations are in the JAK2, CALR, and cMPL genes. However, these mutations are not founder mutations, but mainly drive the disease phenotype and a pre-existing germline predisposition has been long speculated, but has not been clearly defined to date. Genome-wide association studies in family clusters of MPN have identified a number of genetic variants that are associated with increased germline risk for developing clonal MPN. The strongest association discovered so far is the presence of JAK2 46/1 haplotype, and subsequently, many studies have found additional variants in other genes, most notably in TERT gene. However, these still account for a small fraction of familial MPN, and more in-depth studies including whole genome sequencing are needed to gain better insight into familial genetic predisposition of clonal MPNs.
Collapse
|
21
|
Gángó A, Mózes R, Boha Z, Kajtár B, Timár B, Király PA, Kiss R, Fésüs V, Nagy N, Demeter J, Körösmezey G, Borbényi Z, Marton I, Szőke A, Masszi T, Farkas P, Várkonyi J, Plander M, Pósfai É, Egyed M, Pál K, Radványi G, Hamed A, Csomor J, Matolcsy A, Alpár D, Bödör C. Quantitative assessment of JAK2 V617F and CALR mutations in Philadelphia negative myeloproliferative neoplasms. Leuk Res 2018; 65:42-48. [DOI: 10.1016/j.leukres.2017.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/15/2017] [Accepted: 12/30/2017] [Indexed: 02/09/2023]
|
22
|
Dunbar A, Nazir A, Levine R. Overview of Transgenic Mouse Models of Myeloproliferative Neoplasms (MPNs). ACTA ACUST UNITED AC 2017. [PMID: 28640953 DOI: 10.1002/cpph.23] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myeloproliferative neoplasms (MPNs) are a class of hematologic diseases characterized by aberrant proliferation of one or more myeloid lineages and progressive bone marrow fibrosis. In 2005, seminal work by multiple groups identified the JAK2V617F mutation in a significant fraction of MPN patients. Since that time, murine models of JAK2V617F have greatly enhanced the understanding of the role of aberrant JAK-STAT signaling in MPN pathogenesis and have provided an in vivo pre-clinical platform that can be used to develop novel therapies. From early retroviral transduction models to transgenics, and ultimately conditional knock-ins, murine models have established that JAK2V617F alone can induce an MPN-like syndrome in vivo. However, additional mutations co-occur with JAK2V617F in MPNs, often in proteins involved in epigenetic regulation that can dramatically influence disease outcomes. In vivo modeling of these mutations in the context of JAK2V617F has provided additional insights into the role of epigenetic dysregulation in augmenting MPN hematopoiesis. In this overview, early murine model development of JAK2V617F is described, with an analysis of its effects on the hematopoietic stem/progenitor cell niche and interactions with downstream signaling elements. This is followed by a description of more recent in vivo models developed for evaluating the effect of concomitant mutations in epigenetic modifiers on MPN maintenance and progression. Mouse models of other driver mutations in MPNs, including primarily calreticulin (CALR) and Tpo-receptor (MPL), which occur in a significant percentage of MPN patients with wild-type JAK2, are also briefly reviewed. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andrew Dunbar
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Abbas Nazir
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Ross Levine
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York.,Leukemia Service Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York.,Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York City, New York.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York City, New York
| |
Collapse
|
23
|
Grinfeld J, Godfrey AL. After 10 years of JAK2V617F: Disease biology and current management strategies in polycythaemia vera. Blood Rev 2017; 31:101-118. [DOI: 10.1016/j.blre.2016.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
|
24
|
Rumi E, Cazzola M. Advances in understanding the pathogenesis of familial myeloproliferative neoplasms. Br J Haematol 2017; 178:689-698. [PMID: 28444727 DOI: 10.1111/bjh.14713] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are generally acquired as a result of a somatic stem cell mutation leading to clonal expansion of myeloid precursors. In addition to sporadic cases, familial MPN occurs when one or several MPN affect different relatives of the same family. MPN driver mutations (JAK2, CALR, MPL) are somatically acquired also in familial cases, so a genetic predisposition to acquire one of the MPN driver mutations would be inherited, even though the causative germline mutations underlying familial MPN remain largely unknown. Recently some germline variants [ATG2B and GSKIP duplication, RBBP6 mutations, SH2B3 (LNK) mutations], which can cause familial MPN, have been reported but these mutations are rare and do not explain most familial cases. Patients with familial MPN show the same clinical features and suffer the same complications as those with sporadic disease. This review aims to offer up-to-date information regarding the genetics of familial MPN.
Collapse
Affiliation(s)
- Elisa Rumi
- Department of Haematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mario Cazzola
- Department of Haematology Oncology, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
The spleen microenvironment influences disease transformation in a mouse model of KIT D816V-dependent myeloproliferative neoplasm. Sci Rep 2017; 7:41427. [PMID: 28128288 PMCID: PMC5269732 DOI: 10.1038/srep41427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
Activating mutations leading to ligand-independent signaling of the stem cell factor receptor KIT are associated with several hematopoietic malignancies. One of the most common alterations is the D816V mutation. In this study, we characterized mice, which conditionally express the humanized KITD816V receptor in the adult hematopoietic system to determine the pathological consequences of unrestrained KIT signaling during blood cell development. We found that KITD816V mutant animals acquired a myeloproliferative neoplasm similar to polycythemia vera, marked by a massive increase in red blood cells and severe splenomegaly caused by excessive extramedullary erythropoiesis. Moreover, we found mobilization of stem cells from bone marrow to the spleen. Splenectomy prior to KITD816V induction prevented expansion of red blood cells, but rapidly lead to a state of aplastic anemia and bone marrow fibrosis, reminiscent of post polycythemic myeloid metaplasia, the spent phase of polycythemia vera. Our results show that the extramedullary hematopoietic niche microenvironment significantly influences disease outcome in KITD816V mutant mice, turning this model a valuable tool for studying the interplay between functionally abnormal hematopoietic cells and their microenvironment during development of polycythemia vera-like disease and myelofibrosis.
