1
|
Bansal A, Sharma M, Choudhury H. Generation of a new DiCre expressing parasite strain for functional characterization of Plasmodium falciparum genes in blood stages. Sci Rep 2024; 14:24076. [PMID: 39402380 PMCID: PMC11473785 DOI: 10.1038/s41598-024-75657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Conditional regulation is a highly beneficial system for studying the function of essential genes in Plasmodium falciparum and dimerizable Cre recombinase (DiCre) is a recently adapted conditional regulation system suitable for this purpose. In the DiCre system, two inactive fragments of Cre are reconstituted to form a functionally active enzyme in the presence of rapamycin. Different loci have been targeted to generate parasite lines that express the DiCre enzyme. Here, we have used marker-free CRISPR-Cas9 gene editing to integrate the DiCre cassette in a redundant cg6 locus. We have shown the utility of the newly generated ∆cg6DC4 parasites in mediating robust, rapid, and highly specific excision of exogenously encoded gfp sequence. The ∆cg6DC4 parasites are also capable of conditional excision of an endogenous parasite gene, PF3D7_1246000. Conditional deletion of PF3D7_1246000 did not cause any inhibition in the asexual proliferation of the parasites. Furthermore, the health and morphology of the mutant parasites were comparable to that of the control parasites in Giemsa smears. The availability of another stable DiCre parasite strain competent for conditional excision of target genes will expedite functional characterization and validation of novel drug and vaccine targets against malaria.
Collapse
Affiliation(s)
- Abhisheka Bansal
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manish Sharma
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Himashree Choudhury
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
2
|
Li H, Wu Y, Qiu Y, Li X, Guan Y, Cao X, Liu M, Zhang D, Huang S, Lin L, Hui L, Ma X, Liu M, Zhang X, Wang L, Li D. Stable Transgenic Mouse Strain with Enhanced Photoactivatable Cre Recombinase for Spatiotemporal Genome Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201352. [PMID: 36266974 PMCID: PMC9731692 DOI: 10.1002/advs.202201352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Optogenetic genome engineering is a powerful technology for high-resolution spatiotemporal genetic manipulation, especially for in vivo studies. It is difficult to generate stable transgenic animals carrying a tightly regulated optogenetic system, as its long-term expression induces high background activity. Here, the generation of an enhanced photoactivatable Cre recombinase (ePA-Cre) transgenic mouse strain with stringent light responsiveness and high recombination efficiency is reported. Through serial optimization, ePA-Cre is developed to generate a transgenic mouse line that exhibits 175-fold induction upon illumination. Efficient light-dependent recombination is detected in embryos and various adult tissues of ePA-Cre mice crossed with the Ai14 tdTomato reporter. Importantly, no significant background Cre activity is detected in the tested tissues except the skin. Moreover, efficient light-inducible cell ablation is achieved in ePA-Cre mice crossed with Rosa26-LSL-DTA mice. In conclusion, ePA-Cre mice offer a tightly inducible, highly efficient, and spatiotemporal-specific genome engineering tool for multiple applications.
Collapse
Affiliation(s)
- Huiying Li
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
- Southern Medical University Affiliated Fengxian HospitalShanghai201499China
| | - Yingyin Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yuhao Qiu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xinru Li
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xiya Cao
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Meizhen Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Dan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Sijie Huang
- Key Laboratory of Brain Functional Genomics (Ministry of Education)Institute of Brain Functional GenomicsEast China Normal UniversityShanghai200062China
| | - Longnian Lin
- Key Laboratory of Brain Functional Genomics (Ministry of Education)Institute of Brain Functional GenomicsEast China Normal UniversityShanghai200062China
| | - Lijian Hui
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Xueyun Ma
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Xueli Zhang
- Southern Medical University Affiliated Fengxian HospitalShanghai201499China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell TherapyShanghai Key Laboratory of Regulatory Biology and School of Life SciencesEast China Normal UniversityShanghai200241China
| |
Collapse
|
3
|
Arias A, Manubens-Gil L, Dierssen M. Fluorescent transgenic mouse models for whole-brain imaging in health and disease. Front Mol Neurosci 2022; 15:958222. [PMID: 36211979 PMCID: PMC9538927 DOI: 10.3389/fnmol.2022.958222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
A paradigm shift is occurring in neuroscience and in general in life sciences converting biomedical research from a descriptive discipline into a quantitative, predictive, actionable science. Living systems are becoming amenable to quantitative description, with profound consequences for our ability to predict biological phenomena. New experimental tools such as tissue clearing, whole-brain imaging, and genetic engineering technologies have opened the opportunity to embrace this new paradigm, allowing to extract anatomical features such as cell number, their full morphology, and even their structural connectivity. These tools will also allow the exploration of new features such as their geometrical arrangement, within and across brain regions. This would be especially important to better characterize brain function and pathological alterations in neurological, neurodevelopmental, and neurodegenerative disorders. New animal models for mapping fluorescent protein-expressing neurons and axon pathways in adult mice are key to this aim. As a result of both developments, relevant cell populations with endogenous fluorescence signals can be comprehensively and quantitatively mapped to whole-brain images acquired at submicron resolution. However, they present intrinsic limitations: weak fluorescent signals, unequal signal strength across the same cell type, lack of specificity of fluorescent labels, overlapping signals in cell types with dense labeling, or undetectable signal at distal parts of the neurons, among others. In this review, we discuss the recent advances in the development of fluorescent transgenic mouse models that overcome to some extent the technical and conceptual limitations and tradeoffs between different strategies. We also discuss the potential use of these strains for understanding disease.
