1
|
Martin T, Pasquier F, Denise P, Davenne D, Quarck G. The relationship between the vestibular system and the circadian timing system: A review. Sleep Med 2025; 126:148-158. [PMID: 39672094 DOI: 10.1016/j.sleep.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/02/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
This review attempts to analyze the relationship between the vestibular system and the circadian timing system. The activity of the biological clock allows an organism to optimally perform its tasks throughout the nychtemeron. To achieve this, the biological clock is subjected to exogenous factors that entrain it to a 24h period. While the most powerful synchronizer is the light-dark cycle produced by the Earth's rotation, research has led to the hypothesis of the vestibular system as a possible non-photic time cue used to entrain circadian rhythms. Demonstrated neuroanatomical pathways between vestibular nuclei and suprachiasmatic nuclei could transmit this message. Moreover, functional evidence in both humans and animals has shown that vestibular disruption or stimulation may lead to changes in circadian rhythms characteristics. Vestibular stimulations could be considered to act synergistically with other synchronizers, such as light, to ensure the entrainment of biological rhythms over the 24-h reference period.
Collapse
Affiliation(s)
- Tristan Martin
- Le Mans Université, Movement - Interactions - Performance, MIP, UR 4334, Avenue Olivier Messiaen, 72085 Le Mans CEDEX 9, France; Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France.
| | - Florane Pasquier
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| | - Pierre Denise
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| | - Damien Davenne
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| | - Gaëlle Quarck
- Université de Caen Normandie, INSERM, Normandie Université, COMETE UMR-S 1075, GIP Cyceron, Caen, F-14000, France
| |
Collapse
|
2
|
Buekenhout I, Clara MI, Gomes AA, Leitão J. Examining sex differences in morningness-eveningness and inter-individual variability across years of age: A cross-sectional study. Chronobiol Int 2025; 42:29-45. [PMID: 39707692 DOI: 10.1080/07420528.2024.2444667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/06/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
This study investigated the impact of age on morningness-eveningness (ME) and its inter-individual variability, with a focus on sex-specific patterns. A sample of 2890 participants aged 12-94 years (55.85% female) completed the Composite Scale of Morningness. Multiple linear regression analyses revealed a significant Age × Sex interaction, indicating distinct age-dependent patterns for males and females in both ME and its inter-individual variability. We conducted segmented regression analyses to explore these dynamics further and identify breakpoints. Eveningness increased across adolescence, with both males and females reaching peak lateness at 20 years. Morningness increased thereafter until 64.94 years for females and until 59 years for males. Following these sex-specific breakpoints, morningness remained constant for females and increased at a reduced rate for males. After the age of 48, males exhibited greater morningness than females. Inter-individual variability in ME (VME) changed with age, increasing until 33 years for men and 36.80 years for women, followed by a decrease for both sexes. From 50.30 years onward, females showed greater VME compared to men. This study suggests that ME and VME shift across age, and differences between sexes were observed from middle age onwards. Diurnal preferences are likely influenced by internal and environmental variables.
Collapse
Affiliation(s)
- Imke Buekenhout
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Chronopsychology and Cognitive Systems Lab (ChronCog), Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences University of Coimbra, Coimbra, Portugal
| | - Maria Inês Clara
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Chronopsychology and Cognitive Systems Lab (ChronCog), Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences University of Coimbra, Coimbra, Portugal
| | - Ana Allen Gomes
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Chronopsychology and Cognitive Systems Lab (ChronCog), Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences University of Coimbra, Coimbra, Portugal
| | - José Leitão
- Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Chronopsychology and Cognitive Systems Lab (ChronCog), Faculty of Psychology and Educational Sciences, University of Coimbra, Coimbra, Portugal
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention (CINEICC), Faculty of Psychology and Educational Sciences University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Conti F, Vergès-Castillo A, Sánchez-Vázquez FJ, López-Olmeda JF, Bertolucci C, Muñoz-Cueto JA. Daily rhythms of locomotor activity and transcript levels of non-visual opsins in the brain of the blind Mexican cavefish (Astyanax mexicanus). Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111772. [PMID: 39505251 DOI: 10.1016/j.cbpa.2024.111772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Most organisms possess endogenous circadian clocks that synchronise their physiology and behaviour with environmental cycles, with the light-dark (LD) cycle being the most potent synchronising signal. Consequently, it can be hypothesised that animals that have evolved in the dark, as in caves or deep sea, may no longer possess a functional light-entrained biological clock. In this research, the blind cavefish Astyanax mexicanus was selected as a model organism to investigate the potential effects of daily light conditions on the circadian timekeeping mechanisms. First, we focused on describing behavioural photic entrainment and the presence of a circadian endogenous rhythmicity by recording locomotor activity rhythms under different lighting regimes: LD 12:12, after a 6-h shift of LD, constant darkness (DD), and constant dim light (LLdim). Secondly, we aimed at characterising the mechanisms of photodetection by analysing the daily rhythms of expression of selected non-visual extraocular opsins (exo-rhod, opn3, rgra, rgrb, tmt1a and tmt1b) in the brain of this blind species using real-time quantitative PCR. Our results revealed that blind Mexican cavefish activity rhythms were entrained to the LD cycle, with a diurnal activity pattern that persisted in a circadian fashion under constant lighting conditions. Additionally, statistically significant daily variations and/or rhythms were observed in three out of the six non-visual opsin genes analysed (opn3, rgra and tmt1b), all of them displaying nocturnal acrophases. These findings suggest that daily rhythms in extraretinal non-visual opsins may be transducing daily photic cycles and contributing to the entrainment of locomotor activity and other light-synchronised rhythms in blind cavefish species.
Collapse
Affiliation(s)
- Francesca Conti
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain; Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Alba Vergès-Castillo
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real (Cádiz), Spain; Instituto Universitario de Investigación Marina (INMAR) and Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain
| | - Francisco J Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - José F López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - José A Muñoz-Cueto
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real (Cádiz), Spain; Instituto Universitario de Investigación Marina (INMAR) and Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real (Cádiz), Spain; The European University of the Seas (SEA-EU), Cádiz, Spain.
| |
Collapse
|
4
|
Khan AH, Abdullah A, Mustafa MS, Abdul Qadeer M. Disruption in Sleep and Circadian Rhythm: A Potential Accelerator in Alzheimer's Disease Progression. Ann Neurosci 2024; 31:246-249. [PMID: 39840145 PMCID: PMC11744612 DOI: 10.1177/09727531231200958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Affiliation(s)
- Abdul Hadi Khan
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Ali Abdullah
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | | | | |
Collapse
|
5
|
Poudyal B, Pacheco D, Oliveira M, Chen Z, Barbosa HS, Menezes R, Ghoshal G. Dynamic predictability and activity-location contexts in human mobility. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240115. [PMID: 39252848 PMCID: PMC11382963 DOI: 10.1098/rsos.240115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024]
Abstract
Human travelling behaviours are markedly regular, to a large extent predictable, and mostly driven by biological necessities and social constructs. Not surprisingly, such predictability is influenced by an array of factors ranging in scale from individual preferences and choices, through social groups and households, all the way to the global scale, such as mobility restrictions in response to external shocks such as pandemics. In this work, we explore how temporal, activity and location variations in individual-level mobility-referred to as predictability states-carry a large degree of information regarding the nature of mobility regularities at the population level. Our findings indicate the existence of contextual and activity signatures in predictability states, suggesting the potential for a more nuanced approach to estimating both short-term and higher-order mobility predictions. The existence of location contexts, in particular, serves as a parsimonious estimator for predictability patterns even in the case of low resolution and missing data.
Collapse
Affiliation(s)
- Bibandhan Poudyal
- Department of Physics & Astronomy, University of
Rochester, Rochester, NY,
USA
| | - Diogo Pacheco
- Department of Computer Science, University of
Exeter, Exeter, UK
| | - Marcos Oliveira
- Department of Computer Science, University of
Exeter, Exeter, UK
- GESIS—Leibniz Institute for the Social Sciences, Cologne, Germany
| | - Zexun Chen
- The University of Edinburgh Business School, Edinburgh, UK
| | - Hugo S. Barbosa
- Department of Computer Science, University of
Exeter, Exeter, UK
| | - Ronaldo Menezes
- Department of Computer Science, University of
Exeter, Exeter, UK
- Department of Computer Science, Federal University of
Ceará, Fortaleza, Brazil
| | - Gourab Ghoshal
- Department of Physics & Astronomy, University of
Rochester, Rochester, NY,
USA
| |
Collapse
|
6
|
Mahmood Z, Ramsey A, Kidambi N, Hernandez A, Palmer H, Liu J, Tu XM, Ancoli-Israel S, Malhotra A, Smagula S, Lee EE. Rest-activity rhythm disruption and metabolic health in schizophrenia: a cross-sectional actigraphy study of community-dwelling people living with schizophrenia and nonpsychiatric comparison participants. J Clin Sleep Med 2024; 20:1505-1516. [PMID: 38661656 PMCID: PMC11367713 DOI: 10.5664/jcsm.11192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
STUDY OBJECTIVES People living with schizophrenia (PLWS) have increased physical comorbidities and premature mortality which may be linked to dysregulated rest-activity rhythms (RARs). This study aimed to compare RARs between PLWS and nonpsychiatric comparison participants (NCs) and to examine the relationships of RARs with age, sleep, metabolic, and physical health outcomes and, among PLWS, relationships of RARs with illness-related factors. METHODS The study sample included 26 PLWS and 36 NCs, assessed with wrist-worn actigraphy to compute RAR variables and general sleep variables. Participants completed assessments for clinical symptoms, physical health, sleep quality, medication use, and assays for fasting glycosylated hemoglobin (hemoglobin A1c) levels. We examined group differences in RAR and sleep variables, relationships of RAR variables with metabolic and physical health measures, and, among PLWS, relationships between RAR variables and illness-related measures. RESULTS PLWS had significantly shorter active periods, lower relative amplitude, and lower mean activity during their most active 10 hours compared to the NCs (Cohen's d = 0.79, 0.58, and 0.62, respectively). PLWS had poorer sleep quality, greater mean percent sleep, less wake after sleep onset, and higher total sleep time variability compared to NCs. PLWS had higher rates of antidepressant, anxiolytic, and antipsychotic medication use compared to NCs, which may have impacted sleep quality and objective sleep measures. Across both groups, more fragmented and variable RARs were associated with higher HbA1c levels (ηp2 = .10) and worse physical health (ηp2 = .21). Among PLWS, RARs were correlated with total sleep time (rs = .789, P < .01) and percent sleep (rs = .509, P < .05), but not with age, sleep quality, or other illness-related factors. CONCLUSIONS RARs provide unique information about sleep and activity for PLWS and have the potential for targeted interventions to improve metabolic health and mortality. CITATION Mahmood Z, Ramsey A, Kidambi N, et al. Rest-activity rhythm disruption and metabolic health in schizophrenia: a cross-sectional actigraphy study of community-dwelling people living with schizophrenia and nonpsychiatric comparison participants. J Clin Sleep Med. 2024;20(9):1505-1516.
