1
|
Scelfo A, Barra V, Abdennur N, Spracklin G, Busato F, Salinas-Luypaert C, Bonaiti E, Velasco G, Bonhomme F, Chipont A, Tijhuis AE, Spierings DC, Guérin C, Arimondo P, Francastel C, Foijer F, Tost J, Mirny L, Fachinetti D. Tunable DNMT1 degradation reveals DNMT1/DNMT3B synergy in DNA methylation and genome organization. J Cell Biol 2024; 223:e202307026. [PMID: 38376465 PMCID: PMC10876481 DOI: 10.1083/jcb.202307026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
DNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present cell models that allow inducible and reversible DNAme modulation through DNMT1 depletion. By dynamically assessing whole genome and locus-specific effects of induced passive demethylation through cell divisions, we reveal a cooperative activity between DNMT1 and DNMT3B, but not of DNMT3A, to maintain and control DNAme. We show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin, compartmentalization, and peripheral localization. DNA methylation loss coincides with a gradual reduction of cell fitness due to G1 arrest, with minor levels of mitotic failure. Altogether, this system allows DNMTs and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNAme dysfunction and human disease.
Collapse
Affiliation(s)
- Andrea Scelfo
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Viviana Barra
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Nezar Abdennur
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, USA
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - George Spracklin
- Department of Systems Biology, UMass Chan Medical School, Worcester, MA, USA
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Florence Busato
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, France
| | | | - Elena Bonaiti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | | | - Frédéric Bonhomme
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR n°3523 Chem4Life, Université Paris Cité, Paris, France
| | - Anna Chipont
- Cytometry Platform, Institut Curie, Paris, France
| | - Andréa E. Tijhuis
- European Research Institute for the Biology of Ageing, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Coralie Guérin
- Cytometry Platform, Institut Curie, Paris, France
- Université Paris Cité, INSERM, Paris, France
| | - Paola Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR n°3523 Chem4Life, Université Paris Cité, Paris, France
| | | | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jӧrg Tost
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, France
| | - Leonid Mirny
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| |
Collapse
|
2
|
Lawir DF, Soza-Ried C, Iwanami N, Siamishi I, Bylund GO, O Meara C, Sikora K, Kanzler B, Johansson E, Schorpp M, Cauchy P, Boehm T. Antagonistic interactions safeguard mitotic propagation of genetic and epigenetic information in zebrafish. Commun Biol 2024; 7:31. [PMID: 38182651 PMCID: PMC10770094 DOI: 10.1038/s42003-023-05692-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
The stability of cellular phenotypes in developing organisms depends on error-free transmission of epigenetic and genetic information during mitosis. Methylation of cytosine residues in genomic DNA is a key epigenetic mark that modulates gene expression and prevents genome instability. Here, we report on a genetic test of the relationship between DNA replication and methylation in the context of the developing vertebrate organism instead of cell lines. Our analysis is based on the identification of hypomorphic alleles of dnmt1, encoding the DNA maintenance methylase Dnmt1, and pole1, encoding the catalytic subunit of leading-strand DNA polymerase epsilon holoenzyme (Pole). Homozygous dnmt1 mutants exhibit genome-wide DNA hypomethylation, whereas the pole1 mutation is associated with increased DNA methylation levels. In dnmt1/pole1 double-mutant zebrafish larvae, DNA methylation levels are restored to near normal values, associated with partial rescue of mutant-associated transcriptional changes and phenotypes. Hence, a balancing antagonism between DNA replication and maintenance methylation buffers against replicative errors contributing to the robustness of vertebrate development.
Collapse
Affiliation(s)
- Divine-Fondzenyuy Lawir
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Cristian Soza-Ried
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Iliana Siamishi
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Göran O Bylund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Connor O Meara
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katarzyna Sikora
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Bioinformatic Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Benoît Kanzler
- Transgenic Mouse Core Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Pierre Cauchy
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
3
|
Crisóstomo L, Oliveira PF, Alves MG. A systematic scientometric review of paternal inheritance of acquired metabolic traits. BMC Biol 2023; 21:255. [PMID: 37953286 PMCID: PMC10641967 DOI: 10.1186/s12915-023-01744-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The concept of the inheritance of acquired traits, a foundational principle of Lamarck's evolutionary theory, has garnered renewed attention in recent years. Evidence for this phenomenon remained limited for decades but gained prominence with the Överkalix cohort study in 2002. This study revealed a link between cardiovascular disease incidence and the food availability experienced by individuals' grandparents during their slow growth periods, reigniting interest in the inheritance of acquired traits, particularly in the context of non-communicable diseases. This scientometric analysis and systematic review comprehensively explores the current landscape of paternally transmitted acquired metabolic traits. RESULTS Utilizing Scopus Advanced search and meticulous screening, we included mammalian studies that document the inheritance or modification of metabolic traits in subsequent generations of unexposed descendants. Our inclusive criteria encompass intergenerational and transgenerational studies, as well as multigenerational exposures. Predominantly, this field has been driven by a select group of researchers, potentially shaping the design and focus of existing studies. Consequently, the literature primarily comprises transgenerational rodent investigations into the effects of ancestral exposure to environmental pollutants on sperm DNA methylation. The complexity and volume of data often lead to multiple or redundant publications. This practice, while understandable, may obscure the true extent of the impact of ancestral exposures on the health of non-exposed descendants. In addition to DNA methylation, studies have illuminated the role of sperm RNAs and histone marks in paternally acquired metabolic disorders, expanding our understanding of the mechanisms underlying epigenetic inheritance. CONCLUSIONS This review serves as a comprehensive resource, shedding light on the current state of research in this critical area of science, and underscores the need for continued exploration to uncover the full spectrum of paternally mediated metabolic inheritance.
Collapse
Affiliation(s)
- Luís Crisóstomo
- Departmento de Anatomia, UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Departmento de Anatomia, UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.
- Institute of Biomedicine - iBiMED and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Qin H, Liu J, Fang C, Deng Y, Zhang Y. DNA methylation: The epigenetic mechanism of Alzheimer's disease. IBRAIN 2023; 9:463-472. [PMID: 38680511 PMCID: PMC11045197 DOI: 10.1002/ibra.12121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 05/01/2024]
Abstract
Nowadays, with the development of the social health care system, there is an increasing trend towards an aging society. The incidence of Alzheimer's disease (AD) is also on the rise. AD is a kind of neurodegenerative disease that can be found in any age group. For years, scientists have been committing to discovering the cause of AD. DNA methylation is one of the most common epigenetic mechanisms in mammals and plays a vital role in the pathogenesis of several diseases, including tumors. Studying chemical changes in the epigenome, or DNA methylation can help us understand the effects of our environment and life on diseases, such as smoking, depression, and menopause, which may affect people's chances of developing Alzheimer's or other diseases. Recent studies have identified some crucial genes like ANK1, RHBDF2, ABCA7, and BIN1, linking DNA methylation to AD. This review focuses on elucidating the relationship between DNA methylation and the pathogenesis of AD and provides an outlook on possible targeted therapeutic modalities.
Collapse
Affiliation(s)
- Hao‐Yue Qin
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Jiao‐Yan Liu
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Chang‐Le Fang
- Faculty of Health SciencesUniversity of AdelaideMelbourneVICAustralia
| | - Yan‐Ping Deng
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Ying Zhang
- State Key Laboratories for Quality Research in Chinese Medicines, Faculty of PharmacyMacau University of Science and TechnologyMacauChina
| |
Collapse
|
5
|
Singh G, Storey KB. Mitochondrial DNA methyltransferases and their regulation under freezing and dehydration stresses in the freeze tolerant wood frog, Rana sylvatica. Biochem Cell Biol 2022; 100:171-178. [PMID: 35104156 DOI: 10.1139/bcb-2021-0519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wood frogs are one of a few vertebrate species that can survive whole-body freezing. Multiple adaptations support this including cryoprotectant production (glucose), metabolic rate depression and selective changes in gene/protein expression to activate pro-survival pathways. The role of DNA methylation machinery (DNA methyltransferases, DNMTs) in regulating nuclear gene expression supporting freezing survival has already been established. However, a comparable role for DNMTs in mitochondria has not been explored in wood frogs. We examined the mitochondrial protein levels of DNMT-1, DNMT-3A, DNMT-3B and DNMT-3L as well as mitochondrial DNMT activity in the liver and heart to assess DNMT involvement in the survival of freezing and dehydration stresses (cellular dehydration being one component of freezing). Our results showed stress and tissue-specific response by mitochondrial DNMT-1 protein in liver and heart respectively. During 24h freezing and whole-body dehydration, we saw an overall downregulation of mitochondrial DNMT-1, a major protein involved in maintaining methylation levels relating to its role in selective transcription of mitochondrial genes as well as antioxidant response. Tissue-specific response of protein levels of DNMT-3A, DNMT-3B and DNMT-3L and DNMT activity in the liver suggested a preference for higher methylation state in the liver under both freezing and dehydration stresses but not in the heart.
