1
|
Chand R, Kumar P, Kumar A, Ahmad SF, Singh P, Kumar A, Haritha P, Gaitri N, Murugasamy R, Kumar S, Chauhan A, Dutt T. Comparison of ddRAD derived genome-wide SSR markers in outbred and inbred Swiss albino mice. Gene 2025; 961:149559. [PMID: 40350065 DOI: 10.1016/j.gene.2025.149559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/29/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Genetic monitoring of inbred laboratory animal populations, developed at any laboratory, is one of the key elements of quality control and their colony management. The present study aimed to mine microsatellite (or SSR) markers from double digest restriction-site associated DNA (ddRAD) sequencing data of outbred foundation stock and F9 inbred generation of Swiss albino mice. Genomic DNA (12 F0 outbred and 12 F9 inbred) was isolated from tail tissue samples of F0 outbred and F9 inbred Swiss albino mice and processed for genotyping by sequencing using ddRAD platform. Double digestion of DNA was done using EcoR1 and Mse1 enzymes, and ddRAD data was subsequently analysed to identify and characterize microsatellite markers at genome-wide level. The analysis involved three key steps: pre-processing of reads, single sequence repeat (SSR) mining, and primer designing using different software i.e., PEAR, stacks and QDD. A total of 508 and 353 SSR motifs were identified in the outbred and inbred groups, respectively. Additionally, 828 and 551 primer sets were designed for the outbred and inbred groups, respectively. Furthermore, SSR loci specific to the outbred and inbred groups were also identified. Among these, eight SSR motifs (three each specific to the outbred and inbred groups, and two common) were validated using PCR amplification and gel electrophoresis. The designed primer sets successfully amplified respective SSR loci and produced reproducible bands on gel electrophoresis. The validated microsatellites were mapped to specific chromosomal locations using NCBI BLASTN with Mus musculus as the reference genome. In conclusion, the present study reports mining of SSR loci in outbred and inbred mice population. SSR loci were found to be more abundant and diverse in outbred population as compared to the inbred population. The unique SSRs identified for outbred and inbred groups will be helpful in checking the strain purity, marker assisted selection, and breeding programs without need for repeating the ddRAD sequencing in other laboratory animal population.
Collapse
Affiliation(s)
- Roshni Chand
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Pushpendra Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India.
| | - Amit Kumar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India; Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India.
| | - Parul Singh
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Pala Haritha
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Nitish Gaitri
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Rudhreswaran Murugasamy
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Subodh Kumar
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Anuj Chauhan
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122 Uttar Pradesh, India
| |
Collapse
|
2
|
Kalpana MP, Ramesh S, Siddu CB, Basanagouda G, Madhusudan K, Sathish H, Sindhu D, Kemparaju M, Anilkumar C. Low density marker-based effectiveness and efficiency of early-generation genomic selection relative to phenotype-based selection in dolichos bean (Lablab purpureus L. Sweet). THE PLANT GENOME 2025; 18:e70039. [PMID: 40420462 DOI: 10.1002/tpg2.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 12/19/2024] [Accepted: 03/24/2025] [Indexed: 05/28/2025]
Abstract
Genomic prediction has been demonstrated to be an efficient approach for the selection of candidates based on marker information in many crops. However, efforts to understand the efficiency of genomic selection over phenotype-based selection in understudied crops such as dolichos bean (Lablab purpureus L. Sweet) are limited. Our objectives were to (i) explore the effective marker density for achieving high prediction accuracy and (ii) assess the effectiveness and efficiency of genomic selection over phenotype-based selection on seed yield at early segregating generations in dolichos bean. In this study, the training population, which consisted of F5:6 recombinant inbreds, had a shared common parent with the breeding population, which consisted of F2 generation breeding population. The populations were genotyped with newly synthesized genomic simple sequence repeat-based markers. The effective marker density for genomic prediction was assessed by using a varying number of markers in predictions using 11 different models. Furthermore, the effectiveness of genomic selection was assessed by comparing the genetic gains in progenies between genotypes selected based on predicted seed yield and phenotypically selected genotypes. Our results indicate that low-density markers that are evenly distributed throughout the genome are sufficient for the integration of genomic selection in dolichos breeding programs. The genomic selection was proved to be two times more effective than phenotypic selection in early-generation selection in dolichos beans. The results have a significant impact on adopting genomic selection in regular breeding programs of Dolichos beans at a low cost.
