1
|
Bogan SN, Yi SV. Potential Role of DNA Methylation as a Driver of Plastic Responses to the Environment Across Cells, Organisms, and Populations. Genome Biol Evol 2024; 16:evae022. [PMID: 38324384 PMCID: PMC10899001 DOI: 10.1093/gbe/evae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
There is great interest in exploring epigenetic modifications as drivers of adaptive organismal responses to environmental change. Extending this hypothesis to populations, epigenetically driven plasticity could influence phenotypic changes across environments. The canonical model posits that epigenetic modifications alter gene regulation and subsequently impact phenotypes. We first discuss origins of epigenetic variation in nature, which may arise from genetic variation, spontaneous epimutations, epigenetic drift, or variation in epigenetic capacitors. We then review and synthesize literature addressing three facets of the aforementioned model: (i) causal effects of epigenetic modifications on phenotypic plasticity at the organismal level, (ii) divergence of epigenetic patterns in natural populations distributed across environmental gradients, and (iii) the relationship between environmentally induced epigenetic changes and gene expression at the molecular level. We focus on DNA methylation, the most extensively studied epigenetic modification. We find support for environmentally associated epigenetic structure in populations and selection on stable epigenetic variants, and that inhibition of epigenetic enzymes frequently bears causal effects on plasticity. However, there are pervasive confounding issues in the literature. Effects of chromatin-modifying enzymes on phenotype may be independent of epigenetic marks, alternatively resulting from functions and protein interactions extrinsic of epigenetics. Associations between environmentally induced changes in DNA methylation and expression are strong in plants and mammals but notably absent in invertebrates and nonmammalian vertebrates. Given these challenges, we describe emerging approaches to better investigate how epigenetic modifications affect gene regulation, phenotypic plasticity, and divergence among populations.
Collapse
Affiliation(s)
- Samuel N Bogan
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| |
Collapse
|
2
|
Ren W, Ding B, Dong W, Yue Y, Long X, Zhou Z. Unveiling HSP40/60/70/90/100 gene families and abiotic stress response in Jerusalem artichoke. Gene 2024; 893:147912. [PMID: 37863300 DOI: 10.1016/j.gene.2023.147912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Heat shock proteins (HSPs) are essential for plant growth, development, and stress adaptation. However, their roles in Jerusalem artichoke are largely unexplored. Using bioinformatics, we classified 143 HSP genes into distinct families: HSP40 (82 genes), HSP60 (22 genes), HSP70 (29 genes), HSP90 (6 genes), and HSP100 (4 genes). Our analysis covered their traits, evolution, and structures. Using RNA-seq data, we uncovered unique expression patterns of these HSP genes across growth stages and tissues. Notably, HSP40, HSP60, HSP70, HSP90, and HSP100 families each had specific roles. We also studied how these gene families responded to various stresses, from extreme temperatures to drought and salinity, revealing intricate expression dynamics. Remarkably, HSP40 showed remarkable flexibility, while HSP60, HSP70, HSP90, and HSP100 responded specifically to stress types. Moreover, our analysis unveiled significant correlations between gene pairs under stress, implying cooperative interactions. qRT-PCR validation underscored the significance of particular genes such as HtHSP60-7, HtHSP90-5, HtHSP100-2, and HtHSP100-3 in responding to stress. In summary, our study advances the understanding of how HSP gene families collectively manage stresses in Jerusalem artichoke. This provides insights into specific gene functions and broader plant stress responses.
Collapse
Affiliation(s)
- Wencai Ren
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishui Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenhan Dong
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Yue
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohua Long
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaosheng Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Hosseini SS, Ramezanpour SS, Soltanloo H, Seifati SE. RNA-seq analysis and reconstruction of gene networks involved in response to salinity stress in quinoa (cv. Titicaca). Sci Rep 2023; 13:7308. [PMID: 37147414 PMCID: PMC10163252 DOI: 10.1038/s41598-023-34534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/03/2023] [Indexed: 05/07/2023] Open
Abstract
To better understand the mechanisms involved in salinity stress, the adaptability of quinoa cv. Titicaca-a halophytic plant-was investigated at the transcriptome level under saline and non-saline conditions. RNA-sequencing analysis of leaf tissue at the four-leaf stage by Illumina paired-end method was used to compare salt stress treatment (four days after stress at 13.8 dsm-1) and control. Among the obtained 30,846,354 transcripts sequenced, 30,303 differentially expressed genes from the control and stress treatment samples were identified, with 3363 genes expressed ≥ 2 and false discovery rate (FDR) of < 0.001. Six differential expression genes were then selected and qRT-PCR was used to confirm the RNA-seq results. Some of the genes (Include; CML39, CBSX5, TRX1, GRXC9, SnRKγ1 and BAG6) and signaling pathways discussed in this paper not been previously studied in quinoa. Genes with ≥ 2 were used to design the gene interaction network using Cytoscape software, and AgriGO software and STRING database were used for gene ontology. The results led to the identification of 14 key genes involved in salt stress. The most effective hub genes involved in salt tolerance were the heat shock protein gene family. The transcription factors that showed a significant increase in expression under stress conditions mainly belonged to the WRKY, bZIP and MYB families. Ontology analysis of salt stress-responsive genes and hub genes revealed that metabolic pathways, binding, cellular processes and cellular anatomical entity are among the most effective processes involved in salt stress.
Collapse
Affiliation(s)
- Sahar Sadat Hosseini
- Department of Plant Breeding and Plant Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran
| | - Seyedeh Sanaz Ramezanpour
- Department of Plant Breeding and Plant Biotechnology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Golestan, Iran.
| | - Hassan Soltanloo
- Department of Arid Land and Desert Management, School of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
| | - Seyed Ebrahim Seifati
- Department of Arid Land and Desert Management, School of Natural Resources and Desert Studies, Yazd University, Yazd, Iran
| |
Collapse
|
4
|
Lemus T, Mason GA, Bubb KL, Alexandre CM, Queitsch C, Cuperus JT. AGO1 and HSP90 buffer different genetic variants in Arabidopsis thaliana. Genetics 2023; 223:iyac163. [PMID: 36303325 PMCID: PMC9910400 DOI: 10.1093/genetics/iyac163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/18/2022] [Indexed: 11/14/2022] Open
Abstract
Argonaute 1 (AGO1), the principal protein component of microRNA-mediated regulation, plays a key role in plant growth and development. AGO1 physically interacts with the chaperone HSP90, which buffers cryptic genetic variation in plants and animals. We sought to determine whether genetic perturbation of AGO1 in Arabidopsis thaliana would also reveal cryptic genetic variation, and if so, whether AGO1-dependent loci overlap with those dependent on HSP90. To address these questions, we introgressed a hypomorphic mutant allele of AGO1 into a set of mapping lines derived from the commonly used Arabidopsis strains Col-0 and Ler. Although we identified several cases in which AGO1 buffered genetic variation, none of the AGO1-dependent loci overlapped with those buffered by HSP90 for the traits assayed. We focused on 1 buffered locus where AGO1 perturbation uncoupled the traits days to flowering and rosette leaf number, which are otherwise closely correlated. Using a bulk segregant approach, we identified a nonfunctional Ler hua2 mutant allele as the causal AGO1-buffered polymorphism. Introduction of a nonfunctional hua2 allele into a Col-0 ago1 mutant background recapitulated the Ler-dependent ago1 phenotype, implying that coupling of these traits involves different molecular players in these closely related strains. Taken together, our findings demonstrate that even though AGO1 and HSP90 buffer genetic variation in the same traits, these robustness regulators interact epistatically with different genetic loci, suggesting that higher-order epistasis is uncommon. Plain Language Summary Argonaute 1 (AGO1), a key player in plant development, interacts with the chaperone HSP90, which buffers environmental and genetic variation. We found that AGO1 buffers environmental and genetic variation in the same traits; however, AGO1-dependent and HSP90-dependent loci do not overlap. Detailed analysis of a buffered locus found that a nonfunctional HUA2 allele decouples days to flowering and rosette leaf number in an AGO1-dependent manner, suggesting that the AGO1-dependent buffering acts at the network level.
Collapse
Affiliation(s)
- Tzitziki Lemus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Grace Alex Mason
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
5
|
Bai WP, Li HJ, Hepworth SR, Liu HS, Liu LB, Wang GN, Ma Q, Bao AK, Wang SM. Physiological and transcriptomic analyses provide insight into thermotolerance in desert plant Zygophyllum xanthoxylum. BMC PLANT BIOLOGY 2023; 23:7. [PMID: 36600201 PMCID: PMC9814312 DOI: 10.1186/s12870-022-04024-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/22/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Heat stress has adverse effects on the growth and reproduction of plants. Zygophyllum xanthoxylum, a typical xerophyte, is a dominant species in the desert where summer temperatures are around 40 °C. However, the mechanism underlying the thermotolerance of Z. xanthoxylum remained unclear. RESULTS Here, we characterized the acclimation of Z. xanthoxylum to heat using a combination of physiological measurements and transcriptional profiles under treatments at 40 °C and 45 °C, respectively. Strikingly, moderate high temperature (40 °C) led to an increase in photosynthetic capacity and superior plant performance, whereas severe high temperature (45 °C) was accompanied by reduced photosynthetic capacity and inhibited growth. Transcriptome profiling indicated that the differentially expressed genes (DEGs) were related to transcription factor activity, protein folding and photosynthesis under heat conditions. Furthermore, numerous genes encoding heat transcription shock factors (HSFs) and heat shock proteins (HSPs) were significantly up-regulated under heat treatments, which were correlated with thermotolerance of Z. xanthoxylum. Interestingly, the up-regulation of PSI and PSII genes and the down-regulation of chlorophyll catabolism genes likely contribute to improving plant performance of Z. xanthoxylum under moderate high temperature. CONCLUSIONS We identified key genes associated with of thermotolerance and growth in Z. xanthoxylum, which provide significant insights into the regulatory mechanisms of thermotolerance and growth regulation in Z. xanthoxylum under high temperature conditions.
Collapse
Affiliation(s)
- Wan-Peng Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Hu-Jun Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Shelley R Hepworth
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Hai-Shuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Lin-Bo Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Gai-Ni Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China
| | - Suo-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, People's Republic of China.
| |
Collapse
|
6
|
Wang H, Dong Z, Chen J, Wang M, Ding Y, Xue Q, Liu W, Niu Z, Ding X. Genome-wide identification and expression analysis of the Hsp20, Hsp70 and Hsp90 gene family in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:979801. [PMID: 36035705 PMCID: PMC9399769 DOI: 10.3389/fpls.2022.979801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium officinale, an important orchid plant with great horticultural and medicinal values, frequently suffers from abiotic or biotic stresses in the wild, which may influence its well-growth. Heat shock proteins (Hsps) play essential roles in the abiotic stress response of plants. However, they have not been systematically investigated in D. officinale. Here, we identified 37 Hsp20 genes (DenHsp20s), 43 Hsp70 genes (DenHsp70s) and 4 Hsp90 genes (DenHsp90s) in D. officinale genome. These genes were classified into 8, 4 and 2 subfamilies based on phylogenetic analysis and subcellular predication, respectively. Sequence analysis showed that the same subfamily members have relatively conserved gene structures and similar protein motifs. Moreover, we identified 33 pairs of paralogs containing 30 pairs of tandem duplicates and 3 pairs of segmental duplicates among these genes. There were 7 pairs in DenHsp70s under positive selection, which may have important functions in helping cells withstand extreme stress. Numerous gene promoter sequences contained stress and hormone response cis-elements, especially light and MeJA response elements. Under MeJA stress, DenHsp20s, DenHsp70s and DenHsp90s responded to varying degrees, among which DenHsp20-5,6,7,16 extremely up-regulated, which may have a strong stress resistance. Therefore, these findings could provide useful information for evolutional and functional investigations of Hsp20, Hsp70 and Hsp90 genes in D. officinale.