Collapse
Affiliation(s)
- Gurjit Singh
- Carleton University Department of Biology, 120895, Biology, Ottawa, Ontario, Canada;
| | - Kenneth B Storey
- Carleton University, 6339, Biology, Department of Biology, 1125 Colonel By Drive, Ottawa, Ottawa, Ontario, Canada, K1S 5B6;
| |
Collapse
|
6
|
Liu J, Heraud C, Véron V, Laithier J, Burel C, Prézelin A, Panserat S, Marandel L. Hepatic Global DNA Hypomethylation Phenotype in Rainbow Trout Fed Diets Varying in Carbohydrate to Protein Ratio. J Nutr 2022; 152:29-39. [PMID: 34550380 DOI: 10.1093/jn/nxab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/30/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A high carbohydrate-low protein diet can induce hepatic global DNA hypomethylation in trout. The mechanisms remain unclear. OBJECTIVES We aimed to investigate whether an increase in dietary carbohydrates (dHCs) or a decrease in dietary proteins (dLPs) can cause hepatic global DNA hypomethylation, as well as explore the underlying mechanisms in trout. METHODS Two feeding trials were conducted on juvenile males, both of which involved a 4-d fasting and 4-d refeeding protocol. In trial 1, trout were fed either a high protein-no carbohydrate [HP-NC, protein 60% dry matter (DM), carbohydrates 0% DM] or a moderate protein-high carbohydrate (MP-HC, protein 40% DM, carbohydrates 30% DM) diet. In trial 2, fish were fed either a moderate protein-no carbohydrate (MP-NC, protein 40% DM, carbohydrates 0% DM), an MP-HC (protein 40% DM, carbohydrates 30% DM), or a low protein-no carbohydrate (LP-NC, protein 20% DM, carbohydrates 0% DM) diet to separate the effects of dHCs and dLPs on the hepatic methylome. Global CmCGG methylation, DNA demethylation derivative concentrations, and mRNA expression of DNA (de)methylation-related genes were measured. Differences were tested by 1-factor ANOVA when data were normally distributed or by Kruskal-Wallis nonparametric test if not. RESULTS In both trials, global CmCGG methylation concentrations remained unaffected, but the hepatic 5-mdC content decreased after refeeding (1-3%). The MP-HC group had 3.4-fold higher hepatic 5-hmdC and a similar 5-mdC concentration compared with the HP-NC group in trial 1. Both MP-HC and LP-NC diets lowered the hepatic 5-mdC content (1-2%), but only the LP-NC group had a significantly lower 5-hmdC concentration (P < 0.01) compared with MP-NC group in trial 2. CONCLUSIONS dHC and dLP independently induced hepatic global DNA demethylation in trout. The alterations in other methylation derivative concentrations indicated the demethylation process was achieved through an active demethylation pathway and probably occurred at non-CmCGG sites.
Collapse
Affiliation(s)
- Jingwei Liu
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Cécile Heraud
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Vincent Véron
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Jésabel Laithier
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Christine Burel
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Audrey Prézelin
- Université Paris Saclay, UVSQ, INRAE, BREED, Jouy en Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Stéphane Panserat
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
7
|
Gao X, Chen Q, Yao H, Tan J, Liu Z, Zhou Y, Zou Z. Epigenetics in Alzheimer's Disease. Front Aging Neurosci 2022; 14:911635. [PMID: 35813941 PMCID: PMC9260511 DOI: 10.3389/fnagi.2022.911635] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with unknown pathogenesis and complex pathological manifestations. At present, a large number of studies on targeted drugs for the typical pathological phenomenon of AD (Aβ) have ended in failure. Although there are some drugs on the market that indirectly act on AD, their efficacy is very low and the side effects are substantial, so there is an urgent need to develop a new strategy for the treatment of AD. An increasing number of studies have confirmed epigenetic changes in AD. Although it is not clear whether these epigenetic changes are the cause or result of AD, they provide a new avenue of treatment for medical researchers worldwide. This article summarizes various epigenetic changes in AD, including DNA methylation, histone modification and miRNA, and concludes that epigenetics has great potential as a new target for the treatment of AD.
Collapse
Affiliation(s)
- Xiaodie Gao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Qiang Chen
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Hua Yao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Zheng Liu
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- *Correspondence: Zheng Liu,
| | - Yan Zhou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Yan Zhou,
| | - Zhenyou Zou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
- Zhenyou Zou,
| |
Collapse
|
8
|
Pérez-Muñoz AA, de Lourdes Muñoz M, García-Hernández N, Santander-Lucio H. A New Approach to Identify the Methylation Sites in the Control Region of Mitochondrial DNA. Curr Mol Med 2021; 21:151-164. [PMID: 32484108 DOI: 10.2174/1566524020666200528154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 11/22/2022]
Abstract
Mitochondrial DNA (mtDNA) methylation has the potential to be used as a biomarker of human development or disease. However, mtDNA methylation procedures are costly and time-consuming. Therefore, we developed a new approach based on an RT-PCR assay for the base site identification of methylated cytosine in the control region of mtDNA through a simple, fast, specific, and low-cost strategy. Total DNA was purified, and methylation was determined by RT-PCR bisulfite sequencing. This procedure included the DNA purification, bisulfite treatment and RT-PCR amplification of the control region divided into three subregions with specific primers. Sequences obtained with and without the bisulfite treatment were compared to identify the methylated cytosine dinucleotides. Furthermore, the efficiency of C to U conversion of cytosines was assessed by including a negative control. Interestingly, mtDNA methylation was observed mainly within non-Cphosphate- G (non-CpG) dinucleotides and mostly in the regions containing regulatory elements, such as OH or CSBI, CSBII, and CSBIII. This new approach will promote the generation of new information regarding mtDNA methylation patterns in samples from patients with different pathologies or that are exposed to a toxic environment in diverse human populations.
Collapse
Affiliation(s)
- Ashael Alfredo Pérez-Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - María de Lourdes Muñoz
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| | - Normand García-Hernández
- Unidad de Investigacion Medica en Genetica Humana, Unidad Medica de Alta Especialidad Hospital de Pediatria "Dr. Silvestre Frenk Freund", Centro Medico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Heriberto Santander-Lucio
- Department of Genetics and Molecular Biology, Research and Advanced Studies Center of National Polytechnic Institute (CINVESTAV of IPN), Mexico City, Mexico
| |
Collapse
|
9
|
Venney CJ, Wellband KW, Heath DD. Rearing environment affects the genetic architecture and plasticity of DNA methylation in Chinook salmon. Heredity (Edinb) 2021; 126:38-49. [PMID: 32699390 PMCID: PMC7852867 DOI: 10.1038/s41437-020-0346-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic architecture and phenotypic plasticity are important considerations when studying trait variation within and among populations. Since environmental change can induce shifts in the genetic architecture and plasticity of traits, it is important to consider both genetic and environmental sources of phenotypic variation. While there is overwhelming evidence for environmental effects on phenotype, the underlying mechanisms are less clear. Variation in DNA methylation is a potential mechanism mediating environmental effects on phenotype due to its sensitivity to environmental stimuli, transgenerational inheritance, and influences on transcription. To characterize the effect of environment on methylation, we created two 6 × 6 (North Carolina II) Chinook salmon breeding crosses and reared the offspring in two environments: uniform hatchery tanks and seminatural stream channels. We sampled the fish twice during development, at the alevin (larval) and fry (juvenile) stages. We measured DNA methylation at 13 genes using a PCR-based bisulfite sequencing protocol. The genetic architecture of DNA methylation differed between rearing environments, with greater additive and nonadditive genetic variance in hatchery fish and greater maternal effects in seminatural channel fish, though gene-specific variation was evident. We observed plasticity in methylation across all assayed genes, as well as gene-specific effects at two genes in alevin and six genes in fry, indicating developmental stage-specific effects of rearing environment on methylation. Characterizing genetic and environmental influences on methylation is critical for future studies on DNA methylation as a potential mechanism for acclimation and adaptation.
Collapse
Affiliation(s)
- Clare J Venney
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Kyle W Wellband
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Québec City, QC, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
10
|
Genome evolution of blind subterranean mole rats: Adaptive peripatric versus sympatric speciation. Proc Natl Acad Sci U S A 2020; 117:32499-32508. [PMID: 33277437 DOI: 10.1073/pnas.2018123117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, N e , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.
Collapse
|
11
|
Guo B, Yin J, Hao W, Jiao M. Polyurethane foam induces epigenetic modification of mitochondrial DNA during different metamorphic stages of Tenebrio molitor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109461. [PMID: 31377519 DOI: 10.1016/j.ecoenv.2019.109461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The present work investigated the changes in DNA methylation pattern of Tenebrio molitor mitochondria genome at different development stages, which was fed with polyurethane foam as a sole diet. Polyurethane foam could influence the global methylation levels in mitochondria DNA of Tenebrio molitor. Different leves of 5-methylcytosine appeared at CpG and non-CpG sites of Tenebrio molitor mtDNA while they were fed with polyurethane foam: 10 CpG and 49 non-CpG sites at larval stage, 4 CpG and 31 non-CpG sites at pupa stage, 7 CpG and 56 non-CpG sites at adult stage in general. Moreover, we observed the decreased levels of ATP generation with the mitochondria DNA methylation variation. The results demonstrated that mitochondria DNA gene could be methylated in response to environmental pollutants to modulate stage-specific functions. Moreover, mtDNA methylation of polyurethane-foam-feeding Tenebrio molitor existed discrepancy in the developmental stage. The tentative methylation mechanism of mtDNA might be that polyurethane foam induced oxidative stress and increased the permeability of mitochondrial membranes, which resulted in transmethylase entry into mitochondria.