Collapse
Affiliation(s)
- Adrian Arias
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Linus Manubens-Gil
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Mara Dierssen
- Department of System Biology, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Experimental and Health Sciences, University Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
4
|
Wichers JS, Mesén-Ramírez P, Fuchs G, Yu-Strzelczyk J, Stäcker J, von Thien H, Alder A, Henshall I, Liffner B, Nagel G, Löw C, Wilson D, Spielmann T, Gao S, Gilberger TW, Bachmann A, Strauss J. PMRT1, a Plasmodium-Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. mBio 2022; 13:e0062322. [PMID: 35404116 PMCID: PMC9040750 DOI: 10.1128/mbio.00623-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles, and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown, and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures-the food vacuole, the apicoplast, and the parasite plasma membrane-and four out of the six membrane transporters are essential during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1; PF3D7_1135300), a unique Plasmodium-specific plasma membrane transporter, was shown to be essential for gametocytogenesis and functionally conserved within the genus Plasmodium. Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development, which have diverse intracellular localizations and putative functions. IMPORTANCE Plasmodium falciparum-infected erythrocytes possess multiple compartments with designated membranes. Transporter proteins embedded in these membranes not only facilitate movement of nutrients, metabolites, and other molecules between these compartments, but also are common therapeutic targets and can confer antimalarial drug resistance. Orphan membrane transporters in P. falciparum without sequence homology to transporters in other evolutionary lineages and divergent from host transporters may constitute attractive targets for novel intervention approaches. Here, we localized six of these putative transporters at different subcellular compartments and probed their importance during asexual parasite growth by using reverse genetic approaches. In total, only two candidates turned out to be dispensable for the parasite, highlighting four candidates as putative targets for therapeutic interventions. This study reveals the importance of several orphan transporters to blood stage P. falciparum development.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | | | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jing Yu-Strzelczyk
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Stäcker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Arne Alder
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Isabelle Henshall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Danny Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| |
Collapse
|
5
|
Codner GF, Erbs V, Loeffler J, Chessum L, Caulder A, Jullien N, Wells S, Birling MC, Teboul L. Universal Southern blot protocol with cold or radioactive probes for the validation of alleles obtained by homologous recombination. Methods 2021; 191:59-67. [PMID: 32599056 PMCID: PMC10790599 DOI: 10.1016/j.ymeth.2020.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
The widespread availability of recombineered vectors and gene targeted embryonic stem cells from large-scale repositories facilitates the generation of mouse models for functional genetic studies. Southern blotting validates the structure of these targeted alleles produced by homologous recombination, as well as indicating any additional integrations of the vector into the genome. Traditionally this technique employs radioactively-labelled probes; however, there are many laboratories that are restricted in their use of radioactivity. Here, we present a widely applicable protocol for Southern blot analysis using cold probes and alternative procedures employing radioactive probes. Furthermore, the probes are designed to recognise standardised regions of gene-targeting cassettes and so represent universally applicable reagents for assessing allelic integrity.
Collapse
Affiliation(s)
- Gemma F Codner
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon OX11 0RD, UK
| | - Valerie Erbs
- PHENOMIN-Institut Clinique de la Souris, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Jorik Loeffler
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon OX11 0RD, UK
| | - Lauren Chessum
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon OX11 0RD, UK
| | - Adam Caulder
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon OX11 0RD, UK
| | - Nicolas Jullien
- Aix-Marseille University, CNRS, INP, Institut de Neurophysiopathologie, Marseille, France
| | - Sara Wells
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon OX11 0RD, UK
| | - Marie-Christine Birling
- PHENOMIN-Institut Clinique de la Souris, CNRS, INSERM, Université de Strasbourg, Illkirch-Graffenstaden, Strasbourg 67404, France
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Harwell Campus, Didcot, Oxon OX11 0RD, UK.
| |
Collapse
|
6
|
Abstract
Malaria, caused by infection with Plasmodium parasites, remains a significant global health concern. For decades, genetic intractability and limited tools hindered our ability to study essential proteins and pathways in Plasmodium falciparum, the parasite associated with the most severe malaria cases. However, recent years have seen major leaps forward in the ability to genetically manipulate P. falciparum parasites and conditionally control protein expression/function. The conditional knockdown systems used in P. falciparum target all 3 components of the central dogma, allowing researchers to conditionally control gene expression, translation, and protein function. Here, we review some of the common knockdown systems that have been adapted or developed for use in P. falciparum. Much of the work done using conditional knockdown approaches has been performed in asexual, blood-stage parasites, but we also highlight their uses in other parts of the life cycle and discuss new ways of applying these systems outside of the intraerythrocytic stages. With the use of these tools, the field’s understanding of parasite biology is ever increasing, and promising new pathways for antimalarial drug development are being discovered.
Collapse
|
7
|
Tian X, Zhou B. Strategies for site-specific recombination with high efficiency and precise spatiotemporal resolution. J Biol Chem 2021; 296:100509. [PMID: 33676891 PMCID: PMC8050033 DOI: 10.1016/j.jbc.2021.100509] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
Site-specific recombinases (SSRs) are invaluable genome engineering tools that have enormously boosted our understanding of gene functions and cell lineage relationships in developmental biology, stem cell biology, regenerative medicine, and multiple diseases. However, the ever-increasing complexity of biomedical research requires the development of novel site-specific genetic recombination technologies that can manipulate genomic DNA with high efficiency and fine spatiotemporal control. Here, we review the latest innovative strategies of the commonly used Cre-loxP recombination system and its combinatorial strategies with other site-specific recombinase systems. We also highlight recent progress with a focus on the new generation of chemical- and light-inducible genetic systems and discuss the merits and limitations of each new and established system. Finally, we provide the future perspectives of combining various recombination systems or improving well-established site-specific genetic tools to achieve more efficient and precise spatiotemporal genetic manipulation.
Collapse
Affiliation(s)
- Xueying Tian
- Key Laboratory of Regenerative Medicine of Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Pacheco-Lugo LA, Sáenz-García JL, Díaz-Olmos Y, Netto-Costa R, Brant RSC, DaRocha WD. CREditing: a tool for gene tuning in Trypanosoma cruzi. Int J Parasitol 2020; 50:1067-1077. [PMID: 32858036 DOI: 10.1016/j.ijpara.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022]
Abstract
The genetic manipulation of Trypanosoma cruzi continues to be a challenge, mainly due to the lack of available and efficient molecular tools. The CRE-lox recombination system is a site-specific recombinase technology, widely used method of achieving conditional targeted deletions, inversions, insertions, gene activation, translocation, and other modifications in chromosomal or episomal DNA. In the present study, the CRE-lox system was adapted to expand the current genetic toolbox for this hard-to-manipulate parasite. For this, evaluations of whether direct protein delivery of CRE recombinase through electroporation could improve CRE-mediated recombination in T. cruzi were performed. CRE recombinase was fused to the C-terminus of T. cruzi histone H2B, which carries the nuclear localization signal and is expressed in the prokaryotic system. The fusion protein was affinity purified and directly introduced into epimastigotes and tissue culture-derived trypomastigotes. This enabled the control of gene expression as demonstrated by turning on a tandem dimer fluorescent protein reporter gene that had been previously transfected into parasites, achieving CRE-mediated recombination in up to 85% of parasites. This system was further tested for its ability to turn off gene expression, remove selectable markers integrated into the genome, and conditionally knock down the nitroreductase gene, which is involved in drug resistance. Additionally, CREditing also enabled the control of gene expression in tissue culture trypomastigotes, which are more difficult to transfect than epimastigotes. The considerable advances in genomic manipulation of T. cruzi shown in this study can be used by others to aid in the greater understanding of this parasite through gain- or loss-of-function approaches.