Collapse
Affiliation(s)
- Mugali Pundalik Kalpana
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - Sampangi Ramesh
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - Chindi Basavaraj Siddu
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - Gonal Basanagouda
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
- Central Sericultural Research and Training Institute, Pampore, India
| | - K Madhusudan
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - Hosakoti Sathish
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - Dinesh Sindhu
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - Munegowda Kemparaju
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
| | - C Anilkumar
- Department of Genetics and Plant Breeding, College of Agriculture, University of Agricultural Sciences, Bangalore, India
- ICAR-National Rice Research Institute, Cuttack, India
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
3
|
Steele K, Quinton-Tulloch M, Vyas D, Witcombe J. Thousands of trait-specific KASP markers designed for diverse breeding applications in rice (Oryza sativa). G3 (BETHESDA, MD.) 2025; 15:jkae251. [PMID: 39486028 PMCID: PMC11708223 DOI: 10.1093/g3journal/jkae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024]
Abstract
This study aimed to broaden applicability of KASP for Oryza sativa across diverse genotypes through incorporation of ambiguous (degenerate) bases into their primer designs and to validate 4,000 of them for genotyping applications. A bioinformatics pipeline was used to compare 129 rice genomes from 89 countries with the indica reference genome R498 and generate ∼1.6 million KASP designs for the more common variants between R498 and the other genomes. Of the designs, 98,238 were for predicted functional markers. Up to 5 KASP each for 1,024 breeder-selected loci were assayed in a panel of 178 diverse rice varieties, generating 3,366 validated KASP. The 84% success rate was within the normal range for KASP demonstrating that the ambiguous bases do not compromise efficacy. The 3,366-trait-specific marker panel was applied for population structure analysis in the diversity panel and resolved them into 4 expected groups. Target variations in 13 genomes used for designs were compared with the corresponding KASP genotypes in different accessions of the same 13 varieties in the diversity panel. There was agreement for 79% or more markers in 12 varieties; 10 having agreement >88%. One variety, a selection from a landrace, had only 46.5% marker agreement. Breeders can search for the validated KASP and more than a million so-far untested designs in three reference genomes (including Niponbare MSU7) with a search tool, that includes designs in proximity to previously published microsatellite markers, and retrieve target variations for 129 rice genomes plus their genomic locations with ±25 bp flanking sequences.
Collapse
Affiliation(s)
- Katherine Steele
- School of Environmental and Natural Science, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Mark Quinton-Tulloch
- School of Environmental and Natural Science, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Darshna Vyas
- LGC BioSearch Technologies, Units 1 and 2, Trident Industrial Estate, Pindar Road, Hoddesdon, Herts EN11 0WZ, UK
| | - John Witcombe
- School of Environmental and Natural Science, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
4
|
Kinasih SE, Devy SR, Koesbardiati T, Romadhona MK. Human migration, infectious diseases, plague, global health crisis - historical evidence. COGENT ARTS & HUMANITIES 2024; 11. [DOI: 10.1080/23311983.2024.2392399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 01/03/2025]
Affiliation(s)
- Sri Endah Kinasih
- Faculty of Social and Political Sciences, Universitas Airlangga, Surabaya, Indonesia
| | | | - Toetik Koesbardiati
- Faculty of Social and Political Sciences, Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
5
|
Feng W, Zhang Z, Zhang J, Nan P, Song Z, Zhang W, Yang J, Wang Y. Comparative plastomic analysis of cultivated Dioscorea polystachya and its close relatives provides insights on the inter- and intraspecific phylogenies and potential wild origins of domestication. BMC PLANT BIOLOGY 2024; 24:1255. [PMID: 39725934 DOI: 10.1186/s12870-024-06003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Dioscorea polystachya and its closely related species are original plants of the tuber crop "yam", which had been intensively use for medicinal and food purposes and widely cultivated in northern China and its surrounding areas with a long history. Many cultivars of these species are often confused with one another because of similar tuber morphology, however, conventional DNA barcoding faces