Collapse
Affiliation(s)
- Zanjbeel Mahmood
- San Diego State University/University of California San Diego Joint Doctoral Program, San Diego, California
- VA San Diego Healthcare System, San Diego, California
| | - Arren Ramsey
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Neha Kidambi
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Alexa Hernandez
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Hayden Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Jinyuan Liu
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Xin M. Tu
- Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, California
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, California
| | - Sonia Ancoli-Israel
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California
| | - Stephen Smagula
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ellen E. Lee
- VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California San Diego, La Jolla, California
- Sam and Rose Stein Institute for Research on Aging, University of California San Diego, La Jolla, California
- Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
7
|
Di Rosa V, Frigato E, Negrini P, Cristiano W, López-Olmeda JF, Rétaux S, Sánchez-Vázquez FJ, Foulkes NS, Bertolucci C. Sporadic feeding regulates robust food entrainable circadian clocks in blind cavefish. iScience 2024; 27:110171. [PMID: 38974965 PMCID: PMC11225386 DOI: 10.1016/j.isci.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 07/09/2024] Open
Abstract
The circadian clock represents a key timing system entrained by various periodic signals that ensure synchronization with the environment. Many investigations have pointed to the existence of two distinct circadian oscillators: one regulated by the light-dark cycle and the other set by feeding time. Blind cavefish have evolved under extreme conditions where they completely lack light exposure and experience food deprivation. Here, we have investigated feeding regulated clocks in two cavefish species, the Somalian cavefish Phreatichthys andruzzii and the Mexican cavefish Astyanax mexicanus, in comparison with the surface-dwelling zebrafish Danio rerio. Our results reveal that feeding represents an extremely strong synchronizer for circadian locomotor rhythmicity in subterranean cavefish. Indeed, we showed that consuming just one meal every 4 days is sufficient to entrain circadian rhythmicity in both cavefish species, but not in zebrafish. These profound adaptations to an extreme environment provide insight into the connections between feeding and circadian clocks.
Collapse
Affiliation(s)
- Viviana Di Rosa
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Pietro Negrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Walter Cristiano
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Ecosystems and Health Unit, Environment and Health Department, Italian National Institute of Health, 00161 Rome, Italy
| | - Jose Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain
| | - Nicholas S. Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Wallace DA. Light Exposure Differs by Gender in the US: Women Have Less Bright Light Exposure than Men. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.28.24306495. [PMID: 38746463 PMCID: PMC11092728 DOI: 10.1101/2024.04.28.24306495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Light is a salient environmental exposure, serving as the primary entraining cue for the circadian system and having other, non-circadian, effects on health. Gender differences in light exposure patterns could contribute to gender differences in health outcomes and would have important implications for sleep and circadian research. Gender differences in real-world light exposure (measured over a week with wrist-worn ActiGraph GT3X+ devices) were investigated in cross- sectional data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). Measures of time above light threshold (TALT), individual photoperiod (IP), first and last timing of light (FTL and LTL, respectively), and mean light timing revised (MLiTR) at different light intensity thresholds were derived. Gender differences in light exposure were tested using two-sample t-tests, Watson's two-sample test of homogeneity, and linear regression models. Exploratory analyses to investigate work and physical activity-related factors in relation to bright light exposure were also conducted. A total of 11,318 NHANES participants (age range: 3-80+, 52.2% women) with 6 days of valid actigraphy and light data were included in the analysis. The findings suggest that for every 60 minutes of bright light (≥1,000 lux) that men receive, women receive 39.6 minutes. Men spend approximately 52% more time in bright light than women and this gender difference begins in childhood. The IP of bright light exposure is also longer for men, with earlier first and later last timing of bright light exposure compared to women. These gender differences were robust across ages and between race and ethnicity groups. While further research is needed, these gender differences in light exposure may be due to gender differences in indoor vs. outdoor activities. Future studies of gender differences in response to light exposure should consider light exposure history in study design and analysis. The results of this study may inform future health disparities research and support the importance of the study of light as an important environmental exposure and component of the human exposome.
Collapse
|
9
|
Klerman EB, Wright KP, Duffy JF, Scheer FAJL, Chang AM, Czeisler CA, Rajaratnam SM. A perspective on the Festschrift of Charles A. Czeisler, PhD MD. Sleep Health 2024; 10:S4-S10. [PMID: 38331654 PMCID: PMC11031332 DOI: 10.1016/j.sleh.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Affiliation(s)
- Elizabeth B Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology., University of Colorado Boulder, USA
| | - Jeanne F Duffy
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Anne-Marie Chang
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Charles A Czeisler
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Shantha Mw Rajaratnam
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Victoria, Australia
| |
Collapse
|
10
|
Edemann-Callesen H, Andersen HK, Ussing A, Virring A, Jennum P, Debes NM, Laursen T, Baandrup L, Gade C, Dettmann J, Holm J, Krogh C, Birkefoss K, Tarp S, Händel MN. Use of melatonin in children and adolescents with idiopathic chronic insomnia: a systematic review, meta-analysis, and clinical recommendation. EClinicalMedicine 2023; 61:102048. [PMID: 37457117 PMCID: PMC10339205 DOI: 10.1016/j.eclinm.2023.102048] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Background Melatonin prescriptions for children and adolescents have increased substantially during the last decade. Existing clinical recommendations focus on melatonin as a treatment for insomnia related to neurodevelopmental disorders. To help guide clinical decision-making, we aimed to construct a recommendation on the use of melatonin in children and adolescents aged 5-20 years with idiopathic chronic insomnia. Methods A systematic search for guidelines, systematic reviews and randomised controlled trials (RCT) were performed in Medline, Embase, Cochrane Library, PsycInfo, Cinahl, Guidelines International Network, Trip Database, Canadian Agency for Drugs and Technologies in Health, American Academy of Sleep Medicine, European Sleep Research Society and Scandinavian Health Authorities databases. A search for adverse events in otherwise healthy children and adolescents was also performed. The latest search for guidelines, systematic reviews, and adverse events was performed on March 18, 2023. The latest search for RCTs was performed on to February 6, 2023. The language was restricted to English, Danish, Norwegian, and Swedish. Eligible participants were children and adolescents (5-20 years of age) with idiopathic chronic insomnia, in whom sleep hygiene practices have been inadequate and melatonin was tested. There were no restrictions on dosage, duration of treatment, time of consumption, or release formula. Primary outcomes were quality of sleep, daytime functioning and serious adverse events. Secondary outcomes included total sleep time, sleep latency, awakenings, drowsiness, quality of life, all-cause dropouts, and non-serious adverse events. Outcomes were assessed at different time points to assess short-term and long-term effects. Meta-analysis was performed using inverse variance random-effects model and risk of bias was assessed using Cochrane risk of bias tool. If possible, funnel plots would be constructed to investigate publication bias. Heterogeneity was calculated via I2 statistics. A multidisciplinary guideline panel formulated the recommendation according to Grading of Recommendations Assessment, Development and Evaluation (GRADE). The certainty of evidence was considered either high, moderate, low or very low depending on the extent of risk of bias, inconsistency, imprecision, indirectness, or publication bias. The evidence-to-decision framework was subsequently used to discuss the feasibility and acceptance of the constructed recommendation alongside the impact on resources and equity. The protocol is registered with the Danish Health Authority. Findings We included eight RCTs with 419 children and adolescents with idiopathic chronic insomnia. Melatonin led to a moderate increase in total sleep time by 30.33 min (95% confidence interval (CI) 18.96-41.70, 4 studies, I2 = 0%) and a moderate reduction in sleep latency by 18.03 min (95% CI -26.61 to -9.44, 3 studies, I2 = 0%), both as assessed by sleep diary. No other beneficial effects were found. None of the studies provided information on serious adverse events, yet the number of participants experiencing non-serious adverse events was increased (Relative risk 3.44, 95% CI 1.25-9.42, 4 studies, I2 = 0%). Funnel plots were not constructed due to the low number of studies. The certainty of evidence was very low on the quality of sleep and low for daytime functioning. Interpretation Evidence of very low certainty shows that benefits are limited and unwanted events are likely when melatonin is used to treat otherwise healthy children and adolescents with chronic insomnia. Melatonin should never be the first choice of treatment for this particular population, yet carefully monitored short-term use may be considered if sleep hygiene practices and non-pharmacological interventions have proven inadequate, and only if daytime function is compromised. Funding The Danish Health Authority and the Parker Institute, Bispebjerg and Frederiksberg Hospital supported by the Oak Foundation.
Collapse
Affiliation(s)
- Henriette Edemann-Callesen
- The Danish Health Authority, 2300, Copenhagen, Denmark
- Centre for Evidence-Based Psychiatry, Psychiatric Research Unit, Psychiatry Region Zealand, 4200, Slagelse, Denmark
| | | | - Anja Ussing
- The Danish Health Authority, 2300, Copenhagen, Denmark
| | - Anne Virring
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital, Psychiatry, Aarhus, Denmark
| | - Poul Jennum
- Danish Centre for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark
| | - Nanette Mol Debes
- Department of Pediatrics, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Torben Laursen
- Department of Clinical Pharmacology, Aarhus University Hospital, Denmark
| | - Lone Baandrup
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Bispebjerg and Gentofte Departments, Mental Health Centre Copenhagen, Copenhagen University Hospital – the Mental Health Services of the Capital Region in Denmark, Denmark
| | - Christina Gade
- Departments of Clinical Pharmacology and Clinical Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, University of Copenhagen, Denmark
| | - Jette Dettmann
- Department of Pediatrics, Copenhagen University Hospital – NOH, Hillerød, Denmark
| | - Jonas Holm
- The Occupational Therapist Association, Denmark
| | - Camilla Krogh
- The Danish Health Authority, 2300, Copenhagen, Denmark
| | | | - Simon Tarp
- The Danish Health Authority, 2300, Copenhagen, Denmark
| | - Mina Nicole Händel
- The Danish Health Authority, 2300, Copenhagen, Denmark
- Research Unit OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| |
Collapse
|
11
|
Coskun A, Zarepour A, Zarrabi A. Physiological Rhythms and Biological Variation of Biomolecules: The Road to Personalized Laboratory Medicine. Int J Mol Sci 2023; 24:ijms24076275. [PMID: 37047252 PMCID: PMC10094461 DOI: 10.3390/ijms24076275] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The concentration of biomolecules in living systems shows numerous systematic and random variations. Systematic variations can be classified based on the frequency of variations as ultradian (<24 h), circadian (approximately 24 h), and infradian (>24 h), which are partly predictable. Random biological variations are known as between-subject biological variations that are the variations among the set points of an analyte from different individuals and within-subject biological variation, which is the variation of the analyte around individuals’ set points. The random biological variation cannot be predicted but can be estimated using appropriate measurement and statistical procedures. Physiological rhythms and random biological variation of the analytes could be considered the essential elements of predictive, preventive, and particularly personalized laboratory medicine. This systematic review aims to summarize research that have been done about the types of physiological rhythms, biological variations, and their effects on laboratory tests. We have searched the PubMed and Web of Science databases for biological variation and physiological rhythm articles in English without time restrictions with the terms “Biological variation, Within-subject biological variation, Between-subject biological variation, Physiological rhythms, Ultradian rhythms, Circadian rhythm, Infradian rhythms”. It was concluded that, for effective management of predicting, preventing, and personalizing medicine, which is based on the safe and valid interpretation of patients’ laboratory test results, both physiological rhythms and biological variation of the measurands should be considered simultaneously.