Collapse
Affiliation(s)
- Baoyuan Guo
- Academy of National Food and Strategic Reserves Administration, China.
| | - Jing Yin
- Ying Da Chang An Insurance Brokers Group CO.,LTD, Beijing, 100052, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Meng Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
12
|
Illum LRH, Bak ST, Lund S, Nielsen AL. DNA methylation in epigenetic inheritance of metabolic diseases through the male germ line. J Mol Endocrinol 2018; 60:R39-R56. [PMID: 29203518 DOI: 10.1530/jme-17-0189] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/26/2022]
Abstract
The global rise in metabolic diseases can be attributed to a complex interplay between biology, behavior and environmental factors. This article reviews the current literature concerning DNA methylation-based epigenetic inheritance (intergenerational and transgenerational) of metabolic diseases through the male germ line. Included are a presentation of the basic principles for DNA methylation in developmental programming, and a description of windows of susceptibility for the inheritance of environmentally induced aberrations in DNA methylation and their associated metabolic disease phenotypes. To this end, escapees, genomic regions with the intrinsic potential to transmit acquired paternal epigenetic information across generations by escaping the extensive programmed DNA demethylation that occurs during gametogenesis and in the zygote, are described. The ongoing descriptive and functional examinations of DNA methylation in the relevant biological samples, in conjugation with analyses of non-coding RNA and histone modifications, hold promise for improved delineation of the effect size and mechanistic background for epigenetic inheritance of metabolic diseases.
Collapse
Affiliation(s)
| | - Stine Thorhauge Bak
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Endocrinology and Diabetes, Aarhus University Hospital, Aarhus, Denmark
| | - Sten Lund
- Department of Clinical Medicine, Endocrinology and Diabetes, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
13
|
Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food Chem Toxicol 2017; 107:406-417. [PMID: 28709971 DOI: 10.1016/j.fct.2017.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs) is a major threat to the human health worldwide. The consumption of arsenic in drinking water and other food products is associated with the risk of development of type-2 diabetes mellitus (T2DM). The available experimental evidence indicates that epigenetic alterations may play an important role in the development of diseases that are linked with exposure to environmental toxicants. iAs seems to be associated with the epigenetic modifications such as alterations in DNA methylation, histone modifications, and micro RNA (miRNA) abundance. OBJECTIVE This article reviewed epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. METHOD Electronic databases such as PubMed, Scopus and Google scholar were searched for published literature from 1980 to 2017. Searched MESH terms were "Arsenic", "Epigenetic mechanism", "DNA methylation", "Histone modifications" and "Diabetes". RESULTS There are various factors involved in the pathogenesis of T2DM but it is assumed that arsenic consumption causes the epigenetic alterations both at the gene-specific level and generalized genome level. CONCLUSION The research indicates that exposure from low to moderate concentrations of iAs is linked with the epigenetic effects. In addition, it is evident that, arsenic can change the components of the epigenome and hence induces diabetes through epigenetic mechanisms, such as alterations in glucose transport and/or metabolism and insulin expression/secretion.
Collapse
|
14
|
Kobow K, Blümcke I. Epigenetics in epilepsy. Neurosci Lett 2017; 667:40-46. [PMID: 28111355 DOI: 10.1016/j.neulet.2017.01.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/02/2017] [Accepted: 01/06/2017] [Indexed: 11/19/2022]
Abstract
Approximately 50 million people have epilepsy, making it the most common chronic and severe neurological disease worldwide, with increased risk of mortality and psychological and socioeconomic consequences impairing quality of life. More than 30% of patients with epilepsy have inadequate control of their seizures with drug therapy. Any structural brain lesion can provoke epilepsy. However, progression of seizure activity as well as the development of drug-resistance remains difficult to predict, irrespective of the underlying epileptogenic condition, i.e., traumatic brain injury, developmental brain lesions, brain tumors or genetic inheritance. Mutated DNA sequences in genes encoding for ion channels or neurotransmitter receptors have been identified in hereditary focal or generalized epilepsies, but genotype-phenotype correlations are poor, arguing for additional factors determining the effect of a genetic predisposition. The dynamics of epigenetic mechanisms (e.g. DNA methylation, histone modifications, chromatin remodelling, and non-coding RNAs) provide likely explanations for common features in epilepsy and other complex diseases, including late onset, parent-of-origin effects, discordance of monozygotic twins, and fluctuation of symptoms. In addition, many focal epilepsies, including focal cortical dysplasias (FCDs), glio-neuronal tumors (e.g. ganglioglioma), or temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), do not seem to primarily associate with hereditary traits, suggesting other pathogenic mechanisms. Herein we will discuss the many faces of the epigenetic machinery, which provides powerful tools and mechanisms to propagate epileptogenicity and likely also contribute to the epileptogenic memory in chronic and difficult-to-treat epilepsies.
Collapse
Affiliation(s)
- K Kobow
- Department of Neuropathology, University Hospital Erlangen, Germany.
| | - I Blümcke
- Department of Neuropathology, University Hospital Erlangen, Germany
| |
Collapse
|
15
|
Cree SL, Fredericks R, Miller A, Pearce FG, Filichev V, Fee C, Kennedy MA. DNA G-quadruplexes show strong interaction with DNA methyltransferases in vitro. FEBS Lett 2016; 590:2870-83. [PMID: 27468168 DOI: 10.1002/1873-3468.12331] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/07/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022]
Abstract
The DNA methyltransferase enzymes (DNMTs) catalyzing cytosine methylation do so at specific locations of the genome, although with some level of redundancy. The de novo methyltransferases DNMT3A and 3B play a vital role in methylating the genome of the developing embryo in regions devoid of methylation marks. The ability of DNMTs to colocalize at sites of DNA damage is suggestive that recognition of mispaired bases and unusual structures is inherent to the function of these proteins. We provide evidence for G-quadruplex formation within imprinted gene promoters, and report high-affinity binding of recombinant human DNMTs to such DNA G-quadruplexes in vitro. These observations suggest a potential interaction of G-quadruplexes with the DNA methylation machinery, which may be of epigenetic and biological significance.
Collapse
Affiliation(s)
- Simone L Cree
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Rayleen Fredericks
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Allison Miller
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - F Grant Pearce
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Vyacheslav Filichev
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Conan Fee
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
16
|
Bianchessi V, Vinci MC, Nigro P, Rizzi V, Farina F, Capogrossi MC, Pompilio G, Gualdi V, Lauri A. Methylation profiling by bisulfite sequencing analysis of the mtDNA Non-Coding Region in replicative and senescent Endothelial Cells. Mitochondrion 2016; 27:40-7. [PMID: 26910457 DOI: 10.1016/j.mito.2016.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 02/19/2016] [Accepted: 02/19/2016] [Indexed: 12/21/2022]
Abstract
The regulation and function of Mitochondrial DNA (mtDNA) cytosine methylation (5 mC) are largely unexplored. Mitochondria, Endothelial Cell (EC) senescence, and cardiovascular dysfunction are closely related. We extensively investigated the mtDNA Non-Coding Region (NCR) methylation pattern and its variations in EC replicative senescence. We observed previously undescribed 5 mC clusters and a biased distribution of 5 mC among DNA sites and throughout the NCR. The methylation pattern in senescent EC showed non-random variations, including the hypo-methylation of mtDNA replication regulatory sites. Additional experiments opened to a possible role for 5 mC in D-loop formation, rather than in mitochondrial gene expression.
Collapse
Affiliation(s)
- Valentina Bianchessi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | | | - Patrizia Nigro
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Valeria Rizzi
- Genomics Core, Parco Tecnologico Padano, Lodi, Italy
| | - Floriana Farina
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | - Maurizio C Capogrossi
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata (IDI), IRCCS, Roma, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy
| | | | - Andrea Lauri
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino (CCM), IRCCS, Milano, Italy.
| |
Collapse
|
17
|
Sarkar DK. Male germline transmits fetal alcohol epigenetic marks for multiple generations: a review. Addict Biol 2016; 21:23-34. [PMID: 25581210 DOI: 10.1111/adb.12186] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alcohol exposure during fetal and early postnatal development can lead to an increased incidence of later life adult-onset diseases. Examples include central nervous system dysfunction, depression, anxiety, hyperactivity, and an inability to deal with stressful situations, increased infection and cancer. Direct effects of alcohol leading to developmental abnormalities often involve epigenetic modifications of genes that regulate cellular functions. Epigenetic marks carried over from the parents are known to undergo molecular programming events that happen early in embryonic development by a wave of DNA demethylation, which leaves the embryo with a fresh genomic composition. The proopiomelanocortin (Pomc) gene controls neuroendocrine-immune functions and is imprinted by fetal alcohol exposure. Recently, this gene has been shown to be hypermethylated through three generations. Additionally, the alcohol epigenetic marks on the Pomc gene are maintained in the male but not in the female germline during this transgenerational transmission. These data suggest that the male-specific chromosome might be involved in transmitting alcohol epigenetic marks through multiple generations.