Collapse
|
26
|
Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 2016; 129:667-679. [PMID: 28028029 DOI: 10.1182/blood-2016-10-695940] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
The genetic landscape of classical myeloproliferative neoplasm (MPN) is in large part elucidated. The MPN-restricted driver mutations, including those in JAK2, calreticulin (CALR), and myeloproliferative leukemia virus (MPL), abnormally activate the cytokine receptor/JAK2 pathway and their downstream effectors, more particularly the STATs. The most frequent mutation, JAK2V617F, activates the 3 main myeloid cytokine receptors (erythropoietin receptor, granulocyte colony-stimulating factor receptor, and MPL) whereas CALR or MPL mutants are restricted to MPL activation. This explains why JAK2V617F is associated with polycythemia vera, essential thrombocythemia (ET), and primary myelofibrosis (PMF) whereas CALR and MPL mutants are found in ET and PMF. Other mutations in genes involved in epigenetic regulation, splicing, and signaling cooperate with the 3 MPN drivers and play a key role in the PMF pathogenesis. Mutations in epigenetic regulators TET2 and DNMT3A are involved in disease initiation and may precede the acquisition of JAK2V617F. Other mutations in epigenetic regulators such as EZH2 and ASXL1 also play a role in disease initiation and disease progression. Mutations in the splicing machinery are predominantly found in PMF and are implicated in the development of anemia or pancytopenia. Both heterogeneity of classical MPNs and prognosis are determined by a specific genomic landscape, that is, type of MPN driver mutations, association with other mutations, and their order of acquisition. However, factors other than somatic mutations play an important role in disease initiation as well as disease progression such as germ line predisposition, inflammation, and aging. Delineation of these environmental factors will be important to better understand the precise pathogenesis of MPN.
Collapse
|
27
|
Nguyen TK, Morse SJ, Fleischman AG. Transduction-Transplantation Mouse Model of Myeloproliferative Neoplasm. J Vis Exp 2016. [PMID: 28060252 DOI: 10.3791/54624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Transduction-transplantation is a quick and efficient way to model human hematologic malignancies in mice. This technique results in expression of the gene of interest in hematopoietic cells and can be used to study the gene's role in normal and/or malignant hematopoiesis. This protocol provides a detailed description on how to perform transduction-transplantation using calreticulin (CALR) mutations recently identified in myeloproliferative neoplasm (MPN) as an example. In this protocol whole bone marrow cells from 5-flurouracil (5-FU) treated donor mice are transduced with a retrovirus encoding mutant CALR and transplanted into lethally irradiated syngeneic hosts. Donor cells expressing mutant CALR are marked with green fluorescent protein (GFP). Transplanted mice develop an MPN phenotype including elevated platelets in the peripheral blood, expansion of megakaryocytes in the bone marrow, and bone marrow fibrosis. We provide a step-by-step account of how to generate retrovirus, calculate viral titer, transduce whole bone marrow cells, and transplant into irradiated recipient mice.
Collapse
Affiliation(s)
- Thanh Kim Nguyen
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine
| | - Sarah J Morse
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine
| | - Angela G Fleischman
- Department of Medicine, Division of Hematology/Oncology, University of California, Irvine;
| |
Collapse
|
28
|
Morotti A, Rocca S, Carrà G, Saglio G, Brancaccio M. Modeling myeloproliferative neoplasms: From mutations to mouse models and back again. Blood Rev 2016; 31:139-150. [PMID: 27899218 DOI: 10.1016/j.blre.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/28/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are defined according to the 2008 World Health Organization (WHO) classification and the recent 2016 revision. Over the years, several genetic lesions have been associated with the development of MPNs, with important consequences for identifying unique biomarkers associated with specific neoplasms and for developing targeted therapies. Defining the genotype-phenotype relationship in MPNs is essential to identify driver somatic mutations that promote MPN development and maintenance in order to develop curative targeted therapies. While studies with human samples can identify putative driver mutations, murine models are mandatory to demonstrate the causative role of mutations and for pre-clinical testing of specific therapeutic interventions. This review focuses on MPN mouse models specifically developed to assess the pathogenetic roles of gene mutations found in human patients, as well as murine MPN-like phenotypes identified in genetically modified mice.
Collapse
Affiliation(s)
- Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza, 52, 10126 Torino, Italy.
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza, 52, 10126 Torino, Italy.
| |
Collapse
|
29
|
Chen Y, Shan Y, Lu M, DeSouza N, Guo Z, Hoffman R, Liang A, Li S. Alox5 Blockade Eradicates JAK2V617F-Induced Polycythemia Vera in Mice. Cancer Res 2016; 77:164-174. [PMID: 27784744 DOI: 10.1158/0008-5472.can-15-2933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 09/06/2016] [Accepted: 09/30/2016] [Indexed: 01/09/2023]
Abstract
Myeloproliferative neoplasms such as polycythemia vera (PV), which are associated with the JAK mutation V617F, remain incurable despite progress in the use of JAK2 inhibitors for treatment of some of these diseases. In this study, we employed mice that undergo JAK2V617F-induced PV as a tool to explore new candidate targets for therapy. Our investigations focused on the lipid metabolic enzyme arachidonate 5-lipoxygenase (Alox5), which we found to be strongly upregulated by JAK2V617F in hematopoietic cells in vitro and in vivo Notably, genetic deletion of Alox5 or its inhibition in mice with a bioactive small-molecule inhibitor was sufficient to attenuate PV development. This therapeutic effect was associated with induction of a blockade in cell-cycle progression and also with apoptosis in PV cells. Genetic loss exerted an inhibitory effect on PV-initiating cells. Similarly, Alox5 inhibition was sufficient to suppress colony formation in human JAK2V617F-expressing CD34+ cells. Mechanistic investigations showed that Alox5 inhibition reduced AKT activation and decreased β-catenin expression in JAK2V617F-expressing cells. Together, our results define Alox5 as a key genetic effector of JAK2V617F in driving PV, and they identify this enzyme as a candidate therapeutic target to treat this refractory myeloproliferative neoplasm. Cancer Res; 77(1); 164-74. ©2016 AACR.