practical limitations restricting the method to effectively identify closely related species. In addition, phylogenetic relationships among various cultivar groups of Chinese yam (D. polystachya) remains unclear. To solve these problems, genomic DNAs of 15 Dioscorea samples were sequenced to assemble and annotate chloroplast genomes, which were used for analyzing their structural characteristics and identifying phylogenetic relationships at the inter- and intraspecific levels. RESULTS The size of chloroplast genomes of the tested samples is about 153 kb, and 79 protein-coding genes, 29 tRNA genes, and 4 rRNA genes are annotated. Phylogenetic analysis showed that D. polystachya were sister to Dioscorea japonica, and for Huaishan yams, Dioscorea persimilis did not cluster with Dioscorea alata and Dioscorea fordii. Four cultivar groups of Chinese yam were determined, namely Tiegun group, Anping group, Foshou group and Taihang complex group. Among these cultivar groups, Foshou and Taihang complex are clustered with different wild yams, respectively. Amino acid preferences are similar at the inter- and intraspecific levels, while synonymous codon usage reflects distinct patterns in the majority of cultivars of D. polystachya. There are distinct SSR variations among species, as well as four cultivar groups. Collinearity and SNP analyses show that nucleotide hypervariable regions among Dioscorea species are mainly concentrated in trnK-atpA, rps16-trnQ, atpA-atpH, rpoB-psbD, atpH-atpI, trnV-ndhC in the LSC region, and ccsA-ndhF in the SSC region, while intraspecific variation of Chinese yam is enriched in the intergenic spacers of rpoB-psbC, ndhD-ndhF, and trnQ-trnS, as well as the gene ycf1. CONCLUSION Phylogenetic analysis supports that Huaishan yams are not of monophyletic origin and the cultivated Chinese yam has at least two wild origins of domestication, which is consistent with the historical records of these wild yams from Mt. Dabie and Mt. Taihang. The identification efficiency of the newly developed barcodes for cultivar groups based on chloroplast genome SNP screening is significantly better than those of conventional barcodes. This approach to generate viable candidate markers based on the comparison from interspecific and intraspecific hypervariable regions of chloroplast genomes can be applied to conduct phylogenetic relationships of more important crop species and their close relatives, which are difficult to identify, as well as their wild origins of domestication.
Collapse
Affiliation(s)
- Wen Feng
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhengyan Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jiayin Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Peng Nan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Tomkowiak A, Jamruszka T, Bocianowski J, Sobiech A, Jarzyniak K, Lenort M, Mikołajczyk S, Żurek M. Transcriptomic Characterization of Genes Harboring Markers Linked to Maize Yield. Genes (Basel) 2024; 15:1558. [PMID: 39766825 PMCID: PMC11675883 DOI: 10.3390/genes15121558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND It is currently believed that breeding priorities, including maize breeding, should focus on introducing varieties with greater utility value, specifically higher yields, into production. Global modern maize breeding relies on various molecular genetics techniques. Using the above mentioned technologies, we can identify regions of the genome that are associated with various phenotypic traits, including yield, which is of fundamental importance for understanding and manipulating these regions. OBJECTIVES The aim of the study was to analyze the expression of candidate genes associated with maize yield. To better understand the function of the analyzed genes in increasing maize yield, their expression in different organs and tissues was also assessed using publicly available transcriptome data. METHODS RT-qPCR analyses were performed using iTaq Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA) and CFX96 Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Each of the performed RT-qPCR experiments consisted of three biological replicates and three technical replicates, the results of which were averaged. RESULTS The research results allowed us to select three out of six candidate genes (cinnamoyl-CoA reductase 1-CCR1, aspartate aminotransferase-AAT and sucrose transporter 1-SUT1), which can significantly affect grain yield in maize. Not only our studies but also literature reports clearly indicate the participation of CCR1, AAT and SUT1 in the formation of yield. Identified molecular markers located within these genes can be used in breeding programs to select high yielding maize genotypes.