Collapse
Affiliation(s)
- Hongman Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Zuqi Dong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Jianbing Chen
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Meng Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yuting Ding
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| |
Collapse
|
7
|
Sell-Kubiak E, Knol EF, Lopes M. Evaluation of the phenotypic and genomic background of variability based on litter size of Large White pigs. Genet Sel Evol 2022; 54:1. [PMID: 34979897 PMCID: PMC8722267 DOI: 10.1186/s12711-021-00692-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic background of trait variability has captured the interest of ecologists and animal breeders because the genes that control it could be involved in buffering various environmental effects. Phenotypic variability of a given trait can be assessed by studying the heterogeneity of the residual variance, and the quantitative trait loci (QTL) that are involved in the control of this variability are described as variance QTL (vQTL). This study focuses on litter size (total number born, TNB) and its variability in a Large White pig population. The variability of TNB was evaluated either using a simple method, i.e. analysis of the log-transformed variance of residuals (LnVar), or the more complex double hierarchical generalized linear model (DHGLM). We also performed a single-SNP (single nucleotide polymorphism) genome-wide association study (GWAS). To our knowledge, this is only the second study that reports vQTL for litter size in pigs and the first one that shows GWAS results when using two methods to evaluate variability of TNB: LnVar and DHGLM. RESULTS Based on LnVar, three candidate vQTL regions were detected, on Sus scrofa chromosomes (SSC) 1, 7, and 18, which comprised 18 SNPs. Based on the DHGLM, three candidate vQTL regions were detected, i.e. two on SSC7 and one on SSC11, which comprised 32 SNPs. Only one candidate vQTL region overlapped between the two methods, on SSC7, which also contained the most significant SNP. Within this vQTL region, two candidate genes were identified, ADGRF1, which is involved in neurodevelopment of the brain, and ADGRF5, which is involved in the function of the respiratory system and in vascularization. The correlation between estimated breeding values based on the two methods was 0.86. Three-fold cross-validation indicated that DHGLM yielded EBV that were much more accurate and had better prediction of missing observations than LnVar. CONCLUSIONS The results indicated that the LnVar and DHGLM methods resulted in genetically different traits. Based on their validation, we recommend the use of DHGLM over the simpler method of log-transformed variance of residuals. These conclusions can be useful for future studies on the evaluation of the variability of any trait in any species.
Collapse
Affiliation(s)
- Ewa Sell-Kubiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznań, Poland.
| | - Egbert F Knol
- Topigs Norsvin Research Centre, Beuningen, The Netherlands
| | - Marcos Lopes
- Topigs Norsvin Research Centre, Beuningen, The Netherlands.,Topigs Norsvin, Curitiba, Brazil
| |
Collapse
|
8
|
Samakovli D, Roka L, Dimopoulou A, Plitsi PK, Žukauskait A, Georgopoulou P, Novák O, Milioni D, Hatzopoulos P. HSP90 affects root growth in Arabidopsis by regulating the polar distribution of PIN1. THE NEW PHYTOLOGIST 2021; 231:1814-1831. [PMID: 34086995 DOI: 10.1111/nph.17528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Auxin homeostasis and signaling affect a broad range of developmental processes in plants. The interplay between HSP90 and auxin signaling is channeled through the chaperoning capacity of the HSP90 on the TIR1 auxin receptor. The sophisticated buffering capacity of the HSP90 system through the interaction with diverse signaling protein components drastically shapes genetic circuitries regulating various developmental aspects. However, the elegant networking capacity of HSP90 in the global regulation of auxin response and homeostasis has not been appreciated. Arabidopsis hsp90 mutants were screened for gravity response. Phenotypic analysis of root meristems and cotyledon veins was performed. PIN1 localization in hsp90 mutants was determined. Our results showed that HSP90 affected the asymmetrical distribution of PIN1 in plasma membranes and influenced its expression in prompt cell niches. Depletion of HSP90 distorted polar distribution of auxin, as the acropetal auxin transport was highly affected, leading to impaired root gravitropism and lateral root formation. The essential role of the HSP90 in auxin homeostasis was profoundly evident from early development, as HSP90 depletion affected embryo development and the pattern formation of veins in cotyledons. Our data suggest that the HSP90-mediated distribution of PIN1 modulates auxin distribution and thereby auxin signaling to properly promote plant development.
Collapse
Affiliation(s)
- Despina Samakovli
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Loukia Roka
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Anastasia Dimopoulou
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Panagiota Konstantinia Plitsi
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Asta Žukauskait
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Paraskevi Georgopoulou
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Ondřej Novák
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Dimitra Milioni
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Polydefkis Hatzopoulos
- Molecular Biology Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| |
Collapse
|
9
|
Samakovli D, Tichá T, Vavrdová T, Závorková N, Pecinka A, Ovečka M, Šamaj J. HEAT SHOCK PROTEIN 90 proteins and YODA regulate main body axis formation during early embryogenesis. PLANT PHYSIOLOGY 2021; 186:1526-1544. [PMID: 33856486 PMCID: PMC8260137 DOI: 10.1093/plphys/kiab171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 05/23/2023]
Abstract
The YODA (YDA) kinase pathway is intimately associated with the control of Arabidopsis (Arabidopsis thaliana) embryo development, but little is known regarding its regulators. Using genetic analysis, HEAT SHOCK PROTEIN 90 (HSP90) proteins emerge as potent regulators of YDA in the process of embryo development and patterning. This study is focused on the characterization and quantification of early embryonal traits of single and double hsp90 and yda mutants. HSP90s genetic interactions with YDA affected the downstream signaling pathway to control the development of both basal and apical cell lineage of embryo. Our results demonstrate that the spatiotemporal expression of WUSCHEL-RELATED HOMEOBOX 8 (WOX8) and WOX2 is changed when function of HSP90s or YDA is impaired, suggesting their essential role in the cell fate determination and possible link to auxin signaling during early embryo development. Hence, HSP90s together with YDA signaling cascade affect transcriptional networks shaping the early embryo development.
Collapse
Affiliation(s)
- Despina Samakovli
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Tereza Tichá
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Tereza Vavrdová
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Natálie Závorková
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Ales Pecinka
- Institute of Experimental Botany (IEB), Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Olomouc 779 00, Czech Republic
| | - Miroslav Ovečka
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Jozef Šamaj
- Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| |
Collapse
|
10
|
Zhang K, He S, Sui Y, Gao Q, Jia S, Lu X, Jia L. Genome-Wide Characterization of HSP90 Gene Family in Cucumber and Their Potential Roles in Response to Abiotic and Biotic Stresses. Front Genet 2021; 12:584886. [PMID: 33613633 PMCID: PMC7889589 DOI: 10.3389/fgene.2021.584886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/14/2021] [Indexed: 11/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) possesses critical functions in plant developmental control and defense reactions. The HSP90 gene family has been studied in various plant species. However, the HSP90 gene family in cucumber has not been characterized in detail. In this study, a total of six HSP90 genes were identified from the cucumber genome, which were distributed to five chromosomes. Phylogenetic analysis divided the cucumber HSP90 genes into two groups. The structural characteristics of cucumber HSP90 members in the same group were similar but varied among different groups. Synteny analysis showed that only one cucumber HSP90 gene, Csa1G569290, was conservative, which was not collinear with any HSP90 gene in Arabidopsis and rice. The other five cucumber HSP90 genes were collinear with five Arabidopsis HSP90 genes and six rice HSP90 genes. Only one pair of paralogous genes in the cucumber HSP90 gene family, namely one pair of tandem duplication genes (Csa1G569270/Csa1G569290), was detected. The promoter analysis showed that the promoters of cucumber HSP90 genes contained hormone, stress, and development-related cis-elements. Tissue-specific expression analysis revealed that only one cucumber HSP90 gene Csa3G183950 was highly expressed in tendril but low or not expressed in other tissues, while the other five HSP90 genes were expressed in all tissues. Furthermore, the expression levels of cucumber HSP90 genes were differentially induced by temperature and photoperiod, gibberellin (GA), downy mildew, and powdery mildew stimuli. Two cucumber HSP90 genes, Csa1G569270 and Csa1G569290, were both differentially expressed in response to abiotic and biotic stresses, which means that these two HSP90 genes play important roles in the process of cucumber growth and development. These findings improve our understanding of cucumber HSP90 family genes and provide preliminary information for further studies of cucumber HSP90 gene functions in plant growth and development.
Collapse
Affiliation(s)
- Kaijing Zhang
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shuaishuai He
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Yihu Sui
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Qinghai Gao
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Shuangshuang Jia
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Xiaomin Lu
- College of Agriculture, Anhui Science and Technology University, Fengyang, China
| | - Li Jia
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
11
|
Wei Y, Zhu B, Liu W, Cheng X, Lin D, He C, Shi H. Heat shock protein 90 co-chaperone modules fine-tune the antagonistic interaction between salicylic acid and auxin biosynthesis in cassava. Cell Rep 2021; 34:108717. [PMID: 33535044 DOI: 10.1016/j.celrep.2021.108717] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 01/12/2021] [Indexed: 11/29/2022] Open
Abstract
Heat shock protein 90 (HSP90) is an important molecular chaperone in plants. However, HSP90-mediated plant immune response remains elusive in cassava. In this study, cassava bacterial blight (CBB) induces the expression of MeHsf8, which directly targets MeHSP90.9 to activate its expression and immune response. Further identification of SHI-related sequence 1 (MeSRS1) and MeWRKY20 as MeHSP90.9 co-chaperones revealed the underlying mechanism of MeHSP90.9-mediated immune response. MeHSP90.9 interacts with MeSRS1 and MeWRKY20 to promote their transcriptional activation of salicylic acid (SA) biosynthetic gene avrPphB Susceptible 3 (MePBS3) and tryptophan metabolic gene N-acetylserotonin O-methyltransferase 2 (MeASMT2), respectively, so as to activate SA biosynthesis but inhibit tryptophan-derived auxin biosynthesis. Notably, genetic experiments confirmed that overexpressing MePBS3 and MeASMT2 could rescue the effects of silencing MeHsf8-MeHSP90.9 on disease resistance. This study highlights the dual regulation of SA and auxin biosynthesis by MeHSP90.9, providing the mechanistic understanding of MeHSP90.9 client partners in plant immunity.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Binbin Zhu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Wen Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiao Cheng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Daozhe Lin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
12
|
Corigliano MG, Sander VA, Sánchez López EF, Ramos Duarte VA, Mendoza Morales LF, Angel SO, Clemente M. Heat Shock Proteins 90 kDa: Immunomodulators and Adjuvants in Vaccine Design Against Infectious Diseases. Front Bioeng Biotechnol 2021; 8:622186. [PMID: 33553125 PMCID: PMC7855457 DOI: 10.3389/fbioe.2020.622186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 02/03/2023] Open
Abstract
Heat shock proteins 90 kDa (Hsp90s) were originally identified as stress-responsive proteins and described to participate in several homeostatic processes. Additionally, extracellular Hsp90s have the ability to bind to surface receptors and activate cellular functions related to immune response (cytokine secretion, cell maturation, and antigen presentation), making them very attractive to be studied as immunomodulators. In this context, Hsp90s are proposed as new adjuvants in the design of novel vaccine formulations that require the induction of a cell-mediated immune response to prevent infectious diseases. In this review, we summarized the adjuvant properties of Hsp90s when they are either alone, complexed, or fused to a peptide to add light to the knowledge of Hsp90s as carriers and adjuvants in the design of vaccines against infectious diseases. Besides, we also discuss the mechanisms by which Hsp90s activate and modulate professional antigen-presenting cells.