Collapse
Affiliation(s)
- Lisandro A Pacheco-Lugo
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil; Facultad de Ciencias Básicas Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - José L Sáenz-García
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil
| | - Yirys Díaz-Olmos
- Instituto Carlos Chagas, Fiocruz-Paraná, Paraná, Brazil; Facultad de Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | | | - Rodrigo S C Brant
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil.
| |
Collapse
|
9
|
Khoo ATT, Kim PJ, Kim HM, Je HS. Neural circuit analysis using a novel intersectional split intein-mediated split-Cre recombinase system. Mol Brain 2020; 13:101. [PMID: 32616061 PMCID: PMC7331137 DOI: 10.1186/s13041-020-00640-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/23/2020] [Indexed: 11/10/2022] Open
Abstract
The defining features of a neuron are its functional and anatomical connections with thousands of other neurons in the brain. Together, these neurons form functional networks that direct animal behavior. Current approaches that allow the interrogation of specific populations of neurons and neural circuits rely heavily on targeting their gene expression profiles or connectivity. However, these approaches are often unable to delineate specific neuronal populations. Here, we developed a novel intersectional split intein-mediated split-Cre recombinase system that can selectively label specific types of neurons based on their gene expression profiles and structural connectivity. We developed this system by splitting Cre recombinase into two fragments with evolved split inteins and subsequently expressed one fragment under the influence of a cell type-specific promoter in a transgenic animal, and delivered the other fragment via retrograde viral gene transfer. This approach results in the reconstitution of Cre recombinase in only specific population of neurons projecting from a specific brain region or in those of a specific neuronal type. Taken together, our split intein-based split-Cre system will be useful for sophisticated characterization of mammalian brain circuits.
Collapse
Affiliation(s)
- Audrey Tze Ting Khoo
- Neuroscience and Behavioural Disorders Programme, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Paul Jong Kim
- Neuroscience and Behavioural Disorders Programme, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea
| | - H Shawn Je
- Neuroscience and Behavioural Disorders Programme, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
10
|
Koussis K, Withers-Martinez C, Baker DA, Blackman MJ. Simultaneous multiple allelic replacement in the malaria parasite enables dissection of PKG function. Life Sci Alliance 2020; 3:e201900626. [PMID: 32179592 PMCID: PMC7081069 DOI: 10.26508/lsa.201900626] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Over recent years, a plethora of new genetic tools has transformed conditional engineering of the malaria parasite genome, allowing functional dissection of essential genes in the asexual and sexual blood stages that cause pathology or are required for disease transmission, respectively. Important challenges remain, including the desirability to complement conditional mutants with a correctly regulated second gene copy to confirm that observed phenotypes are due solely to loss of gene function and to analyse structure-function relationships. To meet this challenge, here we combine the dimerisable Cre (DiCre) system with the use of multiple lox sites to simultaneously generate multiple recombination events of the same gene. We focused on the Plasmodium falciparum cGMP-dependent protein kinase (PKG), creating in parallel conditional disruption of the gene plus up to two allelic replacements. We use the approach to demonstrate that PKG has no scaffolding or adaptor role in intraerythrocytic development, acting solely at merozoite egress. We also show that a phosphorylation-deficient PKG is functionally incompetent. Our method provides valuable new tools for analysis of gene function in the malaria parasite.
Collapse
Affiliation(s)
| | | | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, Francis Crick Institute, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
11
|
Mesén-Ramírez P, Bergmann B, Tran TT, Garten M, Stäcker J, Naranjo-Prado I, Höhn K, Zimmerberg J, Spielmann T. EXP1 is critical for nutrient uptake across the parasitophorous vacuole membrane of malaria parasites. PLoS Biol 2019; 17:e3000473. [PMID: 31568532 PMCID: PMC6786648 DOI: 10.1371/journal.pbio.3000473] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/10/2019] [Accepted: 09/10/2019] [Indexed: 12/02/2022] Open
Abstract
Intracellular malaria parasites grow in a vacuole delimited by the parasitophorous vacuolar membrane (PVM). This membrane fulfils critical roles for survival of the parasite in its intracellular niche such as in protein export and nutrient acquisition. Using a conditional knockout (KO), we here demonstrate that the abundant integral PVM protein exported protein 1 (EXP1) is essential for parasite survival but that this is independent of its previously postulated function as a glutathione S-transferase (GST). Patch-clamp experiments indicated that EXP1 is critical for the nutrient-permeable channel activity at the PVM. Loss of EXP1 abolished the correct localisation of EXP2, a pore-forming protein required for the nutrient-permeable channel activity and protein export at the PVM. Unexpectedly, loss of EXP1 affected only the nutrient-permeable channel activity of the PVM but not protein export. Parasites with low levels of EXP1 became hypersensitive to low nutrient conditions, indicating that EXP1 indeed is needed for nutrient uptake and experimentally confirming the long-standing hypothesis that the channel activity measured at the PVM is required for parasite nutrient acquisition. Hence, EXP1 is specifically required for the functional expression of EXP2 as the nutrient-permeable channel and is critical for the metabolite supply of malaria parasites. Intracellular malaria parasites reside in a vacuole that is formed by the parasitophorous vacuolar membrane (PVM) that separates the parasite from the host cell. Conditional knock-out reveals that the major integral PVM protein EXP1 is essential for the nutrient permeable channel activity of the PVM, and implicates this channel in parasite nutrient acquisition.
Collapse
Affiliation(s)
- Paolo Mesén-Ramírez
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Bärbel Bergmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thuy Tuyen Tran
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Matthias Garten
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jan Stäcker
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Isabel Naranjo-Prado
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Katharina Höhn
- Electron Microscopy Unit, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Lehmann C, Tan MSY, de Vries LE, Russo I, Sanchez MI, Goldberg DE, Deu E. Plasmodium falciparum dipeptidyl aminopeptidase 3 activity is important for efficient erythrocyte invasion by the malaria parasite. PLoS Pathog 2018; 14:e1007031. [PMID: 29768491 PMCID: PMC5973627 DOI: 10.1371/journal.ppat.1007031] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/29/2018] [Accepted: 04/15/2018] [Indexed: 11/19/2022] Open
Abstract
Parasite egress from infected erythrocytes and invasion of new red blood cells are essential processes for the exponential asexual replication of the malaria parasite. These two tightly coordinated events take place in less than a minute and are in part regulated and mediated by proteases. Dipeptidyl aminopeptidases (DPAPs) are papain-fold cysteine proteases that cleave dipeptides from the N-terminus of protein substrates. DPAP3 was previously suggested to play an essential role in parasite egress. However, little is known about its enzymatic activity, intracellular localization, or biological function. In this study, we recombinantly expressed DPAP3 and demonstrate that it has indeed dipeptidyl aminopeptidase activity, but contrary to previously studied DPAPs, removal of its internal prodomain is not required for activation. By combining super resolution microscopy, time-lapse fluorescence microscopy, and immunoelectron microscopy, we show that Plasmodium falciparum DPAP3 localizes to apical organelles that are closely associated with the neck of the rhoptries, and from which DPAP3 is secreted immediately before parasite egress. Using a conditional knockout approach coupled to complementation studies with wild type or mutant DPAP3, we show that DPAP3 activity is important for parasite proliferation and critical for efficient red blood cell invasion. We also demonstrate that DPAP3 does not play a role in parasite egress, and that the block in egress phenotype previously reported for DPAP3 inhibitors is due to off target or toxicity effects. Finally, using a flow cytometry assay to differentiate intracellular parasites from extracellular parasites attached to the erythrocyte surface, we show that DPAP3 is involved in the initial attachment of parasites to the red blood cell surface. Overall, this study establishes the presence of a DPAP3-dependent invasion pathway in malaria parasites.
