1
|
Li X, Kumar S, Brenneman KV, Anderson TJC. Bulk segregant linkage mapping for rodent and human malaria parasites. Parasitol Int 2022; 91:102653. [PMID: 36007706 PMCID: PMC11972598 DOI: 10.1016/j.parint.2022.102653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
In 2005 Richard Carter's group surprised the malaria genetics community with an elegant approach to rapidly mapping the genetic basis of phenotypic traits in rodent malaria parasites. This approach, which he termed "linkage group selection", utilized bulk pools of progeny, rather than individual clones, and exploited simple selection schemes to identify genome regions underlying resistance to drug treatment (or other phenotypes). This work was the first application of "bulk segregant" methodologies for genetic mapping in microbes: this approach is now widely used in yeast, and across multiple recombining pathogens ranging from Aspergillus fungi to Schistosome parasites. Genetic crosses of human malaria parasites (for which Richard Carter was also a pioneer) can now be conducted in humanized mice, providing new opportunities for exploiting bulk segregant approaches for a wide variety of malaria parasite traits. We review the application of bulk segregant approaches to mapping malaria parasite traits and suggest additional developments that may further expand the utility of this powerful approach.
Collapse
Affiliation(s)
- Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Tim J C Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
2
|
Molina-Cruz A, Barillas-Mury C. Pfs47 as a Malaria Transmission-Blocking Vaccine Target. Am J Trop Med Hyg 2022; 107:tpmd211325. [PMID: 35895390 DOI: 10.4269/ajtmh.21-1325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/06/2022] [Indexed: 02/18/2024] Open
Abstract
Transmission-blocking vaccines (TBVs), pioneered by Richard Carter and others, aim to prevent parasite development in the mosquito vector and are a promising new tool for malaria elimination. Pfs47, recently identified as a TBV target, is a three-domain 6-cysteine protein on the surface of Plasmodium falciparum sexual stages. Pfs47 allows the parasite to evade mosquito immunity and is key for P. falciparum infection of the dominant malaria vectors Anopheles gambiae, Anopheles dirus, and Anopheles albimanus. Antibodies against Pfs47 domain 2 (D2) have significant transmission-blocking activity that prevents Plasmodium ookinete development and is independent of human complement. Strong transmission-blocking activity has been mapped to a region of 52 amino acids in Pfs47 D2. Efforts to optimize the immunogenicity of the Pfs47 D2 antigen with a viral-like particle have been successful, and the efficacy of a P47-based TBV was confirmed in vivo with Pbs47, the orthologue of Pfs47 in the mouse malaria parasite Plasmodium berghei. The current evidence warrants further development and clinical testing of a Pfs47-based TBV.
Collapse
|
3
|
Button-Simons KA, Kumar S, Carmago N, Haile MT, Jett C, Checkley LA, Kennedy SY, Pinapati RS, Shoue DA, McDew-White M, Li X, Nosten FH, Kappe SH, Anderson TJC, Romero-Severson J, Ferdig MT, Emrich SJ, Vaughan AM, Cheeseman IH. The power and promise of genetic mapping from Plasmodium falciparum crosses utilizing human liver-chimeric mice. Commun Biol 2021; 4:734. [PMID: 34127785 PMCID: PMC8203791 DOI: 10.1038/s42003-021-02210-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Genetic crosses are most powerful for linkage analysis when progeny numbers are high, parental alleles segregate evenly and numbers of inbred progeny are minimized. We previously developed a novel genetic crossing platform for the human malaria parasite Plasmodium falciparum, an obligately sexual, hermaphroditic protozoan, using mice carrying human hepatocytes (the human liver-chimeric FRG NOD huHep mouse) as the vertebrate host. We report on two genetic crosses-(1) an allopatric cross between a laboratory-adapted parasite (NF54) of African origin and a recently patient-derived Asian parasite, and (2) a sympatric cross between two recently patient-derived Asian parasites. We generated 144 unique recombinant clones from the two crosses, doubling the number of unique recombinant progeny generated in the previous 30 years. The allopatric African/Asian cross has minimal levels of inbreeding and extreme segregation distortion, while in the sympatric Asian cross, inbred progeny predominate and parental alleles segregate evenly. Using simulations, we demonstrate that these progeny provide the power to map small-effect mutations and epistatic interactions. The segregation distortion in the allopatric cross slightly erodes power to detect linkage in several genome regions. We greatly increase the power and the precision to map biomedically important traits with these new large progeny panels.