Collapse
Affiliation(s)
- Mariana G Corigliano
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Valeria A Sander
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Edwin F Sánchez López
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Víctor A Ramos Duarte
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Luisa F Mendoza Morales
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Sergio O Angel
- Unidad Biotecnológica 2-UB2, Laboratorio de Parasitología Molecular, INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Marina Clemente
- Unidad Biotecnológica 6-UB6, Laboratorio de Molecular Farming y Vacunas, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
13
|
Lv J, Pang Q, Chen X, Li T, Fang J, Lin S, Jia H. Transcriptome analysis of strawberry fruit in response to exogenous arginine. PLANTA 2020; 252:82. [PMID: 33040169 DOI: 10.1007/s00425-020-03489-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/01/2020] [Indexed: 05/19/2023]
Abstract
Transcriptome and physiological analysis showed that exogenous arginine can delay the ripening process of postharvest strawberry fruit. Arginine (Arg) plays an important role in the growth and development of plants, but its growth and development regulatory mechanisms in strawberry fruit are unknown. In this study, we found that the content of Arg decreased after the onset of fruit coloration and exogenous Arg inhibited fruit coloration. We comprehensively analyzed the transcriptome of 'Sweet Charlie' strawberry fruit with or without Arg treatment and identified a large number of differential genes and metabolites. Based on the transcriptome data, we also found that Arg inhibited ripening, which coincided with changes in several physiological parameters and their corresponding gene transcripts, including firmness, anthocyanin content, sugar content, Arg content, indole-acetic acid (IAA) content, abscisic acid (ABA) content, and ethylene emissions. We also found that Arg induced the expression of heat-shock proteins (HSPs) and antioxidant enzyme genes, which improved strawberry stress resistance. This study elucidated the molecular mechanism by which exogenous Arg delays strawberry fruit ripening, providing some genetic information to help guide the future improvement and cultivation of strawberry.
Collapse
Affiliation(s)
- Jinhua Lv
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qianqian Pang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xueqin Chen
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Teng Li
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shaoyan Lin
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
14
|
Tichá T, Samakovli D, Kuchařová A, Vavrdová T, Šamaj J. Multifaceted roles of HEAT SHOCK PROTEIN 90 molecular chaperones in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3966-3985. [PMID: 32293686 DOI: 10.1093/jxb/eraa177] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 05/20/2023]
Abstract
HEAT SHOCK PROTEINS 90 (HSP90s) are molecular chaperones that mediate correct folding and stability of many client proteins. These chaperones act as master molecular hubs involved in multiple aspects of cellular and developmental signalling in diverse organisms. Moreover, environmental and genetic perturbations affect both HSP90s and their clients, leading to alterations of molecular networks determining respectively plant phenotypes and genotypes and contributing to a broad phenotypic plasticity. Although HSP90 interaction networks affecting the genetic basis of phenotypic variation and diversity have been thoroughly studied in animals, such studies are just starting to emerge in plants. Here, we summarize current knowledge and discuss HSP90 network functions in plant development and cellular homeostasis.
Collapse
Affiliation(s)
- Tereza Tichá
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Despina Samakovli
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Anna Kuchařová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tereza Vavrdová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
15
|
Gong YN, Tang RQ, Zhang Y, Peng J, Xian O, Zhang ZH, Zhang SB, Zhang DY, Liu H, Luo XW, Liu Y. The NIa-Protease Protein Encoded by the Pepper Mottle Virus Is a Pathogenicity Determinant and Releases DNA Methylation of Nicotiana benthamiana. Front Microbiol 2020; 11:102. [PMID: 32153517 PMCID: PMC7047827 DOI: 10.3389/fmicb.2020.00102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
It is well documented that the canonical function of NIa-protease (NIa-Pro) of the potyviruses is responsible for cleaving the viral polyprotein into functional proteins. Although NIa-Pro is vital for the infection cycle of potyviruses, the function of NIa-Pro in the interaction of the potyvirus host is not clear. In this study, NIa-Pro is ectopically expressed from a potato virus X (PVX) vector and infiltrates Nicotiana benthamiana wild type and 16-TGS. The pathogenicity and inhibition of host transcriptional gene silencing (TGS) are characterized. Ectopic expression of NIa-Pro from a PVX vector resulted in severe mosaic symptoms followed by a hypersensitive-like response in N. benthamiana. Furthermore, PepMoV NIa-Pro was able to reverse established TGS of a green fluorescent protein transgene by reducing methylation of promoter sequences in N. benthamiana and possessed the capacity to interfere with the global methylation of N. benthamiana. Taken together, the results of this study likely suggest that PepMoV NIa-Pro is a pathogenicity determinant and a potent suppressor of host TGS and suggest that NIa-Pro may employ novel mechanisms to suppress host antiviral defenses. To the best of our knowledge, this is the first report of a plant RNA virus modulating host TGS in a novel manner by interfering with the establishment of the methylation step of the plant DNA methylation pathway.
Collapse
Affiliation(s)
- Yi-Nuo Gong
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Ru-Qing Tang
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yu Zhang
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Jing Peng
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - OuYang Xian
- Hunan Academy of Agricultural Sciences, Changsha, China
| | | | - Song-Bai Zhang
- Longping Branch, Graduate School of Hunan University, Changsha, China.,Hunan Academy of Agricultural Sciences, Changsha, China
| | - De-Yong Zhang
- Longping Branch, Graduate School of Hunan University, Changsha, China.,Hunan Academy of Agricultural Sciences, Changsha, China
| | - Hui Liu
- National Agro-Tech Extension and Service Center, Beijing, China
| | - Xiang-Wen Luo
- Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan University, Changsha, China.,Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
16
|
Du F, Gong W, Boscá S, Tucker M, Vaucheret H, Laux T. Dose-Dependent AGO1-Mediated Inhibition of the miRNA165/166 Pathway Modulates Stem Cell Maintenance in Arabidopsis Shoot Apical Meristem. PLANT COMMUNICATIONS 2020; 1:100002. [PMID: 33404539 PMCID: PMC7747967 DOI: 10.1016/j.xplc.2019.100002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 05/28/2023]
Abstract
Pluripotent stem cells localized in proliferating growth centers, the meristems, are the origin of life-long organ formation and growth in higher plants. In the shoot apical meristem of Arabidopsis thaliana, the closely related ARGONAUTE proteins AGO1 and ZLL/AGO10 bind miR165/166 species to regulate mRNAs of HD-ZIP III transcription factors that are essential to maintaining stem cells. Several genetic studies showed that AGO1 and ZLL/AGO10 act redundantly to maintain stem cells. By contrast, the reported biochemical data suggested antagonistic functions: AGO1 utilizes miR165/166 to slice HD-ZIP III mRNAs, whereas ZLL/AGO10 promotes degradation of miR165/166 and thus stabilizes HD-ZIP III mRNAs. How these different functions are balanced in stem cell regulation has remained enigmatic. Here, we show that autorepression of AGO1 through miR168-mediated slicing of its own RNA is required to maintain the ability of AGO1 to suppress HD-ZIP III mRNAs. Increased AGO1 expression, either in the miR168a-2 mutant or by transgenic expression, inhibits this ability despite the presence of high levels of miR165/166, effectively uncoupling HD-ZIP III and miR165/166 expression. AGO1 activity can be restored, however, by increasing the levels of chaperones SQN and HSP90, which promote assembly of RNA-induced silencing complex (RISC). This suggests that cellular abundance of SQN and HSP chaperones limits AGO1-mediated RNA interference in shoot meristem stem cell regulation. Localized misexpression of AGO1 indicates that the cells surrounding the shoot meristem primordium play a crucial role in stem cell development. Taken together, our study provides a framework that reconciles biochemical and genetic data, showing that restriction of AGO1 levels by miR168-mediated autorepression is key to RISC homeostasis and the function of AGO1 in stem cell regulation.