Collapse
|
12
|
Wang W, Yuan RK, Mitchell JF, Zitting KM, St Hilaire MA, Wyatt JK, Scheer FAJL, Wright KP, Brown EN, Ronda JM, Klerman EB, Duffy JF, Dijk DJ, Czeisler CA. Desynchronizing the sleep---wake cycle from circadian timing to assess their separate contributions to physiology and behaviour and to estimate intrinsic circadian period. Nat Protoc 2023; 18:579-603. [PMID: 36376588 DOI: 10.1038/s41596-022-00746-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/24/2022] [Indexed: 11/16/2022]
Abstract
Circadian clocks drive cyclic variations in many aspects of physiology, but some daily variations are evoked by periodic changes in the environment or sleep-wake state and associated behaviors, such as changes in posture, light levels, fasting or eating, rest or activity and social interactions; thus, it is often important to quantify the relative contributions of these factors. Yet, circadian rhythms and these evoked effects cannot be separated under typical 24-h day conditions, because circadian phase and the length of time awake or asleep co-vary. Nathaniel Kleitman's forced desynchrony (FD) protocol was designed to assess endogenous circadian rhythmicity and to separate circadian from evoked components of daily rhythms in multiple parameters. Under FD protocol conditions, light intensity is kept low to minimize its impact on the circadian pacemaker, and participants have sleep-wake state and associated behaviors scheduled to an imposed non-24-h cycle. The period of this imposed cycle, Τ, is chosen so that the circadian pacemaker cannot entrain to it and therefore continues to oscillate at its intrinsic period (τ, ~24.15 h), ensuring circadian components are separated from evoked components of daily rhythms. Here we provide detailed instructions and troubleshooting techniques on how to design, implement and analyze the data from an FD protocol. We provide two procedures: one with general guidance for designing an FD study and another with more precise instructions for replicating one of our previous FD studies. We discuss estimating circadian parameters and quantifying the separate contributions of circadian rhythmicity and the sleep-wake cycle, including statistical analysis procedures and an R package for conducting the non-orthogonal spectral analysis method that enables an accurate estimation of period, amplitude and phase.
Collapse
Affiliation(s)
- Wei Wang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Robin K Yuan
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jude F Mitchell
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - Kirsi-Marja Zitting
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - James K Wyatt
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Emery N Brown
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute for Data Systems and Society, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph M Ronda
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine and Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Chen X, Yang J, Lv H, Che J, Wang J, Zhang B, Shang P. The potential benefits of melatonin in the prevention and treatment of bone loss in response to microgravity. ACTA ASTRONAUTICA 2023; 202:48-57. [DOI: 10.1016/j.actaastro.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
|
14
|
Chen X, Yang J, Lv H, Che J, Wang J, Zhang B, Shang P. The potential benefits of melatonin in the prevention and treatment of bone loss in response to microgravity. ACTA ASTRONAUTICA 2023; 202:48-57. [DOI: org/10.1016/j.actaastro.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
15
|
Rahman SA, Kent BA, Grant LK, Clark T, Hanifin JP, Barger LK, Czeisler CA, Brainard GC, St Hilaire MA, Lockley SW. Effects of dynamic lighting on circadian phase, self-reported sleep and performance during a 45-day space analog mission with chronic variable sleep deficiency. J Pineal Res 2022; 73:e12826. [PMID: 35996978 PMCID: PMC11316501 DOI: 10.1111/jpi.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/29/2022] [Accepted: 08/20/2022] [Indexed: 10/15/2022]
Abstract
Spaceflight exposes crewmembers to circadian misalignment and sleep loss, which impair cognition and increase the risk of errors and accidents. We compared the effects of an experimental dynamic lighting schedule (DLS) with a standard static lighting schedule (SLS) on circadian phase, self-reported sleep and cognition during a 45-day simulated space mission. Sixteen participants (mean age [±SD] 37.4 ± 6.7 years; 5 F; n = 8/lighting condition) were studied in four-person teams at the NASA Human Exploration Research Analog. Participants were scheduled to sleep 8 h/night on two weekend nights, 5 h/night on five weekday nights, repeated for six 7-day cycles, with scheduled waketime fixed at 7:00 a.m. Compared to the SLS where illuminance and spectrum remained constant during wake (~4000K), DLS increased the illuminance and short-wavelength (blue) content of white light (~6000K) approximately threefold in the main workspace (Level 1), until 3 h before bedtime when illuminance was reduced by ~96% and the blue content also reduced throughout (~4000K × 2 h, ~3000K × 1 h) until bedtime. The average (±SE) urinary 6-sulphatoxymelatonin (aMT6s) acrophase time was significantly later in the SLS (6.22 ± 0.34 h) compared to the DLS (4.76 ± 0.53 h) and more variable in SLS compared to DLS (37.2 ± 3.6 min vs. 28.2 ± 2.4 min, respectively, p = .04). Compared to DLS, self-reported sleep was more frequently misaligned relative to circadian phase in SLS RR: 6.75, 95% CI 1.55-29.36, p = .01), but neither self-reported sleep duration nor latency to sleep was different between lighting conditions. Accuracy in the abstract matching and matrix reasoning tests were significantly better in DLS compared to SLS (false discovery rate-adjusted p ≤ .04). Overall, DLS alleviated the drift in circadian phase typically observed in space analog studies and reduced the prevalence of self-reported sleep episodes occurring at an adverse circadian phase. Our results support incorporating DLS in future missions, which may facilitate appropriate circadian alignment and reduce the risk of sleep disruption.
Collapse
Affiliation(s)
- Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Brianne A Kent
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Leilah K Grant
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | | | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Laura K Barger
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA
| | - Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Smies CW, Bodinayake KK, Kwapis JL. Time to learn: The role of the molecular circadian clock in learning and memory. Neurobiol Learn Mem 2022; 193:107651. [PMID: 35697314 PMCID: PMC9903177 DOI: 10.1016/j.nlm.2022.107651] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The circadian system plays an important role in aligning biological processes with the external time of day. A range of physiological functions are governed by the circadian cycle, including memory processes, yet little is understood about how the clock interfaces with memory at a molecular level. The molecular circadian clock consists of four key genes/gene families, Period, Clock, Cryptochrome, and Bmal1, that rhythmically cycle in an ongoing transcription-translation negative feedback loop that maintains an approximately 24-hour cycle within cells of the brain and body. In addition to their roles in generating the circadian rhythm within the brain's master pacemaker (the suprachiasmatic nucleus), recent research has suggested that these clock genes may function locally within memory-relevant brain regions to modulate memory across the day/night cycle. This review will discuss how these clock genes function both within the brain's central clock and within memory-relevant brain regions to exert circadian control over memory processes. For each core clock gene, we describe the current research that demonstrates a potential role in memory and outline how these clock genes might interface with cascades known to support long-term memory formation. Together, the research suggests that clock genes function locally within satellite clocks across the brain to exert circadian control over long-term memory formation and possibly other biological processes. Understanding how clock genes might interface with local molecular cascades in the hippocampus and other brain regions is a critical step toward developing treatments for the myriad disorders marked by dysfunction of both the circadian system and cognitive processes.
Collapse
Affiliation(s)
- Chad W Smies
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Kasuni K Bodinayake
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
17
|
Sletten TL, Sullivan JP, Arendt J, Palinkas LA, Barger LK, Fletcher L, Arnold M, Wallace J, Strauss C, Baker RJS, Kloza K, Kennaway DJ, Rajaratnam SMW, Ayton J, Lockley SW. The role of circadian phase in sleep and performance during Antarctic winter expeditions. J Pineal Res 2022; 73:e12817. [PMID: 35833316 PMCID: PMC9541096 DOI: 10.1111/jpi.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
The Antarctic environment presents an extreme variation in the natural light-dark cycle which can cause variability in the alignment of the circadian pacemaker with the timing of sleep, causing sleep disruption, and impaired mood and performance. This study assessed the incidence of circadian misalignment and the consequences for sleep, cognition, and psychological health in 51 over-wintering Antarctic expeditioners (45.6 ± 11.9 years) who completed daily sleep diaries, and monthly performance tests and psychological health questionnaires for 6 months. Circadian phase was assessed via monthly 48-h urine collections to assess the 6-sulphatoxymelatonin (aMT6s) rhythm. Although the average individual sleep duration was 7.2 ± 0.8 h, there was substantial sleep deficiency with 41.4% of sleep episodes <7 h and 19.1% <6 h. Circadian phase was highly variable and 34/50 expeditioners had sleep episodes that occurred at an abnormal circadian phase (acrophase outside of the sleep episode), accounting for 18.8% (295/1565) of sleep episodes. Expeditioners slept significantly less when misaligned (6.1 ± 1.3 h), compared with when aligned (7.3 ± 1.0 h; p < .0001). Performance and mood were worse when awake closer to the aMT6s peak and with increased time awake (all p < .0005). This research highlights the high incidence of circadian misalignment in Antarctic over-wintering expeditioners. Similar incidence has been observed in long-duration space flight, reinforcing the fidelity of Antarctica as a space analog. Circadian misalignment has considerable safety implications, and potentially longer term health risks for other circadian-controlled physiological systems. This increased risk highlights the need for preventative interventions, such as proactively planned lighting solutions, to ensure circadian alignment during long-duration Antarctic and space missions.