Collapse
Affiliation(s)
- Agnieszka Tomkowiak
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Tomasz Jamruszka
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Aleksandra Sobiech
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Karolina Jarzyniak
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Maciej Lenort
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Sylwia Mikołajczyk
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (A.S.); (M.L.); (S.M.)
| | - Monika Żurek
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| |
Collapse
|
7
|
Agre PA, Clark LV, Garcia-Oliveira AL, Bohar R, Adebola P, Asiedu R, Terauchi R, Asfaw A. Identification of diagnostic KASP-SNP markers for routine breeding activities in yam (Dioscorea spp.). THE PLANT GENOME 2024; 17:e20419. [PMID: 38093501 DOI: 10.1002/tpg2.20419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/16/2023] [Accepted: 11/02/2023] [Indexed: 07/02/2024]
Abstract
Maintaining genetic purity and true-to-type clone identification are important action steps in breeding programs. This study aimed to develop a universal set of kompetitive allele-specific polymerase chain reaction (KASP)-based single nucleotide polymorphism (SNP) markers for routine breeding activities. Ultra-low-density SNP markers were created using an initial set of 173,675 SNPs that were obtained from whole-genome resequencing of 333 diverse white Guinea yam (Dioscorea rotundata Poir) genotypes. From whole-genome resequencing data, 99 putative SNP markers were found and successfully converted to high-throughput KASP genotyping assays. The markers set was validated on 374 genotypes representing six yam species. Out of the 99 markers, 50 were highly polymorphic across the species and could distinguish different yam species and pedigree origins. The selected SNP markers classified the validation population based on the different yam species and identified potential duplicates within yam species. Through penalized analysis, the male parent of progenies involved in polycrosses was successfully predicted and validated. Our research was a trailblazer in validating KASP-based SNP assays for species identification, parental fingerprinting, and quality control (QC) and quality assurance (QA) in yam breeding programs.
Collapse
Affiliation(s)
- Paterne A Agre
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Lindsay V Clark
- HPCBio, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ana Luisa Garcia-Oliveira
- Excellence in Breeding (EiB), CIMMYT-ICRAF, UN Av, Nairobi, Kenya
- Department of Molecular Biology, Biotechnology and Bioinformatics, College of Basic Sciences and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Rajaguru Bohar
- Excellence in Breeding (EiB), CIMMYT-ICRISAT, Hyderabad, Telangana, India
| | - Patrick Adebola
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Robert Asiedu
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Ryohei Terauchi
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Asrat Asfaw
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
8
|
Nawaz I, Zeb T, Ali GM, Zeb BS, Jalal A, Rehman MU, Bakht T, Ali S. High Genetic Diversity in the Himalayan Common Bean ( Phaseolus vulgaris) Germplasm with Divergence from Its Center of Origin in the Mesoamerica and Andes. ACS OMEGA 2023; 8:48787-48797. [PMID: 38162784 PMCID: PMC10753573 DOI: 10.1021/acsomega.3c05150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
The common bean is found in the Himalayan region of Pakistan with substantial morphological variability. Genetic diversity within any crop species is a precursor for genetic improvement; however, little is known about common bean genetic diversity in this region. We explored the genetic diversity in the common bean from the Himalayan region (Khyber Pakhtunkhwa, Gilgit-Baltistan, Kashmir) of Pakistan. Microsatellite genotyping was carried out for 147 samples with 40 simple sequence repeat (SSR) markers. The results revealed a clear divergence of the Pakistani population from the primary gene pool (with FST values of 0.2 with Andes and 0.27 with Mesoamerica). However, within the Himalayan germplasm, no clear evidence of spatial structure was observed (with the maximum FST values of only 0.025), probably due to the dispersal of seeds by human activity within the region. This was further elucidated by the discriminant analyses of principal components. Considering the diversity parameters, high genotypic diversity was observed for the indigenous lines (0.990), comparable to the primary gene pool (0.976 for Mesoamerica and 0.976 for Andes populations). A high genotypic diversity was observed within the Himalayan population (ranging from 0.500 for Upper Dir to 0.952 for Mansehra). Gene diversity across loci varied between 0.28 for Chitral to 0.38 for Kurram. Our results suggested a divergent and independent evolution of the Himalayan population, which might have led to the diversification of the common bean germplasm in the region postintroduction into the region. The diversity observed could also be exploited in future breeding programs for the development and introduction of climate-resilient varieties.