Collapse
Affiliation(s)
- Fei Du
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Wen Gong
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Sonia Boscá
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Matthew Tucker
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Hervé Vaucheret
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
17
|
Zhang N, Xu J, Liu X, Liang W, Xin M, Du J, Hu Z, Peng H, Guo W, Ni Z, Sun Q, Yao Y. Identification of HSP90C as a substrate of E3 ligase TaSAP5 through ubiquitylome profiling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110170. [PMID: 31481192 DOI: 10.1016/j.plantsci.2019.110170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Protein ubiquitination is a major post-translational modification important for diverse biological processes. In wheat (Triticum aestivum) and Arabidopsis thaliana, STRESS-ASSOCIATED PROTEIN 5 (SAP5) is involved in drought tolerance, acting as an E3 ubiquitin ligase to target DRIP and MBP-1 for degradation. To identify further target proteins of SAP5, we implemented two independent approaches in this work. We used ubiquitylome capture with a di-Gly-Lys antibody-based peptide enrichment and affinity purification with a polyubiquitin antibody coupled with mass spectrometry to elucidate the SAP5-dependent ubiquitylation of its target proteins in response to osmotic stress. Wild type or TaSAP5-overexpressing Arabidopsis line, which was more tolerant to osmotic stress according to our previous study, were used here. We identified HSP90C (chloroplast heat shock protein 90) as a substrate of TaSAP5. Further biochemical experiments indicated that TaSAP5 interacts with HSP90C and mediates its degradation by the 26S proteasome. Our work also demonstrates that ubiquitylome profiling is an effective approach to search for substrates of the TaSAP5 E3 ubiquitin ligase when heterologously expressed in Arabidopsis.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jing Xu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Xinye Liu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Wenxing Liang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Jinkun Du
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Weilong Guo
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology and Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
18
|
Genetically Modified Heat Shock Protein90s and Polyamine Oxidases in Arabidopsis Reveal Their Interaction under Heat Stress Affecting Polyamine Acetylation, Oxidation and Homeostasis of Reactive Oxygen Species. PLANTS 2019; 8:plants8090323. [PMID: 31484414 PMCID: PMC6783977 DOI: 10.3390/plants8090323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 11/24/2022]
Abstract
One Sentence Summary Heat shock proteins90 (HSP90s) induce acetylation of polyamines (PAs) and interact with polyamine oxidases (PAOs) affecting oxidation of PAs and hydrogen peroxide (H2O2) homeostasis in Arabidopsis thaliana. Abstract The chaperones, heat shock proteins (HSPs), stabilize proteins to minimize proteotoxic stress, especially during heat stress (HS) and polyamine (PA) oxidases (PAOs) participate in the modulation of the cellular homeostasis of PAs and reactive oxygen species (ROS). An interesting interaction of HSP90s and PAOs was revealed in Arabidopsis thaliana by using the pLFY:HSP90RNAi line against the four AtHSP90 genes encoding cytosolic proteins, the T-DNA Athsp90-1 and Athsp90-4 insertional mutants, the Atpao3 mutant and pharmacological inhibitors of HSP90s and PAOs. Silencing of all cytosolic HSP90 genes resulted in several-fold higher levels of soluble spermidine (S-Spd), acetylated Spd (N8-acetyl-Spd) and acetylated spermine (N1-acetyl-Spm) in the transgenic Arabidopsis thaliana leaves. Heat shock induced increase of soluble-PAs (S-PAs) and soluble hydrolyzed-PAs (SH-PAs), especially of SH-Spm, and more importantly of acetylated Spd and Spm. The silencing of HSP90 genes or pharmacological inhibition of the HSP90 proteins by the specific inhibitor radicicol, under HS stimulatory conditions, resulted in a further increase of PA titers, N8-acetyl-Spd and N1-acetyl-Spm, and also stimulated the expression of PAO genes. The increased PA titers and PAO enzymatic activity resulted in a profound increase of PAO-derived hydrogen peroxide (H2O2) levels, which was terminated by the addition of the PAO-specific inhibitor guazatine. Interestingly, the loss-of-function Atpao3 mutant exhibited increased mRNA levels of selected AtHSP90 genes. Taken together, the results herein reveal a novel function of HSP90 and suggest that HSP90s and PAOs cross-talk to orchestrate PA acetylation, oxidation, and PA/H2O2 homeostasis.
Collapse
|
19
|
Donato M, Geisler M. HSP
90 and co‐chaperones: a multitaskers’ view on plant hormone biology. FEBS Lett 2019; 593:1415-1430. [DOI: 10.1002/1873-3468.13499] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Martin Donato
- Department of Biology University of Fribourg Switzerland
| | - Markus Geisler
- Department of Biology University of Fribourg Switzerland
| |
Collapse
|
20
|
Kozeko LY. The Role of HSP90 Chaperones in Stability and Plasticity of Ontogenesis of Plants under Normal and Stressful Conditions (Arabidopsis thaliana). CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719020063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Dilnur T, Peng Z, Pan Z, Palanga KK, Jia Y, Gong W, Du X. Association Analysis of Salt Tolerance in Asiatic cotton ( Gossypium arboretum) with SNP Markers. Int J Mol Sci 2019; 20:ijms20092168. [PMID: 31052464 PMCID: PMC6540053 DOI: 10.3390/ijms20092168] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Salinity is not only a major environmental factor which limits plant growth and productivity, but it has also become a worldwide problem. However, little is known about the genetic basis underlying salt tolerance in cotton. This study was carried out to identify marker-trait association signals of seven salt-tolerance-related traits and one salt tolerance index using association analysis for 215 accessions of Asiatic cotton. According to a comprehensive index of salt tolerance (CIST), 215 accessions were mainly categorized into four groups, and 11 accessions with high salinity tolerance were selected for breeding. Genome-wide association studies (GWAS) revealed nine SNP rich regions significantly associated with relative fresh weight (RFW), relative stem length (RSL), relative water content (RWC) and CIST. The nine SNP rich regions analysis revealed 143 polymorphisms that distributed 40 candidate genes and significantly associated with salt tolerance. Notably, two SNP rich regions on chromosome 7 were found to be significantly associated with two salinity related traits, RFW and RSL, by the threshold of −log10P ≥ 6.0, and two candidate genes (Cotton_A_37775 and Cotton_A_35901) related to two key SNPs (Ca7_33607751 and Ca7_77004962) were possibly associated with salt tolerance in G. arboreum. These can provide fundamental information which will be useful for future molecular breeding of cotton, in order to release novel salt tolerant cultivars.
Collapse
Affiliation(s)
- Tussipkan Dilnur
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Koffi Kibalou Palanga
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Wenfang Gong
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| |
Collapse
|
22
|
Lachowiec J, Mason GA, Schultz K, Queitsch C. Redundancy, Feedback, and Robustness in the Arabidopsis thaliana BZR/BEH Gene Family. Front Genet 2018; 9:523. [PMID: 30542366 PMCID: PMC6277886 DOI: 10.3389/fgene.2018.00523] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022] Open
Abstract
Organismal development is remarkably robust, tolerating stochastic errors to produce consistent, so-called canalized adult phenotypes. The mechanistic underpinnings of developmental robustness are poorly understood, but recent studies implicate certain features of genetic networks such as functional redundancy, connectivity, and feedback. Here, we examine the BZR/BEH gene family, whose function contributes to embryonic stem development in the plant Arabidopsis thaliana, to test current assumptions on functional redundancy and trait robustness. Our analyses of BZR/BEH gene mutants and mutant combinations revealed that functional redundancy among these gene family members is not necessary for trait robustness. Connectivity is another commonly cited determinant of robustness; however, we found no correlation between connectivity among gene family members or their connectivity with other transcription factors and effects on developmental robustness. Instead, our data suggest that BEH4, the earliest diverged family member, modulates developmental robustness. We present evidence indicating that regulatory cross-talk among gene family members is integrated by BEH4 to promote wild-type levels of developmental robustness. Further, the chaperone HSP90, a known determinant of developmental robustness, appears to act via BEH4 in maintaining robustness of embryonic stem length. In summary, we demonstrate that even among closely related transcription factors, trait robustness can arise through the activity of a single gene family member, challenging common assumptions about the molecular underpinnings of robustness.
Collapse
Affiliation(s)
- Jennifer Lachowiec
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States
| | - G. Alex Mason
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Karla Schultz
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
23
|
HSP90 Contributes to Entrainment of the Arabidopsis Circadian Clock via the Morning Loop. Genetics 2018; 210:1383-1390. [PMID: 30337341 DOI: 10.1534/genetics.118.301586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
The plant circadian clock allows the synchronization of internal physiological responses to match the predicted environment. HSP90.2 is a molecular chaperone that has been previously described as required for the proper functioning of the Arabidopsis oscillator under both ambient and warm temperatures. Here, we have characterized the circadian phenotype of the hsp90.2-3 mutant. As previously reported using pharmacological or RNA interference inhibitors of HSP90 function, we found that hsp90.2-3 lengthens the circadian period and that the observed period lengthening was more exaggerated in warm-cold-entrained seedlings. However, we observed no role for the previously identified interactors of HSP90.2, GIGANTEA and ZEITLUPPE, in HSP90-mediated period lengthening. We constructed phase-response curves (PRCs) in response to warmth pulses to identify the entry point of HSP90.2 to the oscillator. These PRCs revealed that hsp90.2-3 has a circadian defect within the morning. Analysis of the cca1, lhy, prr9, and prr7 mutants revealed a role for CCA1, LHY, and PRR7, but not PRR9, in HSP90.2 action to the circadian oscillator. Overall, we define a potential pathway for how HSP90.2 can entrain the Arabidopsis circadian oscillator.
Collapse
|
24
|
Wang CT, Ru JN, Liu YW, Li M, Zhao D, Yang JF, Fu JD, Xu ZS. Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants. Int J Mol Sci 2018; 19:ijms19103046. [PMID: 30301220 PMCID: PMC6213049 DOI: 10.3390/ijms19103046] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
WRKY transcription factors constitute one of the largest transcription factor families in plants, and play crucial roles in plant growth and development, defense regulation and stress responses. However, knowledge about this family in maize is limited. In the present study, we identified a drought-induced WRKY gene, ZmWRKY106, based on the maize drought de novo transcriptome sequencing data. ZmWRKY106 was identified as part of the WRKYII group, and a phylogenetic tree analysis showed that ZmWRKY106 was closer to OsWRKY13. The subcellular localization of ZmWRKY106 was only observed in the nucleus. The promoter region of ZmWRKY106 included the C-repeat/dehydration responsive element (DRE), low-temperature responsive element (LTR), MBS, and TCA-elements, which possibly participate in drought, cold, and salicylic acid (SA) stress responses. The expression of ZmWRKY106 was induced significantly by drought, high temperature, and exogenous abscisic acid (ABA), but was weakly induced by salt. Overexpression of ZmWRKY106 improved the tolerance to drought and heat in transgenic Arabidopsis by regulating stress-related genes through the ABA-signaling pathway, and the reactive oxygen species (ROS) content in transgenic lines was reduced by enhancing the activities of superoxide dismutase (SOD), peroxide dismutase (POD), and catalase (CAT) under drought stress. This suggested that ZmWRKY106 was involved in multiple abiotic stress response pathways and acted as a positive factor under drought and heat stress.
Collapse
Affiliation(s)
- Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China.
| | - Jing-Na Ru
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang 050051, China.
| | - Meng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China.
| | - Dan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China.
| | - Jun-Feng Yang
- Hebei Wangfeng Seed Industry Co., Ltd., Xingtai 054900, China.
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
25
|
Iung LHDS, Mulder HA, Neves HHDR, Carvalheiro R. Genomic regions underlying uniformity of yearling weight in Nellore cattle evaluated under different response variables. BMC Genomics 2018; 19:619. [PMID: 30115034 PMCID: PMC6097312 DOI: 10.1186/s12864-018-5003-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/08/2018] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND In livestock, residual variance has been studied because of the interest to improve uniformity of production. Several studies have provided evidence that residual variance is partially under genetic control; however, few investigations have elucidated genes that control it. The aim of this study was to identify genomic regions associated with within-family residual variance of yearling weight (YW; N = 423) in Nellore bulls with high density SNP data, using different response variables. For this, solutions from double hierarchical generalized linear models (DHGLM) were used to provide the response variables, as follows: a DGHLM assuming non-null genetic correlation between mean and residual variance (rmv ≠ 0) to obtain deregressed EBV for mean (dEBVm) and residual variance (dEBVv); and a DHGLM assuming rmv = 0 to obtain two alternative response variables for residual variance, dEBVv_r0 and log-transformed variance of estimated residuals (ln_[Formula: see text]). RESULTS The dEBVm and dEBVv were highly correlated, resulting in common regions associated with mean and residual variance of YW. However, higher effects on variance than the mean showed that these regions had effects on the variance beyond scale effects. More independent association results between mean and residual variance were obtained when null rmv was assumed. While 13 and 4 single nucleotide polymorphisms (SNPs) showed a strong association (Bayes Factor > 20) with dEBVv and ln_[Formula: see text], respectively, only suggestive signals were found for dEBVv_r0. All overlapping 1-Mb windows among top 20 between dEBVm and dEBVv were previously associated with growth traits. The potential candidate genes for uniformity are involved in metabolism, stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation. CONCLUSIONS It is necessary to use a strategy like assuming null rmv to obtain genomic regions associated with uniformity that are not associated with the mean. Genes involved not only in metabolism, but also stress, inflammatory and immune responses, mineralization, neuronal activity and bone formation were the most promising biological candidates for uniformity of YW. Although no clear evidence of using a specific response variable was found, we recommend consider different response variables to study uniformity to increase evidence on candidate regions and biological mechanisms behind it.