Collapse
Affiliation(s)
- Yaoyu Chen
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Yi Shan
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Min Lu
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Ngoc DeSouza
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiru Guo
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ronald Hoffman
- Division of Hematology/Oncology, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, PR China.
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
30
|
Reuther GW. Myeloproliferative Neoplasms: Molecular Drivers and Therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:437-484. [PMID: 27865464 DOI: 10.1016/bs.pmbts.2016.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activating mutations in genes that drive neoplastic cell growth are numerous and widespread in cancer, and specific genetic alterations are associated with certain types of cancer. For example, classic myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders that affect cells of the myeloid lineage, including erythrocytes, platelets, and granulocytes. An activating mutation in the JAK2 tyrosine kinase is prevalent in these diseases. In MPN patients that lack such a mutation, other genetic changes that lead to activation of the JAK2 signaling pathway are present, indicating deregulation of JAK2 signaling plays an etiological driving role in MPNs, a concept supported by significant evidence from in vivo experimental MPN systems. Thus, small molecules that inhibit JAK2 activity are ideal drugs to impede the progression of disease in MPN patients. However, even though JAK inhibitors provide significant symptomatic relief, they have failed as a remission-inducing therapy. Nonetheless, the progress made understanding the molecular etiology of MPNs since 2005 is significant and has provided insight for the development and testing of novel molecular targeted therapeutic approaches. The current understanding of driver mutations in MPNs and an overview of current and potential therapeutic strategies for MPN patients will be discussed.
Collapse
Affiliation(s)
- G W Reuther
- H. Lee Moffitt Cancer Center, Tampa, FL, United States; University of South Florida, Tampa, FL, United States.
| |
Collapse
|
31
|
Mazzacurati L, Lambert QT, Pradhan A, Griner LN, Huszar D, Reuther GW. The PIM inhibitor AZD1208 synergizes with ruxolitinib to induce apoptosis of ruxolitinib sensitive and resistant JAK2-V617F-driven cells and inhibit colony formation of primary MPN cells. Oncotarget 2016; 6:40141-57. [PMID: 26472029 PMCID: PMC4741885 DOI: 10.18632/oncotarget.5653] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/30/2015] [Indexed: 01/22/2023] Open
Abstract
Classical myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders that exhibit excess mature myeloid cells, bone marrow fibrosis, and risk of leukemic transformation. Aberrant JAK2 signaling plays an etiological role in MPN formation. Because neoplastic cells in patients are largely insensitive to current anti-JAK2 therapies, effective therapies remain needed. Members of the PIM family of serine/threonine kinases are induced by JAK/STAT signaling, regulate hematopoietic stem cell growth, protect hematopoietic cells from apoptosis, and exhibit hematopoietic cell transforming properties. We hypothesized that PIM kinases may offer a therapeutic target for MPNs. We treated JAK2-V617F-dependent MPN model cells as well as primary MPN patient cells with the PIM kinase inhibitors SGI-1776 and AZD1208 and the JAK2 inhibitor ruxolitinib. While MPN model cells were rather insensitive to PIM inhibitors, combination of PIM inhibitors with ruxolitinib led to a synergistic effect on MPN cell growth due to enhanced apoptosis. Importantly, PIM inhibitor mono-therapy inhibited, and AZD1208/ruxolitinib combination therapy synergistically suppressed, colony formation of primary MPN cells. Enhanced apoptosis by combination therapy was associated with activation of BAD, inhibition of downstream components of the mTOR pathway, including p70S6K and S6 protein, and activation of 4EBP1. Importantly, PIM inhibitors re-sensitized ruxolitinib-resistant MPN cells to ruxolitinib by inducing apoptosis. Finally, exogenous expression of PIM1 induced ruxolitinib resistance in MPN model cells. These data indicate that PIMs may play a role in MPNs and that combining PIM and JAK2 kinase inhibitors may offer a more efficacious therapeutic approach for MPNs over JAK2 inhibitor mono-therapy.
Collapse
Affiliation(s)
- Lucia Mazzacurati
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Que T Lambert
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Anuradha Pradhan
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Lori N Griner
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Dennis Huszar
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA.,Oncology iMed, AstraZeneca, Waltham, MA, USA
| | - Gary W Reuther
- Department of Molecular Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
32
|
Mughal TI, Abdel-Wahab O, Rampal R, Mesa R, Koschmieder S, Levine R, Hehlmann R, Saglio G, Barbui T, Van Etten RA. Contemporary insights into the pathogenesis and treatment of chronic myeloproliferative neoplasms. Leuk Lymphoma 2016; 57:1517-26. [PMID: 27240645 PMCID: PMC6077976 DOI: 10.1080/10428194.2016.1185783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review is based on the deliberations at the 5th John Goldman Colloquium held in Estoril on 2nd October 2015 and the 9th post-ASH International Workshop on chronic myeloid leukemia (CML) and BCR-ABL1-negative myeloproliferative neoplasms (MPN) which took place on the 10th-11th December 2014, immediately following the 56th American Society of Hematology Annual Meeting. It has been updated since and summarizes the most recent advances in the biology and therapy of these diseases, in particular updates of genetics of MPN, novel insights from mouse MPN models, targeting CML stem cells and its niche; clinical advances include updates on JAK2 inhibitors and other therapeutic approaches to BCR-ABL1-negative MPNs, the use of alpha interferons, updates on tyrosine kinase inhibitors (TKI) randomized trials in CML, TKI cessation studies, and optimal monitoring strategies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Disease Models, Animal
- Genetic Predisposition to Disease
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Mice
- Molecular Targeted Therapy
- Mutation
- Myeloproliferative Disorders/diagnosis
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/mortality
- Myeloproliferative Disorders/therapy
- Protein Kinase Inhibitors/administration & dosage
- Protein Kinase Inhibitors/adverse effects
- Protein Kinase Inhibitors/therapeutic use
- Risk Assessment
- Treatment Outcome
Collapse
Affiliation(s)
| | | | - Raajit Rampal
- b Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Ruben Mesa
- c Mayo Clinic Cancer Center , Scottsdale , AZ , USA
| | - Steffen Koschmieder
- d Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine , RWTH Aachen University , Aachen , Germany
| | - Ross Levine
- b Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | | | | | - Tiziano Barbui
- g Papa Giovani XXIII Hospital and Research Center , Bergamo , Italy