Collapse
Affiliation(s)
- Iffat Nawaz
- The
University of Agriculture Peshawar, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Tehseen Zeb
- The
University of Agriculture Peshawar, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | | | - Bibi Saima Zeb
- The
University of Agriculture Peshawar, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Abdullah Jalal
- The
University of Agriculture Peshawar, Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Monsif Ur Rehman
- Department
of Agriculture, Hazara University, Mansehra, Mansehra 21120, Pakistan
| | - Tamana Bakht
- Shaheed
Benazir Bhutto university Sheringal Dir upper, Dir Upper 18200, Pakistan
| | - Sajid Ali
- Department
of Agriculture, Hazara University, Mansehra, Mansehra 21120, Pakistan
| |
Collapse
|
9
|
Arca M, Gouesnard B, Mary-Huard T, Le Paslier MC, Bauland C, Combes V, Madur D, Charcosset A, Nicolas SD. Genotyping of DNA pools identifies untapped landraces and genomic regions to develop next-generation varieties. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1123-1139. [PMID: 36740649 DOI: 10.1111/pbi.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/18/2023] [Indexed: 05/27/2023]
Abstract
Landraces, that is, traditional varieties, have a large diversity that is underexploited in modern breeding. A novel DNA pooling strategy was implemented to identify promising landraces and genomic regions to enlarge the genetic diversity of modern varieties. As proof of concept, DNA pools from 156 American and European maize landraces representing 2340 individuals were genotyped with an SNP array to assess their genome-wide diversity. They were compared to elite cultivars produced across the 20th century, represented by 327 inbred lines. Detection of selective footprints between landraces of different geographic origin identified genes involved in environmental adaptation (flowering times, growth) and tolerance to abiotic and biotic stress (drought, cold, salinity). Promising landraces were identified by developing two novel indicators that estimate their contribution to the genome of inbred lines: (i) a modified Roger's distance standardized by gene diversity and (ii) the assignation of lines to landraces using supervised analysis. It showed that most landraces do not have closely related lines and that only 10 landraces, including famous landraces as Reid's Yellow Dent, Lancaster Surecrop and Lacaune, cumulated half of the total contribution to inbred lines. Comparison of ancestral lines directly derived from landraces with lines from more advanced breeding cycles showed a decrease in the number of landraces with a large contribution. New inbred lines derived from landraces with limited contributions enriched more the haplotype diversity of reference inbred lines than those with a high contribution. Our approach opens an avenue for the identification of promising landraces for pre-breeding.
Collapse
Affiliation(s)
- Mariangela Arca
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Brigitte Gouesnard
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Tristan Mary-Huard
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Cyril Bauland
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Valérie Combes
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Delphine Madur
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alain Charcosset
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Stéphane D Nicolas
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Kovincic A, Markovic K, Ristic D, Babic V, Petrovic T, Zivanovic T, Kravic N. Efficiency of Biological Typing Methods in Maize Hybrid Genetic Purity Estimation. Genes (Basel) 2023; 14:1195. [PMID: 37372375 DOI: 10.3390/genes14061195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
A high level of genetic purity in crop varieties must be achieved and maintained for agronomic performance, encouraging investment and innovation in plant breeding and ensuring that the improvements in productivity and quality imparted by breeders are delivered to the consumer. Since the success of hybrid seed production is dependent upon the genetic purity of the parental lines, in this study, the experimental F1exp maize hybrid and its parental inbreeds were used as a model system to examine the discriminative power of morphological, biochemical and SSR markers for seed purity assay. The highest number of off-type plants was estimated by morphological markers. According to the comparison of prolamins and albumins banding patterns of parental and derived F1exp seeds, genetic impurities could not be detected. Molecular analysis detected two types of genetic profile irregularity. Beside its use for verifying varieties of maize, report on umc1545 primer pair ability to detect non-specific bands (i.e., off-types), in both the maternal component and F1exp, which is the first report on this issue yet, strongly supports the recommendation of this SSR marker use for more accurate and time-efficient maize hybrids and parental lines genetic pyrity testing.