Collapse
Affiliation(s)
- Laiza Helena de Souza Iung
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| | - Herman Arend Mulder
- Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | | | - Roberto Carvalheiro
- School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Via de Acesso Prof. Paulo Donato Castelane, S/N, Vila Industrial, FCAV/UNESP, Jaboticabal, São Paulo, 14884-900 Brazil
| |
Collapse
|
26
|
Ferrão LFV, Benevenuto J, Oliveira IDB, Cellon C, Olmstead J, Kirst M, Resende MFR, Munoz P. Insights Into the Genetic Basis of Blueberry Fruit-Related Traits Using Diploid and Polyploid Models in a GWAS Context. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
28
|
Sable A, Rai KM, Choudhary A, Yadav VK, Agarwal SK, Sawant SV. Inhibition of Heat Shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Sci Rep 2018; 8:3620. [PMID: 29483524 PMCID: PMC5827756 DOI: 10.1038/s41598-018-21866-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cotton fiber is a specialized unicellular structure useful for the study of cellular differentiation and development. Heat shock proteins (HSPs) have been shown to be involved in various developmental processes. Microarray data analysis of five Gossypium hirsutum genotypes revealed high transcript levels of GhHSP90 and GhHSP70 genes at different stages of fiber development, indicating their importance in the process. Further, we identified 26 and 55 members of HSP90 and HSP70 gene families in G. hirsutum. The treatment of specific inhibitors novobiocin (Nov; HSP90) and pifithrin/2-phenylethynesulfonamide (Pif; HSP70) in in-vitro cultured ovules resulted in a fewer number of fiber initials and retardation in fiber elongation. The molecular chaperone assay using bacterially expressed recombinant GhHSP90-7 and GhHSP70-8 proteins further confirmed the specificity of inhibitors. HSP inhibition disturbs the H2O2 balance that leads to the generation of oxidative stress, which consequently results in autophagy in the epidermal layer of the cotton ovule. Transmission electron microscopy (TEM) of inhibitor-treated ovule also corroborates autophagosome formation along with disrupted mitochondrial cristae. The perturbations in transcript profile of HSP inhibited ovules show differential regulation of different stress and fiber development-related genes and pathways. Altogether, our results indicate that HSP90 and HSP70 families play a crucial role in cotton fiber differentiation and development by maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Anshulika Sable
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Krishan M Rai
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Amit Choudhary
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Vikash K Yadav
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Sudhir K Agarwal
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Samir V Sawant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
29
|
Liang N, Cheng D, Liu Q, Cui J, Luo C. Difference of proteomics vernalization-induced in bolting and flowering transitions of Beta vulgaris. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:222-232. [PMID: 29253800 DOI: 10.1016/j.plaphy.2017.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Sugar beet (Beta vulgaris) is a biennial crop that accounts for 30% sugar production of the world. Vernalization is an essential factor for sugar beet reproductative growth under long days. Although genes association with bolting and flowering were well explored, the difference of proteomics in the two growth stages were still poorly understood. To address the molecular mechanism at the level of proteins, an isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics approach was employed to the three different growth stages (germination, bolting, flowering) of vernalized samples and the corresponding stage germination (17W weeks), 19W and 20W of nonvernalized samples. A total of 1110 peptides, 842 unique peptides and 570 proteins were identified. Most of them were assigned to phenylpropanoid biosynthesis, hormone metabolism and protein processing pathway. IAA and Gibberellins (GA3) promoted growth and development in a threshold manner at growth stage germination after vernalization. A novel discovery was that IAA biosynthetic pathway of sugar beet was the Trp-dependent. In addition, two predominant pathways of protein processing association with vernalization were also identified in sugar beet at growth stage flowering. This study provided an in-depth understanding of the molecular mechanism of vernalization at the level of proteomics.
Collapse
Affiliation(s)
- Naiguo Liang
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| | - Dayou Cheng
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China.
| | - Qiaohong Liu
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| | - Jie Cui
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| | - Chengfei Luo
- School of Chemical Engineering & Technology, Harbin Institute of Technology, HarBin, 150001, China
| |
Collapse
|
30
|
Vandereyken K, Van Leene J, De Coninck B, Cammue BPA. Hub Protein Controversy: Taking a Closer Look at Plant Stress Response Hubs. FRONTIERS IN PLANT SCIENCE 2018; 9:694. [PMID: 29922309 PMCID: PMC5996676 DOI: 10.3389/fpls.2018.00694] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/07/2018] [Indexed: 05/20/2023]
Abstract
Plant stress responses involve numerous changes at the molecular and cellular level and are regulated by highly complex signaling pathways. Studying protein-protein interactions (PPIs) and the resulting networks is therefore becoming increasingly important in understanding these responses. Crucial in PPI networks are the so-called hubs or hub proteins, commonly defined as the most highly connected central proteins in scale-free PPI networks. However, despite their importance, a growing amount of confusion and controversy seems to exist regarding hub protein identification, characterization and classification. In order to highlight these inconsistencies and stimulate further clarification, this review critically analyses the current knowledge on hub proteins in the plant interactome field. We focus on current hub protein definitions, including the properties generally seen as hub-defining, and the challenges and approaches associated with hub protein identification. Furthermore, we give an overview of the most important large-scale plant PPI studies of the last decade that identified hub proteins, pointing out the lack of overlap between different studies. As such, it appears that although major advances are being made in the plant interactome field, defining hub proteins is still heavily dependent on the quality, origin and interpretation of the acquired PPI data. Nevertheless, many hub proteins seem to have a reported role in the plant stress response, including transcription factors, protein kinases and phosphatases, ubiquitin proteasome system related proteins, (co-)chaperones and redox signaling proteins. A significant number of identified plant stress hubs are however still functionally uncharacterized, making them interesting targets for future research. This review clearly shows the ongoing improvements in the plant interactome field but also calls attention to the need for a more comprehensive and precise identification of hub proteins, allowing a more efficient systems biology driven unraveling of complex processes, including those involved in stress responses.
Collapse
Affiliation(s)
- Katy Vandereyken
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Division of Crop Biotechnics, KU Leuven, Heverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- *Correspondence: Bruno P. A. Cammue
| |
Collapse
|
31
|
Dong C, Wang J, Yu Y, Ju L, Zhou X, Ma X, Mei G, Han Z, Si Z, Li B, Chen H, Zhang T. Identifying Functional Genes Influencing Gossypium hirsutum Fiber Quality. FRONTIERS IN PLANT SCIENCE 2018; 9:1968. [PMID: 30687363 PMCID: PMC6334163 DOI: 10.3389/fpls.2018.01968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/18/2018] [Indexed: 05/21/2023]
Abstract
Fiber quality is an important economic index and a major breeding goal in cotton, but direct phenotypic selection is often hindered due to environmental influences and linkage with yield traits. A genome-wide association study (GWAS) is a powerful tool to identify genes associated with phenotypic traits. In this study, we identified fiber quality genes in upland cotton (Gossypium hirsutum L.) using GWAS based on a high-density CottonSNP80K array and multiple environment tests. A total of 30 and 23 significant single nucleotide polymorphisms (SNPs) associated with five fiber quality traits were identified across the 408 cotton accessions in six environments and the best linear unbiased predictions, respectively. Among these SNPs, seven loci were the same, and 128 candidate genes were predicted in a 1-Mb region (±500 kb of the peak SNP). Furthermore, two major genome regions (GR1 and GR2) associated with multiple fiber qualities in multiple environments on chromosomes A07 and A13 were identified, and within them, 22 candidate genes were annotated. Of these, 11 genes were expressed [log2(1 + FPKM)>1] in the fiber development stages (5, 10, 20, and 25 dpa) using RNA-Seq. This study provides fundamental insight relevant to identification of genes associated with fiber quality and will accelerate future efforts toward improving fiber quality of upland cotton.
Collapse
Affiliation(s)
- Chengguang Dong
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Juan Wang
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Yu Yu
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Longzhen Ju
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaofeng Zhou
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Xiaomei Ma
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Gaofu Mei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zegang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhanfeng Si
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Baocheng Li
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Hong Chen
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- *Correspondence: Hong Chen, Tianzhen Zhang,
| | - Tianzhen Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Hong Chen, Tianzhen Zhang,
| |
Collapse
|
32
|
Manee MM, Alharbi SN, Algarni AT, Alghamdi WM, Altammami MA, Alkhrayef MN, Alnafjan BM. Molecular cloning, bioinformatics analysis, and expression of small heat shock protein beta-1 from Camelus dromedarius, Arabian camel. PLoS One 2017; 12:e0189905. [PMID: 29287083 PMCID: PMC5747437 DOI: 10.1371/journal.pone.0189905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/04/2017] [Indexed: 11/18/2022] Open
Abstract
Small heat shock protein beta-1 (HSPB-1) plays an essential role in the protection of cells against environmental stress.Elucidation of its molecular, structural, and biological characteristics in a naturally wild-type model is essential. Although the sequence information of the HSPB-1 gene is available for many mammalian species, the HSPB-1 gene of Arabian camel (Arabian camel HSPB-1) has not yet been structurally characterized. We cloned and functionally characterized a full-length of Arabian camel HSPB-1 cDNA. It is 791 bp long, with a 5′-untranslated region (UTR) of 34 bp, a 3′-UTR of 151 bp with a poly(A) tail, and an open reading frame (ORF) of 606 bp encoding a protein of 201 amino acids (accession number: MF278354). The tissue-specific expression analysis of Arabian camel HSPB-1 mRNA was examined using quantitative real-time PCR (qRT-PCR); which suggested that Arabian camel HSPB-1 mRNA was constitutionally expressed in all examined tissues of Arabian camel, with the predominately level in the esophagus tissue. Peptide mass fingerprint-mass spectrometry (PMF-MS) analysis of the purified Arabian camel HSPB-1 protein confirmed the identity of this protein. Phylogenetic analysis showed that the HSPB-1 protein of Arabian camel is grouped together with those of Bactrian camel and Alpaca. Comparing the modelled 3D structure of Arabian camel HSPB-1 protein with the available protein 3D structure of HSPB-1 from human confirmed the presence of α-crystallin domain, and high similarities were noted between the two structures by using super secondary structure prediction.