Collapse
Affiliation(s)
- Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Carmago
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Meseret T Haile
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Catherine Jett
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Douglas A Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Stefan H Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ian H Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
4
|
Culleton RL, Abkallo HM. Malaria parasite genetics: doing something useful. Parasitol Int 2014; 64:244-53. [PMID: 25073068 DOI: 10.1016/j.parint.2014.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Abstract
Genetics has informed almost every aspect of the study of malaria parasites, and remains a key component of much of the research that aims to reduce the burden of the disease they cause. We describe the history of genetic studies of malaria parasites and give an overview of the utility of the discipline to malariology.
Collapse
Affiliation(s)
- Richard L Culleton
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Hussein M Abkallo
- Malaria Unit, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
5
|
Differing Patterns of Selection and Geospatial Genetic Diversity within Two Leading Plasmodium vivax Candidate Vaccine Antigens. PLoS Negl Trop Dis 2014; 8:e2796. [PMID: 24743266 PMCID: PMC3990511 DOI: 10.1371/journal.pntd.0002796] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 03/05/2014] [Indexed: 02/04/2023] Open
|
6
|
Fairlie-Clarke KJ, Allen JE, Read AF, Graham AL. Quantifying variation in the potential for antibody-mediated apparent competition among nine genotypes of the rodent malaria parasite Plasmodium chabaudi. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2013; 20:270-5. [PMID: 24056014 PMCID: PMC3898986 DOI: 10.1016/j.meegid.2013.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023]
Abstract
Within-host competition among parasite genotypes affects epidemiology as well as the evolution of virulence. In the rodent malaria Plasmodium chabaudi, competition among genotypes, as well as clone-specific and clone-transcending immunity are well documented. However, variation among genotypes in the induction of antibodies is not well understood, despite the important role of antibodies in the clearance of malaria infection. Here, we quantify the potential for antibodies induced by one clone to bind another (i.e., to cause antibody-mediated apparent competition) for nine genetically distinct P. chabaudi clones. We hypothesised that clones would vary in the strength of antibody induction, and that the propensity for clone-transcending immunity between a pair of clones would increase with increasing genetic relatedness at key antigenic loci. Using serum collected from mice 35 days post-infection, we measured titres of antibody to an unrelated antigen, Keyhole Limpet Haemocyanin (KLH), and two malaria antigens: recombinant Apical Membrane Antigen-1 (AMA-1) and Merozoite Surface Protein-119 (MSP-119). Amino acid sequence homology within each antigenic locus was used as a measure of relatedness. We found significant parasite genetic variation for the strength of antibody induction. We also found that relatedness at MSP-119 but not AMA-1 predicted clone-transcending binding. Our results help explain the outcome of chronic-phase mixed infections and generate testable predictions about the pairwise competitive ability of P. chabaudi clones.
Collapse
Affiliation(s)
- Karen J Fairlie-Clarke
- Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, King's Buildings, University of Edinburgh, Edinburgh, UK.