Collapse
Affiliation(s)
- Dipak K. Sarkar
- Rutgers Endocrine Program; Department of Animal Sciences; Rutgers, The State University of New Jersey; Piscataway Township NJ USA
| |
Collapse
|
18
|
Abstract
Epigenetic processes in the brain involve the transfer of information arising from short-lived cellular signals and changes in neuronal activity into lasting effects on gene expression. Key molecular mediators of epigenetics include methylation of DNA, histone modifications, and noncoding RNAs. Emerging findings in animal models and human brain tissue reveal that epilepsy and epileptogenesis are associated with changes to each of these contributors to the epigenome. Understanding and influencing the molecular mechanisms controlling epigenetic change could open new avenues for treatment. DNA methylation, particularly hypermethylation, has been found to increase within gene body regions and interference with DNA methylation in epilepsy can change gene expression profiles and influence epileptogenesis. Posttranscriptional modification of histones, including transient as well as sustained changes to phosphorylation and acetylation, have been reported, which appear to influence gene expression. Finally, roles have emerged for noncoding RNAs in brain excitability and seizure thresholds, including microRNA and long noncoding RNA. Together, research supports strong effects of epigenetics influencing gene expression in epilepsy, suggesting future therapeutic approaches to manipulate epigenetic processes to treat or prevent epilepsy.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
19
|
Pilu R. Paramutation phenomena in plants. Semin Cell Dev Biol 2015; 44:2-10. [DOI: 10.1016/j.semcdb.2015.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023]
|
20
|
Cis-acting determinants of paramutation. Semin Cell Dev Biol 2015; 44:22-32. [DOI: 10.1016/j.semcdb.2015.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/23/2022]
|
21
|
Shen Q, Han L, Fan G, Abdel-Halim E, Jiang L, Zhu JJ. Highly sensitive photoelectrochemical assay for DNA methyltransferase activity and inhibitor screening by exciton energy transfer coupled with enzyme cleavage biosensing strategy. Biosens Bioelectron 2015; 64:449-55. [DOI: 10.1016/j.bios.2014.09.044] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 01/29/2023]
|
22
|
Weyrich A, Schüllermann T, Heeger F, Jeschek M, Mazzoni CJ, Chen W, Schumann K, Fickel J. Whole genome sequencing and methylome analysis of the wild guinea pig. BMC Genomics 2014; 15:1036. [PMID: 25429894 PMCID: PMC4302102 DOI: 10.1186/1471-2164-15-1036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/18/2014] [Indexed: 01/16/2023] Open
Abstract
Background DNA methylation is a heritable mechanism that acts in response to environmental changes, lifestyle and diseases by influencing gene expression in eukaryotes. Epigenetic studies of wild organisms are mandatory to understand their role in e.g. adaptational processes in the great variety of ecological niches. However, strategies to address those questions on a methylome scale are widely missing. In this study we present such a strategy and describe a whole genome sequence and methylome analysis of the wild guinea pig. Results We generated a full Wild guinea pig (Cavia aperea) genome sequence with enhanced coverage of methylated regions, benefiting from the available sequence of the domesticated relative Cavia porcellus. This new genome sequence was then used as reference to map the sequence reads of bisulfite treated Wild guinea pig sequencing libraries to investigate DNA-methylation patterns at nucleotide-specific level, by using our here described method, named ‘DNA-enrichment-bisulfite-sequencing’ (MEBS). The results achieved using MEBS matched those of standard methods in other mammalian model species. The technique is cost efficient, and incorporates both methylation enrichment results and a nucleotide-specific resolution even without a whole genome sequence available. Thus MEBS can be easily applied to extend methylation enrichment studies to a nucleotide-specific level. Conclusions The approach is suited to study methylomes of not yet sequenced mammals at single nucleotide resolution. The strategy is transferable to other mammalian species by applying the nuclear genome sequence of a close relative. It is therefore of interest for studies on a variety of wild species trying to answer evolutionary, adaptational, ecological or medical questions by epigenetic mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1036) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Weyrich
- Leibniz-Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Str 17, D-10315 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yin LG, Zou ZQ, Zhao HY, Zhang CL, Shen JG, Qi L, Qi M, Xue ZQ. Analysis of tissue-specific differentially methylated genes with differential gene expression in non-small cell lung cancers. Mol Biol 2014. [DOI: 10.1134/s0026893314050185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
DNA-AuNPs based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening. Biosens Bioelectron 2014; 58:40-7. [DOI: 10.1016/j.bios.2014.02.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 01/23/2023]
|
25
|
Latham KE. Role of aberrant protein modification, assembly, and localization in cloned embryo phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:141-58. [PMID: 25030763 DOI: 10.1007/978-1-4939-0817-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Aberrant post-translational modifications of proteins contribute markedly to the abnormal characteristics of cloned embryos. This review summarizes aberrant aspects of protein modifications and protein interactions, taking an inside-outside view to the cell. These aberrant aspects affect a range of processes including the control of chromatin structure, expression of pluripotency genes, propagation of epigenetic inheritance, protein trafficking, localization and signaling, cytoskeletal structure, mitosis, and correct localization of membrane proteins. By observing these aberrant features of cloned embryos, how they arise, and their impacts on development, it is possible to gain insight into normal development and identify novel strategies for enhancing cloning outcomes.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, College of Agriculture and Natural Resources, and The Reproductive and Developmental Sciences Program, Michigan State University, 474 S. Shaw Lane, Room 1230E, East Lansing, MI, 48824, USA,
| |
Collapse
|
26
|
Bhavsar-Jog YP, Van Dornshuld E, Brooks TA, Tschumper GS, Wadkins RM. Epigenetic modification, dehydration, and molecular crowding effects on the thermodynamics of i-motif structure formation from C-rich DNA. Biochemistry 2014; 53:1586-94. [PMID: 24564458 PMCID: PMC3985701 DOI: 10.1021/bi401523b] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
DNA
sequences with the potential to form secondary structures such
as i-motifs (iMs) and G-quadruplexes (G4s) are abundant in the promoters
of several oncogenes and, in some instances, are known to regulate
gene expression. Recently, iM-forming DNA strands have also been employed
as functional units in nanodevices, ranging from drug delivery systems
to nanocircuitry. To understand both the mechanism of gene regulation
by iMs and how to use them more efficiently in nanotechnological applications,
it is essential to have a thorough knowledge of factors that govern
their conformational states and stabilities. Most of the prior work
to characterize the conformational dynamics of iMs have been done
with iM-forming synthetic constructs like tandem (CCT)n repeats and in standard dilute buffer systems. Here,
we present a systematic study on the consequences of epigenetic modifications,
molecular crowding, and degree of hydration on the stabilities of
an iM-forming sequence from the promoter of the c-myc gene. Our results indicate that 5-hydroxymethylation of cytosines
destabilized the iMs against thermal and pH-dependent melting; contrarily,
5-methylcytosine modification stabilized the iMs. Under molecular
crowding conditions (PEG-300, 40% w/v), the thermal stability of iMs
increased by ∼10 °C, and the pKa was raised from 6.1 ± 0.1 to 7.0 ± 0.1. Lastly, the iM’s
stability at varying degrees of hydration in 1,2-dimethoxyethane,
2-methoxyethanol, ethylene glycol, 1,3-propanediol, and glycerol cosolvents
indicated that the iMs are stabilized by dehydration because of the
release of water molecules when folded. Our results highlight the
importance of considering the effects of epigenetic modifications,
molecular crowding, and the degree of hydration on iM structural dynamics.
For example, the incorporation of 5-methylycytosines and 5-hydroxymethlycytosines
in iMs could be useful for fine-tuning the pH- or temperature-dependent
folding/unfolding of an iM. Variations in the degree of hydration
of iMs may also provide an additional control of the folded/unfolded
state of iMs without having to change the pH of the surrounding matrix.