Collapse
Affiliation(s)
- Tracey L. Sletten
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityVictoriaAustralia
| | - Jason P. Sullivan
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
| | - Josephine Arendt
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyUK
| | - Lawrence A. Palinkas
- Suzanne Dworak‐Peck School of Social WorkUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Laura K. Barger
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityVictoriaAustralia
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lloyd Fletcher
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Malcolm Arnold
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Jan Wallace
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Clive Strauss
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | | | - Kate Kloza
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - David J. Kennaway
- Robinson Research Institute, School of Medicine, Discipline of Obstetrics and GynaecologyUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Shantha M. W. Rajaratnam
- Turner Institute for Brain and Mental Health and School of Psychological SciencesMonash UniversityVictoriaAustralia
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jeff Ayton
- Polar Medicine Unit, Australian Antarctic DivisionKingstonTasmaniaAustralia
| | - Steven W. Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and NeurologyBrigham and Women's HospitalBostonMassachusettsUSA
- Division of Sleep Medicine, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
18
|
Chronoradiobiology of Breast Cancer: The Time Is Now to Link Circadian Rhythm and Radiation Biology. Int J Mol Sci 2022; 23:ijms23031331. [PMID: 35163264 PMCID: PMC8836288 DOI: 10.3390/ijms23031331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/23/2022] [Indexed: 12/13/2022] Open
Abstract
Circadian disruption has been linked to cancer development, progression, and radiation response. Clinical evidence to date shows that circadian genetic variation and time of treatment affect radiation response and toxicity for women with breast cancer. At the molecular level, there is interplay between circadian clock regulators such as PER1, which mediates ATM and p53-mediated cell cycle gating and apoptosis. These molecular alterations may govern aggressive cancer phenotypes, outcomes, and radiation response. Exploiting the various circadian clock mechanisms may enhance the therapeutic index of radiation by decreasing toxicity, increasing disease control, and improving outcomes. We will review the body’s natural circadian rhythms and clock gene-regulation while exploring preclinical and clinical evidence that implicates chronobiological disruptions in the etiology of breast cancer. We will discuss radiobiological principles and the circadian regulation of DNA damage responses. Lastly, we will present potential rational therapeutic approaches that target circadian pathways to improve outcomes in breast cancer. Understanding the implications of optimal timing in cancer treatment and exploring ways to entrain circadian biology with light, diet, and chronobiological agents like melatonin may provide an avenue for enhancing the therapeutic index of radiotherapy.
Collapse
|
19
|
Madeleine Ince L. Introduction to Biological Rhythms: A Brief History of Chronobiology and its Relevance to Parasite Immunology. Parasite Immunol 2022; 44:e12905. [PMID: 35075647 DOI: 10.1111/pim.12905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
Almost every living organism on Earth is exposed to a fluctuating environment e.g., light:dark cycles, food availability, seasonal photoperiods. Most species have therefore evolved internal timing mechanisms allowing them to anticipate these rhythmic environmental changes, obtaining a survival advantage. Circadian (24 h) rhythms, in particular, regulate multiple aspects of physiology, including sleep/wake activity, feeding rhythms, and immune function. Recent studies have identified circadian rhythms in symptoms of parasite infections, rhythms in parasite schizogony, and evidence that certain parasites can manipulate host rhythms. Furthermore, efficacy of anti-parasite medications can also be modulated by timing of drug administration. Understanding the interactions between host rhythms, parasite rhythms, and disease severity is crucial to fully understand how to combat infections and reduce pathology. The aim of this review is, therefore, to provide an introduction to the field of biological rhythms, give a brief history of chronobiology research, and discuss the relevance of biological rhythms to parasite immunology.
Collapse
Affiliation(s)
- Louise Madeleine Ince
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Texas at Austin, TX, USA
| |
Collapse
|
20
|
Grabe S, Mahammadov E, Olmo MD, Herzel H. Synergies of Multiple Zeitgebers Tune Entrainment. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 1:803011. [PMID: 36925578 PMCID: PMC10013031 DOI: 10.3389/fnetp.2021.803011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/16/2022]
Abstract
Circadian rhythms are biological rhythms with a period close to 24 h. They become entrained to the Earth's solar day via different periodic cues, so-called zeitgebers. The entrainment of circadian rhythms to a single zeitgeber was investigated in many mathematical clock models of different levels of complexity, ranging from the Poincaré oscillator and the Goodwin model to biologically more detailed models of multiple transcriptional translational feedback loops. However, circadian rhythms are exposed to multiple coexisting zeitgebers in nature. Therefore, we study synergistic effects of two coexisting zeitgebers on different components of the circadian clock. We investigate the induction of period genes by light together with modulations of nuclear receptor activities by drugs and metabolism. Our results show that the entrainment of a circadian rhythm to two coexisting zeitgebers depends strongly on the phase difference between the two zeitgebers. Synergistic interactions of zeitgebers can strengthen diurnal rhythms to reduce detrimental effects of shift-work and jet lag. Medical treatment strategies which aim for stable circadian rhythms should consider interactions of multiple zeitgebers.
Collapse
Affiliation(s)
- Saskia Grabe
- CharitéCenter for Basic Sciences, Institute for Theoretical Biology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Elmir Mahammadov
- Stem Cell Center (SCC), Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Marta Del Olmo
- CharitéCenter for Basic Sciences, Institute for Theoretical Biology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Hanspeter Herzel
- CharitéCenter for Basic Sciences, Institute for Theoretical Biology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology, Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
21
|
Fischer D, Hilditch CJ. Light in ecological settings: Entrainment, circadian disruption, and interventions. PROGRESS IN BRAIN RESEARCH 2022; 273:303-330. [DOI: 10.1016/bs.pbr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Sgro M, Kodila ZN, Brady RD, Reichelt AC, Mychaisuk R, Yamakawa GR. Synchronizing Our Clocks as We Age: The Influence of the Brain-Gut-Immune Axis on the Sleep-Wake Cycle Across the Lifespan. Sleep 2021; 45:6425072. [PMID: 34757429 DOI: 10.1093/sleep/zsab268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 11/12/2022] Open
Abstract
The microbes that colonize the small and large intestines, known as the gut microbiome, play an integral role in optimal brain development and function. The gut microbiome is a vital component of the bi-directional communication pathway between the brain, immune system, and gut, also known as the brain-gut-immune axis. To date there has been minimal investigation into the implications of improper development of the gut microbiome and the brain-gut-immune axis on the sleep-wake cycle, particularly during sensitive periods of physical and neurological development, such as childhood, adolescence, and senescence. Therefore, this review will explore the current literature surrounding the overlapping developmental periods of the gut microbiome, brain, and immune system from birth through to senescence, while highlighting how the brain-gut-immune axis affects maturation and organisation of the sleep-wake cycle. We also examine how dysfunction to either the microbiome or the sleep-wake cycle negatively affects the bidirectional relationship between the brain and gut, and subsequently the overall health and functionality of this complex system. Additionally, this review integrates therapeutic studies to demonstrate when dietary manipulations, such as supplementation with probiotics and prebiotics, can modulate the gut microbiome to enhance health of the brain-gut-immune axis and optimize our sleep-wake cycle.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Zoe N Kodila
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rhys D Brady
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Amy C Reichelt
- Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Richelle Mychaisuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Glenn R Yamakawa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Tabibzadeh S. CircadiOmic medicine and aging. Ageing Res Rev 2021; 71:101424. [PMID: 34389481 DOI: 10.1016/j.arr.2021.101424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/22/2021] [Accepted: 08/05/2021] [Indexed: 01/15/2023]
Abstract
The earth displays daily, seasonal and annual environmental cycles that have led to evolutionarily adapted ultradian, circadian and infradian rhythmicities in the entire biosphere. All biological organisms must adapt to these cycles that synchronize the function of their circadiome. The objective of this review is to discuss the latest knowledge regarding the role of circadiomics in health and aging. The biological timekeepers are responsive to the environmental cues at microsecond to seasonal time-scales and act with precision of a clock machinery. The robustness of these rhythms is essential to normal daily function of cells, tissues and organs. Mis-alignment of circadian rhythms makes the individual prone to aging, sleep disorders, cancer, diabetes, and neuro-degenerative diseases. Circadian and CircadiOmic medicine are emerging fields that leverage our in-depth understanding of health issues, that arise as a result of disturbances in circadian rhythms, towards establishing better therapeutic approaches in personalized medicine and for geroprotection.
Collapse
Affiliation(s)
- Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, 16471 Scientific Way, Irvine, CA 92618, United States.
| |
Collapse
|
24
|
Sides MB, Johnston SL, Sirek A, Lee PH, Blue RS, Antonsen EL, Basner M, Douglas GL, Epstein A, Flynn-Evans EE, Gallagher MB, Hayes J, Lee SMC, Lockley SW, Monseur B, Nelson NG, Sargsyan A, Smith SM, Stenger MB, Stepanek J, Zwart SR. Bellagio II Report: Terrestrial Applications of Space Medicine Research. Aerosp Med Hum Perform 2021; 92:650-669. [PMID: 34503618 DOI: 10.3357/amhp.5843.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractINTRODUCTION: For over 50 yr, investigators have studied the physiological adaptations of the human system during short- and long-duration spaceflight exposures. Much of the knowledge gained in developing health countermeasures for astronauts onboard the International Space Station demonstrate terrestrial applications. To date, a systematic process for translating these space applications to terrestrial human health has yet to be defined.METHODS: In the summer of 2017, a team of 38 international scientists launched the Bellagio ll Summit Initiative. The goals of the Summit were: 1) To identify space medicine findings and countermeasures with highest probability for future terrestrial applications; and 2) To develop a roadmap for translation of these countermeasures to future terrestrial application. The team reviewed public domain literature, NASA databases, and evidence books within the framework of the five-stage National Institutes of Health (NIH) translation science model, and the NASA two-stage translation model. Teams then analyzed and discussed interdisciplinary findings to determine the most significant evidence-based countermeasures sufficiently developed for terrestrial application.RESULTS: Teams identified published human spaceflight research and applied translational science models to define mature products for terrestrial clinical practice.CONCLUSIONS: The Bellagio ll Summit identified a snapshot of space medicine research and mature science with the highest probability of translation and developed a Roadmap of terrestrial application from space medicine-derived countermeasures. These evidence-based findings can provide guidance regarding the terrestrial applications of best practices, countermeasures, and clinical protocols currently used in spaceflight.Sides MB, Johnston SL III, Sirek A, Lee PH, Blue RS, Antonsen EL, Basner M, Douglas GL, Epstein A, Flynn-Evans EE, Gallagher MB, Hayes J, Lee SMC, Lockley SW, Monseur B, Nelson NG, Sargsyan A, Smith SM, Stenger MB, Stepanek J, Zwart SR; Bellagio II Team. Bellagio II report: terrestrial applications of space medicine research. Aerosp Med Hum Perform. 2021; 92(8):650669.
Collapse
|
25
|
Skrzelowski M, Brookhaus A, Shea LA, Berlau DJ. Melatonin Use in Pediatrics: Evaluating the Discrepancy in Evidence Based on Country and Regulations Regarding Production. J Pediatr Pharmacol Ther 2021; 26:4-20. [PMID: 33424495 DOI: 10.5863/1551-6776-26.1.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/10/2020] [Indexed: 11/11/2022]
Abstract
Melatonin manufacturers in the United States have begun producing melatonin products specifically targeted for use in the pediatric population. This paper aims to critically evaluate the evidence available regarding the use of melatonin in children based on where the clinical trials are performed and the regulations regarding the production of melatonin in that country. Melatonin is regulated differently around the world with the least amount of regulation placed on OTC supplements in the United States. The majority of studies evaluating melatonin use in the pediatric population are conducted with children who have comorbidities, such as autism spectrum disorder or attention-deficit/hyperactivity disorder. Evidence supporting the use of US formulations of melatonin in the otherwise healthy pediatric population is non-existent. Based on the lack of safety regulations in place in the United States and the lack of evidence regarding US melatonin products, they should be used sparingly in the otherwise healthy pediatric population, if they are used at all.