| | | | | | | |
Collapse
|
7
|
da Silva HB, de Salles EM, Panatieri RH, Boscardin SB, Rodríguez-Málaga SM, Alvarez JM, D'Império Lima MR. IFN-γ-induced priming maintains long-term strain-transcending immunity against blood-stage Plasmodium chabaudi malaria. THE JOURNAL OF IMMUNOLOGY 2013; 191:5160-9. [PMID: 24133169 DOI: 10.4049/jimmunol.1300462] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The mechanism by which protective immunity to Plasmodium is lost in the absence of continued exposure to this parasite has yet to be fully elucidated. It has been recently shown that IFN-γ produced during human and murine acute malaria primes the immune response to TLR agonists. In this study, we investigated whether IFN-γ-induced priming is important to maintain long-term protective immunity against Plasmodium chabaudi AS malaria. On day 60 postinfection, C57BL/6 mice still had chronic parasitemia and efficiently controlled homologous and heterologous (AJ strain) challenge. The spleens of chronic mice showed augmented numbers of effector/effector memory (TEM) CD4(+) cells, which is associated with increased levels of IFN-γ-induced priming (i.e., high expression of IFN-inducible genes and TLR hyperresponsiveness). After parasite elimination, IFN-γ-induced priming was no longer detected and protective immunity to heterologous challenge was mostly lost with >70% mortality. Spontaneously cured mice had high serum levels of parasite-specific IgG, but effector T/TEM cell numbers, parasite-driven CD4(+) T cell proliferation, and IFN-γ production were similar to noninfected controls. Remarkably, the priming of cured mice with low doses of IFN-γ rescued TLR hyperresponsiveness and the capacity to control heterologous challenge, increasing the TEM cell population and restoring the CD4(+) T cell responses to parasites. Contribution of TLR signaling to the CD4(+) T cell responses in chronic mice was supported by data obtained in mice lacking the MyD88 adaptor. These results indicate that IFN-γ-induced priming is required to maintain protective immunity against P. chabaudi and aid in establishing the molecular basis of strain-transcending immunity in human malaria.
Collapse
Affiliation(s)
- Henrique Borges da Silva
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Qi Y, Zhu F, Li J, Fu Y, Pattaradilokrat S, Hong L, Liu S, Huang F, Xu W, Su XZ. Optimized protocols for improving the likelihood of cloning recombinant progeny from Plasmodium yoelii genetic crosses. Exp Parasitol 2012; 133:44-50. [PMID: 23116600 DOI: 10.1016/j.exppara.2012.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/16/2012] [Accepted: 10/19/2012] [Indexed: 11/29/2022]
Abstract
Genetic cross is a powerful tool for studying malaria genes contributing to drug resistance, parasite development, and pathogenesis. Cloning and identification of recombinant progeny (RP) is laborious and expensive, especially when a large proportion of progeny derived from self-fertilization are present in the uncloned progeny of a genetic cross. Since the frequency of cross-fertilization affects the number of recombinant progeny in a genetic cross, it is important to optimize the procedure of a genetic cross to maximize the cross-fertilization. Here we investigated the factors that might influence the chances of obtaining RP from a genetic cross and showed that different Plasmodium yoelii strains/subspecies/clones had unique abilities in producing oocysts in a mosquito midgut. When a genetic cross is performed between two parents producing different numbers of functional gametocytes, the ratio of parental parasites must be adjusted to improve the chance of obtaining RP. An optimized parental ratio could be established based on oocyst counts from single infection of each parent before crossing experiments, which may reflect the efficiency of gametocyte production and/or fertilization. The timing of progeny cloning is also important; cloning of genetic cross progeny from mice directly infected with sporozoites (vs. frozen blood after needle passage) at a time when parasitemia is low (usually <1%) could improve the chance of obtaining RP. This study provides an optimized protocol for efficiently cloning RPs from a genetic cross of malaria parasites.
Collapse
Affiliation(s)
- Yanwei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Stephens R, Culleton RL, Lamb TJ. The contribution of Plasmodium chabaudi to our understanding of malaria. Trends Parasitol 2011; 28:73-82. [PMID: 22100995 DOI: 10.1016/j.pt.2011.10.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/23/2022]
Abstract
Malaria kills close to a million people every year, mostly children under the age of five. In the drive towards the development of an effective vaccine and new chemotherapeutic targets for malaria, field-based studies on human malaria infection and laboratory-based studies using animal models of malaria offer complementary opportunities to further our understanding of the mechanisms behind malaria infection and pathology. We outline here the parallels between the Plasmodium chabaudi mouse model of malaria and human malaria. We will highlight the contribution of P. chabaudi to our understanding of malaria in particular, how the immune response in malaria infection is initiated and regulated, its role in pathology, and how immunological memory is maintained. We will also discuss areas where new tools have opened up potential areas of exploration using this invaluable model system.