| | - Richard A Van Etten
- h Chao Family Comprehensive Cancer Center, University of California Irvine , Irvine , CA , USA
| |
Collapse
|
33
|
Elf S, Abdelfattah NS, Chen E, Perales-Patón J, Rosen EA, Ko A, Peisker F, Florescu N, Giannini S, Wolach O, Morgan EA, Tothova Z, Losman JA, Schneider RK, Al-Shahrour F, Mullally A. Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation. Cancer Discov 2016; 6:368-81. [PMID: 26951227 DOI: 10.1158/2159-8290.cd-15-1434] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/11/2016] [Indexed: 01/26/2023]
Abstract
UNLABELLED Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN), but the mechanism by which mutant CALR is oncogenic remains unclear. Here, we demonstrate that expression of mutant CALR alone is sufficient to engender MPN in mice and recapitulates the disease phenotype of patients with CALR-mutant MPN. We further show that the thrombopoietin receptor MPL is required for mutant CALR-driven transformation through JAK-STAT pathway activation, thus rendering mutant CALR-transformed hematopoietic cells sensitive to JAK2 inhibition. Finally, we demonstrate that the oncogenicity of mutant CALR is dependent on the positive electrostatic charge of the C-terminus of the mutant protein, which is necessary for physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel paradigm of cancer pathogenesis and reveal how CALR mutations induce MPN. SIGNIFICANCE The mechanism by which CALR mutations induce MPN remains unknown. In this report, we show that the positive charge of the CALR mutant C-terminus is necessary to transform hematopoietic cells by enabling binding between mutant CALR and the thrombopoietin receptor MPL.
Collapse
Affiliation(s)
- Shannon Elf
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nouran S Abdelfattah
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edwin Chen
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Javier Perales-Patón
- Translational Bioinformatics Unit, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Emily A Rosen
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amy Ko
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fabian Peisker
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Natalie Florescu
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Silvia Giannini
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ofir Wolach
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth A Morgan
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zuzana Tothova
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Broad Institute, Cambridge, Massachusetts. Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Julie-Aurore Losman
- Broad Institute, Cambridge, Massachusetts. Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rebekka K Schneider
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fatima Al-Shahrour
- Translational Bioinformatics Unit, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Broad Institute, Cambridge, Massachusetts. Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
34
|
Lee SA, Kim JY, Choi Y, Kim Y, Kim HO. Application of mutant JAK2V617F for in vitro generation of red blood cells. Transfusion 2015; 56:837-43. [PMID: 26646156 DOI: 10.1111/trf.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/12/2015] [Accepted: 10/24/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND In vitro generation of red blood cells (RBCs) from hematopoietic stem cells (HSCs) has been reported, but the collection of 1 × 10(5) to 1 × 10(6) CD34+ cells present in cord and peripheral blood is too small for expansion to 1 × 10(12) cells in 1 unit of RBCs. We transduced JAK2V617F gene, the most common mutation with polycythemia vera (PV), into cord blood-derived CD34+ cells. This PV model was expected to increase cell proliferation without the addition of erythropoietin (EPO) in early phase of differentiation. STUDY DESIGN AND METHODS Empty vector (control), wild-type JAK2 (wJAK2), and mutant JAK2V617F (mJAK2) were transduced into CD34+ cells using a lentivirus system. The CD34+ cells were then differentiated to the RBCs in a culture system. The cells were analyzed for cell number, differential count, and morphologic changes. Cultured RBCs were tested for oxygen equilibrium. RESULTS wJAK2- and mJAK2-transduced cells showed higher proliferation capacity until Day 21 than control cells; interestingly, only mJAK2-transduced cells were highly increased on Day 7 during EPO-free culture. However, both wJAK2- and mJAK2-tranduced cells had more delayed differentiation than control, but they had a higher portion of completely matured RBCs and orthochromatic erythroblasts. Furthermore, mJAK2-tranduced cells showed more differentiation into RBCs than wJAK2-transduced cells and they had a normal hemoglobin dissociation curve. CONCLUSION This is the first trial to use a PV erythropoiesis model for RBC differentiation from stem cells. The transduction of HSCs with mJAK2 increased their proliferation capacity in EPO-free culture conditions. This model may also be useful for investigating the pathogenesis of PV.
Collapse
Affiliation(s)
- Sun Ah Lee
- Blood Transfusion Research Institute, Korean Red Cross, Wonju, Korea
| | - Ji Yeon Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine
| | - Yongwook Choi
- Department of Laboratory Medicine, Yonsei University College of Medicine
| | - Yonggoo Kim
- Department of Laboratory Medicine, the Catholic University of Korea, Seoul St. Mary's Hospital, Seoul, Korea
| | - Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine
| |
Collapse
|
35
|
Wang L, Wheeler DA, Prchal JT. Acquired uniparental disomy of chromosome 9p in hematologic malignancies. Exp Hematol 2015; 44:644-52. [PMID: 26646991 DOI: 10.1016/j.exphem.2015.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 12/14/2022]
Abstract
Acquired uniparental disomy (aUPD) is a common and recurrent molecular event in human cancers that leads to homozygosity for tumor suppressor genes as well as oncogenes, while retaining the diploid chromosomal complement. Because of the lack of copy number change, aUPD is undetectable by comparative genome hybridization, so the magnitude of this genetic change was underappreciated in the past. 9p aUPD was first described in 2002 in patients with polycythemia vera (PV). Since then, systematic application of genomewide single-nucleotide polymorphism arrays has indicated that 9p aUPD is the most common chromosomal aberration in myeloproliferative neoplasms (MPNs), contributing to discovery of the PV-defining mutation JAK2V617F21. It was also found in other myeloid and lymphoid malignancies, though at a relatively lower frequency. By leading to JAK2V617F 23 homozygosity, 9p aUPD plays a causal role in the development of PV and is also associated with less favorable clinical outcomes. It is also possible that new targets other than JAK2V617F 25 are present within 9p aUPD that may contribute to diversity of PV outcome and phenotype. This review summarizes recent discoveries on 9p aUPD in hematologic malignancies and discusses possible underlying mechanisms and potential roles of 9p aUPD in the pathogenesis of PV, the relationship between 9p aUPD and JAK2V617F29, and possible new cancer-related targets within the 9p aUPD region.