Collapse
|
26
|
Moreno CRC, Wright K, Skene DJ, Louzada FM. Phenotypic plasticity of circadian entrainment under a range of light conditions. Neurobiol Sleep Circadian Rhythms 2020; 9:100055. [PMID: 32923743 PMCID: PMC7475273 DOI: 10.1016/j.nbscr.2020.100055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
The response to a zeitgeber, particularly the light/dark cycle, may vary phenotypically. Phenotypic plasticity can be defined as the ability of one genome to express different phenotypes in response to environmental variation. In this opinion paper, we present some evidence that one of the most prominent effects of the introduction of electric light to the everyday life of humans is a significant increase in phenotypic plasticity and differences in interindividual phases of entrainment. We propose that the healthy limits of phenotypic plasticity have been surpassed in contemporary society. Electric light increased phenotypic plasticity in humans and differences in interindividual phases of entrainment. Healthy limits of phenotypic plasticity have been surpassed in contemporary society. The correlation between biological time (DLMO) and behavioral time (MSFsc) is reduced in the population without access to electrical light.
Collapse
Affiliation(s)
- C R C Moreno
- School of Public Health, University of São Paulo, Brazil.,Stress Research Institute, Department of Psychology, Stockholm University, Sweden
| | - K Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, USA
| | - D J Skene
- Chronobiology, Faculty of Health & Medical Sciences, University of Surrey, UK
| | - F M Louzada
- Department of Physiology, Federal University of Paraná, Brazil
| |
Collapse
|
27
|
Schmal C, Herzel H, Myung J. Clocks in the Wild: Entrainment to Natural Light. Front Physiol 2020; 11:272. [PMID: 32300307 PMCID: PMC7142224 DOI: 10.3389/fphys.2020.00272] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/09/2020] [Indexed: 01/09/2023] Open
Abstract
Entrainment denotes a process of coordinating the internal circadian clock to external rhythmic time-cues (Zeitgeber), mainly light. It is facilitated by stronger Zeitgeber signals and smaller period differences between the internal clock and the external Zeitgeber. The phase of entrainment ψ is a result of this process on the side of the circadian clock. On Earth, the period of the day-night cycle is fixed to 24 h, while the periods of circadian clocks distribute widely due to natural variation within and between species. The strength and duration of light depend locally on season and geographic latitude. Therefore, entrainment characteristics of a circadian clock vary under a local light environment and distribute along geoecological settings. Using conceptual models of circadian clocks, we investigate how local conditions of natural light shape global patterning of entrainment through seasons. This clock-side entrainment paradigm enables us to predict systematic changes in the global distribution of chronotypes.
Collapse
Affiliation(s)
- Christoph Schmal
- Department of Biology, Faculty of Life Sciences, Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Hanspeter Herzel
- Department Basic Sciences, Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jihwan Myung
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan.,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.,Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
28
|
Physiological Acclimatization of the Liver to 180-Day Isolation and the Mars Solar Day. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2796510. [PMID: 32280684 PMCID: PMC7115137 DOI: 10.1155/2020/2796510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/10/2020] [Accepted: 02/21/2020] [Indexed: 01/31/2023]
Abstract
Physiological changes in humans are evident under environmental conditions similar to those on a Mars mission involving both a space factor (long-term isolation) and a time factor (the Mars solar day). However, very few studies have investigated the response of the liver to those conditions. Serum protein levels, bilirubin levels, aminotransferase activities, blood alkaline phosphatase, gamma-glutamyltransferase, lipid levels, and serum cytokines interleukin-6 and interferon-γ levels were analyzed 30 days before the mock mission; on days 2, 30, 60, 75, 90, 105, 120, 150, and 175 of the mission; and 30 days after the mission, in four subjects in 4-person 180-day Controlled Ecological Life Support System Experiment. Serum protein levels (total protein and globulin) decreased and bilirubin increased under the isolation environment from day 2 and exhibited chronic acclimatization from days 30 to 175. Effects of the Mars solar day were evident on day 75. Blood lipid levels were somewhat affected. No obvious peak in any enzyme level was detected during the mission. The change tendency of these results indicated that future studies should explore whether protein parameters especially globulin could serve as indicators of immunological function exposure to the stress of a Mars mission.
Collapse
|
29
|
Münch M, Wirz-Justice A, Brown SA, Kantermann T, Martiny K, Stefani O, Vetter C, Wright KP, Wulff K, Skene DJ. The Role of Daylight for Humans: Gaps in Current Knowledge. Clocks Sleep 2020; 2:61-85. [PMID: 33089192 PMCID: PMC7445840 DOI: 10.3390/clockssleep2010008] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/21/2020] [Indexed: 01/04/2023] Open
Abstract
Daylight stems solely from direct, scattered and reflected sunlight, and undergoes dynamic changes in irradiance and spectral power composition due to latitude, time of day, time of year and the nature of the physical environment (reflections, buildings and vegetation). Humans and their ancestors evolved under these natural day/night cycles over millions of years. Electric light, a relatively recent invention, interacts and competes with the natural light-dark cycle to impact human biology. What are the consequences of living in industrialised urban areas with much less daylight and more use of electric light, throughout the day (and at night), on general health and quality of life? In this workshop report, we have classified key gaps of knowledge in daylight research into three main groups: (I) uncertainty as to daylight quantity and quality needed for "optimal" physiological and psychological functioning, (II) lack of consensus on practical measurement and assessment methods and tools for monitoring real (day) light exposure across multiple time scales, and (III) insufficient integration and exchange of daylight knowledge bases from different disciplines. Crucial short and long-term objectives to fill these gaps are proposed.
Collapse
Affiliation(s)
- Mirjam Münch
- Sleep/Wake Research Centre, Massey University Wellington, Wellington 6021, New Zealand
| | - Anna Wirz-Justice
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (A.W.-J.); (O.S.)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, 4002 Basel, Switzerland
| | - Steven A. Brown
- Chronobiology and Sleep Research Group, Institute of Pharmacology and Toxicology, University of Zürich, 8057 Zürich, Switzerland;
| | - Thomas Kantermann
- Faculty for Health and Social Affairs, University of Applied Sciences for Economics and Management (FOM), 45141 Essen, Germany;
- SynOpus, 44789 Bochum, Germany
| | - Klaus Martiny
- Psychiatric Center Copenhagen, University of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Oliver Stefani
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, 4002 Basel, Switzerland; (A.W.-J.); (O.S.)
- Transfaculty Research Platform Molecular and Cognitive Neurosciences (MCN), University of Basel, 4002 Basel, Switzerland
| | - Céline Vetter
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (C.V.); (K.P.W.J.)
| | - Kenneth P. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (C.V.); (K.P.W.J.)
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Katharina Wulff
- Departments of Radiation Sciences and Molecular Biology, Umeå University, 901 87 Umeå, Sweden;
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
| | - Debra J. Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
| |
Collapse
|
30
|
Abstract
For many years now a treatment mitigating the debilitating effects of jet lag has been sought. Rapid travel across time zones leads, in most people, to temporary symptoms, in particular poor sleep, daytime alertness and poor performance. Mis-timed circadian rhythms are considered to be the main factor underlying jet-lag symptoms, together with the sleep deprivation from long haul flights. Virtually all aspects of physiology are rhythmic, from cells to systems, and circadian rhythms are coordinated by a central pacemaker or clock in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN adapts slowly to changes in time zone, and peripheral clocks or oscillators adapt at different rates, such that the organism is in a state of desynchrony from the external environment and internally. Light exposure is the main factor controlling the circadian system and needs to be considered together with any pharmacological interventions. This review covers the relatively new chronobiotic drugs, which can hasten adaptation of the circadian system, together with drugs directly affecting alertness and sleep propensity. No current treatment can instantly shift circadian phase to a new time zone; however, adaptation can be hastened. The melatoninergic drugs are promising but larger trials in real-life situations are needed. For short stopovers it is recommended to preserve sleep and alertness without necessarily modifying the circadian system. New research suggests that modification of clock function via genetic manipulation may one day have clinical applications.
Collapse
Affiliation(s)
- Josephine Arendt
- Faculty of Health and Medical Sciences (FHMS), University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
31
|
Chang AM, Duffy JF, Buxton OM, Lane JM, Aeschbach D, Anderson C, Bjonnes AC, Cain SW, Cohen DA, Frayling TM, Gooley JJ, Jones SE, Klerman EB, Lockley SW, Munch M, Rajaratnam SMW, Rueger M, Rutter MK, Santhi N, Scheuermaier K, Van Reen E, Weedon MN, Czeisler CA, Scheer FAJL, Saxena R. Chronotype Genetic Variant in PER2 is Associated with Intrinsic Circadian Period in Humans. Sci Rep 2019; 9:5350. [PMID: 30926824 PMCID: PMC6440993 DOI: 10.1038/s41598-019-41712-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
The PERIOD2 (PER2) gene is a core molecular component of the circadian clock and plays an important role in the generation and maintenance of daily rhythms. Rs35333999, a missense variant of PER2 common in European populations, has been shown to associate with later chronotype. Chronotype relates to the timing of biological and behavioral activities, including when we sleep, eat, and exercise, and later chronotype is associated with longer intrinsic circadian period (cycle length), a fundamental property of the circadian system. Thus, we tested whether this PER2 variant was associated with circadian period and found significant associations with longer intrinsic circadian period as measured under forced desynchrony protocols, the 'gold standard' for intrinsic circadian period assessment. Minor allele (T) carriers exhibited significantly longer circadian periods when determinations were based on either core body temperature or plasma melatonin measurements, as compared to non-carriers (by 12 and 11 min, respectively; accounting for ~7% of inter-individual variance). These findings provide a possible underlying biological mechanism for inter-individual differences in chronotype, and support the central role of PER2 in the human circadian timing system.
Collapse
Affiliation(s)
- Anne-Marie Chang
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA.
- Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA.