Collapse
Affiliation(s)
- Robin Stephens
- University of Texas Medical Branch, Departments of Microbiology and Immunology and Internal Medicine, Division of Infectious Diseases, 301 University Boulevard, Galveston, TX 77555-0435, USA
| | | | | |
Collapse
|
10
|
Linkage maps from multiple genetic crosses and loci linked to growth-related virulent phenotype in Plasmodium yoelii. Proc Natl Acad Sci U S A 2011; 108:E374-82. [PMID: 21690382 DOI: 10.1073/pnas.1102261108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmodium yoelii is an excellent model for studying malaria pathogenesis that is often intractable to investigate using human parasites; however, genetic studies of the parasite have been hindered by lack of genome-wide linkage resources. Here, we performed 14 genetic crosses between three pairs of P. yoelii clones/subspecies, isolated 75 independent recombinant progeny from the crosses, and constructed a high-resolution linkage map for this parasite. Microsatellite genotypes from the progeny formed 14 linkage groups belonging to the 14 parasite chromosomes, allowing assignment of sequence contigs to chromosomes. Growth-related virulent phenotypes from 25 progeny of one of the crosses were significantly associated with a major locus on chromosome 13 and with two secondary loci on chromosomes 7 and 10. The chromosome 10 and 13 loci are both linked to day 5 parasitemia, and their effects on parasite growth rate are independent but additive. The locus on chromosome 7 is associated with day 10 parasitemia. The chromosome 13 locus spans ~220 kb of DNA containing 51 predicted genes, including the P. yoelii erythrocyte binding ligand, in which a C741Y substitution in the R6 domain is implicated in the change of growth rate. Similarly, the chromosome 10 locus spans ~234 kb with 71 candidate genes, containing a member of the 235-kDa rhoptry proteins (Py235) that can bind to the erythrocyte surface membrane. Atypical virulent phenotypes among the progeny were also observed. This study provides critical tools and information for genetic investigations of virulence and biology of P. yoelii.
Collapse
|
11
|
Zeyrek FY, Tachibana SI, Yuksel F, Doni N, Palacpac N, Arisue N, Horii T, Coban C, Tanabe K. Limited polymorphism of the Plasmodium vivax merozoite surface protein 1 gene in isolates from Turkey. Am J Trop Med Hyg 2011; 83:1230-7. [PMID: 21118926 DOI: 10.4269/ajtmh.2010.10-0353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The 200-kD merozoite surface protein of Plasmodium vivax (PvMSP-1) is one of the leading vaccine candidates against P. vivax malaria. However, the gene encoding PvMSP-1 (pvmsp1) is highly polymorphic and is a major obstacle to effective vaccine development. To further understand polymorphism in pvmsp1, we obtained 30 full-length pvmsp1 sequences from southeastern Turkey. Comparative analysis of sequences from Turkey and other areas showed substantially limited polymorphism. Substitutions were found at 280 and 162 amino acid sites in samples from other regions and those from Turkey, respectively. Eight substitutions were unique to Turkey. In one of them, D/E at position 1706 in the C-terminal 19-kD region, the K/E change at 1709 was the only polymorphism previously known. Limited diversity was also observed in microsatellites. Data suggest a recent population bottleneck in Turkey that may have obscured a signature for balancing selection in the C-terminal 42-kD region, which was otherwise detectable in other areas.