Collapse
Affiliation(s)
- Linghua Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Josef T Prchal
- Division of Hematology, University of Utah School of Medicine and VAH, Salt Lake City, Utah.
| |
Collapse
|
36
|
Jutzi JS, Pahl HL. The Hen or the Egg: Inflammatory Aspects of Murine MPN Models. Mediators Inflamm 2015; 2015:101987. [PMID: 26543325 PMCID: PMC4620236 DOI: 10.1155/2015/101987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/16/2015] [Indexed: 12/15/2022] Open
Abstract
It has been known for some time that solid tumors, especially gastrointestinal tumors, can arise on the basis of chronic inflammation. However, the role of inflammation in the genesis of hematological malignancies has not been extensively studied. Recent evidence clearly shows that changes in the bone marrow niche can suffice to induce myeloid diseases. Nonetheless, while it has been demonstrated that myeloproliferative neoplasms (MPN) are associated with a proinflammatory state, it is not clear whether inflammatory processes contribute to the induction or maintenance of MPN. More provocatively stated: which comes first, the hen or the egg, inflammation or MPN? In other words, can chronic inflammation itself trigger an MPN? In this review, we will describe the evidence supporting a role for inflammation in initiating and promoting MPN development. Furthermore, we will compare and contrast the data obtained in gastrointestinal tumors with observations in MPN patients and models, pointing out the opportunities provided by novel murine MPN models to address fundamental questions regarding the role of inflammatory stimuli in the molecular pathogenesis of MPN.
Collapse
Affiliation(s)
- Jonas S Jutzi
- Division of Molecular Hematology, University Hospital Freiburg, Center for Clinical Research, Breisacher Straße 66, 79106 Freiburg, Germany ; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19A, 79104 Freiburg, Germany ; Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Heike L Pahl
- Division of Molecular Hematology, University Hospital Freiburg, Center for Clinical Research, Breisacher Straße 66, 79106 Freiburg, Germany
| |
Collapse
|
37
|
Kesarwani M, Huber E, Kincaid Z, Evelyn CR, Biesiada J, Rance M, Thapa MB, Shah NP, Meller J, Zheng Y, Azam M. Targeting substrate-site in Jak2 kinase prevents emergence of genetic resistance. Sci Rep 2015; 5:14538. [PMID: 26419724 PMCID: PMC4588578 DOI: 10.1038/srep14538] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/18/2015] [Indexed: 12/13/2022] Open
Abstract
Emergence of genetic resistance against kinase inhibitors poses a great challenge for durable therapeutic response. Here, we report a novel mechanism of JAK2 kinase inhibition by fedratinib (TG101348) that prevents emergence of genetic resistance. Using in vitro drug screening, we identified 211 amino-acid substitutions conferring resistance to ruxolitinib (INCB018424) and cross-resistance to the JAK2 inhibitors AZD1480, CYT-387 and lestaurtinib. In contrast, these resistant variants were fully sensitive to fedratinib. Structural modeling, coupled with mutagenesis and biochemical studies, revealed dual binding sites for fedratinib. In vitro binding assays using purified proteins showed strong affinity for the substrate-binding site (Kd = 20 nM) while affinity for the ATP site was poor (Kd = ~8 μM). Our studies demonstrate that mutations affecting the substrate-binding pocket encode a catalytically incompetent kinase, thereby preventing emergence of resistant variants. Most importantly, our data suggest that in order to develop resistance-free kinase inhibitors, the next-generation drug design should target the substrate-binding site.
Collapse
Affiliation(s)
- Meenu Kesarwani
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Erika Huber
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Zachary Kincaid
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Chris R Evelyn
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Jacek Biesiada
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| | - Mahendra B Thapa
- Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| | - Neil P Shah
- Division of Hematology-Oncology UCSF School of Medicine, San Francisco, California, 94143 USA
| | - Jarek Meller
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Yi Zheng
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA
| | - Mohammad Azam
- Cincinnati Children's Hospital Medical Center, Cancer Blood Disease Institute, Divisions of Experimental Hematology and Cancer Pathology, Cincinnati, Ohio, 45229 USA.,Department of Molecular Genetics, Biochemistry and Microbiology University of Cincinnati College of Medicine, University of Cincinnati, Ohio 45229 USA
| |
Collapse
|
38
|
Ebid GT, Ghareeb M, Salaheldin O, Kamel MM. Prevalence of the frequency of JAK2 (V617F) mutation in different myeloproliferative disorders in Egyptian patients. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:11555-11559. [PMID: 26617890 PMCID: PMC4637706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVES Detection of chromosomal abnormalities in myeloproliferative disorders is important for proper diagnosis of these disorders. This study has investigated the presence of JAK2 mutation (V617F) in Egyptian patients with myeloproliferative disorders referred to National Cancer institute, Cairo University. METHODS The study involved 110 cases of Philadelphia negative Myeloproliferative diseases (MPDs), 70 cases with Polycythemia Vera (PV), 24 cases with Essential Thrombocytosis (ET) and 16 cases with Idiopathic Myelofibrosis (IMF) and 20 cases as a control group which represented as; (10 cases with secondary erythrocytosis, 1 case with reactive thrombocytosis, 4 cases as normal control and 5 as Philadelphia positive Chronic Myeloid Leukemia cases), they were collected from National Cancer Institute (NCI) over 3 years. We used ARMS technique for mutation detection. RESULTS The frequency of the V617F JAK2 mutation was highest in patients with PV where 56 out of 70 cases (80%) carried the mutation, followed by ET with 6 of 24 (25) and IMF with 2 of 16 (12.5%) . None of the cases with secondary Erythrocytosis, reactive thrombocytosis, the normal controls or Philadelphia positive CML cases carried the mutation. CONCLUSIONS Our results are concordant with international published results for detection of this mutation. It is unequivocal now that V617F is met in many MPDs especially PRV. Finding this mutation in those patients is thought to have a big impact on the diagnosis and treatment of these disorders.