Collapse
Affiliation(s)
- Anika Kovincic
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia
| | - Ksenija Markovic
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia
| | - Danijela Ristic
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia
| | - Vojka Babic
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia
| | - Tanja Petrovic
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia
| | - Tomislav Zivanovic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Natalija Kravic
- Maize Research Institute Zemun Polje, Slobodana Bajica 1, 11185 Belgrade, Serbia
| |
Collapse
|
11
|
Skovbjerg CK, Angra D, Robertson-Shersby-Harvie T, Kreplak J, Keeble-Gagnère G, Kaur S, Ecke W, Windhorst A, Nielsen LK, Schiemann A, Knudsen J, Gutierrez N, Tagkouli V, Fechete LI, Janss L, Stougaard J, Warsame A, Alves S, Khazaei H, Link W, Torres AM, O'Sullivan DM, Andersen SU. Genetic analysis of global faba bean diversity, agronomic traits and selection signatures. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:114. [PMID: 37074596 PMCID: PMC10115707 DOI: 10.1007/s00122-023-04360-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE We identified marker-trait associations for key faba bean agronomic traits and genomic signatures of selection within a global germplasm collection. Faba bean (Vicia faba L.) is a high-protein grain legume crop with great potential for sustainable protein production. However, little is known about the genetics underlying trait diversity. In this study, we used 21,345 high-quality SNP markers to genetically characterize 2678 faba bean genotypes. We performed genome-wide association studies of key agronomic traits using a seven-parent-MAGIC population and detected 238 significant marker-trait associations linked to 12 traits of agronomic importance. Sixty-five of these were stable across multiple environments. Using a non-redundant diversity panel of 685 accessions from 52 countries, we identified three subpopulations differentiated by geographical origin and 33 genomic regions subjected to strong diversifying selection between subpopulations. We found that SNP markers associated with the differentiation of northern and southern accessions explained a significant proportion of agronomic trait variance in the seven-parent-MAGIC population, suggesting that some of these traits were targets of selection during breeding. Our findings point to genomic regions associated with important agronomic traits and selection, facilitating faba bean genomics-based breeding.
Collapse
Affiliation(s)
- Cathrine Kiel Skovbjerg
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark.
| | - Deepti Angra
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | | | - Jonathan Kreplak
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | | | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Wolfgang Ecke
- Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Alex Windhorst
- Georg-August-Universität Göttingen, DNPW, Carl-Sprengel 1, Germany
| | | | | | | | - Natalia Gutierrez
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | - Vasiliki Tagkouli
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Lavinia Ioana Fechete
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Luc Janss
- Center for Quantitative Genetics and Genomics, Aarhus University, 8000, Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Ahmed Warsame
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Sheila Alves
- Crops Research, Teagasc, Oak Park, Carlow, Ireland
| | - Hamid Khazaei
- Production Systems, Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Wolfgang Link
- Georg-August-Universität Göttingen, DNPW, Carl-Sprengel 1, Germany
| | - Ana Maria Torres
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro "Alameda del Obispo", Apdo 3092, 14080, Córdoba, Spain
| | | | | |
Collapse
|
12
|
Adu GB, Badu-Apraku B, Akromah R, Awuku FJ. Combining Abilities and Heterotic Patterns among Early Maturing Maize Inbred Lines under Optimal and Striga-Infested Environments. Genes (Basel) 2022; 13:genes13122289. [PMID: 36553556 PMCID: PMC9778638 DOI: 10.3390/genes13122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Information on the general combining ability of inbred lines and the specific combining ability of hybrid combinations is crucial for successful hybrid development. The objectives of this study were to (i) determine the combining ability of thirty selected early maturing maize inbred lines under Striga-infested and optimal environments, (ii) classify the inbred lines into heterotic groups using the general combining ability effects of multiple traits (HGCAMT) and the single nucleotide polymorphism genetic distance (SNP- GD) methods, and (iii) assess the effectiveness of the heterotic grouping methods. One hundred and fifty single-cross hybrids were generated from the thirty inbred lines using the North Carolina Design II mating method. The hybrids and six local check varieties were tested across optimal and Striga-infested environments in Ghana and Nigeria in 2016 and 2017. The inheritance of grain yield was controlled by the non-additive gene action under both environments and the additive gene action across the two research environments. The non-additive gene action modulated the inheritance of measured traits under Striga-infested environments, except for the Striga damage syndrome rating at 8 weeks after planting. Maternal effects were observed for most traits in each environment and across environments. The inbred lines TZEI 127 and TZEI 40 exhibited significant and positive GCA male and female effects for grain yield under each environment and across the two research environments, indicating the presence of favorable alleles for yield improvements. The SNP-GD heterotic grouping method was identified as the most adequate in grouping the thirty inbred lines.