Collapse
Affiliation(s)
- Manee M. Manee
- National Center for Genomic Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sultan N. Alharbi
- Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- * E-mail:
| | - Abdulmalek T. Algarni
- National Center for Genomic Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
- Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Waleed M. Alghamdi
- Institute of Innovation and Industrial Development, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Musaad A. Altammami
- National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Mohammad N. Alkhrayef
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Basel M. Alnafjan
- National Center for Stem Cell Technology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Zhang M, Shen Z, Meng G, Lu Y, Wang Y. Genome-wide analysis of the Brachypodium distachyon (L.) P. Beauv. Hsp90 gene family reveals molecular evolution and expression profiling under drought and salt stresses. PLoS One 2017; 12:e0189187. [PMID: 29216330 PMCID: PMC5720741 DOI: 10.1371/journal.pone.0189187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/21/2017] [Indexed: 01/31/2023] Open
Abstract
The structure, evolution, and function of heat shock proteins 90 (Hsp90s) have been investigated in great detail in fungi and animals. However, studies on the Hsp90 genes in plants are generally limited. Brachypodium distachyon (L.) P. Beauv., as a model plant for cereal crops, has become a potential biofuel grass. During its long evolution, the Hsp90 gene family in Brachypodium has developed some strategies to cope with adverse environments. How the Hsp90 gene family in Brachypodium evolved in different plant lineages and what its role is in plant responses to drought and salt stresses remains to be elucidated. We used a set of different bioinformatics tools to identify 94 Hsp90 genes from 10 species representing four plant lineages and classified into three subgroups. Eight BdHsp90 genes were detected from B. distachyon. The number of exon-intron structures differed in each subgroup, and the motif analysis revealed that these genes were relatively conservative in each group. The fragments duplication and tandem duplication, which are the prime powers for functional diversity, generally occurred during the duplication of the whole plant genome. Transcriptional analysis of the BdHsp90 genes under salt and drought stress conditions indicated that the expression of these genes was delayed or increased at different stress time points; The expression was more affected in that of Bradi3g39630, Bradi4g06370, and Bradi1g30130. Our findings suggest the involvement of BdHsp90s in plant abiotic stress response, and further consolidate our views on the stress response mechanism of Hsp90 in general.
Collapse
Affiliation(s)
- Ming Zhang
- College of Life Science, Heze University, Shandong, China
| | - Zhiwei Shen
- College of Life Science, Heze University, Shandong, China
| | - Guoqing Meng
- College of Life Science, Heze University, Shandong, China
| | - Yu Lu
- College of Life Science, Heze University, Shandong, China
| | - Yilei Wang
- College of Life Science, Heze University, Shandong, China
- * E-mail:
| |
Collapse
|
34
|
Phillips AM, Gonzalez LO, Nekongo EE, Ponomarenko AI, McHugh SM, Butty VL, Levine SS, Lin YS, Mirny LA, Shoulders MD. Host proteostasis modulates influenza evolution. eLife 2017; 6. [PMID: 28949290 PMCID: PMC5614556 DOI: 10.7554/elife.28652] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/18/2017] [Indexed: 01/02/2023] Open
Abstract
Predicting and constraining RNA virus evolution require understanding the molecular factors that define the mutational landscape accessible to these pathogens. RNA viruses typically have high mutation rates, resulting in frequent production of protein variants with compromised biophysical properties. Their evolution is necessarily constrained by the consequent challenge to protein folding and function. We hypothesized that host proteostasis mechanisms may be significant determinants of the fitness of viral protein variants, serving as a critical force shaping viral evolution. Here, we test that hypothesis by propagating influenza in host cells displaying chemically-controlled, divergent proteostasis environments. We find that both the nature of selection on the influenza genome and the accessibility of specific mutational trajectories are significantly impacted by host proteostasis. These findings provide new insights into features of host–pathogen interactions that shape viral evolution, and into the potential design of host proteostasis-targeted antiviral therapeutics that are refractory to resistance. Influenza viruses, commonly called flu, can evade our immune system and develop resistance to treatments by changing frequently. Specifically, mutations in their genome cause influenza proteins to change in ways that can help the virus evade our defences. However, these mutations come at a cost and can prevent the viral proteins from forming functional and stable three-dimensional shapes – a process known as protein folding – thereby hampering the virus’ ability to replicate. In human cells, proteins called chaperones can help our other proteins fold properly. Influenza viruses do not have their own chaperones and, instead, hijack those of their host. Host chaperones are therefore crucial to the virus’ ability to replicate. However, until now, it was not known if host chaperones can influence how these viruses evolve. Here, Phillips et al. used mammalian cells to study how host chaperones affect an evolving influenza population. First, cells were engineered to either have normal chaperone levels, elevated chaperone levels, or inactive chaperones. Next, the H3N2 influenza strain was grown in these different conditions for nearly 200 generations and sequenced to determine how the virus evolved in each distinctive host chaperone environment. Phillips et al. discovered that host chaperones affect the rate at which mutations accumulate in the influenza population, and also the types of mutations in the influenza genome. For instance, when a chaperone called Hsp90 was inactivated, mutations became prevalent in the viral population more slowly than in cells with normal or elevated chaperone levels. Moreover, some specific mutations fared better in cells with high chaperone levels, whilst others worked better in cells with inactivated chaperones. These results suggest that influenza evolution is affected by host chaperone levels in complex and important ways. Moreover, whether chaperones will promote or hinder the effects of any single mutation is difficult to predict ahead of time. This discovery is significant, as the chaperones available to influenza can vary in different tissues, organisms and infectious conditions, and may therefore influence the virus' ability to change and evolve in a context-specific manner. The findings are likely to extend to other viruses such as HIV and Ebola, which also hijack host chaperones for the same purpose. More work is now needed to systematically quantify these effects so that we can better predict how specific chaperones will affect the ability of viruses to adapt, especially in pathologically relevant conditions like fever or viral host-switching. In the future, such insights could help shape the design of treatments to which viruses do not evolve resistance.
Collapse
Affiliation(s)
- Angela M Phillips
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Luna O Gonzalez
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, United States
| | - Emmanuel E Nekongo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Anna I Ponomarenko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| | - Sean M McHugh
- Department of Chemistry, Tufts University, Medford, United States
| | - Vincent L Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, United States
| | - Stuart S Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, United States
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, United States
| | - Leonid A Mirny
- Department of Physics, Massachusetts Institute of Technology, Cambridge, United States.,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, United States
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
35
|
Identification, Characterization and Expression Profiling of Stress-Related Genes in Easter Lily (Lilium formolongi). Genes (Basel) 2017. [PMCID: PMC5541305 DOI: 10.3390/genes8070172] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic stresses are the major causes of crop loss in lily worldwide. In this study, we retrieved 12 defense-related expressed sequence tags (ESTs) from the NCBI database and cloned, characterized, and established seven of these genes as stress-induced genes in Lilium formolongi. Using rapid amplification of cDNA ends PCR (RACE-PCR), we successfully cloned seven full-length mRNA sequences from L. formolongi line Sinnapal lily. Based on the presence of highly conserved characteristic domains and phylogenetic analysis using reference protein sequences, we provided new nomenclature for the seven nucleotide and protein sequences and submitted them to GenBank. The real-time quantitative PCR (qPCR) relative expression analysis of these seven genes, including LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfUb, LfCyt-b5, and LfRab, demonstrated that they were differentially expressed in all organs examined, possibly indicating functional redundancy. We also investigated the qPCR relative expression levels under two biotic and four abiotic stress conditions. All seven genes were induced by Botrytis cinerea treatment, and all genes except LfHsp70-3 and LfHsp90 were induced by Botrytis elliptica treatment; these genes might be associated with disease tolerance mechanisms in L. formolongi. In addition, LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfUb, and LfCyt-b5 were induced by heat treatment, LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, and LfCyt-b5 were induced by cold treatment, and LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfCy-b5, and LfRab were induced by drought and salt stress, indicating their likely association with tolerance to these stress conditions. The stress-induced candidate genes identified in this study provide a basis for further functional analysis and the development of stress-resistant L. formolongi cultivars.
Collapse
|
36
|
Krishnan J, Rohner N. Cavefish and the basis for eye loss. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150487. [PMID: 27994128 PMCID: PMC5182419 DOI: 10.1098/rstb.2015.0487] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 11/12/2022] Open
Abstract
Animals have colonized the entire world from rather moderate to the harshest environments, some of these so extreme that only few animals are able to survive. Cave environments present such a challenge and obligate cave animals have adapted to perpetual darkness by evolving a multitude of traits. The most common and most studied cave characteristics are the regression of eyes and the overall reduction in pigmentation. Studying these traits can provide important insights into how evolutionary forces drive convergent and regressive adaptation. The blind Mexican cavefish (Astyanax mexicanus) has emerged as a useful model to study cave evolution owing to the availability of genetic and genomic resources, and the amenability of embryonic development as the different populations remain fertile with each other. In this review, we give an overview of our current knowledge underlying the process of regressive and convergent evolution using eye degeneration in cavefish as an example.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
37
|
Variability in a Short Tandem Repeat Mediates Complex Epistatic Interactions in Arabidopsis thaliana. Genetics 2016; 205:455-464. [PMID: 27866166 DOI: 10.1534/genetics.116.193359] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/27/2016] [Indexed: 01/15/2023] Open
Abstract
Short tandem repeats (STRs) are hypervariable genetic elements that occur frequently in coding regions. Their high mutation rate readily generates genetic variation, contributing to adaptive evolution and human diseases. We previously reported that natural ELF3 polyglutamine variants cause reciprocal genetic incompatibilities in two divergent Arabidopsis thaliana backgrounds. Here, we dissect the genetic architecture of this incompatibility, revealing as many as four loci putatively interacting with ELF3 We were able to specifically identify one such ELF3-interacting gene, LSH9 We further used a yeast two-hybrid strategy to identify proteins whose physical interactions with ELF3 were affected by polyglutamine tract length. We found two proteins for which this was the case, ELF4 and AtGLDP1. Using these two approaches, we identify specific genetic interactions and physical mechanisms by which the ELF3 polyglutamine tract may mediate the observed genetic incompatibilities. Our work elucidates how STR variation, which is generally underascertained in population-scale sequencing, can contribute to phenotypic variation. Furthermore, our results support our proposal that highly variable STR loci can contribute to the epistatic component of heritability.