Collapse
Affiliation(s)
- Fadile Yildiz Zeyrek
- Department of Microbiology, Harran University Medical Faculty, Sanliurfa, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
CULLETON RL, INOUE M, REECE SE, CHEESMAN S, CARTER R. Strain-specific immunity induced by immunization with pre-erythrocytic stages of Plasmodium chabaudi. Parasite Immunol 2010; 33:73-8. [DOI: 10.1111/j.1365-3024.2010.01251.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Ochola LI, Tetteh KKA, Stewart LB, Riitho V, Marsh K, Conway DJ. Allele frequency-based and polymorphism-versus-divergence indices of balancing selection in a new filtered set of polymorphic genes in Plasmodium falciparum. Mol Biol Evol 2010; 27:2344-51. [PMID: 20457586 PMCID: PMC2944029 DOI: 10.1093/molbev/msq119] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Signatures of balancing selection operating on specific gene loci in endemic pathogens can identify candidate targets of naturally acquired immunity. In malaria parasites, several leading vaccine candidates convincingly show such signatures when subjected to several tests of neutrality, but the discovery of new targets affected by selection to a similar extent has been slow. A small minority of all genes are under such selection, as indicated by a recent study of 26 Plasmodium falciparum merozoite-stage genes that were not previously prioritized as vaccine candidates, of which only one (locus PF10_0348) showed a strong signature. Therefore, to focus discovery efforts on genes that are polymorphic, we scanned all available shotgun genome sequence data from laboratory lines of P. falciparum and chose six loci with more than five single nucleotide polymorphisms per kilobase (including PF10_0348) for in-depth frequency-based analyses in a Kenyan population (allele sample sizes >50 for each locus) and comparison of Hudson-Kreitman-Aguade (HKA) ratios of population diversity (π) to interspecific divergence (K) from the chimpanzee parasite Plasmodium reichenowi. Three of these (the msp3/6-like genes PF10_0348 and PF10_0355 and the surf(4.1) gene PFD1160w) showed exceptionally high positive values of Tajima's D and Fu and Li's F indices and have the highest HKA ratios, indicating that they are under balancing selection and should be prioritized for studies of their protein products as candidate targets of immunity. Combined with earlier results, there is now strong evidence that high HKA ratio (as well as the frequency-independent ratio of Watterson's /K) is predictive of high values of Tajima's D. Thus, the former offers value for use in genome-wide screening when numbers of genome sequences within a species are low or in combination with Tajima's D as a 2D test on large population genomic samples.
Collapse
Affiliation(s)
- Lynette Isabella Ochola
- Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Kevin K. A. Tetteh
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lindsay B. Stewart
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Victor Riitho
- Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Kevin Marsh
- Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - David J. Conway
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
14
|
Hunt P, Martinelli A, Modrzynska K, Borges S, Creasey A, Rodrigues L, Beraldi D, Loewe L, Fawcett R, Kumar S, Thomson M, Trivedi U, Otto TD, Pain A, Blaxter M, Cravo P. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites. BMC Genomics 2010; 11:499. [PMID: 20846421 PMCID: PMC2996995 DOI: 10.1186/1471-2164-11-499] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 09/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum. RESULTS A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme. CONCLUSIONS This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations.
Collapse
Affiliation(s)
- Paul Hunt
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Axel Martinelli
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centro de Malaria e Outras Doenças Tropicais/IHMT/UEI Biologia Molecular, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Katarzyna Modrzynska
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sofia Borges
- Centro de Malaria e Outras Doenças Tropicais/IHMT/UEI Malaria, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Alison Creasey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Louise Rodrigues
- Centro de Malaria e Outras Doenças Tropicais/IHMT/UEI Biologia Molecular, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Dario Beraldi
- Institute for Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Division of Genetics and Genomics, The Roslin Institute and R(D)SVS, University of Edinburgh, Roslin, UK
| | - Laurence Loewe
- Centre for Systems Biology at Edinburgh, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Richard Fawcett
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sujai Kumar
- The GenePool, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Marian Thomson
- The GenePool, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Urmi Trivedi
- The GenePool, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Thomas D Otto
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
| | - Arnab Pain
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK
- Computational Bioscience Research Center, Chemical and Life Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mark Blaxter
- Institute for Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- The GenePool, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Pedro Cravo
- Centro de Malaria e Outras Doenças Tropicais/IHMT/UEI Biologia Molecular, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
15
|
Cheesman S, O’Mahony E, Pattaradilokrat S, Degnan K, Knott S, Carter R. A single parasite gene determines strain-specific protective immunity against malaria: The role of the merozoite surface protein I. Int J Parasitol 2010; 40:951-61. [DOI: 10.1016/j.ijpara.2010.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 11/27/2022]
|
16
|
Weedall GD, Conway DJ. Detecting signatures of balancing selection to identify targets of anti-parasite immunity. Trends Parasitol 2010; 26:363-9. [PMID: 20466591 DOI: 10.1016/j.pt.2010.04.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/04/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
Parasite antigen genes might evolve under frequency-dependent immune selection. The distinctive patterns of polymorphism that result can be detected using population genetic methods that test for signatures of balancing selection, allowing genes encoding important targets of immunity to be identified. Analyses can be complicated by population structures, histories and features of a parasite's genome. However, new sequencing technologies facilitate scans of polymorphism throughout parasite genomes to identify the most exceptional gene specific signatures. We focus on malaria parasites to illustrate challenges and opportunities for detecting targets of frequency-dependent immune selection to discover new potential vaccine candidates.