Collapse
Affiliation(s)
- Gloria Boakyewaa Adu
- Council for Scientific and Industrial Research (CSIR)-Savanna Agricultural Research Institute (SARI), Tamale, Ghana
- Correspondence: (G.B.A.); (B.B.-A.)
| | - Baffour Badu-Apraku
- International Institute of Tropical Agriculture (UK) Limited, Carolyn House, 26 Dingwall Road, Croydon CR0 9XP, UK
- Correspondence: (G.B.A.); (B.B.-A.)
| | - Richard Akromah
- Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Private Mail Bag, University Post Office, Kumasi, Ghana
| | - Frederick Justice Awuku
- Council for Scientific and Industrial Research (CSIR)-Savanna Agricultural Research Institute (SARI), Tamale, Ghana
| |
Collapse
|
13
|
Figueroa‐Corona L, Moreno‐Letelier A, Ortega‐Del Vecchyo D, Peláez P, Gernandt DS, Eguiarte LE, Wegrzyn J, Piñero D. Changes in demography and geographic distribution in the weeping pinyon pine ( Pinus pinceana) during the Pleistocene. Ecol Evol 2022; 12:e9369. [PMID: 36225821 PMCID: PMC9534753 DOI: 10.1002/ece3.9369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/12/2022] Open
Abstract
Climate changes, together with geographical barriers imposed by the Sierra Madre Oriental and the Chihuahuan Desert, have shaped the genetic diversity and spatial distribution of different species in northern Mexico. Pinus pinceana Gordon & Glend. tolerates extremely arid conditions. Northern Mexico became more arid during the Quaternary, modifying ecological communities. Here, we try to identify the processes underlying the demographic history of P. pinceana and characterize its genetic diversity using 3100 SNPs from genotyping by sequencing 90 adult individuals from 10 natural populations covering the species' entire geographic distribution. We inferred its population history and contrasted possible demographic scenarios of divergence that modeled the genetic diversity present in this restricted pinyon pine; in support, the past distribution was reconstructed using climate from the Last Glacial Maximum (LGM, 22 kya). We inferred that P. pinceana diverged into two lineages ~2.49 Ma (95% CI 3.28-1.62), colonizing two regions: the Sierra Madre Oriental (SMO) and the Chihuahuan Desert (ChD). Our results of population genomic analyses reveal the presence of heterozygous SNPs in all populations. In addition, low migration rates across regions are probably related to glacial-interglacial cycles, followed by the gradual aridification of the Chihuahuan Desert during the Holocene.
Collapse
Affiliation(s)
- Laura Figueroa‐Corona
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | | | - Diego Ortega‐Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma HumanoUniversidad Nacional Autónoma de MéxicoJuriquillaMexico
| | - Pablo Peláez
- Centro de Ciencias GenómicasUniversidad Nacional Autónoma de MéxicoCuernavacaMorelosMexico
| | - David S. Gernandt
- Departamento de BotánicaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Luis E. Eguiarte
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Jill Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Daniel Piñero
- Departamento de Ecología EvolutivaInstituto de Ecología, Universidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
14
|
Sharma A, Sharma S, Kumar N, Rana RS, Sharma P, Kumar P, Rani M. Morpho-molecular genetic diversity and population structure analysis in garden pea (Pisum sativum L.) genotypes using simple sequence repeat markers. PLoS One 2022; 17:e0273499. [PMID: 36112614 PMCID: PMC9480992 DOI: 10.1371/journal.pone.0273499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Garden pea (Pisum sativum L.) is a self-pollinated plant species which played an important role for the foundation of modern genetics. Genetic diversity among 56 garden pea genotypes was assessed using 12 morphological descriptors, 19 quantitative traits and 8 simple sequence repeat (SSR) markers. Eight morphological descriptors were found polymorphic, and highest Shannon diversity index was recorded for pod curvature (1.18). Mahalanobis D2 illustrating genetic divergence arranged 56 genotypes into six clusters, with the highest inter-cluster distance between clusters IV and VI (18.09). The average values of Na (number of alleles), Ne (effective number of alleles), I (Shannon's Information index), PIC (polymorphism information content), Ho (observed heterozygosity) and He (expected heterozygosity) were 3.13, 1.85, 0.71, 0.36, 0.002 and 0.41, respectively. Pair wise genetic distance among all pairs of the genotypes varied from 0.33 to 1.00 with an average of 0.76. Based on genetic distance, the genotypes were classified into two main clusters (A and B) by cluster analysis, whereas structure analysis divided the genotypes into four sub-populations. The SSR makers indicated that present of genetic variability among the studied genotypes. When, we compared the groups formed by agro-morphological and molecular data, no genotypes were observed, indicating that both stages of characterization are crucial for a better understanding of the genetic variability. Hybridization between genetically diverse genotypes can be exploited to expend the genetic variability and introduce new traits in the pea breeding program.