Collapse
|
38
|
Margaritopoulou T, Kryovrysanaki N, Megkoula P, Prassinos C, Samakovli D, Milioni D, Hatzopoulos P. HSP90 canonical content organizes a molecular scaffold mechanism to progress flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:174-87. [PMID: 27121421 DOI: 10.1111/tpj.13191] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 05/28/2023]
Abstract
Highly interactive signaling processes constitute a set of parameters intertwining in a continuum mode to shape body formation and development. A sophisticated gene network is required to integrate environmental and endogenous cues in order to modulate flowering. However, the molecular mechanisms that coordinate the circuitries of flowering genes remain unclear. Here using complemented experimental approaches, we uncover the decisive and essential role of HEAT SHOCK PROTEIN 90 (HSP90) in restraining developmental noise to an acceptable limit. Localized depletion of HSP90 mRNAs in the shoot apex resulted in low penetrance of vegetative-to-reproductive phase transition and completely abolished flower formation. Extreme variation in expression of flowering genes was also observed in HSP90 mRNA-depleted transformed plants. Transient heat-shock treatments moderately increased HSP90 mRNA levels and rescued flower arrest. The offspring had a low, nevertheless noticeable failure to promote transition from vegetative into the reproductive phase and showed flower morphological heterogeneity. In floral tissues a moderate variation in HSP90 transcript levels and in the expression of flowering genes was detected. Key flowering proteins comprised clientele of the molecular chaperone demonstrating that the HSP90 is essential during vegetative-to-reproductive phase transition and flower development. Our results uncover that HSP90 consolidates a molecular scaffold able to arrange and organize flowering gene network and protein circuitry, and effectively counterbalance the extent to which developmental noise perturbs phenotypic traits.
Collapse
Affiliation(s)
- Theoni Margaritopoulou
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Nikoleta Kryovrysanaki
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Panagiota Megkoula
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Constantinos Prassinos
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Despoina Samakovli
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Dimitra Milioni
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Polydefkis Hatzopoulos
- Molecular Biology Laboratory, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| |
Collapse
|
39
|
Lachowiec J, Queitsch C, Kliebenstein DJ. Molecular mechanisms governing differential robustness of development and environmental responses in plants. ANNALS OF BOTANY 2016; 117:795-809. [PMID: 26473020 PMCID: PMC4845800 DOI: 10.1093/aob/mcv151] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/08/2015] [Accepted: 08/25/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Robustness to genetic and environmental perturbation is a salient feature of multicellular organisms. Loss of developmental robustness can lead to severe phenotypic defects and fitness loss. However, perfect robustness, i.e. no variation at all, is evolutionarily unfit as organisms must be able to change phenotype to properly respond to changing environments and biotic challenges. Plasticity is the ability to adjust phenotypes predictably in response to specific environmental stimuli, which can be considered a transient shift allowing an organism to move from one robust phenotypic state to another. Plants, as sessile organisms that undergo continuous development, are particularly dependent on an exquisite fine-tuning of the processes that balance robustness and plasticity to maximize fitness. SCOPE AND CONCLUSIONS This paper reviews recently identified mechanisms, both systems-level and molecular, that modulate robustness, and discusses their implications for the optimization of plant fitness. Robustness in living systems arises from the structure of genetic networks, the specific molecular functions of the underlying genes, and their interactions. This very same network responsible for the robustness of specific developmental states also has to be built such that it enables plastic yet robust shifts in response to environmental changes. In plants, the interactions and functions of signal transduction pathways activated by phytohormones and the tendency for plants to tolerate whole-genome duplications, tandem gene duplication and hybridization are emerging as major regulators of robustness in development. Despite their obvious implications for plant evolution and plant breeding, the mechanistic underpinnings by which plants modulate precise levels of robustness, plasticity and evolvability in networks controlling different phenotypes are under-studied.
Collapse
Affiliation(s)
- Jennifer Lachowiec
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48197, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA 98155, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA and DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
40
|
Mason GA, Lemus T, Queitsch C. The Mechanistic Underpinnings of an ago1-Mediated, Environmentally Dependent, and Stochastic Phenotype. PLANT PHYSIOLOGY 2016; 170:2420-31. [PMID: 26872948 PMCID: PMC4825122 DOI: 10.1104/pp.15.01928] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/10/2016] [Indexed: 05/07/2023]
Abstract
The crucial role of microRNAs in plant development is exceedingly well supported; their importance in environmental robustness is studied in less detail. Here, we describe a novel, environmentally dependent phenotype in hypomorphic argonaute1 (ago1) mutants and uncover its mechanistic underpinnings in Arabidopsis (Arabidopsis thaliana). AGO1 is a key player in microRNA-mediated gene regulation. We observed transparent lesions on embryonic leaves of ago1 mutant seedlings. These lesions increased in frequency in full-spectrum light. Notably, the lesion phenotype was most environmentally responsive in ago1-27 mutants. This allele is thought to primarily affect translational repression, which has been linked with the response to environmental perturbation. Using several lines of evidence, we found that these lesions represent dead and dying tissues due to an aberrant hypersensitive response. Although all three canonical defense hormone pathways (salicylic acid, jasmonate, and jasmonate/ethylene pathways) were up-regulated in ago1 mutants, we demonstrate that jasmonate perception drives the lesion phenotype. Double mutants of ago1 and coronatine insensitive1, the jasmonate receptor, showed greatly decreased frequency of affected seedlings. The chaperone HEAT SHOCK PROTEIN 90 (HSP90), which maintains phenotypic robustness in the face of environmental perturbations, is known to facilitate AGO1 function. HSP90 perturbation has been shown previously to up-regulate jasmonate signaling and to increase plant resistance to herbivory. Although single HSP90 mutants showed subtly elevated levels of lesions, double mutant analysis disagreed with a simple epistatic model for HSP90 and AGO1 interaction; rather, both appeared to act nonadditively in producing lesions. In summary, our study identifies AGO1 as a major, largely HSP90-independent, factor in providing environmental robustness to plants.
Collapse
Affiliation(s)
- G Alex Mason
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| | - Tzitziki Lemus
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| | - Christine Queitsch
- University of Washington, School of Medicine, Department of Genome Sciences, Seattle, Washington 98195-5065 (G.A.M., T.L., C.Q.)
| |
Collapse
|
41
|
Larkin RM. Tetrapyrrole Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1586. [PMID: 27807442 PMCID: PMC5069423 DOI: 10.3389/fpls.2016.01586] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 10/07/2016] [Indexed: 05/03/2023]
Abstract
Tetrapyrroles make critical contributions to a number of important processes in diverse organisms. In plants, tetrapyrroles are essential for light signaling, the detoxification of reactive oxygen species, the assimilation of nitrate and sulfate, respiration, photosynthesis, and programed cell death. The misregulation of tetrapyrrole metabolism can produce toxic reactive oxygen species. Thus, it is not surprising that tetrapyrrole metabolism is strictly regulated and that tetrapyrrole metabolism affects signaling mechanisms that regulate gene expression. In plants and algae, tetrapyrroles are synthesized in plastids and were some of the first plastid signals demonstrated to regulate nuclear gene expression. In plants, the mechanism of tetrapyrrole-dependent plastid-to-nucleus signaling remains poorly understood. Additionally, some of experiments that tested ideas for possible signaling mechanisms appeared to produce conflicting data. In some instances, these conflicts are potentially explained by different experimental conditions. Although the biological function of tetrapyrrole signaling is poorly understood, there is compelling evidence that this signaling is significant. Specifically, this signaling appears to affect the accumulation of starch and may promote abiotic stress tolerance. Tetrapyrrole-dependent plastid-to-nucleus signaling interacts with a distinct plastid-to-nucleus signaling mechanism that depends on GENOMES UNCUOPLED1 (GUN1). GUN1 contributes to a variety of processes, such as chloroplast biogenesis, the circadian rhythm, abiotic stress tolerance, and development. Thus, the contribution of tetrapyrrole signaling to plant function is potentially broader than we currently appreciate. In this review, I discuss these aspects of tetrapyrrole signaling.
Collapse
|
42
|
Sell-Kubiak E, Duijvesteijn N, Lopes MS, Janss LLG, Knol EF, Bijma P, Mulder HA. Genome-wide association study reveals novel loci for litter size and its variability in a Large White pig population. BMC Genomics 2015; 16:1049. [PMID: 26652161 PMCID: PMC4674943 DOI: 10.1186/s12864-015-2273-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/03/2015] [Indexed: 01/11/2023] Open
Abstract
Background In many traits, not only individual trait levels are under genetic control, but also the variation around that level. In other words, genotypes do not only differ in mean, but also in (residual) variation around the genotypic mean. New statistical methods facilitate gaining knowledge on the genetic architecture of complex traits such as phenotypic variability. Here we study litter size (total number born) and its variation in a Large White pig population using a Double Hierarchical Generalized Linear model, and perform a genome-wide association study using a Bayesian method. Results In total, 10 significant single nucleotide polymorphisms (SNPs) were detected for total number born (TNB) and 9 SNPs for variability of TNB (varTNB). Those SNPs explained 0.83 % of genetic variance in TNB and 1.44 % in varTNB. The most significant SNP for TNB was detected on Sus scrofa chromosome (SSC) 11. A possible candidate gene for TNB is ENOX1, which is involved in cell growth and survival. On SSC7, two possible candidate genes for varTNB are located. The first gene is coding a swine heat shock protein 90 (HSPCB = Hsp90), which is a well-studied gene stabilizing morphological traits in Drosophila and Arabidopsis. The second gene is VEGFA, which is activated in angiogenesis and vasculogenesis in the fetus. Furthermore, the genetic correlation between additive genetic effects on TNB and on its variation was 0.49. This indicates that the current selection to increase TNB will also increase the varTNB. Conclusions To the best of our knowledge, this is the first study reporting SNPs associated with variation of a trait in pigs. Detected genomic regions associated with varTNB can be used in genomic selection to decrease varTNB, which is highly desirable to avoid very small or very large litters in pigs. However, the percentage of variance explained by those regions was small. The SNPs detected in this study can be used as indication for regions in the Sus scrofa genome involved in maintaining low variability of litter size, but further studies are needed to identify the causative loci.
Collapse
Affiliation(s)
- E Sell-Kubiak
- Animal Breeding and Genomics Center, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, The Netherlands.
| | - N Duijvesteijn
- Topigs Norsvin Research Center B.V, P.O. Box 43, 6640, Beuningen, AA, The Netherlands.
| | - M S Lopes
- Topigs Norsvin Research Center B.V, P.O. Box 43, 6640, Beuningen, AA, The Netherlands.
| | - L L G Janss
- Department of Molecular Biology and Genetics, Aarhus University, P.O. Box 50, 8830, Tjele, Denmark.
| | - E F Knol
- Topigs Norsvin Research Center B.V, P.O. Box 43, 6640, Beuningen, AA, The Netherlands.
| | - P Bijma
- Animal Breeding and Genomics Center, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, The Netherlands.
| | - H A Mulder
- Animal Breeding and Genomics Center, Wageningen University, P.O. Box 338, 6700, Wageningen, AH, The Netherlands.