Collapse
Affiliation(s)
- Gareth D Weedall
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, UK, L69 7ZB.
| | | |
Collapse
|
17
|
Holder AA. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology 2009; 136:1445-56. [PMID: 19627632 DOI: 10.1017/s0031182009990515] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Over the last 30 years, evidence has been gathered suggesting that merozoite surface protein 1 (MSP1) is a target of protective immunity against malaria. In a variety of experimental approaches using in vitro methodology, animal models and sero-epidemiological techniques, the importance of antibody against MSP1 has been established but we are still finding out what are the mechanisms involved. Now that clinical trials of MSP1 vaccines are underway and the early results have been disappointing, it is increasingly clear that we need to know more about the mechanisms of immunity, because a better understanding will highlight the limitations of our current assays and identify the improvements required. Understanding the structure of MSP1 will help us design and engineer better antigens that are more effective than the first generation of vaccine candidates. This review is focused on the carboxy-terminus of MSP1.
Collapse
Affiliation(s)
- A A Holder
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London.
| |
Collapse
|
18
|
Haolla FA, Claser C, de Alencar BC, Tzelepis F, de Vasconcelos JR, de Oliveira G, Silvério JC, Machado AV, Lannes-Vieira J, Bruna-Romero O, Gazzinelli RT, dos Santos RR, Soares MB, Rodrigues MM. Strain-specific protective immunity following vaccination against experimental Trypanosoma cruzi infection. Vaccine 2009; 27:5644-53. [DOI: 10.1016/j.vaccine.2009.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 06/28/2009] [Accepted: 07/08/2009] [Indexed: 11/29/2022]
|
19
|
Li J, Zhang Y, Liu S, Hong L, Sullivan M, McCutchan TF, Carlton JM, Su XZ. Hundreds of microsatellites for genotyping Plasmodium yoelii parasites. Mol Biochem Parasitol 2009; 166:153-8. [PMID: 19450732 PMCID: PMC2787103 DOI: 10.1016/j.molbiopara.2009.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 11/21/2022]
Abstract
Genetic crosses have been employed to study various traits of rodent malaria parasites and to locate loci that contribute to drug resistance, immune protection, and disease virulence. Compared with human malaria parasites, genetic crossing of rodent malaria parasites is more easily performed; however, genotyping methods using microsatellites (MSs) or large-scale single nucleotide polymorphisms (SNPs) that have been widely used in typing Plasmodium falciparum are not available for rodent malaria species. Here we report a genome-wide search of the Plasmodium yoelii yoelii (P. yoelii) genome for simple sequence repeats (SSRs) and the identification of nearly 600 polymorphic MS markers for typing the genomes of P. yoelii and Plasmodium berghei. The MS markers are randomly distributed across the 14 physical chromosomes assembled from genome sequences of three rodent malaria species, although some variations in the numbers of MS expected according to chromosome size exist. The majority of the MS markers are AT-rich repeats, similar to those found in the P. falciparum genome. The MS markers provide an important resource for genotyping, lay a foundation for developing linkage maps, and will greatly facilitate genetic studies of P. yoelii.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, Fujian 361005, The People’s Republic of China
| | - Yanhui Zhang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, Fujian 361005, The People’s Republic of China
| | - Shengfa Liu
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, Fujian 361005, The People’s Republic of China
| | - Lingxian Hong
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, Fujian 361005, The People’s Republic of China
| | - Margery Sullivan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Thomas F. McCutchan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jane M. Carlton
- Department of Medical Parasitology, NYU Langone Medical Center, New York, NY 10010, USA
| | - Xin-zhuan Su
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Science, Xiamen University, Xiamen, Fujian 361005, The People’s Republic of China
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
20
|