Collapse
Affiliation(s)
- Christine Lehmann
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michele Ser Ying Tan
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Laura E. de Vries
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ilaria Russo
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Mateo I. Sanchez
- Department of Genetics, Stanford School of Medicine, Stanford, California, United States of America
| | - Daniel E. Goldberg
- Departments of Molecular Microbiology and Medicine, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Edgar Deu
- Chemical Biology Approaches to Malaria Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
13
|
Duncan SM, Jones NG, Mottram JC. Recent advances in Leishmania reverse genetics: Manipulating a manipulative parasite. Mol Biochem Parasitol 2017. [DOI: 10.1016/j.molbiopara.2017.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Collins CR, Hackett F, Atid J, Tan MSY, Blackman MJ. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes. PLoS Pathog 2017; 13:e1006453. [PMID: 28683142 PMCID: PMC5500368 DOI: 10.1371/journal.ppat.1006453] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture. Malaria, a disease that kills hundreds of thousands of people each year, is caused by a single-celled parasite that grows in red blood cells of infected individuals. Following each round of parasite multiplication, the infected red cells are actively ruptured in a process called egress, releasing a new generation of parasites. Egress is essential for progression to clinical disease, but little is known about how it is controlled. In this work we set out to address the function in egress of a Plasmodium falciparum protein called SERA5, an abundant component of the vacuole in which the parasite grows. We show that parasites lacking SERA5 (or lacking both SERA5 and a closely-related protein called SERA4) undergo accelerated but defective egress in which the bounding vacuole and red cell membranes do not rupture properly. This impedes the escape and subsequent replication of the newly-developed parasites. We also show that modification of SERA5 by parasites proteases just prior to egress is important for SERA5 function. Our results show that SERA5 is a ‘negative regulator’ of egress, controlling the speed of the pathway that leads to disruption of the membranes surrounding the intracellular parasite. Our findings increase our understanding of the molecular mechanisms underlying malarial egress and show that efficient egress requires tight control of the timing of membrane rupture.
Collapse
Affiliation(s)
- Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jonathan Atid
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michele Ser Ying Tan
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Pathogen Molecular Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
16
|
Späth GF, Clos J. Joining forces: first application of a rapamycin-induced dimerizable Cre system for conditional null mutant analysis in Leishmania. Mol Microbiol 2016; 100:923-7. [PMID: 26991431 DOI: 10.1111/mmi.13374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 11/29/2022]
Abstract
Reverse genetics in Leishmania spp has gained importance beyond basic research as efforts increase to discover and validate new drug targets. Often, the most promising targets are essential for viability of the parasites, defying a genetic analysis by current gene replacement strategies. Duncan et al. demonstrate the applicability of DiCre recombination in Leishmania for induced replacement of the kinase CRK3 gene in promastigotes. DiCre gene replacement leads to the rapid loss of the gene and allows monitoring the phenotypic effects of the loss of function, eliminating the need for prolonged cultivation and selection. Implementation of the DiCre approach will allow functional genetics of the most important of Leishmania genes and is likely to boost genetic research and drug target discovery.
Collapse
Affiliation(s)
- Gerald F Späth
- Institut Pasteur and INSERM U1201, Unité de Parasitologie Moléculaire et Signalisation, Paris, France
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
17
|
Duncan SM, Myburgh E, Philipon C, Brown E, Meissner M, Brewer J, Mottram JC. Conditional gene deletion with DiCre demonstrates an essential role for CRK3 in Leishmania mexicana cell cycle regulation. Mol Microbiol 2016; 100:931-44. [PMID: 26991545 PMCID: PMC4913733 DOI: 10.1111/mmi.13375] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2016] [Indexed: 12/22/2022]
Abstract
Leishmania mexicana has a large family of cyclin‐dependent kinases (CDKs) that reflect the complex interplay between cell cycle and life cycle progression. Evidence from previous studies indicated that Cdc2‐related kinase 3 (CRK3) in complex with the cyclin CYC6 is a functional homologue of the major cell cycle regulator CDK1, yet definitive genetic evidence for an essential role in parasite proliferation is lacking. To address this, we have implemented an inducible gene deletion system based on a dimerised Cre recombinase (diCre) to target CRK3 and elucidate its role in the cell cycle of L. mexicana. Induction of diCre activity in promastigotes with rapamycin resulted in efficient deletion of floxed CRK3, resulting in G2/M growth arrest. Co‐expression of a CRK3 transgene during rapamycin‐induced deletion of CRK3 resulted in complementation of growth, whereas expression of an active site CRK3T178E mutant did not, showing that protein kinase activity is crucial for CRK3 function. Inducible deletion of CRK3 in stationary phase promastigotes resulted in attenuated growth in mice, thereby confirming CRK3 as a useful therapeutic target and diCre as a valuable new tool for analyzing essential genes in Leishmania.
Collapse
Affiliation(s)
- Samuel M Duncan
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Elmarie Myburgh
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Cintia Philipon
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Elaine Brown
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Markus Meissner
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - James Brewer
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jeremy C Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK.,Centre for Immunology and Infection, Department of Biology, University of York, Wentworth Way, Heslington, York, YO10 5DD, UK
| |
Collapse
|
18
|
Abstract
The use of Cre recombinase to carry out conditional mutagenesis of transgenes and insert DNA cassettes into eukaryotic chromosomes is widespread. In addition to the numerous in vivo and in vitro applications that have been reported since Cre was first shown to function in yeast and mammalian cells nearly 30 years ago, the Cre-loxP system has also played an important role in understanding the mechanism of recombination by the tyrosine recombinase family of site-specific recombinases. The simplicity of this system, requiring only a single recombinase enzyme and short recombination sequences for robust activity in a variety of contexts, has been an important factor in both cases. This review discusses advances in the Cre recombinase field that have occurred over the past 12 years since the publication of Mobile DNA II. The focus is on those recent contributions that have provided new mechanistic insights into the reaction. Also discussed are modifications of Cre and/or the loxP sequence that have led to improvements in genome engineering applications.