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Orfeu M Buxton
- Department of Biobehavioral Health, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Social and Behavioral Sciences, Harvard Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Jacqueline M Lane
- Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- Department of Anesthesia, Critical Care and Pain Medicine and Center for Genomic Medicine; Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | - Daniel Aeschbach
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Sleep and Human Factors Research, Institute of Aerospace Medicine, German Aerospace Center, Cologne, 51147, Germany
| | - Clare Anderson
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Andrew C Bjonnes
- Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- Department of Anesthesia, Critical Care and Pain Medicine and Center for Genomic Medicine; Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | - Sean W Cain
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Daniel A Cohen
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Timothy M Frayling
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, United Kingdom
| | - Joshua J Gooley
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Samuel E Jones
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, United Kingdom
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Mirjam Munch
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Sleep/Wake Research Centre, College of Health, Massey University, Wellington, New Zealand
| | - Shantha M W Rajaratnam
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Monash Institute of Cognitive and Clinical Neurosciences and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Melanie Rueger
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Martin K Rutter
- Division of Endocrinology, Diabetes & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nayantara Santhi
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
| | - Karine Scheuermaier
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Wits Sleep Laboratory, Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eliza Van Reen
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Michael N Weedon
- Genetics of Complex Traits, University of Exeter Medical School, Exeter, United Kingdom
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| | - Richa Saxena
- Division of Sleep and Circadian Disorders, Department of Medicine and Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, 02115, USA
- Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, 02142, USA
- Department of Anesthesia, Critical Care and Pain Medicine and Center for Genomic Medicine; Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| |
Collapse
|
32
|
Asgari-Targhi A, Klerman EB. Mathematical modeling of circadian rhythms. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1439. [PMID: 30328684 PMCID: PMC6375788 DOI: 10.1002/wsbm.1439] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/05/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022]
Abstract
Circadian rhythms are endogenous ~24-hr oscillations usually entrained to daily environmental cycles of light/dark. Many biological processes and physiological functions including mammalian body temperature, the cell cycle, sleep/wake cycles, neurobehavioral performance, and a wide range of diseases including metabolic, cardiovascular, and psychiatric disorders are impacted by these rhythms. Circadian clocks are present within individual cells and at tissue and organismal levels as emergent properties from the interaction of cellular oscillators. Mathematical models of circadian rhythms have been proposed to provide a better understanding of and to predict aspects of this complex physiological system. These models can be used to: (a) manipulate the system in silico with specificity that cannot be easily achieved using in vivo and in vitro experimental methods and at lower cost, (b) resolve apparently contradictory empirical results, (c) generate hypotheses, (d) design new experiments, and (e) to design interventions for altering circadian rhythms. Mathematical models differ in structure, the underlying assumptions, the number of parameters and variables, and constraints on variables. Models representing circadian rhythms at different physiologic scales and in different species are reviewed to promote understanding of these models and facilitate their use. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Models of Systems Properties and Processes > Organ, Tissue, and Physiological Models.
Collapse
|
33
|
Phan TX, Malkani RG. Sleep and circadian rhythm disruption and stress intersect in Alzheimer's disease. Neurobiol Stress 2019; 10:100133. [PMID: 30937343 PMCID: PMC6279965 DOI: 10.1016/j.ynstr.2018.10.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's disease (AD) was discovered and the pathological hallmarks were revealed more than a century ago. Subsequently, many remarkable discoveries and breakthroughs provided us with mechanistic insights into the pathogenesis of AD. The identification of the molecular underpinning of the disease not only provided the framework of AD pathogenesis but also targets for therapeutic inventions. Despite all the initial successes, no effective treatment for AD has emerged yet as all the late stages of clinical trials have failed. Many factors ranging from genetic to environmental factors have been critically appraised as the potential causes of AD. In particular, the role of stress on AD has been intensively studied while the relationship between sleep and circadian rhythm disruption (SCRD) and AD have recently emerged. SCRD has always been thought to be a corollary of AD pathologies until recently, multiple lines of evidence converge on the notion that SCRD might be a contributing factor in AD pathogenesis. More importantly, how stress and SCRD intersect and make their concerted contributions to AD phenotypes has not been reviewed. The goal of this literature review is to examine at multiple levels - molecular, cellular (e.g. microglia, gut microbiota) and holistic - how the interaction between stress and SCRD bi-directionally and synergistically exacerbate AD pathologies and cognitive impairment. AD, in turn, worsens stress and SCRD and forms the vicious cycle that perpetuates and amplifies AD.
Collapse
Affiliation(s)
- Trongha X. Phan
- Department of Neurology, Division of Sleep Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, IL, USA
| | - Roneil G. Malkani
- Department of Neurology, Division of Sleep Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Circadian and Sleep Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
34
|
Harbison ST, Kumar S, Huang W, McCoy LJ, Smith KR, Mackay TFC. Genome-Wide Association Study of Circadian Behavior in Drosophila melanogaster. Behav Genet 2018; 49:60-82. [PMID: 30341464 PMCID: PMC6326971 DOI: 10.1007/s10519-018-9932-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Abstract
Circadian rhythms influence physiological processes from sleep–wake cycles to body temperature and are controlled by highly conserved cycling molecules. Although the mechanistic basis of the circadian clock has been known for decades, the extent to which circadian rhythms vary in nature and the underlying genetic basis for that variation is not well understood. We measured circadian period (Ʈ) and rhythmicity index in the Drosophila Genetic Reference Panel (DGRP) and observed extensive genetic variation in both. Seven DGRP lines had sexually dimorphic arrhythmicity and one line had an exceptionally long Ʈ. Genome-wide analyses identified 584 polymorphisms in 268 genes. We observed differences among transcripts for nine genes predicted to interact among themselves and canonical clock genes in the long period line and a control. Mutations/RNAi knockdown targeting these genes also affected circadian behavior. Our observations reveal that complex genetic interactions influence high levels of variation in circadian phenotypes.
Collapse
Affiliation(s)
- Susan T Harbison
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA. .,Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA. .,Laboratory of Systems Genetics, National Heart Lung and Blood Institute, Building 10, Room 7D13, 10 Center Drive, Bethesda, MD, 20892-1640, USA.
| | - Shailesh Kumar
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wen Huang
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Genetics Program and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.,Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Lenovia J McCoy
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kirklin R Smith
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Trudy F C Mackay
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Genetics Program and W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA.,Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| |
Collapse
|
35
|
Ballester P, Martínez MJ, Javaloyes A, Inda MDM, Fernández N, Gázquez P, Aguilar V, Pérez A, Hernández L, Richdale AL, Peiró AM. Sleep problems in adults with autism spectrum disorder and intellectual disability. Autism Res 2018; 12:66-79. [PMID: 30273974 DOI: 10.1002/aur.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/22/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022]
Abstract
Sleep problems (SP) are recognized as a common comorbid condition in autism spectrum disorder (ASD) and can influence core autism symptoms and mental and physical health. SPs can be lifelong and have been reported that adults on the autistic spectrum with and without intellectual disability (ID) present SPs (longer sleep latency, frequent night awakenings, and circadian rhythm sleep-wake disorders). A prospective, objective sleep study was conducted in 41 adults with ASD (33 ± 6 years old) and ID and 51 typically developing adults (33 ± 5 years old) using ambulatory circadian monitoring (ACM) recording wrist temperature, motor activity, body position, sleep, and light intensity. The findings indicated that individuals with ASD presented sleep difficulties including low sleep efficiency, prolonged sleep latency and increased number and length of night awakenings, together with daily sedentary behavior, and increased nocturnal activity. Furthermore, indications of an advanced sleep-wake phase disorder were found in these autistic adults. Examining sleep and markers of the circadian system showed significant differences between adults with ASD and ID and an age-matched, healthy adult population. The sleep disturbances described for this sample of adults with ASD and ID are similar to those of already described for adults with ASD without ID; their relationship with intellectual ability should be further studied. Improving knowledge of sleep patterns in ASD adults with ID might help to designed targeted interventions to improve their functioning and reduce family stress. Autism Research 2019, 12: 66-79. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: SPs are very frequent in autism from childhood to adulthood. We recorded sleep with a watch-like device in adults with autism and ID and compared sleep patterns with nonautistic volunteers. Results showed poorer sleep conditions in adults with autism (increased sleep latency and number/length of night awakenings) that resulted in decreased sleep efficiency. Increasing knowledge of the SPs in adults on the autism spectrum will allow to improve their and their families' quality of life.
Collapse
Affiliation(s)
- Pura Ballester
- Department of Health of Alicante-General Hospital, ISABIAL, Neuropharmacology on Pain (NED) Research Unit, Alicante, Spain.,Department of Clinical Pharmacology, Organic Chemistry and Pediatrics, Miguel Hernández University of Elche, Alicante, Spain
| | - María José Martínez
- Chronobiology Lab, College of Biology, Department of Physiology, University of Murcia, IUIE, IMIB-Arrixaca, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Auxiliadora Javaloyes
- EDUCATEA, Education Center for Children and Adolescents with Autism, Mental Health Problems and Behavioral Disorders, Alicante, Spain
| | - María-Del-Mar Inda
- Department of Health of Alicante-General Hospital, ISABIAL, Neuropharmacology on Pain (NED) Research Unit, Alicante, Spain
| | | | | | | | - Agustín Pérez
- Department of Statistics and Financial Resources, Miguel Hernández University of Elche, Alicante, Spain
| | - Luís Hernández
- Sleep Unit, Department of Health of Alicante-General Hospital, ISABIAL, Alicante, Spain
| | - Amanda L Richdale
- Olga Tennison Autism Research Centre, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Ana M Peiró
- Department of Health of Alicante-General Hospital, ISABIAL, Neuropharmacology on Pain (NED) Research Unit, Alicante, Spain.,Department of Clinical Pharmacology, Organic Chemistry and Pediatrics, Miguel Hernández University of Elche, Alicante, Spain.,Department of Health of Alicante-General Hospital, Clinical Pharmacology, Alicante, Spain
| |
Collapse
|
36
|
Abstract
A diverse range of species, from cyanobacteria to humans, evolved endogenous biological clocks that allow for the anticipation of daily variations in light and temperature. The ability to anticipate regular environmental rhythms promotes optimal performance and survival. Herein we present a brief historical timeline of how circadian concepts and terminology have emerged since the early observation of daily leaf movement in plants made by an astronomer in the 1700s.
Collapse
Affiliation(s)
- Sandra J Kuhlman
- Department of Biological Sciences, and Center for the Basis of Neural Cognition Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - L Michon Craig
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts 02115; and Morehouse School of Medicine, Atlanta, Georgia 30310
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital; and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
37
|
Malkani RG, Abbott SM, Reid KJ, Zee PC. Diagnostic and Treatment Challenges of Sighted Non-24-Hour Sleep-Wake Disorder. J Clin Sleep Med 2018; 14:603-613. [PMID: 29609703 DOI: 10.5664/jcsm.7054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 01/05/2018] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES To report the diagnostic and treatment challenges of sighted non-24-hour sleep-wake disorder (N24SWD). METHODS We report a series of seven sighted patients with N24SWD clinically evaluated by history and sleep diaries, and when available wrist actigraphy and salivary melatonin levels, and treated with timed melatonin and bright light therapy. RESULTS Most patients had a history of a delayed sleep-wake pattern prior to developing N24SWD. The typical sleep-wake pattern of N24SWD was seen in the sleep diaries (and in actigraphy when available) in all patients with a daily delay in midpoint of sleep ranging 0.8 to 1.8 hours. Salivary dim light melatonin onset (DLMO) was evaluated in four patients but was missed in one. The estimated phase angle from DLMO to sleep onset ranged from 5.25 to 9 hours. All six patients who attempted timed melatonin and bright light therapy were able to entrain their sleep-wake schedules. Entrainment occurred at a late circadian phase, possibly related to the late timing of melatonin administration, though the patients often preferred late sleep times. Most did not continue treatment and continued to have a non-24-hour sleep-wake pattern. CONCLUSIONS N24SWD is a chronic debilitating disorder that is often overlooked in sighted people and can be challenging to diagnose and treat. Tools to assess circadian pattern and timing can be effectively applied to aid the diagnosis. The progressive delay of the circadian rhythm poses a challenge for determining the most effective timing for melatonin and bright light therapies. Furthermore, once the circadian sleep-wake rhythm is entrained, long-term effectiveness is limited because of the behavioral and environmental structure that is required to maintain stable entrainment.