Collapse
Affiliation(s)
- Yogini P Bhavsar-Jog
- Department of Chemistry and Biochemistry and ‡Department of Pharmacology, University of Mississippi , University, Mississippi 38677, United States
| | | | | | | | | |
Collapse
|
27
|
Chen Y, Chen Q, McEachin RC, Cavalcoli JD, Yu X. H2A.B facilitates transcription elongation at methylated CpG loci. Genome Res 2014; 24:570-9. [PMID: 24402521 PMCID: PMC3975057 DOI: 10.1101/gr.156877.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
H2A.B is a unique histone H2A variant that only exists in mammals. Here we found that H2A.B is ubiquitously expressed in major organs. Genome-wide analysis of H2A.B in mouse ES cells shows that H2A.B is associated with methylated DNA in gene body regions. Moreover, H2A.B-enriched gene loci are actively transcribed. One typical example is that H2A.B is enriched in a set of differentially methylated regions at imprinted loci and facilitates transcription elongation. These results suggest that H2A.B positively regulates transcription elongation by overcoming DNA methylation in the transcribed region. It provides a novel mechanism by which transcription is regulated at DNA hypermethylated regions.
Collapse
Affiliation(s)
- Yibin Chen
- Division of Molecular Medicine and Genetics, Department of Internal Medicine
| | | | | | | | | |
Collapse
|
28
|
Abstract
In humans, genomic DNA is organized in 23 chromosome pairs coding for roughly 25,000 genes. Not all of them are active at all times. During development, a broad range of different cell types needs to be generated in a highly ordered and reproducible manner, requiring selective gene expression programs. Epigenetics can be regarded as the information management system that is able to index or bookmark distinct regions in our genome to regulate the readout of DNA. It further comprises the molecular memory of any given cell, allowing it to store information of previously experienced external (e.g., environmental) or internal (e.g., developmental) stimuli, to learn from this experience and to respond. The underlying epigenetic mechanisms can be synergistic, antagonistic, or mutually exclusive and their large variety combined with the variability and interdependence is thought to provide the molecular basis for any phenotypic variation in physiological and pathological conditions. Thus, widespread reconfiguration of the epigenome is not only a key feature of neurodevelopment, brain maturation, and adult brain function but also disease.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage, Erlangen, Germany.
| |
Collapse
|
29
|
Bellizzi D, D'Aquila P, Scafone T, Giordano M, Riso V, Riccio A, Passarino G. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 2013; 20:537-47. [PMID: 23804556 PMCID: PMC3859322 DOI: 10.1093/dnares/dst029] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/30/2013] [Indexed: 11/23/2022] Open
Abstract
DNA methylation is a common epigenetic modification of the mammalian genome. Conflicting data regarding the possible presence of methylated cytosines within mitochondrial DNA (mtDNA) have been reported. To clarify this point, we analysed the methylation status of mtDNA control region (D-loop) on human and murine DNA samples from blood and cultured cells by bisulphite sequencing and methylated/hydroxymethylated DNA immunoprecipitation assays. We found methylated and hydroxymethylated cytosines in the L-strand of all samples analysed. MtDNA methylation particularly occurs within non-C-phosphate-G (non-CpG) nucleotides, mainly in the promoter region of the heavy strand and in conserved sequence blocks, suggesting its involvement in regulating mtDNA replication and/or transcription. We observed DNA methyltransferases within the mitochondria, but the inactivation of Dnmt1, Dnmt3a, and Dnmt3b in mouse embryonic stem (ES) cells results in a reduction of the CpG methylation, while the non-CpG methylation shows to be not affected. This suggests that D-loop epigenetic modification is only partially established by these enzymes. Our data show that DNA methylation occurs in the mtDNA control region of mammals, not only at symmetrical CpG dinucleotides, typical of nuclear genome, but in a peculiar non-CpG pattern previously reported for plants and fungi. The molecular mechanisms responsible for this pattern remain an open question.
Collapse
Affiliation(s)
- Dina Bellizzi
- Department of Cell Biology, University of Calabria, Rende 87036, Italy
| | - Patrizia D'Aquila
- Department of Cell Biology, University of Calabria, Rende 87036, Italy
| | - Teresa Scafone
- Department of Cell Biology, University of Calabria, Rende 87036, Italy
| | - Marco Giordano
- Department of Cell Biology, University of Calabria, Rende 87036, Italy
| | - Vincenzo Riso
- Institute of Genetics and Biophysics—Adriano Buzzati Traverso, Napoli 80131, Italy
| | - Andrea Riccio
- Institute of Genetics and Biophysics—Adriano Buzzati Traverso, Napoli 80131, Italy
| | | |
Collapse
|
30
|
Hong C, Clement NL, Clement S, Hammoud SS, Carrell DT, Cairns BR, Snell Q, Clement MJ, Johnson WE. Probabilistic alignment leads to improved accuracy and read coverage for bisulfite sequencing data. BMC Bioinformatics 2013; 14:337. [PMID: 24261665 PMCID: PMC3924334 DOI: 10.1186/1471-2105-14-337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation has been linked to many important biological phenomena. Researchers have recently begun to sequence bisulfite treated DNA to determine its pattern of methylation. However, sequencing reads from bisulfite-converted DNA can vary significantly from the reference genome because of incomplete bisulfite conversion, genome variation, sequencing errors, and poor quality bases. Therefore, it is often difficult to align reads to the correct locations in the reference genome. Furthermore, bisulfite sequencing experiments have the additional complexity of having to estimate the DNA methylation levels within the sample. RESULTS Here, we present a highly accurate probabilistic algorithm, which is an extension of the Genomic Next-generation Universal MAPper to accommodate bisulfite sequencing data (GNUMAP-bs), that addresses the computational problems associated with aligning bisulfite sequencing data to a reference genome. GNUMAP-bs integrates uncertainty from read and mapping qualities to help resolve the difference between poor quality bases and the ambiguity inherent in bisulfite conversion. We tested GNUMAP-bs and other commonly-used bisulfite alignment methods using both simulated and real bisulfite reads and found that GNUMAP-bs and other dynamic programming methods were more accurate than the more heuristic methods. CONCLUSIONS The GNUMAP-bs aligner is a highly accurate alignment approach for processing the data from bisulfite sequencing experiments. The GNUMAP-bs algorithm is freely available for download at: http://dna.cs.byu.edu/gnumap. The software runs on multiple threads and multiple processors to increase the alignment speed.
Collapse
Affiliation(s)
- Changjin Hong
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Nathan L Clement
- Department of Computer Science, University of Texas, Austin, TX, USA
| | - Spencer Clement
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - Saher Sue Hammoud
- IVF and Andrology Laboratories, Departments of Surgery, Obstetrics and Gynecology, and Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Douglas T Carrell
- IVF and Andrology Laboratories, Departments of Surgery, Obstetrics and Gynecology, and Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Quinn Snell
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - Mark J Clement
- Department of Computer Science, Brigham Young University, Provo, UT, USA
| | - William Evan Johnson
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
31
|
Schwenk RW, Vogel H, Schürmann A. Genetic and epigenetic control of metabolic health. Mol Metab 2013; 2:337-47. [PMID: 24327950 PMCID: PMC3854991 DOI: 10.1016/j.molmet.2013.09.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as an excess accumulation of body fat resulting from a positive energy balance. It is the major risk factor for type 2 diabetes (T2D). The evidence for familial aggregation of obesity and its associated metabolic diseases is substantial. To date, about 150 genetic loci identified in genome-wide association studies (GWAS) are linked with obesity and T2D, each accounting for only a small proportion of the predicted heritability. However, the percentage of overall trait variance explained by these associated loci is modest (~5-10% for T2D, ~2% for BMI). The lack of powerful genetic associations suggests that heritability is not entirely attributable to gene variations. Some of the familial aggregation as well as many of the effects of environmental exposures, may reflect epigenetic processes. This review summarizes our current knowledge on the genetic basis to individual risk of obesity and T2D, and explores the potential role of epigenetic contribution.
Collapse
Key Words
- ADCY3, adenylate cyclase 3
- AQP9, aquaporin 9
- BDNF, brain-derived neurotrophic factor
- CDKAL1, CDK5 regulatory subunit associated protein 1-like 1
- CPEB4, cytoplasmic polyadenylation element binding protein 4
- DUSP22, dual specificity phosphatase 22
- DUSP8, dual specificity phosphatase 8
- Epigenetics
- GALNT10, UDP-N-acetyl-alpha-d-galactosamine:polypeptide N-acetylgalactosaminyltransferase 10 (GalNAc-T10)
- GIPR, gastric inhibitory polypeptide receptor
- GNPDA2, glucosamine-6-phosphate deaminase 2
- GP2, glycoprotein 2 (zymogen granule membrane)
- GWAS
- HIPK3, homeodomain interacting protein kinase 3
- IFI16, interferon, gamma-inducible protein 16
- KCNQ1, potassium voltage-gated channel, KQT-like subfamily, member 1
- KLHL32, kelch-like family member 32
- LEPR, leptin receptor
- MAP2K4, mitogen-activated protein kinase kinase 4
- MAP2K5, mitogen-activated protein kinase kinase 5
- MIR148A, microRNA 148a
- MMP9, matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV collagenase)
- MNDA, myeloid cell nuclear differentiation antigen
- NFE2L3, nuclear factor, erythroid 2-like 3
- Obesity
- PACS1, phosphofurin acidic cluster sorting protein 1
- PAX6, paired box gene 6
- PCSK1, proprotein convertase subtilisin/kexin type 1
- PGC1α, peroxisome proliferative activated receptor, gamma, coactivator 1 alpha, PM2OD1
- PRKCH, protein kinase C, eta
- PRKD1, protein kinase D1
- PRKG1, protein kinase, cGMP-dependent, type I
- Positional cloning
- QPCTL, glutaminyl-peptide cyclotransferase-like
- RBJ, DnaJ (Hsp40) homolog, subfamily C, member 27
- RFC5, replication factor C (activator 1) 5
- RMST, rhabdomyosarcoma 2 associated transcript (non-protein coding)
- SEC16B, SEC16 homolog B
- TFAP2B, transcription factor AP-2 beta (activating enhancer binding protein 2 beta)
- TNNI3, troponin I type 3 (cardiac)
- TNNT1, troponin T type 1 (skeletal, slow)
- Type 2 diabetes
Collapse
Affiliation(s)
| | | | - Annette Schürmann
- Corresponding author. Tel.: +49 33200 882368; fax: +49 33200 882334.