Collapse
Affiliation(s)
- Gamal T Ebid
- Department of Clinical Pathology, National Cancer Institute, Cairo UniversityGiza, Egypt
| | - Mohamed Ghareeb
- Department of Clinical Pathology, Ahmed Maher Education HospitalCairo, Egypt
| | - Omina Salaheldin
- Department of Medical Oncology, National Cancer Institute, Cairo UniversityGiza, Egypt
| | - Mahmoud M Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo UniversityGiza, Egypt
| |
Collapse
|
39
|
Abstract
Major progress has been recently made in understanding the molecular pathogenesis of myeloproliferative neoplasms (MPN). Mutations in one of four genes-JAK2, MPL, CALR, and CSF3R-can be found in the vast majority of patients with MPN and represent driver mutations that can induce the MPN phenotype. Hyperactive JAK/STAT signaling appears to be the common denominator of MPN, even in patients with CALR mutations and the so-called "triple-negative" MPN, where the driver gene mutation is still unknown. Mutations in epigenetic regulators, transcription factors, and signaling components modify the course of the disease and can contribute to disease initiation and/or progression. The central role of JAK2 in MPN allowed development of small molecular inhibitors that are in clinical use and are active in almost all patients with MPN. Advances in understanding the mechanism of JAK2 activation open new perspectives of developing the next generation of inhibitors that will be selective for the mutated forms of JAK2.
Collapse
|
40
|
Griesshammer M, Gisslinger H, Mesa R. Current and future treatment options for polycythemia vera. Ann Hematol 2015; 94:901-10. [PMID: 25832853 PMCID: PMC4420843 DOI: 10.1007/s00277-015-2357-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/17/2015] [Indexed: 12/22/2022]
Abstract
Patients with polycythemia vera (PV), a myeloproliferative neoplasm characterized by an elevated red blood cell mass, are at high risk of vascular and thrombotic complications and have reduced quality of life due to a substantial symptom burden that includes pruritus, fatigue, constitutional symptoms, microvascular disturbances, and bleeding. Conventional therapeutic options aim at reducing vascular and thrombotic risk, with low-dose aspirin and phlebotomy as first-line recommendations for patients at low risk of thrombotic events and cytoreductive therapy (usually hydroxyurea or interferon alpha) recommended for high-risk patients. However, long-term effective and well-tolerated treatments are still lacking. The discovery of mutations in Janus kinase 2 (JAK2) as the underlying molecular basis of PV has led to the development of several targeted therapies, including JAK inhibitors, and results from the first phase 3 clinical trial with a JAK inhibitor in PV are now available. Here, we review the current treatment landscape in PV, as well as therapies currently in development.
Collapse
|
41
|
Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, Godfrey AL, Guglielmelli P, Callaway A, Ward D, Aranaz P, White HE, Waghorn K, Lin F, Chase A, Joanna Baxter E, Maclean C, Nangalia J, Chen E, Evans P, Short M, Jack A, Wallis L, Oscier D, Duncombe AS, Schuh A, Mead AJ, Griffiths M, Ewing J, Gale RE, Schnittger S, Haferlach T, Stegelmann F, Döhner K, Grallert H, Strauch K, Tanaka T, Bandinelli S, Giannopoulos A, Pieri L, Mannarelli C, Gisslinger H, Barosi G, Cazzola M, Reiter A, Harrison C, Campbell P, Green AR, Vannucchi A, Cross NC. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun 2015; 6:6691. [PMID: 25849990 PMCID: PMC4396373 DOI: 10.1038/ncomms7691] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/20/2015] [Indexed: 12/21/2022] Open
Abstract
Clonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations in JAK2, CALR or MPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance in JAK2(V617F)-negative MPN: rs12339666 (JAK2; meta-analysis P=1.27 × 10(-10)) and rs2201862 (MECOM; meta-analysis P=1.96 × 10(-9)). Two additional SNPs, rs2736100 (TERT) and rs9376092 (HBS1L/MYB), achieve genome-wide significance when including JAK2(V617F)-positive cases. rs9376092 has a stronger effect in JAK2(V617F)-negative cases with CALR and/or MPL mutations (Breslow-Day P=4.5 × 10(-7)), whereas in JAK2(V617F)-positive cases rs9376092 associates with essential thrombocythemia (ET) rather than polycythemia vera (allelic χ(2) P=7.3 × 10(-7)). Reduced MYB expression, previously linked to development of an ET-like disease in model systems, associates with rs9376092 in normal myeloid cells. These findings demonstrate that multiple germline variants predispose to MPN and link constitutional differences in MYB expression to disease phenotype.