Collapse
|
19
|
de Koning-Ward TF, Gilson PR, Crabb BS. Advances in molecular genetic systems in malaria. Nat Rev Microbiol 2015; 13:373-87. [DOI: 10.1038/nrmicro3450] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Kangussu-Marcolino MM, Cunha AP, Avila AR, Herman JP, DaRocha WD. Conditional removal of selectable markers in Trypanosoma cruzi using a site-specific recombination tool: proof of concept. Mol Biochem Parasitol 2015; 198:71-4. [PMID: 25619800 DOI: 10.1016/j.molbiopara.2015.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 11/29/2022]
Abstract
The scarcity of molecular tools for genetic manipulation is a critical obstacle for functional genomics studies on Trypanosoma cruzi. The current study adapted an inducible site-specific recombination system based on Dimerizable CRE recombinase (DiCRE). Two vectors for stable transfection were created, a first one to express inactive portions of DiCRE recombinase, and a second plasmid containing the loxP sites to test DiCRE activity. After integrating both constructs into the T. cruzi genome, it was shown that DiCRE recombinase can be efficiently used to manipulate its genome by allowing the removal of selectable markers thus generating homogeneous populations. The DiCRE recombinase success allows conditional knockout and the removal of selectable markers without prior parasite modification, which also facilitate the transferring of DiCRE recombinase to different T. cruzi strains.
Collapse
Affiliation(s)
| | - Ana Paula Cunha
- Departamento de Bioquímica e Biologia Molecular, UFPR, Brazil
| | | | | | | |
Collapse
|
21
|
Advantages and disadvantages of conditional systems for characterization of essential genes in Toxoplasma gondii. Parasitology 2014; 141:1390-8. [PMID: 24926834 DOI: 10.1017/s0031182014000559] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The dissection of apicomplexan biology has been highly influenced by the genetic tools available for manipulation of parasite DNA. Here, we describe different techniques available for the generation of conditional mutants. Comparison of the advantages and disadvantages of the three most commonly used regulation systems: the tetracycline inducible system, the regulation of protein stability and site-specific recombination are discussed. Using some previously described examples we explore some of the pitfalls involved in gene-function analysis using these systems that can lead to wrong or over-interpretation of phenotypes. We will also mention different options to standardize the application of these techniques for the characterization of gene function in high-throughput.
Collapse
|
22
|
O'Brien SP, DeLisa MP. Split-Cre recombinase effectively monitors protein-protein interactions in living bacteria. Biotechnol J 2014; 9:355-61. [DOI: 10.1002/biot.201300462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 12/13/2013] [Accepted: 12/31/2013] [Indexed: 01/15/2023]
|
23
|
Hermann M, Stillhard P, Wildner H, Seruggia D, Kapp V, Sánchez-Iranzo H, Mercader N, Montoliu L, Zeilhofer HU, Pelczar P. Binary recombinase systems for high-resolution conditional mutagenesis. Nucleic Acids Res 2014; 42:3894-907. [PMID: 24413561 PMCID: PMC3973285 DOI: 10.1093/nar/gkt1361] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Conditional mutagenesis using Cre recombinase expressed from tissue specific promoters facilitates analyses of gene function and cell lineage tracing. Here, we describe two novel dual-promoter-driven conditional mutagenesis systems designed for greater accuracy and optimal efficiency of recombination. Co-Driver employs a recombinase cascade of Dre and Dre-respondent Cre, which processes loxP-flanked alleles only when both recombinases are expressed in a predetermined temporal sequence. This unique property makes Co-Driver ideal for sequential lineage tracing studies aimed at unraveling the relationships between cellular precursors and mature cell types. Co-InCre was designed for highly efficient intersectional conditional transgenesis. It relies on highly active trans-splicing inteins and promoters with simultaneous transcriptional activity to reconstitute Cre recombinase from two inactive precursor fragments. By generating native Cre, Co-InCre attains recombination rates that exceed all other binary SSR systems evaluated in this study. Both Co-Driver and Co-InCre significantly extend the utility of existing Cre-responsive alleles.
Collapse
Affiliation(s)
- Mario Hermann
- Institute of Laboratory Animal Science, University of Zurich, Sternwartstrasse 6, CH-8091 Zurich, Switzerland, Institute of Neuropathology, University Hospital of Zurich, Schmelzbergstrasse 12, CH-8091 Zurich, Switzerland, Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain, CIBERER-ISCIII, Darwin 3, 28049 Madrid, Spain, Program of Cardiovascular Development, Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares Carlos III, calle Melchor Fernández Almagro 3, 28029 Madrid, Spain and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Deussing JM. Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res 2013; 354:9-25. [PMID: 24078022 DOI: 10.1007/s00441-013-1708-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/16/2013] [Indexed: 12/15/2022]
Abstract
In the 1980s, the basic principles of gene targeting were discovered and forged into sharp tools for efficient and precise engineering of the mouse genome. Since then, genetic mouse models have substantially contributed to our understanding of major neurobiological concepts and are of utmost importance for our comprehension of neuropsychiatric disorders. The "domestication" of site-specific recombinases and the continuous creative technological developments involving the implementation of previously identified biological principles such as transcriptional and posttranslational control now enable conditional mutagenesis with high spatial and temporal resolution. The initiation and successful accomplishment of large-scale efforts to annotate functionally the entire mouse genome and to build strategic resources for the research community have significantly accelerated the rapid proliferation and broad propagation of mouse genetic tools. Addressing neurobiological processes with the assistance of genetic mouse models is a routine procedure in psychiatric research and will be further extended in order to improve our understanding of disease mechanisms. In light of the highly complex nature of psychiatric disorders and the current lack of strong causal genetic variants, a major future challenge is to model of psychiatric disorders more appropriately. Humanized mice, and the recently developed toolbox of site-specific nucleases for more efficient and simplified tailoring of the genome, offer the perspective of significantly improved models. Ultimately, these tools will push the limits of gene targeting beyond the mouse to allow genome engineering in any model organism of interest.