| |
Collapse
|
32
|
Xiang H, Li X, Dai F, Xu X, Tan A, Chen L, Zhang G, Ding Y, Li Q, Lian J, Willden A, Guo Q, Xia Q, Wang J, Wang W. Comparative methylomics between domesticated and wild silkworms implies possible epigenetic influences on silkworm domestication. BMC Genomics 2013; 14:646. [PMID: 24059350 PMCID: PMC3852238 DOI: 10.1186/1471-2164-14-646] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/04/2013] [Indexed: 11/13/2022] Open
Abstract
Background In contrast to wild species, which have typically evolved phenotypes over long periods of natural selection, domesticates rapidly gained human-preferred agronomic traits in a relatively short-time frame via artificial selection. Under domesticated conditions, many traits can be observed that cannot only be due to environmental alteration. In the case of silkworms, aside from genetic divergence, whether epigenetic divergence played a role in domestication is an unanswered question. The silkworm is still an enigma in that it has two DNA methyltransferases (DNMT1 and DNMT2) but their functionality is unknown. Even in particular the functionality of the widely distributed DNMT1 remains unknown in insects in general. Results By embryonic RNA interference, we reveal that knockdown of silkworm Dnmt1 caused decreased hatchability, providing the first direct experimental evidence of functional significance of insect Dnmt1. In the light of this fact and those that DNA methylation is correlated with gene expression in silkworms and some agronomic traits in domesticated organisms are not stable, we comprehensively compare silk gland methylomes of 3 domesticated (Bombyx mori) and 4 wild (Bombyx mandarina) silkworms to identify differentially methylated genes between the two. We observed 2-fold more differentiated methylated cytosinces (mCs) in domesticated silkworms as compared to their wild counterparts, suggesting a trend of increasing DNA methylation during domestication. Further study of more domesticated and wild silkworms narrowed down the domesticates’ epimutations, and we were able to identify a number of differential genes. One such gene showing demethyaltion in domesticates correspondently displays lower gene expression, and more interestingly, has experienced selective sweep. A methylation-increased gene seems to result in higher expression in domesticates and the function of its Drosophila homolog was previously found to be essential for cell volume regulation, indicating a possible correlation with the enlargement of silk glands in domesticated silkworms. Conclusions Our results imply epigenetic influences at work during domestication, which gives insight into long time historical controversies regarding acquired inheritance.
Collapse
Affiliation(s)
- Hui Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan Province 650223, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang Y, He X, Wang K, Su J, Chen Z, Yan G, Du Y. A label-free electrochemical assay for methyltransferase activity detection based on the controllable assembly of single wall carbon nanotubes. Biosens Bioelectron 2013; 41:238-43. [DOI: 10.1016/j.bios.2012.08.034] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/11/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022]
|
34
|
Ko YG, Yun J, Park HJ, Tanaka S, Shiota K, Cho JH. Dynamic methylation pattern of the methyltransferase1o (Dnmt1o) 5'-flanking region during mouse oogenesis and spermatogenesis. Mol Reprod Dev 2013; 80:212-22. [PMID: 23325669 DOI: 10.1002/mrd.22153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/09/2013] [Indexed: 12/30/2022]
Abstract
DNA methyltransferase1o (Dnmt1o), which is specific to oocyte and preimplantation embryo, plays a role in maintaining DNA methylation in mammalian cells. Here, we investigated the methylation status of CpGs sites in the Dnmt1o 5'-flanking region in germ cells at different stages of oogenesis or spermatogenesis. The methylation levels of the CpG sites at the 5'-flanking regions were hypermethylated in growing oocytes of all follicular stages, while the oocytes in meiotic metaphase II (MII) were demethylated. The methylation pattern within the CpGs sites in the 5'-flanking region, however, was dramatically changed during spermatogenesis. We observed that there was significant non-CpG methylation both in MII oocytes and spermatocytes. Although a low methylation level in non-CpG sites was observed in primary and secondary oocytes, the CpA site of position 25 and CpT site of position 29 within the no-CpG region in the 5'-flanking region of Dnmt1o was highly methylated in MII oocytes. During spermatogenesis, the low degree of methylation at CpG sites in spermatocytes increased to a higher degree in sperm, while the high ratio of methylation in non-CpG sites in spermatocytes decreased. Together, germ cells showed inverted methylation patterns between CpG and non-CpG sites in the Dnmt1o 5'-upstream region, and the methylation pattern during oogenesis did not drastically change, remaining generally hypomethylated at the MII stage.
Collapse
Affiliation(s)
- Yeoung-Gyu Ko
- Animal Genetic Resources Station, National Institute of Animal Science, RDA, Namwon, Korea.
| | | | | | | | | | | |
Collapse
|
35
|
Kobow K, Blümcke I. The emerging role of DNA methylation in epileptogenesis. Epilepsia 2013; 53 Suppl 9:11-20. [PMID: 23216575 DOI: 10.1111/epi.12031] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is a covalent chromatin modification, characterized by the biochemical addition of a methyl group (-CH3) to cytosine nucleotides via a DNA methyltransferase enzyme. 5'-Methylcytosine (5-mC), frequently called the fifth base, has been implicated in genome stability, silencing of transposable elements, and repression of gene expression. Through the latter, DNA methylation dynamics broadly influence brain development, function, and aging. Aberrant DNA methylation patterns, either localized to specific gene regions or scattered throughout the genome, are associated with many neurologic disorders. Herein, we discuss the emerging role of DNA methylation in epileptogenesis and the perspectives arising from epigenetic medicine as new therapeutic strategy in difficult-to-treat epilepsies.
Collapse
Affiliation(s)
- Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | |
Collapse
|
36
|
Abstract
Cancer has been considered a genetic disease with a wide array of well-characterized gene mutations and chromosomal abnormalities. Of late, aberrant epigenetic modifications have been elucidated in cancer, and together with genetic alterations, they have been helpful in understanding the complex traits observed in neoplasia. "Cancer Epigenetics" therefore has contributed substantially towards understanding the complexity and diversity of various cancers. However, the positioning of epigenetic events during cancer progression is still not clear, though there are some reports implicating aberrant epigenetic modifications in very early stages of cancer. Amongst the most studied aberrant epigenetic modifications are the DNA methylation differences at the promoter regions of genes affecting their expression. Hypomethylation mediated increased expression of oncogenes and hypermethylation mediated silencing of tumor suppressor genes are well known examples. This chapter also explores the correlation of DNA methylation and demethylation enzymes with cancer.
Collapse
Affiliation(s)
- Gopinathan Gokul
- Laboratory of Mammalian Genetics, CDFD, Hyderabad, 500001, India
| | | |
Collapse
|
37
|
Zaina S, Lund G. Epigenetics: a tool to understand diet-related cardiovascular risk? JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2012; 4:261-74. [PMID: 22353663 DOI: 10.1159/000334584] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) is a leading cause of mortality and is projected to hold its grim record as developing countries increase their wealth. Since specific nutritional habits are important risk factors for CVD, it is imperative to understand how ingredients of risk-associated diets convert a healthy cellular transcriptional program into a pathological one. Epigenetics has enriched our view of the genome by showing that DNA-associated regulatory proteins and RNAs, together with chemical modifications of the DNA itself, determine which parts of the DNA chain are transcribed or silent in a given phase of a cell's life. This complex biological entity--the epigenome--accounts for the enormous phenotypic diversity within a multicellular organism despite its unicellular origin. Crucially, the epigenome can be modified by diet and other exogenous factors, thus suggesting that epigenetic mechanisms might underlie pathological responses to CVD risk factors. Here, we will review the current knowledge of epigenetic mechanisms in diet-gene interactions and propose ways in which epigenetics might clarify the impact of genetic variants on CVD risk.