Collapse
Affiliation(s)
- William Tapper
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Amy V. Jones
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Robert Kralovics
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ashot S. Harutyunyan
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Katerina Zoi
- Haematology Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - William Leung
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Anna L. Godfrey
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Paola Guglielmelli
- Laboratorio Congiunto MMPC, Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Alison Callaway
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Daniel Ward
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Paula Aranaz
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Helen E. White
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Katherine Waghorn
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Feng Lin
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Andrew Chase
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - E. Joanna Baxter
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Cathy Maclean
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jyoti Nangalia
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Edwin Chen
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Paul Evans
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Bexley Wing, St James's University Hospital, Leeds LS9 7TF, UK
| | - Michael Short
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Bexley Wing, St James's University Hospital, Leeds LS9 7TF, UK
| | - Andrew Jack
- Haematological Malignancy Diagnostic Service, St James's Institute of Oncology, Bexley Wing, St James's University Hospital, Leeds LS9 7TF, UK
| | - Louise Wallis
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - David Oscier
- Department of Haematology, Royal Bournemouth Hospital, Bournemouth BH7 7DW, UK
| | - Andrew S. Duncombe
- Department of Haematology, University Hospital Southampton, Southampton SO16 6YD, UK
| | - Anna Schuh
- Oxford Biomedical Research Centre, Molecular Diagnostic Laboratory, Oxford University Hospitals NHS Trust, Oxford OX3 7LE, UK
| | - Adam J. Mead
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Michael Griffiths
- School of Cancer Sciences, University of Birmingham,, Birmingham B15 2TT, UK
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Foundation Trust, Birmingham B15 2TG, UK
| | - Joanne Ewing
- Birmingham Heartlands Hospital, Birmingham B9 5SS, UK
| | - Rosemary E. Gale
- Department of Haematology, UCL Cancer Institute, London WC1 E6BT, UK
| | | | | | - Frank Stegelmann
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm 89081, Germany
| | - Harald Grallert
- Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- German Center for Diabetes Research, Neuherberg 85764, Germany
| | - Konstantin Strauch
- Institute of Epidemiology II, Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, 80539 Munich, Germany
| | - Toshiko Tanaka
- Longitudinal Study Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland 21224-6825, USA
| | | | - Andreas Giannopoulos
- Haematology Research Laboratory, Biomedical Research Foundation, Academy of Athens, Athens 11527, Greece
| | - Lisa Pieri
- Laboratorio Congiunto MMPC, Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Carmela Mannarelli
- Laboratorio Congiunto MMPC, Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Heinz Gisslinger
- Medical University of Vienna, Department of Internal Medicine I, Division of Hematology and Blood Coagulation, Vienna 1090, Austria
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, Pavia 27100, Italy
| | - Mario Cazzola
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia 27100, Italy
| | - Andreas Reiter
- III. Medizinische Klinik, Universitätsmedizin Mannheim, Mannheim 68167, Germany
| | - Claire Harrison
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, Guy's Hospital, London SE1 9RT, UK
| | - Peter Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Anthony R. Green
- Department of Haematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
- Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK
| | - Alessandro Vannucchi
- Laboratorio Congiunto MMPC, Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Nicholas C.P. Cross
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| |
Collapse
|
42
|
|
43
|
Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator. Blood 2015; 125:304-15. [DOI: 10.1182/blood-2014-04-555508] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Key Points
Loss of TET2 accelerates the degree of malignancy of MPNs in combination with JAK2V617F. Loss of TET2 sustains MPNs in combination with JAK2V617F.
Collapse
|
44
|
Strassel C, Kubovcakova L, Mangin PH, Ravanat C, Freund M, Skoda RC, Denis CV, Dupuis A, Herbrecht R, Gachet C, Lanza F. Haemorrhagic and thrombotic diatheses in mouse models with thrombocytosis. Thromb Haemost 2014; 113:414-25. [PMID: 25298269 DOI: 10.1160/th14-08-0667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/01/2014] [Indexed: 12/18/2022]
Abstract
We studied haemostasis in two mouse models with thrombocytosis caused by different pathogenic mechanisms. In one strain (Yall;Mpl-/-) thrombocytosis is driven by a misbalance between thrombopoietin and its receptor, whereas in the other strain, thrombocytosis is caused by expressing a human JAK2-V617F transgene (FF1) that depends on activation by Cre-recombinase (VavCre;FF1, MxCre;FF1). Thrombotic responses were increased following some, but not all types of challenges. In a vaso-occlusive thrombotic model following collagen-adrenaline injection we found increased mortality in both strains. Arterial thrombosis, examined after ferric chloride-induced carotid injury, was accelerated but with little impact on maximal thrombus size. In a vena cava stasis model, clots were of similar size as in wild-type controls, but exhibited a different composition with a higher platelet to fibrin ratio. Both thrombocytosis strains displayed increased haemorrhagic tendency in a tail bleeding assay. Yall;Mpl and VavCre;FF1 displayed a lower proportion of the more reactive high-molecular-weight forms of von Willebrand factor in their plasma, mimicking essential thrombocythaemia with very high platelet counts. Bleeding could not be explained by clear defects in platelet activation, which were normal or only weakly decreased. In conclusion, these models of thrombocytosis recapitulate several features of the haemorrhagic and thrombotic diatheses in ET and PV demonstrating potentials but also some limitations to study these major complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - François Lanza
- François Lanza, UMR S_949 - EFS-Alsace, 10, rue Spielmann, 67065 Strasbourg Cedex, France, Tel.: +33 388 21 25 25, Fax: +33 388 21 25 21, E-mail:
| |
Collapse
|
45
|
Geissler K. Translational hematology. Wien Med Wochenschr 2014; 164:487-96. [PMID: 25205187 DOI: 10.1007/s10354-014-0306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/18/2014] [Indexed: 11/24/2022]
Abstract
Translational research is scientific research that helps to make findings from basic science useful for practical applications in the clinic. The successful use of a drug that interferes with the specific molecular pathophysiology of cancer remains the ultimate vision in cancer medicine. Translational research is a multistep process including the discovery of a cytogenetic/molecular aberration as well as the demonstration of its pathophysiological relevance and its druggability by in vitro experiments and in vivo animal models. Information obtained from preclinical research paves the way for clinical trials in which a drug of interest is developed until its clinical application. Modern pathophysiology-oriented anticancer drugs that have been developed by translational research are available for clinical applications since the beginning of this millennium. By using these drugs higher efficacy and lower toxicity could be achieved as compared with previous treatments. In this article, we will present some of the most prominent examples of this translational approach.