Collapse
Affiliation(s)
- Roneil G Malkani
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sabra M Abbott
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kathryn J Reid
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Phyllis C Zee
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
38
|
Stack N, Barker D, Carskadon M, Diniz Behn C. A Model-Based Approach to Optimizing Ultradian Forced Desynchrony Protocols for Human Circadian Research. J Biol Rhythms 2017; 32:485-498. [PMID: 28954576 DOI: 10.1177/0748730417730488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human circadian system regulates internal 24-h rhythmicity and plays an important role in many aspects of human health and behavior. To investigate properties of the human circadian pacemaker such as intrinsic period and light sensitivity, experimental researchers have developed forced desynchrony (FD) protocols in which manipulations of the light-dark (LD) cycle are used to desynchronize the intrinsic circadian rhythm from the rest-activity cycle. FD protocols have typically been based on exposure to long LD cycles, but recently, ultradian FD protocols with short LD cycles have been proposed as a new methodology for assessing intrinsic circadian period. However, the effects of ultradian FD protocol design, including light intensity or study duration, on estimates of intrinsic circadian period have not, to our knowledge, been systematically studied. To address this gap, we applied a light-sensitive, dynamic mathematical model of the human circadian pacemaker to simulate ultradian FD protocols and analyze the effects of protocol design on estimates of intrinsic circadian period. We found that optimal estimates were obtained using protocols with low light intensities, at least 10 d of exposure to ultradian cycling, and a 7-h LD cycle duration that facilitated uniform light exposure across all circadian phases. Our results establish a theoretical framework for ultradian FD protocols that can be used to provide insights into data obtained under existing protocols and to optimize protocols for future experiments.
Collapse
Affiliation(s)
- Nora Stack
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA
| | - David Barker
- Sleep for Science Research Laboratory, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Mary Carskadon
- Sleep for Science Research Laboratory, Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.,Centre for Sleep Research, University of South Australia, Adelaide, South Australia, Australia
| | - Cecilia Diniz Behn
- Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, USA.,Division of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
39
|
Phillips AJK, Clerx WM, O'Brien CS, Sano A, Barger LK, Picard RW, Lockley SW, Klerman EB, Czeisler CA. Irregular sleep/wake patterns are associated with poorer academic performance and delayed circadian and sleep/wake timing. Sci Rep 2017; 7:3216. [PMID: 28607474 PMCID: PMC5468315 DOI: 10.1038/s41598-017-03171-4] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/24/2017] [Indexed: 12/20/2022] Open
Abstract
The association of irregular sleep schedules with circadian timing and academic performance has not been systematically examined. We studied 61 undergraduates for 30 days using sleep diaries, and quantified sleep regularity using a novel metric, the sleep regularity index (SRI). In the most and least regular quintiles, circadian phase and light exposure were assessed using salivary dim-light melatonin onset (DLMO) and wrist-worn photometry, respectively. DLMO occurred later (00:08 ± 1:54 vs. 21:32 ± 1:48; p < 0.003); the daily sleep propensity rhythm peaked later (06:33 ± 0:19 vs. 04:45 ± 0:11; p < 0.005); and light rhythms had lower amplitude (102 ± 19 lux vs. 179 ± 29 lux; p < 0.005) in Irregular compared to Regular sleepers. A mathematical model of the circadian pacemaker and its response to light was used to demonstrate that Irregular vs. Regular group differences in circadian timing were likely primarily due to their different patterns of light exposure. A positive correlation (r = 0.37; p < 0.004) between academic performance and SRI was observed. These findings show that irregular sleep and light exposure patterns in college students are associated with delayed circadian rhythms and lower academic performance. Moreover, the modeling results reveal that light-based interventions may be therapeutically effective in improving sleep regularity in this population.
Collapse
Affiliation(s)
- Andrew J K Phillips
- Sleep Health Institute and Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA. .,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - William M Clerx
- Sleep Health Institute and Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Conor S O'Brien
- Sleep Health Institute and Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Akane Sano
- Affective Computing Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura K Barger
- Sleep Health Institute and Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Rosalind W Picard
- Affective Computing Group, Media Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven W Lockley
- Sleep Health Institute and Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Elizabeth B Klerman
- Sleep Health Institute and Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles A Czeisler
- Sleep Health Institute and Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Chew KS, Fernandez DC, Hattar S, Südhof TC, Martinelli DC. Anatomical and Behavioral Investigation of C1ql3 in the Mouse Suprachiasmatic Nucleus. J Biol Rhythms 2017; 32:222-236. [PMID: 28553739 PMCID: PMC5664174 DOI: 10.1177/0748730417704766] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many biochemical, physiological, and behavioral processes such as glucose metabolism, body temperature, and sleep-wake cycles show regular daily rhythms. These circadian rhythms are adjusted to the environmental light-dark cycle by a central pacemaker located in the suprachiasmatic nucleus (SCN) in order for the processes to occur at appropriate times of day. Here, we investigated the expression and function of a synaptic organizing protein, C1QL3, in the SCN. We found that C1ql3 is robustly expressed in the SCN. C1ql3 knockout mice have a reduced density of excitatory synapses in the SCN. In addition, these mice exhibited less consolidated activity to the active portions of the day and period lengthening following a 15-minute phase-delaying light pulse. These data identify C1QL3 as a signaling molecule that is highly expressed in SCN neurons, where it contributes to the formation and/or maintenance of glutamatergic synapses and plays a role in circadian behaviors, which may include circadian aftereffects.
Collapse
Affiliation(s)
- Kylie S. Chew
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland
- Department of Biology, Stanford University School of Medicine, Stanford, California
| | - Diego C. Fernandez
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland
| | - Samer Hattar
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland
- The Solomon Snyder-Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
- Howard Hughes Medical, Institute, Stanford University School of Medicine, Stanford, California
| | - David C. Martinelli
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
41
|
Swaminathan K, Klerman EB, Phillips AJK. Are Individual Differences in Sleep and Circadian Timing Amplified by Use of Artificial Light Sources? J Biol Rhythms 2017; 32:165-176. [PMID: 28367676 DOI: 10.1177/0748730417699310] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Within the human population, there is large interindividual variability in the timing of sleep and circadian rhythms. This variability has been attributed to individual differences in sleep physiology, circadian physiology, and/or light exposure. Recent experimental evidence suggests that the latter is necessary to evoke large interindividual differences in sleep and circadian timing. We used a validated model of human sleep and circadian physiology to test the hypothesis that intrinsic differences in sleep and circadian timing are amplified by self-selected use of artificial light sources. We tested the model under 2 conditions motivated by an experimental study (Wright et al., 2013): (1) a "natural" light cycle, and (2) a "realistic" light cycle that included attenuation of light due to living indoors when natural light levels are high and use of electric light when natural light levels are low. Within these conditions, we determined the relationship between intrinsic circadian period (within the range of 23.7-24.6 h) and timing of sleep onset, sleep offset, and circadian rhythms. In addition, we simulated a work week, with fixed wake time for 5 days and free sleep times on weekends. Under both conditions, a longer intrinsic period resulted in later sleep and circadian timing. Compared to the natural condition, the realistic condition evoked more than double the variation in sleep timing across the physiological range of intrinsic circadian periods. Model predictions closely matched data from the experimental study. We found that if the intrinsic circadian period was long (>24.2 h) under the realistic condition, there was significant mismatch in sleep timing between weekdays and weekends, which is known as social jetlag. These findings indicate that individual tendencies to have very delayed schedules can be greatly amplified by self-selected modifications to the natural light/dark cycle. This has important implications for therapeutic treatment of advanced or delayed sleep phase disorders.
Collapse
Affiliation(s)
- Krithika Swaminathan
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J K Phillips
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
42
|
Sim SY, Joo KM, Kim HB, Jang S, Kim B, Hong S, Kim S, Park KS. Estimation of Circadian Body Temperature Rhythm Based on Heart Rate in Healthy, Ambulatory Subjects. IEEE J Biomed Health Inform 2017; 21:407-415. [DOI: 10.1109/jbhi.2016.2529655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Azzi A, Evans JA, Leise T, Myung J, Takumi T, Davidson AJ, Brown SA. Network Dynamics Mediate Circadian Clock Plasticity. Neuron 2017; 93:441-450. [PMID: 28065650 DOI: 10.1016/j.neuron.2016.12.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 09/01/2016] [Accepted: 12/09/2016] [Indexed: 11/19/2022]
Abstract
A circadian clock governs most aspects of mammalian behavior. Although its properties are in part genetically determined, altered light-dark environment can change circadian period length through a mechanism requiring de novo DNA methylation. We show here that this mechanism is mediated not via cell-autonomous clock properties, but rather through altered networking within the suprachiasmatic nuclei (SCN), the circadian "master clock," which is DNA methylated in region-specific manner. DNA methylation is necessary to temporally reorganize circadian phasing among SCN neurons, which in turn changes the period length of the network as a whole. Interruption of neural communication by inhibiting neuronal firing or by physical cutting suppresses both SCN reorganization and period changes. Mathematical modeling suggests, and experiments confirm, that this SCN reorganization depends upon GABAergic signaling. Our results therefore show that basic circadian clock properties are governed by dynamic interactions among SCN neurons, with neuroadaptations in network function driven by the environment.