Collapse
Affiliation(s)
- Silvio Zaina
- Department of Medical Sciences, Division of Health Sciences, León Campus, University of Guanajuato, León, Mexico.
| | | |
Collapse
|
38
|
Abstract
The ways in which epigenetic modifications fix the effects of early environmental events, ensuring sustained responses to transient stimuli that result in modified gene expression patterns and phenotypes later in life, are a topic of considerable interest. This article focuses on recently discovered mechanisms and calls into question prevailing views about the dynamics, positions, and functions of epigenetic marks. Most epigenetic studies have addressed the long-term effects of environmental stressors on a small number of epigenetic marks, at the global or individual gene level, in humans and in animal models. In parallel, increasing numbers of studies based on high-throughput technologies are revealing additional complexity in epigenetic processes by highlighting the importance of crosstalk between different epigenetic marks in humans and mice. A number of studies focusing on metabolic programming and the developmental origin of health and disease have identified links between early nutrition, epigenetic processes, and long-term illness. The existence of a self-propagating epigenetic cycle has been shown. Moreover, recent studies have shown an obvious sexual dimorphism both for programming trajectories and in response to the same environmental insult. Despite recent progress, however, we are still far from understanding how, when, and where environmental stressors disturb key epigenetic mechanisms. Thus, the need to identify original key marks and monitor the changes they undergo throughout development, during an individual's lifetime, or over several generations remains a challenging issue.
Collapse
Affiliation(s)
- Anne Gabory
- INRA, UMR 1198 Biologie du Développement et Reproduction, Jouy-en-Josas, France
| | | | | |
Collapse
|
39
|
Golbabapour S, Abdulla MA, Hajrezaei M. A concise review on epigenetic regulation: insight into molecular mechanisms. Int J Mol Sci 2011; 12:8661-94. [PMID: 22272098 PMCID: PMC3257095 DOI: 10.3390/ijms12128661] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/07/2011] [Accepted: 11/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epigenetic mechanisms are responsible for the regulation of transcription of imprinted genes and those that induce a totipotent state. Starting just after fertilization, DNA methylation pattern undergoes establishment, reestablishment and maintenance. These modifications are important for normal embryo and placental developments. Throughout life and passing to the next generation, epigenetic events establish, maintain, erase and reestablish. In the context of differentiated cell reprogramming, demethylation and activation of genes whose expressions contribute to the pluripotent state is the crux of the matter. In this review, firstly, regulatory epigenetic mechanisms related to somatic cell nuclear transfer (SCNT) reprogramming are discussed, followed by embryonic development, and placental epigenetic issues.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| | - Mahmood Ameen Abdulla
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| | - Maryam Hajrezaei
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (M.A.A.); (M.H.)
| |
Collapse
|
40
|
Rangel-Salazar R, Wickström-Lindholm M, Aguilar-Salinas CA, Alvarado-Caudillo Y, Døssing KBV, Esteller M, Labourier E, Lund G, Nielsen FC, Rodríguez-Ríos D, Solís-Martínez MO, Wrobel K, Wrobel K, Zaina S. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages. BMC Genomics 2011; 12:582. [PMID: 22118513 PMCID: PMC3247910 DOI: 10.1186/1471-2164-12-582] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/25/2011] [Indexed: 01/31/2023] Open
Abstract
Background We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, i.e. de novo DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages. Results Native lipoprotein-induced de novo DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as de novo DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway. Conclusions Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a de novo DNA methyltransferase independently of canonical de novo enzymes, and show proof of principle that de novo DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.
Collapse
|
41
|
Pardo CE, Darst RP, Nabilsi NH, Delmas AL, Kladde MP. Simultaneous single-molecule mapping of protein-DNA interactions and DNA methylation by MAPit. ACTA ACUST UNITED AC 2011; Chapter 21:Unit 21.22. [PMID: 21732317 DOI: 10.1002/0471142727.mb2122s95] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sites of protein binding to DNA are inferred from footprints or spans of protection against a probing reagent. In most protocols, sites of accessibility to a probe are detected by mapping breaks in DNA strands. As discussed in this unit, such methods obscure molecular heterogeneity by averaging cuts at a given site over all DNA strands in a sample population. The DNA methyltransferase accessibility protocol for individual templates (MAPit), an alternative method described in this unit, localizes protein-DNA interactions by probing with cytosine-modifying DNA methyltransferases followed by bisulfite sequencing. Sequencing individual DNA products after amplification of bisulfite-converted sequences permits assignment of the methylation status of every enzyme target site along a single DNA strand. Use of the GC-methylating enzyme M.CviPI allows simultaneous mapping of chromatin accessibility and endogenous CpG methylation. MAPit is therefore the only footprinting method that can detect subpopulations of molecules with distinct patterns of protein binding or chromatin architecture and correlate them directly with the occurrence of endogenous methylation. Additional advantages of MAPit methylation footprinting as well as considerations for experimental design and potential sources of error are discussed.
Collapse
Affiliation(s)
- Carolina E Pardo
- Department of Biochemistry and Molecular Biology and UF Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, Gainesville, Florida, USA
| | | | | | | | | |
Collapse
|
42
|
Gabory A, Attig L, Junien C. Epigenetic mechanisms involved in developmental nutritional programming. World J Diabetes 2011; 2:164-75. [PMID: 22010058 PMCID: PMC3196195 DOI: 10.4239/wjd.v2.i10.164] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 08/31/2011] [Accepted: 09/08/2011] [Indexed: 02/05/2023] Open
Abstract
The ways in which epigenetic modifications fix the effects of early environmental events, ensuring sustained responses to transient stimuli, which result in modified gene expression patterns and phenotypes later in life, is a topic of considerable interest. This review focuses on recently discovered mechanisms and calls into question prevailing views about the dynamics, position and functions of epigenetic marks. Most epigenetic studies have addressed the long-term effects on a small number of epigenetic marks, at the global or individual gene level, of environmental stressors in humans and animal models. In parallel, increasing numbers of studies based on high-throughput technologies and focusing on humans and mice have revealed additional complexity in epigenetic processes, by highlighting the importance of crosstalk between the different epigenetic marks. A number of studies focusing on the developmental origin of health and disease and metabolic programming have identified links between early nutrition, epigenetic processes and long-term illness. The existence of a self-propagating epigenetic cycle has been demonstrated. Moreover, recent studies demonstrate an obvious sexual dimorphism both for programming trajectories and in response to the same environmental insult. Despite recent progress, we are still far from understanding how, when and where environmental stressors disturb key epigenetic mechanisms. Thus, identifying the original key marks and their changes throughout development during an individual’s lifetime or over several generations remains a challenging issue.
Collapse
Affiliation(s)
- Anne Gabory
- Anne Gabory, Linda Attig, Claudine Junien, Developmental Biology and Reproduction, National Institute for Agronomic Research, National Veterinary school, National Center For Scientific Research, Jouy en Josas, France
| | | | | |
Collapse
|
43
|
Yan J, Zierath JR, Barrès R. Evidence for non-CpG methylation in mammals. Exp Cell Res 2011; 317:2555-61. [PMID: 21925168 DOI: 10.1016/j.yexcr.2011.08.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 11/18/2022]
Abstract
In mammals, the existence of cytosine methylation on non-CpG sequences is controversial. Here, we adapted a LuminoMetric-based Assay (LUMA) to determine global non-CpG methylation levels in rodent and human tissues. We observed that <1% cytosines in non-CpG motifs were methylated in 3T3-L1 fibroblasts, whereas 7-13% cytosines in non-CpG motifs were methylated in mouse tissues or embryonic fibroblasts. Analysis of cytosine methylation in human, rat, and mouse tissues by bisulfite sequencing revealed non-CpG methylation levels up to 7.5% of all non-CpG cytosines. These levels dropped to 1.5% when a second round of PCR was performed prior to bisulfite sequencing, providing an explanation for the common underestimation of non-CpG methylation levels. Collectively, our results provide evidence that non-CpG methylation exists at substantial levels in mammals.
Collapse
Affiliation(s)
- Jie Yan
- Section of Integrative Physiology, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
44
|
Pilu R. Paramutation: just a curiosity or fine tuning of gene expression in the next generation? Curr Genomics 2011; 12:298-306. [PMID: 22131875 PMCID: PMC3131737 DOI: 10.2174/138920211795860099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 12/31/2022] Open
Abstract
Gene silencing is associated with heritable changes in gene expression which occur without changes in DNA sequence. In eukaryotes these phenomena are common and control important processes, such as development, imprinting, viral and transposon sequence silencing, as well as transgene silencing. Among the epigenetic events, paramutation occurs when a silenced allele (named paramutagenic) is able to silence another allele (paramutable) in trans and this change is heritable. The silenced paramutable allele acquires paramutagenic capacity in the next generations. In the 1950s, Alexander Brink described for the first time the phenomenon of paramutation, occurring in maize at the colored1 (r1) gene, a complex locus (encoding myc-homologous transcription factors) that regulates the anthocyanin biosynthetic pathway. Since then, paramutation and paramutation-like interactions have been discovered in other plants and animals, suggesting that they may underlie important mechanisms for gene expression. The molecular bases of these phenomena are unknown. However in some cases, the event of paramutation has been correlated with changes in DNA methylation, chromatin structure and recently several studies suggest that RNA could play a fundamental role. This last consideration is greatly supported by genetic screening for mutants inhibiting paramutation, which allowed the identification of genes involved in RNA-directed transcriptional silencing, although it is possible that proteins are also required for paramutation.The meaning of paramutation in the life cycle and in evolution remains to be determined even though we might conjecture that this phenomenon could be involved in a fast heritability of favourable epigenetic states across generations in a non-Mendelian way.