Collapse
Affiliation(s)
- Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Kraepelinstrasse 2-10, 80804, Munich, Germany,
| |
Collapse
|
25
|
Novel thioredoxin-like proteins are components of a protein complex coating the cortical microtubules of Toxoplasma gondii. EUKARYOTIC CELL 2013; 12:1588-99. [PMID: 23873863 DOI: 10.1128/ec.00082-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microtubules are versatile biopolymers that support numerous vital cellular functions in eukaryotes. The specific properties of microtubules are dependent on distinct microtubule-associated proteins, as the tubulin subunits and microtubule structure are exceptionally conserved. Highly specialized microtubule-containing assemblies are often found in protists, which are rich sources for novel microtubule-associated proteins. A protozoan parasite, Toxoplasma gondii, possesses several distinct tubulin-containing structures, including 22 microtubules closely associated with the cortical membrane. Early ultrastructural studies have shown that the cortical microtubules are heavily decorated with associating proteins. However, little is known about the identities of these proteins. Here, we report the discovery of a novel protein, TrxL1 (for Thioredoxin-Like protein 1), and an associating complex that coats the cortical microtubules. TrxL1 contains a thioredoxin-like fold. To visualize its localization in live parasites by fluorescence, we replaced the endogenous TrxL1 gene with an mEmeraldFP-TrxL1 fusion gene. Structured illumination-based superresolution imaging of this parasite line produced a detailed view of the microtubule cytoskeleton. Despite its stable association with the cortical microtubules in the parasite, TrxL1 does not seem to bind to microtubules directly. Coimmunoprecipitation experiments showed that TrxL1 associates with a protein complex containing SPM1, a previously reported microtubule-associated protein in T. gondii. We also found that SPM1 recruits TrxL1 to the cortical microtubules. Besides SPM1, several other novel proteins are found in the TrxL1-containing complex, including TrxL2, a close homolog of TrxL1. Thus, our results reveal for the first time a microtubule-associated complex in T. gondii.
Collapse
|
26
|
Martín-Saavedra FM, Wilson CG, Voellmy R, Vilaboa N, Franceschi RT. Spatiotemporal control of vascular endothelial growth factor expression using a heat-shock-activated, rapamycin-dependent gene switch. Hum Gene Ther Methods 2013; 24:160-70. [PMID: 23527589 DOI: 10.1089/hgtb.2013.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A major challenge in regenerative medicine is to develop methods for delivering growth and differentiation factors in specific spatial and temporal patterns, thereby mimicking the natural processes of development and tissue repair. Heat shock (HS)-inducible gene expression systems can respond to spatial information provided by localized heating, but are by themselves incapable of sustained expression. Conversely, gene switches activated by small molecules provide tight temporal control and sustained expression, but lack mechanisms for spatial targeting. Here we combine the advantages of HS and ligand-activated systems by developing a novel rapamycin-regulated, HS-inducible gene switch that provides spatial and temporal control and sustained expression of transgenes such as firefly luciferase and vascular endothelial growth factor (VEGF). This gene circuit exhibits very low background in the uninduced state and can be repeatedly activated up to 1 month. Furthermore, dual regulation of VEGF induction in vivo is shown to stimulate localized vascularization, thereby providing a route for temporal and spatial control of angiogenesis.
Collapse
|
27
|
Collins CR, Das S, Wong EH, Andenmatten N, Stallmach R, Hackett F, Herman JP, Müller S, Meissner M, Blackman MJ. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle. Mol Microbiol 2013; 88:687-701. [PMID: 23489321 PMCID: PMC3708112 DOI: 10.1111/mmi.12206] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 02/01/2023]
Abstract
Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes.
Collapse
Affiliation(s)
- Christine R Collins
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Sujaan Das
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Eleanor H Wong
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Nicole Andenmatten
- Wellcome Trust Centre for Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Robert Stallmach
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Fiona Hackett
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| | - Jean-Paul Herman
- CRN2M – UMR 7286, Centre National de la Recherche Scientifique (CNRS), Aix Marseille UniversitéMarseille, France
| | - Sylke Müller
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Markus Meissner
- Wellcome Trust Centre for Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of GlasgowSir Graeme Davies Building, Glasgow, G12 8TA, UK
| | - Michael J Blackman
- Division of Parasitology, MRC National Institute for Medical ResearchMill Hill, London, NW7 1AA, UK
| |
Collapse
|
28
|
Murray SA, Eppig JT, Smedley D, Simpson EM, Rosenthal N. Beyond knockouts: cre resources for conditional mutagenesis. Mamm Genome 2012; 23:587-99. [PMID: 22926223 PMCID: PMC3655717 DOI: 10.1007/s00335-012-9430-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
With the effort of the International Phenotyping Consortium to produce thousands of strains with conditional potential gathering steam, there is growing recognition that it must be supported by a rich toolbox of cre driver strains. The approaches to build cre strains have evolved in both sophistication and reliability, replacing first-generation strains with tools that can target individual cell populations with incredible precision and specificity. The modest set of cre drivers generated by individual labs over the past 15+ years is now growing rapidly, thanks to a number of large-scale projects to produce new cre strains for the community. The power of this growing resource, however, depends upon the proper deep characterization of strain function, as even the best designed strain can display a variety of undesirable features that must be considered in experimental design. This must be coupled with the parallel development of informatics tools to provide functional data to the user and facilitated access to the strains through public repositories. We discuss the current progress on all of these fronts and the challenges that remain to ensure the scientific community can capitalize on the tremendous number of mouse resources at their disposal.
Collapse
Affiliation(s)
- Stephen A Murray
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| | | | | | | | | |
Collapse
|
29
|
Kaku M, Komatsu Y, Mochida Y, Yamauchi M, Mishina Y, Ko CC. Identification and characterization of neural crest-derived cells in adult periodontal ligament of mice. Arch Oral Biol 2012; 57:1668-75. [PMID: 22704955 DOI: 10.1016/j.archoralbio.2012.04.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/21/2012] [Accepted: 04/27/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Cells derived from the neural crest (NC) contribute to the development of several adult tissues, including tooth and periodontal tissue. Here, two transgenic lines, Wnt1-Cre/ZEG and P0-Cre/ZEG, were analysed to determine the fate and distribution of neural crest cells (NCCs) in adult mouse periodontal ligament (PDL). DESIGN Paraffin-embedded and decalcified histology samples were prepared from Wnt1-Cre/ZEG and P0-Cre/ZEG mice that were 4-, 8-, or 12-weeks old. Expression of GFP (NC-derived cells), NC-markers (Slug, AP-2 alpha, HNK-1, p75NTR and Nestin), and mesenchymal stem cell markers (CD29 and STRO-1) were examined using immunohistochemistry. RESULTS In four-week-old Wnt1-Cre/ZEG mice, GFP((+)) NC-derived cells were specifically detected in the mid-zone of PDL. The GFP((+)) cells constituted 1.4% of all cells in PDL, and this percentage decreased as the mice aged. The distribution and prevalence of GFP((+)) cells were comparable between Wnt1-Cre/ZEG and P0-Cre/ZEG mice. NC-marker((+)) cells were expressed only in GFP((+)) cells while MSC markers were detected only in GFP((-)) cells. CONCLUSION The prevalence and specific distribution of NC-derived cells in adult PDL of Wnt1-Cre/ZEG and P0-Cre/ZEG mouse were examined. Interestingly, various NC markers, including markers for undifferentiated NCCs, were still expressed at high levels in GFP((+)) cells. These observations may indicate that labelled cells in the Wnt1-Cre/ZEG and P0-Cre/ZEG mice did not constituted all NC-derived cells, but rather an interesting subset of NC-derived cells. These findings may be useful in understanding the homeostatic character of the PDL and contribute to establishing successful periodontal tissue maintenance.