Gene encoding erythrocyte binding ligand linked to blood stage multiplication rate phenotype in Plasmodium yoelii yoelii. Proc Natl Acad Sci U S A 2009; 106:7161-6. [PMID: 19359470 DOI: 10.1073/pnas.0811430106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Variation in the multiplication rate of blood stage malaria parasites is often positively correlated with the severity of the disease they cause. The rodent malaria parasite Plasmodium yoelii yoelii has strains with marked differences in multiplication rate and pathogenicity in the blood. We have used genetic analysis by linkage group selection (LGS) to identify genes that determine differences in multiplication rate. Genetic crosses were generated between genetically unrelated, fast- (17XYM) and slowly multiplying (33XC) clones of P. y. yoelii. The uncloned progenies of these crosses were placed under multiplication rate selection in blood infections in mice. The selected progenies were screened for reduction in intensity of quantitative genetic markers of the slowly multiplying parent. A small number of strongly selected markers formed a linkage group on P. y. yoelii chromosome 13. Of these, that most strongly selected marked the gene encoding the P. yoelii erythrocyte binding ligand (pyebl), which has been independently identified by Otsuki and colleagues [Otsuki H, et al. (2009) Proc Natl Acad Sci USA 106:10.1073/pnas.0811313106] as a major determinant of virulence in these parasites. In an analysis of a previous genetic cross in P. y. yoelii, pyebl alleles of fast- and slowly multiplying parents segregated with the fast and slow multiplication rate phenotype in the cloned recombinant progeny, implying the involvement of the pyebl locus in determining the multiplication rate. Our genome-wide LGS analysis also indicated effects of at least 1 other locus on multiplication rate, as did the findings of Otsuki and colleagues on virulence in P. y. yoelii.
Collapse
|
21
|
Cheesman S, Tanabe K, Sawai H, O'Mahony E, Carter R. Strain-specific immunity may drive adaptive polymorphism in the merozoite surface protein 1 of the rodent malaria parasite Plasmodium chabaudi. INFECTION GENETICS AND EVOLUTION 2008; 9:248-55. [PMID: 19121414 DOI: 10.1016/j.meegid.2008.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 10/01/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
Clinical immunity against malaria is slow to develop, poorly understood and strongly strain-specific. Understanding how strain-specific immunity develops and identifying the parasite antigens involved is crucial to developing effective vaccines against the disease. In previous experiments we have shown that strain-specific protective immunity (SSPI) exists between genetically distinct strains (cloned lines) of the rodent malaria parasite Plasmodium chabaudi chabaudi in mice [Cheesman, S., Raza, A., Carter, R., 2006. Mixed strain infections and strain-specific protective immunity in the rodent malaria parasite P. chabaudi chabaudi in mice. Infect. Immun. 74, 2996-3001]. In two subsequent studies, we identified the highly polymorphic Merozoite Surface Protein 1 (MSP-1) as being the principal candidate molecule for the control of SSPI against P. c. chabaudi malaria [Martinelli et al., 2005; Pattaradilokrat, S., Cheesman, S.J., Carter R., 2007. Linkage group selection: towards identifying genes controlling strain-specific protective immunity in malaria. PLoS ONE 2(9):e857]. In the present study, we sequenced the whole msp1 gene of several genetically distinct strains of P. chabaudi and found high levels of genetic diversity. Protein sequence alignments reveal extensive allelic polymorphism between the P. chabaudi strains, concentrated primarily within five regions of the protein. The 3'-end sequence region, encoding the C-terminal 21 kDa region (MSP-1(21)), which is analogous and homologous to MSP-1(19) of Plasmodium falciparum, appears to have been subject to balancing selection. We have found that the strains with the lowest sequence identity at MSP-1(21) (i.e. AS/CB and AJ/CB) induce robust and reciprocal SSPI in experimental mice. In contrast, two strains that do not induce reciprocal SSPI are identical at the 21 kDa region. Final identification of the region(s) controlling SSPI will provide important information to help guide decisions about MSP-1 based vaccines.
Collapse
Affiliation(s)
- Sandra Cheesman
- Institute for Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, The University of Edinburgh, The Kings Buildings, West Mains Road, Edinburgh EH93JT, UK.
| | | | | | | | | |
Collapse
|