Collapse
Affiliation(s)
- Roberto Pilu
- Dipartimento di Produzione Vegetale, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|
45
|
Hemeon I, Gutierrez JA, Ho MC, Schramm VL. Characterizing DNA methyltransferases with an ultrasensitive luciferase-linked continuous assay. Anal Chem 2011; 83:4996-5004. [PMID: 21545095 DOI: 10.1021/ac200816m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA (cytosine-5)-methyltransferases (DNMTs) catalyze the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet) to the 5-position of cytosine residues and thereby silence transcription of regulated genes. DNMTs are important epigenetic targets. However, isolated DNMTs are weak catalysts and are difficult to assay. We report an ultrasensitive luciferase-linked continuous assay that converts the S-adenosyl-L-homocysteine product of DNA methylation to a quantifiable luminescent signal. Results with this assay are compared with the commonly used DNA labeling from [methyl-(3)H]AdoMet. A 5'-methylthioadenosine-adenosylhomocysteine nucleosidase is used to hydrolyze AdoHcy to adenine. Adenine phosphoribosyl transferase converts adenine to AMP and pyruvate orthophosphate dikinase converts AMP to ATP. Firefly luciferase gives a stable luminescent signal that results from continuous AMP recycling to ATP. This assay exhibits a broad dynamic range (0.1-1000 pmol of AdoHcy). The rapid response time permits continuous assays of DNA methylation detected by light output. The assay is suitable for high-throughput screening of chemical libraries for DNMT inhibition activity. The kinetic properties of human and bacterial CpG methyltransferases are characterized using this assay. Human catalytic domain DNMT3b activation by DNMT3L is shown to involve two distinct kinetic states that alter k(cat) but not K(m) for AdoMet. The assay is shown to be robust in the presence of high concentrations of the pyrimidine analogues 5-azacytidine and 5-azacytosine.
Collapse
Affiliation(s)
- Ivan Hemeon
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
46
|
Buske FA, Mattick JS, Bailey TL. Potential in vivo roles of nucleic acid triple-helices. RNA Biol 2011; 8:427-39. [PMID: 21525785 DOI: 10.4161/rna.8.3.14999] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ability of double-stranded DNA to form a triple-helical structure by hydrogen bonding with a third strand is well established, but the biological functions of these structures remain largely unknown. There is considerable albeit circumstantial evidence for the existence of nucleic triplexes in vivo and their potential participation in a variety of biological processes including chromatin organization, DNA repair, transcriptional regulation, and RNA processing has been investigated in a number of studies to date. There is also a range of possible mechanisms to regulate triplex formation through differential expression of triplex-forming RNAs, alteration of chromatin accessibility, sequence unwinding and nucleotide modifications. With the advent of next generation sequencing technology combined with targeted approaches to isolate triplexes, it is now possible to survey triplex formation with respect to their genomic context, abundance and dynamical changes during differentiation and development, which may open up new vistas in understanding genome biology and gene regulation.
Collapse
Affiliation(s)
- Fabian A Buske
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD Australia
| | | | | |
Collapse
|
47
|
Abstract
DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports have provided evidence that environmental factors at all ages could modify DNA methylation in somatic tissues, which suggests that DNA methylation is a more dynamic process than previously appreciated. Because of the importance of lifestyle factors in metabolic disorders, DNA methylation provides a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders.
Collapse
Affiliation(s)
- Romain Barres
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
48
|
López Castel A, Nakamori M, Thornton CA, Pearson CE. Identification of restriction endonucleases sensitive to 5-cytosine methylation at non-CpG sites, including expanded (CAG)n/(CTG)n repeats. Epigenetics 2011; 6:416-20. [PMID: 21364324 DOI: 10.4161/epi.6.4.14953] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Most epigenetic studies assess methylation of 5'-CpG-3' sites but recent evidence indicates that non-CpG cytosine methylation occurs at high levels in humans and other species. This is most prevalent at 5'-CHG-3', where H = A, C or T, and it preferentially occurs at 5'-CpA-3' and 5'-CpT-3' sites. With the goal of facilitating the detection of non-CpG methylation, the restriction endonucleases ApeKI, BbvI, EcoP15I, Fnu 4HI, MwoI and TseI were assessed for their sensitivity to 5-methylcytosine at GpCpA, GpCpT, GpCpC or GpCpG sites, where methylation is catalyzed by the DNA 5-cytosine 5'-GpC-3' methyltransferase M.CviPI. We tested a variety of sequences including various plasmid-based sites, a cloned disease-associated (CAG)83•(CTG)83 repeat and in vitro synthesized tracts of only (CAG)500•(CTG)500 or (CAG)800•(CTG)800. The repeat tracts are enriched for the preferred CpA and CpT motifs. We found that none of the tested enzymes can cleave their recognition sequences when they are 5'-GpC-3' methylated. A genomic site known to convert its non-CpG methylation levels upon C2C12 differentiation was confirmed through the use of these enzymes. These enzymes can be useful in rapidly and easily determining the most common non-CpG methylation status in various sequence contexts, as well as at expansions of (CAG)n•(CTG)n repeat tracts associated with diseases like myotonic dystrophy and Huntington disease.
Collapse
Affiliation(s)
- Arturo López Castel
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | | | | | | |
Collapse
|
49
|
Natural history of eukaryotic DNA methylation systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:25-104. [PMID: 21507349 DOI: 10.1016/b978-0-12-387685-0.00002-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not a terminal DNA modification, with enzymes of the Tet/JBP family of 2-oxoglutarate- and iron-dependent dioxygenases further hydroxylating it to form 5-hydroxymethylcytosine (5hmC). These enzymes emerged first in bacteriophages and appear to have been transferred to eukaryotes on one or more occasions. Eukaryotes appear to have recruited three major types of DNA-binding domains (SRA/SAD, TAM/MBD, and CXXC) in discriminating DNA with methylated or unmethylated cytosines. Analysis of the domain architectures of these domains and the DNA methylases suggests that early in eukaryotic evolution they developed a close functional link with SET-domain methylases and Jumonji-related demethylases that operate on peptides in chromatin proteins. In several eukaryotes, other functional connections were elaborated in the form of various combinations between domains related to DNA methylation and those involved in ATP-dependent chromatin remodeling and RNAi. In certain eukaryotes, such as mammals and angiosperms, novel dependencies on the DNA methylation system emerged, which resulted in it affecting unexpected aspects of the biology of these organisms such as parent-offspring interactions. In genomic terms, this was reflected in the emergence of new proteins related to methylation, such as Stella. The well-developed methylation systems of certain heteroloboseans, stramenopiles, chlorophytes, and haptophyte indicate that these might be new model systems to explore the relevance of DNA modifications in eukaryotes.
Collapse
|
50
|
Pandey A, Gupta SC, Gupta N. Comparative potential of cultured skin fibroblast, cumulus, and granulosa cell to produce somatic cell nuclear transfer (SCNT) preimplantation embryos in buffaloes (Bubalus bubalis) in relation to gene expressions. Cell Reprogram 2010; 12:357-68. [PMID: 20698775 DOI: 10.1089/cell.2009.0083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To improve the efficiency of somatic cell nuclear transfer (SCNT)-derived embryos in buffaloes (Bubalus bubalis), skin fibroblast, cumulus, and granulosa cells were cultured up to the 15th passage and cloned embryos were produced from each cell type. At the 15th passage the cumulative population doublings (CPDs) in cumulus cells was higher (60.78) than skin fibroblast (57.12) and granulosa (56.05) cell lines. Gene expression of chromatin remodelling proteins, that is, HDAC1, DNMT1, DNMT3a, and DNMT3b, were comparable at all five passages (P-3, P-6, P-9, P-12, and P-15) groups in cumulus cells but different in skin fibroblast and granulosa cells. Cleavage and blastocyst production rate in cumulus (65.9 and 27.4%)-derived embryos was higher than skin fibroblast (63.8 and 24.3%) and granulosa (62.5 and 22.3%)-derived embryos. Expressions of HDAC1, DNMT1, and DNMT3a mRNA in cumulus-derived blastocysts were similar to IVF blastocysts (control), whereas skin fibroblast and granulosa-derived blastocysts expression was significantly different (p < or = 0.05). DNMT3b mRNA expression in all the three donor cell types and IVF control were similar. The expression pattern of these genes showed the effect of donor cell type with different epigenetic reprogramming capabilities for SCNT embryo production rate. Overall, results indicated that cumulus cells are the best nuclear donor for SCNT.
Collapse
Affiliation(s)
- Alok Pandey
- Transgenic Research Laboratory, National Bureau of Animal Genetic Resources, Karnal, India
| | | | | |
Collapse
|