| |
Collapse
|
43
|
Park CJ, Seo YS. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity. THE PLANT PATHOLOGY JOURNAL 2015; 31:323-33. [PMID: 26676169 PMCID: PMC4677741 DOI: 10.5423/ppj.rw.08.2015.0150] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 05/19/2023]
Abstract
As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Plant Biotechnology and PERI, Sejong University, Seoul 143-747,
Korea
- Corresponding author. C.-J. Park, Phone) +82-2-3408-4378, FAX) +82-2-3408-4318, E-mail) . Y.-S. Seo, Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail:) , ORCID, Young-Su Seo, http://orcid.org/0000-0001-9191-1405, Chang-Jin Park, http://orcid.org/0000-0002-2586-8856
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan 609-735,
Korea
- Corresponding author. C.-J. Park, Phone) +82-2-3408-4378, FAX) +82-2-3408-4318, E-mail) . Y.-S. Seo, Phone) +82-51-510-2267, FAX) +82-51-514-1778, E-mail:) , ORCID, Young-Su Seo, http://orcid.org/0000-0001-9191-1405, Chang-Jin Park, http://orcid.org/0000-0002-2586-8856
| |
Collapse
|
44
|
Abstract
Cancer cells have the unusual capacity to limit the cost of the mutation load that they harbor and simultaneously harness its evolutionary potential. This property fuels drug resistance, a key failure mode in oncogene-directed therapy. However, the factors that regulate this capacity might also provide an Achilles' heel that could be exploited therapeutically. Recently, insight has come from a seemingly distant field: protein folding. It is now clear that protein homeostasis broadly supports malignancy and fuels the rapid evolution of drug resistance. Among protein homeostatic mechanisms that influence cancer biology, the essential ATP-driven molecular chaperone heat-shock protein 90 (Hsp90) is especially important. Hsp90 catalyzes folding of many proteins that regulate growth and development. These "client" kinases, transcription factors, and ubiquitin ligases often play critical roles in human disease, especially cancer. Studies in a wide range of systems-from single-celled organisms to human tumor samples-suggest that Hsp90 can broadly reshape the map between genotype and phenotype, acting as a "capacitor" and "potentiator" of genetic variation. Indeed, it has likely done so to such a degree that it has left an impress on diverse genome sequences. Hsp90 can constitute as much as 5% of total protein in transformed cells and increased levels of heat-shock activation correlate with poor prognosis in breast cancer. These findings and others have motivated a flurry of interest in Hsp90 inhibitors as cancer therapeutics, which have met with rather limited success as single agents, but may eventually prove invaluable in limiting the emergence of resistance to other chemotherapeutics, both genotoxic and molecularly targeted. Here, we provide an overview of Hsp90 function, review its relationship to genetic variation and the evolution of new traits, and discuss the importance of these findings for cancer biology and future efforts to drug this pathway.
Collapse
Affiliation(s)
- Daniel Jarosz
- Chemical & Systems Biology, Stanford University School of Medicine, Stanford, California, USA; Developmental Biology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
45
|
Durand E, Tenaillon MI, Raffoux X, Thépot S, Falque M, Jamin P, Bourgais A, Ressayre A, Dillmann C. Dearth of polymorphism associated with a sustained response to selection for flowering time in maize. BMC Evol Biol 2015; 15:103. [PMID: 26049736 PMCID: PMC4458035 DOI: 10.1186/s12862-015-0382-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/18/2015] [Indexed: 12/25/2022] Open
Abstract
Background Long term selection experiments bring unique insights on the genetic architecture of quantitative traits and their evolvability. Indeed, they are utilized to (i) monitor changes in allele frequencies and assess the effects of genomic regions involved traits determinism; (ii) evaluate the role of standing variation versus new mutations during adaptation; (iii) investigate the contribution of non allelic interactions. Here we describe genetic and phenotypic evolution of two independent Divergent Selection Experiments (DSEs) for flowering time conducted during 16 years from two early maize inbred lines. Results Our experimental design uses selfing as the mating system and small population sizes, so that two independent families evolved within each population, Late and Early. Observed patterns are strikingly similar between the two DSEs. We observed a significant response to selection in both directions during the first 7 generations of selection. Within Early families, the response is linear through 16 generations, consistent with the maintenance of genetic variance. Within Late families and despite maintenance of significant genetic variation across 17 generations, the response to selection reached a plateau after 7 generations. This plateau is likely caused by physiological limits. Residual heterozygosity in the initial inbreds can partly explain the observed responses as evidenced by 42 markers derived from both Methyl-Sensitive Amplification- and Amplified Fragment Length- Polymorphisms. Among the 42, a subset of 13 markers most of which are in high linkage disequilibrium, display a strong association with flowering time variation. Their fast fixation throughout DSEs’ pedigrees results in strong genetic differentiation between populations and families. Conclusions Our results reveal a paradox between the sustainability of the response to selection and the associated dearth of polymorphisms. Among other hypotheses, we discuss the maintenance of heritable variation by few mutations with strong epistatic interactions whose effects are modified by continuous changes of the genetic background through time. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0382-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eleonore Durand
- INRA, Ferme du Moulon, Gif sur Yvette, 91190, France. .,CNRS, Ferme du Moulon, Gif sur Yvette, 91190, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang GF, Fan R, Wang X, Wang D, Zhang X. TaRAR1 and TaSGT1 associate with TaHsp90 to function in bread wheat (Triticum aestivum L.) seedling growth and stripe rust resistance. PLANT MOLECULAR BIOLOGY 2015; 87:577-89. [PMID: 25697954 DOI: 10.1007/s11103-015-0298-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/13/2015] [Indexed: 05/03/2023]
Abstract
RAR1 and SGT1 are important co-chaperones of Hsp90. We previously showed that TaHsp90.1 is required for wheat seedling growth, and that TaHsp90.2 and TaHsp90.3 are essential for resistance (R) gene mediated resistance to stripe rust fungus. Here, we report the characterization of TaRAR1 and TaSGT1 genes in bread wheat. TaRAR1 and TaSGT1 each had three homoeologs, which were located on wheat groups 2 and 3 chromosomes, respectively. Strong inhibition of seedling growth was observed after silencing TaSGT1 but not TaRAR1. In contrast, decreasing the expression of TaRAR1 or TaSGT1 could all compromise R gene mediated resistance to stripe rust fungus infection. Protein-protein interactions were found among TaRAR1, TaSGT1 and TaHsp90. The N-terminus of TaHsp90, the CHORD-I and CHORD-II domains of TaRAR1 and the CS domain of TaSGT1 may be instrumental for the interactions among the three proteins. Based on this work and our previous study on TaHsp90, we speculate that the TaSGT1-TaHsp90.1 interaction is important for maintaining bread wheat seedling growth. The TaRAR1-TaSGT1-TaHsp90.2 and TaRAR1-TaSGT1-TaHsp90.3 interactions are involved in controlling the resistance to stripe rust disease. The new information obtained here should aid further functional investigations of TaRAR1-TaSGT1-TaHsp90 complexes in regulating bread wheat growth and disease resistance.
Collapse
Affiliation(s)
- Guan-Feng Wang
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China,
| | | | | | | | | |
Collapse
|
47
|
Zhang XC, Millet YA, Cheng Z, Bush J, Ausubel FM. Jasmonate signalling in Arabidopsis involves SGT1b-HSP70-HSP90 chaperone complexes. NATURE PLANTS 2015; 1:15049. [PMID: 27054042 PMCID: PMC4819967 DOI: 10.1038/nplants.2015.49] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/23/2015] [Indexed: 05/20/2023]
Abstract
Plant hormones play pivotal roles in growth, development and stress responses. Although it is essential to our understanding of hormone signalling, how plants maintain a steady state level of hormone receptors is poorly understood. We show that mutation of the Arabidopsis thaliana co-chaperone SGT1b impairs responses to the plant hormones jasmonate, auxin and gibberellic acid, but not brassinolide and abscisic acid, and that SGT1b and its homologue SGT1a are involved in maintaining the steady state levels of the F-box proteins COI1 and TIR1, receptors for jasmonate and auxin, respectively. The association of SGT1b with COI1 is direct and is independent of the Arabidopsis SKP1 protein, ASK1. We further show that COI1 is a client protein of SGT1b-HSP70-HSP90 chaperone complexes and that the complexes function in hormone signalling by stabilizing the COI1 protein. This study extends the SGT1b-HSP90 client protein list and broadens the functional scope of SGT1b-HSP70-HSP90 chaperone complexes.
Collapse
Affiliation(s)
- Xue-Cheng Zhang
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Yves A. Millet
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Zhenyu Cheng
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Jenifer Bush
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
48
|
Kaur D, Dogra V, Thapa P, Bhattacharya A, Sood A, Sreenivasulu Y. In vitro flowering associated protein changes in Dendrocalamus hamiltonii. Proteomics 2014; 15:1291-306. [PMID: 25475561 DOI: 10.1002/pmic.201400049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 10/24/2014] [Accepted: 11/28/2014] [Indexed: 11/07/2022]
Abstract
In Dendrocalamus hamiltonii, conversion of vegetative meristem to a floral meristem was successfully achieved on flower induction medium. A total of 128 differentially expressed proteins were evidenced by 2DE in floral meristem protein profiles. Analysis of 103 proteins through PMF revealed change in abundance in the content of 79 proteins, disappearance and new appearance in the content of 7 and 17 proteins, respectively. MS/MS and subsequent homology search identified 65 proteins that were involved in metabolism (22 proteins), regulatory (11 proteins), signaling and transportation (12 proteins), stress (6 proteins), flowering (8 proteins), and unknown functions (6 proteins). The data suggested that change in metabolism related proteins might be providing nutrient resources for floral initiation in D. hamiltonii. Further, interactive effects of various proteins like bHLH145, B-4c transcription factors (heat stress transcription factor), maturase K, MADS box, zinc finger proteins, and scarecrow-like protein 21 (flowering related), a key enzyme of ethylene biosynthesis SAMS (S-adenosylmethionine synthase) and aminocyclopropane-1-carboxylate synthase, improved calcium signaling related proteins (CML36), and change in phytohormone related proteins such as phosphatase proteins (2c3 and 2c55), which are the positive regulators of gibberellic acid and phytochrome regulation related proteins (DASH, LWD1) might be the possible major regulators of floral transition in this bamboo.
Collapse
Affiliation(s)
- Devinder Kaur
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | | | | | | | | | | |
Collapse
|
49
|
Siegal ML, Leu JY. On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2014; 45:496-517. [PMID: 26034410 PMCID: PMC4448758 DOI: 10.1146/annurev-ecolsys-120213-091705] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with non-additive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis.
Collapse
Affiliation(s)
- Mark L Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003;
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529;
| |
Collapse
|
50
|
HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci U S A 2014; 111:16172-7. [PMID: 25352668 DOI: 10.1073/pnas.1418483111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The circadian clock perceives environmental signals to reset to local time, but the underlying molecular mechanisms are not well understood. Here we present data revealing that a member of the heat shock factor (Hsf) family is involved in the input pathway to the plant circadian clock. Using the yeast one-hybrid approach, we isolated several Hsfs, including Heat Shock Factor B2b (HsfB2b), a transcriptional repressor that binds the promoter of Pseudo Response Regulator 7 (PRR7) at a conserved binding site. The constitutive expression of HsfB2b leads to severely reduced levels of the PRR7 transcript and late flowering and elongated hypocotyls. HsfB2b function is important during heat and salt stress because HsfB2b overexpression sustains circadian rhythms, and the hsfB2b mutant has a short circadian period under these conditions. HsfB2b is also involved in the regulation of hypocotyl growth under warm, short days. Our findings highlight the role of the circadian clock as an integrator of ambient abiotic stress signals important for the growth and fitness of plants.
Collapse
|