Collapse
Affiliation(s)
- Abdelhalim Azzi
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Jennifer A Evans
- Department of Biomedical Sciences, College of Health Sciences, Marquette University, 1250 W. Wisconsin Ave., Milwaukee, WI 53233, USA
| | - Tanya Leise
- Department of Mathematics and Statistics, Amherst College, 220 S. Pleasant St., Amherst, MA 01002, USA
| | - Jihwan Myung
- RIKEN Brain Science Institute (BSI), 2-1 Hirosawa Wako City, Saitama 351-0198, Japan
| | - Toru Takumi
- RIKEN Brain Science Institute (BSI), 2-1 Hirosawa Wako City, Saitama 351-0198, Japan
| | - Alec J Davidson
- Department of Neurobiology, Morehouse School of Medicine, 720 Westview Dr., Atlanta, GA 30310, USA
| | - Steven A Brown
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
44
|
Sharma A, Goyal R. Do Circadian Rhythms Draw the Patterns of Sustained Mental Vigor and Ailment? Drug Dev Res 2016; 77:469-473. [PMID: 27686062 DOI: 10.1002/ddr.21342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Preclinical Research Circadian rhythms are fundamental processes in all cells that coordinate a variety of cellular functions related to a specific time of the day. Disruption of circadian rhythms markedly impacts homeostasis. In this Commentary, we present data that disruption of circadian rhythm may lead to the pathogenesis of neurodegenerative states. In this context, we further argue that there is an urgent need of developing new generations of compounds, chronobiotics, to modulate the molecular substrates of circadian timing system. Chronobiotics conceptually offer an effective way for restoration and protection from the consequences of the circadian disruption. We also briefly discuss whether dysfunctional circadian rhythms are a major driver of aging. Drug Dev Res 77 : 469-473, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ashish Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| |
Collapse
|
45
|
Abstract
Nearly all organisms exhibit time-dependent behavior and physiology across a 24-hour day known as circadian rhythms. These outputs are manifestations of endogenous cyclic gene expression patterns driven by the activity of a core transcription/translation feedback loop. Cyclic gene expression determines highly tissue-specific functional activity regulating such processes as metabolic state, endocrine activity, and neural excitability. Entrainment of these cellular clocks is achieved through exogenous daily inputs, such as light and food. Dysregulation of the transcription/translation feedback loop has been shown to result in a wide range of disorders and diseases driving increased interest in circadian therapies.
Collapse
Affiliation(s)
- Tomas S Andreani
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Taichi Q Itoh
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Evrim Yildirim
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Dae-Sung Hwangbo
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
| |
Collapse
|
46
|
Cain SW, Rimmer DW, Duffy JF, Czeisler CA. Exercise Distributed across Day and Night Does Not Alter Circadian Period in Humans. J Biol Rhythms 2016; 22:534-41. [DOI: 10.1177/0748730407306884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In rodents, increased activity due to running-wheel access is associated with a change in observed circadian period. In humans, exposure to exercise has failed to demonstrate similar effects on period. Methodological issues with prior studies such as light exposure during exercise, length of study, and method of measuring period confounded those evaluations of the effect of exercise on period in humans. In the present experiment, the authors examined the effect of exercise on period in 8 subjects using a 44-day within-subjects inpatient study. They used a 20-h forced desynchrony protocol, in which subjects were exposed to exercise across circadian phases under dim light conditions. Exercise consisted of three 45-min sessions per wake period on an ergometer. Target exercise intensity was ~65% of maximal heart rate. Intrinsic circadian period was measured using both core body temperature and hourly plasma melatonin samples. Consistent with previous reports, the authors find no effect of exercise on endogenous circadian period as measured by either core body temperature or melatonin. Exercise distributed across biological day and night does not appear to affect circadian period.
Collapse
Affiliation(s)
- Sean W. Cain
- Division of Sleep Medicine, Department of Medicine, Brigham & Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA,
| | - David W. Rimmer
- Division of Sleep Medicine, Department of Medicine, Brigham & Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Jeanne F. Duffy
- Division of Sleep Medicine, Department of Medicine, Brigham & Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Charles A. Czeisler
- Division of Sleep Medicine, Department of Medicine, Brigham & Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
Carrasco-Benso MP, Rivero-Gutierrez B, Lopez-Minguez J, Anzola A, Diez-Noguera A, Madrid JA, Lujan JA, Martínez-Augustin O, Scheer FAJL, Garaulet M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity. FASEB J 2016; 30:3117-23. [PMID: 27256623 DOI: 10.1096/fj.201600269rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/19/2016] [Indexed: 11/11/2022]
Abstract
In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.
Collapse
Affiliation(s)
- Maria P Carrasco-Benso
- Department of Physiology, Faculty of Biology, Biomedical Research Institute of Murcia (IMIB)-Arrixaca, University of Murcia, Murcia, Spain
| | - Belen Rivero-Gutierrez
- Department of Biochemistry and Molecular Biology II, Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, University of Granada, Granada, Spain
| | - Jesus Lopez-Minguez
- Department of Physiology, Faculty of Biology, Biomedical Research Institute of Murcia (IMIB)-Arrixaca, University of Murcia, Murcia, Spain
| | - Andrea Anzola
- Department of Biochemistry and Molecular Biology II, Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, University of Granada, Granada, Spain
| | - Antoni Diez-Noguera
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Juan A Madrid
- Department of Physiology, Faculty of Biology, Biomedical Research Institute of Murcia (IMIB)-Arrixaca, University of Murcia, Murcia, Spain
| | - Juan A Lujan
- General Surgery Service, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Olga Martínez-Augustin
- Department of Biochemistry and Molecular Biology II, Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), School of Pharmacy, Instituto de Investigación Biosanitaria de Granada, University of Granada, Granada, Spain
| | - Frank A J L Scheer
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, Massachusetts, USA; and Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Marta Garaulet
- Department of Physiology, Faculty of Biology, Biomedical Research Institute of Murcia (IMIB)-Arrixaca, University of Murcia, Murcia, Spain;
| |
Collapse
|
48
|
Garbazza C, Bromundt V, Eckert A, Brunner DP, Meier F, Hackethal S, Cajochen C. Non-24-Hour Sleep-Wake Disorder Revisited - A Case Study. Front Neurol 2016; 7:17. [PMID: 26973592 PMCID: PMC4770037 DOI: 10.3389/fneur.2016.00017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/05/2016] [Indexed: 11/13/2022] Open
Abstract
The human sleep-wake cycle is governed by two major factors: a homeostatic hourglass process (process S), which rises linearly during the day, and a circadian process C, which determines the timing of sleep in a ~24-h rhythm in accordance to the external light-dark (LD) cycle. While both individual processes are fairly well characterized, the exact nature of their interaction remains unclear. The circadian rhythm is generated by the suprachiasmatic nucleus ("master clock") of the anterior hypothalamus, through cell-autonomous feedback loops of DNA transcription and translation. While the phase length (tau) of the cycle is relatively stable and genetically determined, the phase of the clock is reset by external stimuli ("zeitgebers"), the most important being the LD cycle. Misalignments of the internal rhythm with the LD cycle can lead to various somatic complaints and to the development of circadian rhythm sleep disorders (CRSD). Non-24-hour sleep-wake disorders (N24HSWD) is a CRSD affecting up to 50% of totally blind patients and characterized by the inability to maintain a stable entrainment of the typically long circadian rhythm (tau > 24.5 h) to the LD cycle. The disease is rare in sighted individuals and the pathophysiology less well understood. Here, we present the case of a 40-year-old sighted male, who developed a misalignment of the internal clock with the external LD cycle following the treatment for Hodgkin's lymphoma (ABVD regimen, four cycles and AVD regimen, four cycles). A thorough clinical assessment, including actigraphy, melatonin profiles and polysomnography led to the diagnosis of non-24-hour sleep-wake disorders (N24HSWD) with a free-running rhythm of tau = 25.27 h. A therapeutic intervention with bright light therapy (30 min, 10,000 lux) in the morning and melatonin administration (0.5-0.75 mg) in the evening failed to entrain the free-running rhythm, although a longer treatment duration and more intense therapy might have been successful. The sudden onset and close timely connection led us to hypothesize that the chemotherapy might have caused a mutation of the molecular clock components leading to the observed elongation of the circadian period.
Collapse
Affiliation(s)
- Corrado Garbazza
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Vivien Bromundt
- Sleep-Wake-Epilepsy-Centre, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Anne Eckert
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Daniel P. Brunner
- Center for Sleep Medicine, Hirslanden Clinic Zurich, Zurich, Switzerland
| | - Fides Meier
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
- Neurobiology Laboratory for Brain Aging and Mental Health, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | | | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Basel, Switzerland
- Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| |
Collapse
|
49
|
Burke TM, Scheer FAJL, Ronda JM, Czeisler CA, Wright KP. Sleep inertia, sleep homeostatic and circadian influences on higher-order cognitive functions. J Sleep Res 2015; 24:364-371. [PMID: 25773686 PMCID: PMC5124508 DOI: 10.1111/jsr.12291] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/01/2015] [Indexed: 11/28/2022]
Abstract
Sleep inertia, sleep homeostatic and circadian processes modulate cognition, including reaction time, memory, mood and alertness. How these processes influence higher-order cognitive functions is not well known. Six participants completed a 73-day-long study that included two 14-day-long 28-h forced desynchrony protocols to examine separate and interacting influences of sleep inertia, sleep homeostasis and circadian phase on higher-order cognitive functions of inhibitory control and selective visual attention. Cognitive performance for most measures was impaired immediately after scheduled awakening and improved during the first ~2-4 h of wakefulness (decreasing sleep inertia); worsened thereafter until scheduled bedtime (increasing sleep homeostasis); and was worst at ~60° and best at ~240° (circadian modulation, with worst and best phases corresponding to ~09:00 and ~21:00 hours, respectively, in individuals with a habitual wake time of 07:00 hours). The relative influences of sleep inertia, sleep homeostasis and circadian phase depended on the specific higher-order cognitive function task examined. Inhibitory control appeared to be modulated most strongly by circadian phase, whereas selective visual attention for a spatial-configuration search task was modulated most strongly by sleep inertia. These findings demonstrate that some higher-order cognitive processes are differentially sensitive to different sleep-wake regulatory processes. Differential modulation of cognitive functions by different sleep-wake regulatory processes has important implications for understanding mechanisms contributing to performance impairments during adverse circadian phases, sleep deprivation and/or upon awakening from sleep.
Collapse
Affiliation(s)
- Tina M. Burke
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder CO, USA
| | - Frank A. J. L. Scheer
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Joseph M. Ronda
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Kenneth P. Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder CO, USA
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Tareen SHK, Ahmad J. Modelling and analysis of the feeding regimen induced entrainment of hepatocyte circadian oscillators using petri nets. PLoS One 2015; 10:e0117519. [PMID: 25789928 PMCID: PMC4366204 DOI: 10.1371/journal.pone.0117519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 12/02/2014] [Indexed: 01/10/2023] Open
Abstract
Circadian rhythms are certain periodic behaviours exhibited by living organism at different levels, including cellular and system-wide scales. Recent studies have found that the circadian rhythms of several peripheral organs in mammals, such as the liver, are able to entrain their clocks to received signals independent of other system level clocks, in particular when responding to signals generated during feeding. These studies have found SIRT1, PARP1, and HSF1 proteins to be the major influencers of the core CLOCKBMAL1:PER-CRY circadian clock. These entities, along with abstracted feeding induced signals were modelled collectively in this study using Petri Nets. The properties of the model show that the circadian system itself is strongly robust, and is able to continually evolve. The modelled feeding regimens suggest that the usual 3 meals/day and 2 meals/day feeding regimens are beneficial with any more or less meals/day negatively affecting the system.
Collapse
Affiliation(s)
- Samar Hayat Khan Tareen
- Department of Computational Sciences, Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Jamil Ahmad
- Department of Computational Sciences, Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- * E-mail:
| |
Collapse
|