Collapse
Affiliation(s)
- Klaus Geissler
- 5th Department of Internal Medicine-Oncology/Hematology, Vienna and Ludwig Boltzmann Institute for Clinical Oncology, Krankenhaus Hietzing, Wolkersbergenstraße 1, 1130, Vienna, Austria,
| |
Collapse
|
46
|
JAK2 inhibitors do not affect stem cells present in the spleens of patients with myelofibrosis. Blood 2014; 124:2987-95. [PMID: 25193869 DOI: 10.1182/blood-2014-02-558015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysregulation of Janus kinase (JAK)-signal transducer and activator of transcription signaling is central to the pathogenesis of myelofibrosis (MF). JAK2 inhibitor therapy in MF patients results in a rapid reduction of the degree of splenomegaly, yet the mechanism underlying this effect remains unknown. The in vitro treatment of splenic and peripheral blood MF CD34(+) cells with the JAK1/2/3 inhibitor, AZD1480, reduced the absolute number of CD34(+), CD34(+)CD90(+), and CD34(+)CXCR4(+) cells as well as assayable hematopoietic progenitor cells (HPCs) irrespective of the JAK2 and calreticulin mutational status. Furthermore, AZD1480 treatment resulted in only a modest reduction in the proportion of HPCs that were JAK2V617F(+) or had a chromosomal abnormality. To study the effect of the drug on MF stem cells (MF-SCs), splenic CD34(+) cells were treated with AZD1480 and transplanted into immunodeficient mice. JAK2 inhibitor therapy did not affect the degree of human cell chimerism or the proportion of malignant donor cells. These data indicate that JAK2 inhibitor treatment affects a subpopulation of MF-HPCs, while sparing another HPC subpopulation as well as MF-SCs. This pattern of activity might account for the reduction in spleen size observed with JAK2 inhibitor therapy as well as the rapid increase in spleen size observed frequently with its discontinuation.
Collapse
|
47
|
Pieri L, Guglielmelli P, Finazzi G, Vannucchi AM. Givinostat for the treatment of polycythemia vera. Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.934223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
48
|
Staerk J, Constantinescu SN. The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAKSTAT 2014; 1:184-90. [PMID: 24058768 PMCID: PMC3670242 DOI: 10.4161/jkst.22071] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/25/2012] [Accepted: 09/04/2012] [Indexed: 12/30/2022] Open
Abstract
Janus kinases (JAKs) are non-receptor tyrosine kinases essential for activation of signaling mediated by cytokine receptors that lack catalytic activity, including receptors for erythropoietin, thrombopoietin, most interleukins and interferon. Upon hormone binding, JAKs phosphorylate tyrosine residues in the receptor cytoplasmic domains and in JAKs themselves leading to recruitment and activation of downstream signaling proteins such as signal transducer and activator of transcription (STAT). The JAK-STAT pathway is important for functional hematopoiesis and several activating mutations in JAK proteins have recently been described as underlying cause of blood disorders. One of the best studied examples is the JAK2 V617F mutant which is found in 95% of polycythemia vera patients and 50% of patients suffering from essential thrombocythemia and primary myelofibrosis. Much effort has been made to understand how the JAK2 V617F affects hematopoietic stem cell (HSC) renewal and lineage differentiation, since convincing evidence has been provided to support the notion that the mutation is acquired at the HSC level. We discuss several in vivo models that support contrary conclusions with respect to the advantage given to HSCs by JAK2 V617F. Moreover, we provide the current knowledge about STAT5 activation and its link to HSC expansion as well as amplification of the erythroid compartment. Evidence for both JAK2 V617F mutated HSCs exhibiting skewed differentiation potential and for amplification occurring after erythroid commitment has been provided, and we will discuss whether this evidence is relevant for the disease.
Collapse
Affiliation(s)
- Judith Staerk
- Stem Cell Group; Nordic EMBL Partnership; Centre for Molecular Medicine Norway (NCMM); University of Oslo; Oslo, Norway ; Department of Hematology; Oslo University Hospital; Oslo, Norway
| | | |
Collapse
|
49
|
Abstract
Thrombosis is common in patients suffering from myeloproliferative neoplasm (MPN), whereas bleeding is less frequent. JAK2(V617F), the main mutation involved in MPN, is considered as a risk factor for thrombosis, although the direct link between the mutation and hemostatic disorders is not strictly established. We investigated this question using conditional JAK2(V617F) knock-in mice with constitutive and inducible expression of JAK2(V617F) in hematopoietic cells, which develop a polycythemia vera (PV)-like disorder evolving into myelofibrosis. In vitro, thrombosis was markedly impaired with an 80% decrease in platelet-covered surface, when JAK2(V617F) blood was perfused at arterial shear over collagen. JAK2(V617F) platelets presented only a moderate glycoprotein (GP) VI deficiency not responsible for the defective platelet accumulation. In contrast, a decreased proportion of high-molecular-weight von Willebrand factor multimers could reduce platelet adhesion. Accordingly, the tail bleeding time was prolonged. In the FeCl3-induced thrombosis model, platelet aggregates formed rapidly but were highly unstable. Interestingly, vessels were considerably dilated. Thus, mice developing PV secondary to constitutive JAK2(V617F) expression exhibit a bleeding tendency combined with the accelerated formation of unstable clots, reminiscent of observations made in patients. Hemostatic defects were not concomitant with the induction of JAK2(V617F) expression, suggesting they were not directly caused by the mutation but were rather the consequence of perturbations in blood and vessel homeostasis.
Collapse
|
50
|
Rampal R, Levine RL. A primer on genomic and epigenomic alterations in the myeloproliferative neoplasms. Best Pract Res Clin Haematol 2014; 27:83-93. [DOI: 10.1016/j.beha.2014.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/11/2014] [Indexed: 01/13/2023]
|