Collapse
Affiliation(s)
- Masaru Kaku
- Dental Research Center, The University of North Carolina at Chapel Hill, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Ha S, Furukawa R, Stramiello M, Wagner JJ, Fechheimer M. Transgenic mouse model for the formation of Hirano bodies. BMC Neurosci 2011; 12:97. [PMID: 21978358 PMCID: PMC3203848 DOI: 10.1186/1471-2202-12-97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/06/2011] [Indexed: 12/28/2022] Open
Abstract
Background Hirano bodies are actin-rich cytoplasmic inclusions found predominantly in the brain in association with a variety of conditions including aging and Alzheimer's disease. The function of Hirano bodies in normal aging and in progression of disease has not been extensively investigated due to a lack of experimental model systems. We have developed a transgenic mouse model by expression of a gain-of-function actin cross-linking protein mutant. Results We used the Cre/loxP system to permit tissue specific expression of Hirano bodies, and employed the murine Thy 1 promoter to drive expression of Cre recombinase in the brain. Hirano bodies were observed in the cerebral cortex and hippocampus of homozygous double transgenic 6 month old mice containing Cre. The Hirano bodies were eosinophilic rods, and also exhibited the paracrystalline F-actin filament organization that is characteristic of these inclusions. Mice with Hirano bodies appear healthy and fertile, but exhibited some alterations in both short-term and long-term synaptic plasticity, including paired-pulse depression rather than facilitation, and decreased magnitude of early LTP. Conclusions Hirano bodies are not lethal and appear to have little or no effect on histology and tissue organization. Hirano bodies do modulate synaptic plasticity and exert clearly discernable effects on LTP and paired-pulse paradigms. This model system will allow us to investigate the impact of Hirano bodies in vivo, the pathways for formation and degradation of Hirano bodies, and whether Hirano bodies promote or modulate development of pathology and disease progression.
Collapse
Affiliation(s)
- Sangdeuk Ha
- Department Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | |
Collapse
|
31
|
Lin FY, Yang X. [Issues and solutions of conditional gene targeting]. YI CHUAN = HEREDITAS 2011; 33:469-484. [PMID: 21586394 DOI: 10.3724/sp.j.1005.2011.00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conditional gene targeting, based on the site-specific recombination system such as Cre-loxP, plays a vital role in the study of gene functions and the generation of disease mouse models. It was always under consideration that there were problems in the Cre-loxP recombination system, such as illegal expression pattern of Cre transgene, variation of Cre recombination efficiency and toxicity of Cre recombinase, as well as the potential influences of genetic background, breeding strategy, experimental control and gene compensation. Oversights of these issues may have a profound influence on the accuracy of gene functional dissection and conditional gene targeting mice phenotypic interpretation. Accordingly, solutions should be adopted including delicate regulative control of temporal-spatial specific Cre expression, detailed detection of Cre recombination efficiency, reduction of Cre toxicity, simplification of mouse genetic background, optimization of breeding, setting up of proper control and combined conditional gene targeting.
Collapse
Affiliation(s)
- Fu-Yu Lin
- Genetic Laboratory of Development and Diseases, State Key Laboratory of Proteomics, Institute of Biotechnology, Beijing 100071, China.
| | | |
Collapse
|
32
|
Hirrlinger J, Requardt RP, Winkler U, Wilhelm F, Schulze C, Hirrlinger PG. Split-CreERT2: temporal control of DNA recombination mediated by split-Cre protein fragment complementation. PLoS One 2009; 4:e8354. [PMID: 20016782 PMCID: PMC2791205 DOI: 10.1371/journal.pone.0008354] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 11/26/2009] [Indexed: 01/05/2023] Open
Abstract
Background DNA recombination technologies such as the Cre/LoxP system advance modern biological research by allowing conditional gene regulation in vivo. However, the precise targeting of a particular cell type at a given time point has remained challenging since spatial specificity has so far depended exclusively on the promoter driving Cre recombinase expression. We have recently established split-Cre that allows DNA recombination to be controlled by coincidental activity of two promoters, thereby increasing spatial specificity of Cre-mediated DNA recombination. To allow temporal control of split-Cre-mediated DNA recombination we have now extended split-Cre by fusing split-Cre proteins with the tamoxifen inducible ERT2 domain derived from CreERT2. Methodology/Principal Findings In the split-CreERT2 system, Cre-mediated DNA recombination is controlled by two expression cassettes as well as the time of tamoxifen application. By using two independent Cre-dependent reporters in cultured cells, the combination of NCre-ERT2+ERT2-CCre was identified as having the most favorable properties of all constructs tested, showing an induction ratio of about 10 and EC50-values for 4-hydroxy-tamoxifen of 10 nM to 70 nM. Conclusions/Significance These characteristics of split-CreERT2 in vitro indicate that split-CreERT2 will be well suited for inducing DNA recombination in living mice harboring LoxP-flanked alleles. In this way, split-CreERT2 will provide a new tool of modern genetics allowing spatial and temporal precise genetic access to cell populations defined by the simultaneous activity of two promoters.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- N05 Neural Plasticity, Interdisciplinary Centre for Clinical Research (IZKF), University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Gama Sosa MA, De Gasperi R, Elder GA. Animal transgenesis: an overview. Brain Struct Funct 2009; 214:91-109. [PMID: 19937345 DOI: 10.1007/s00429-009-0230-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Accepted: 11/06/2009] [Indexed: 10/20/2022]
Abstract
Transgenic animals are extensively used to study in vivo gene function as well as to model human diseases. The technology for producing transgenic animals exists for a variety of vertebrate and invertebrate species. The mouse is the most utilized organism for research in neurodegenerative diseases. The most commonly used techniques for producing transgenic mice involves either the pronuclear injection of transgenes into fertilized oocytes or embryonic stem cell-mediated gene targeting. Embryonic stem cell technology has been most often used to produce null mutants (gene knockouts) but may also be used to introduce subtle genetic modifications down to the level of making single nucleotide changes in endogenous mouse genes. Methods are also available for inducing conditional gene knockouts as well as inducible control of transgene expression. Here, we review the main strategies for introducing genetic modifications into the mouse, as well as in other vertebrate and invertebrate species. We also review a number of recent methodologies for the production of transgenic animals including retrovirus-mediated gene transfer, RNAi-mediated gene knockdown and somatic cell mutagenesis combined with nuclear transfer, methods that may be more broadly applicable to species where both pronuclear injection and ES cell technology have proven less practical.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | | | | |
Collapse
|
34
|
Capasso P, Aliprandi M, Ossolengo G, Edenhofer F, de Marco A. Monodispersity of recombinant Cre recombinase correlates with its effectiveness in vivo. BMC Biotechnol 2009; 9:80. [PMID: 19747375 PMCID: PMC2755479 DOI: 10.1186/1472-6750-9-80] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/11/2009] [Indexed: 11/21/2022] Open
Abstract
Background Cre recombinase is a common reagent used for the in vivo on/off switching of the expression of target genes flanked by loxP sites. In particular, recombinant TAT-Cre fusion constructs purified from bacteria have been used to promote the cell uptake of the enzyme. However, the recovery of active TAT-Cre remains a demanding process and its specific activity varies significantly among batches, making difficult data comparison. Results We noticed a strong correlation between recombinase activity and enzyme monodispersity. The existence of such correlation enabled us to indirectly monitor the TAT-Cre recombinase activity during the multi-step purification process by measuring its monodispersity, a parameter detectable by means of a spectrofluorimetric assay that allows the calculation of the Aggregation Index (AI) in an easy and rapid way. AI values were recorded after each purification passage to identify the critical steps and to choose optimal alternatives for chromatographic conditions, desalting procedures, and protocols for bacterial endotoxin removal. Furthermore, the effect of metal ions and temperature on TAT-Cre aggregation and inactivation was characterized in vitro. Finally, we optimized the enzyme delivery protocol in vivo by following the accumulation tuning of the reporter protein β-catenin. Conclusion A rational purification protocol for TAT-Cre has been developed by choosing the options that minimize the enzyme aggregation. Our data suggest that AI measurement should support the optimization of any protocol aiming at the recovery of monodispersed protein.
Collapse
Affiliation(s)
- Paola Capasso
- Cogentech-Consortium for Genomics Technologies, via Adamello 16, 20139 Milan, Italy
| | | | | | | | | |
Collapse
|
35
|
Long MA, Rossi FMV. Silencing inhibits Cre-mediated recombination of the Z/AP and Z/EG reporters in adult cells. PLoS One 2009; 4:e5435. [PMID: 19415111 PMCID: PMC2672169 DOI: 10.1371/journal.pone.0005435] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/12/2009] [Indexed: 12/25/2022] Open
Abstract
Background The Cre-loxP system has been used to enable tissue specific activation, inactivation and mutation of many genes in vivo and has thereby greatly facilitated the genetic dissection of several cellular and developmental processes. In such studies, Cre-reporter strains, which carry a Cre-activated marker gene, are frequently utilized to validate the expression profile of Cre transgenes, to act as a surrogate marker for excision of a second allele, and to irreversibly label cells for lineage tracing experiments. Principal Findings We have studied three commonly used Cre-reporter strains, Z/AP, Z/EG and R26R-EYFP and have demonstrated that although each reporter can be reliably activated by Cre during early development, exposure to Cre in adult hematopoietic cells results in a much lower frequency of marker-positive cells in the Z/AP or Z/EG strains than in the R26R-EYFP strain. In marker negative cells derived from the Z/AP and Z/EG strains, the transgenic promoter is methylated and Cre-mediated recombination of the locus is inhibited. Conclusions These results show that the efficiency of Cre-mediated recombination is not only dependent on the genomic context of a given loxP-flanked sequence, but also on stochastic epigenetic mechanisms underlying transgene variegation. Furthermore, our data highlights the potential shortcomings of utilizing the Z/AP and Z/EG reporters as surrogate markers of excision or in lineage tracing experiments.
Collapse
Affiliation(s)
- Michael A. Long
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fabio M. V. Rossi
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
36
|
Hirrlinger J, Scheller A, Hirrlinger PG, Kellert B, Tang W, Wehr MC, Goebbels S, Reichenbach A, Sprengel R, Rossner MJ, Kirchhoff F. Split-cre complementation indicates coincident activity of different genes in vivo. PLoS One 2009; 4:e4286. [PMID: 19172189 PMCID: PMC2628726 DOI: 10.1371/journal.pone.0004286] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 12/12/2008] [Indexed: 11/19/2022] Open
Abstract
Cre/LoxP recombination is the gold standard for conditional gene regulation in mice in vivo. However, promoters driving the expression of Cre recombinase are often active in a wide range of cell types and therefore unsuited to target more specific subsets of cells. To overcome this limitation, we designed inactive "split-Cre" fragments that regain Cre activity when overlapping co-expression is controlled by two different promoters. Using transgenic mice and virus-mediated expression of split-Cre, we show that efficient reporter gene activation is achieved in vivo. In the brain of transgenic mice, we genetically defined a subgroup of glial progenitor cells in which the Plp1- and the Gfap-promoter are simultaneously active, giving rise to both astrocytes and NG2-positive glia. Similarly, a subset of interneurons was labelled after viral transfection using Gad67- and Cck1 promoters to express split-Cre. Thus, split-Cre mediated genomic recombination constitutes a powerful spatial and temporal coincidence detector for in vivo targeting.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Interdisciplinary Centre for Clinical Research (IZKF), N05 Neural Plasticity, Faculty of Medicine, University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Göttingen, Germany
- * E-mail: (JH); (FK)
| | - Anja Scheller
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Section of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
| | - Petra G. Hirrlinger
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Paul Flechsig Institute for Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Beate Kellert
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Wannan Tang
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael C. Wehr
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute for Brain Research, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Moritz J. Rossner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Frank Kirchhoff
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- DFG Research Center for Molecular Physiology of the Brain, Göttingen, Germany
- * E-mail: (JH); (FK)
| |
Collapse
|
37
|
Jullien N, Goddard I, Selmi-Ruby S, Fina JL, Cremer H, Herman JP. Use of ERT2-iCre-ERT2 for conditional transgenesis. Genesis 2008; 46:193-9. [PMID: 18395834 DOI: 10.1002/dvg.20383] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We examined the use of ERT2-iCre-ERT2 (Cre2ERT2), a tamoxifen-regulated form of Cre that has been described to have a background activity lower than that of other tamoxifen-regulated Cre constructs, for establishing performant conditional deleter mouse lines. Cre2ERT2 was inserted by homologous recombination into the Rosa26 locus. These mice were mated with R26R Cre-reporter mice. No recombination could be observed in the progenies in the absence of tamoxifen treatment. Tamoxifen treatment at E13-14 led to a high level, albeit variable, recombination in most of the tissues examined: liver, heart, kidney, brain, lung etc. Treatment of adult animals also induced recombination in these tissues, although at a lower level. Northern blot and qPCR studies suggested that these differences are not linked to significant variations of the level of expression of Cre2ERT2. Thus, Cre2ERT2 appears to be a good alternative to existing modulatable Cre systems, displaying a lack of background activity and a high-level inducibility in vivo.
Collapse
|