Collapse
Affiliation(s)
- Akhilesh Sharma
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Shimalika Sharma
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Nimit Kumar
- Department of Genetics and Plant Breeding, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Ranbir Singh Rana
- Centre for Geo Informatics Research and Training, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Parveen Sharma
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Prabhat Kumar
- PIU-NAHEP, Krishi Anusandhan Bhavan-II, Indian Council of Agricultural Research, Pusa, New Delhi, India
| | - Menisha Rani
- Department of Vegetable Science & Floriculture, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| |
Collapse
|
15
|
Francisconi AF, Cauz-Santos LA, Morales Marroquín JA, van den Berg C, Alves-Pereira A, Delmondes de Alencar L, Picanço-Rodrigues D, Zanello CA, Ferreira Costa M, Gomes Lopes MT, Veasey EA, Zucchi MI. Complete chloroplast genomes and phylogeny in three Euterpe palms (E. edulis, E. oleracea and E. precatoria) from different Brazilian biomes. PLoS One 2022; 17:e0266304. [PMID: 35901127 PMCID: PMC9333295 DOI: 10.1371/journal.pone.0266304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
The Brazilian palm fruits and hearts-of-palm of Euterpe edulis, E. oleracea and E. precatoria are an important source for agro-industrial production, due to overexploitation, conservation strategies are required to maintain genetic diversity. Chloroplast genomes have conserved sequences, which are useful to explore evolutionary questions. Besides the plastid DNA, genome skimming allows the identification of other genomic resources, such as single nucleotide polymorphisms (SNPs), providing information about the genetic diversity of species. We sequenced the chloroplast genome and identified gene content in the three Euterpe species. We performed comparative analyses, described the polymorphisms among the chloroplast genome sequences (repeats, indels and SNPs) and performed a phylogenomic inference based on 55 palm species chloroplast genomes. Finally, using the remaining data from genome skimming, the nuclear and mitochondrial reads, we identified SNPs and estimated the genetic diversity among these Euterpe species. The Euterpe chloroplast genomes varied from 159,232 to 159,275 bp and presented a conserved quadripartite structure with high synteny with other palms. In a pairwise comparison, we found a greater number of insertions/deletions (indels = 93 and 103) and SNPs (284 and 254) between E. edulis/E. oleracea and E. edulis/E. precatoria when compared to E. oleracea/E. precatoria (58 indels and 114 SNPs). Also, the phylogeny indicated a closer relationship between E. oleracea/E. precatoria. The nuclear and mitochondrial genome analyses identified 1,077 SNPs and high divergence among species (FST = 0.77), especially between E. edulis and E. precatoria (FST = 0.86). These results showed that, despite the few structural differences among the chloroplast genomes of these Euterpe palms, a differentiation between E. edulis and the other Euterpe species can be identified by point mutations. This study not only brings new knowledge about the evolution of Euterpe chloroplast genomes, but also these new resources open the way for future phylogenomic inferences and comparative analyses within Arecaceae.
Collapse
Affiliation(s)
- Ana Flávia Francisconi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- * E-mail: (MIZ); (AFF)
| | | | | | - Cássio van den Berg
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
- Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brasil
| | - Alessandro Alves-Pereira
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Luciano Delmondes de Alencar
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | | | - Cesar Augusto Zanello
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - Marcones Ferreira Costa
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- Campus Amílcar Ferreira Sobral, Universidade Federal do Piauí, Floriano, Piauí, Brasil
| | - Maria Teresa Gomes Lopes
- Departamento de Produção Animal e Vegetal, Universidade Federal do Amazonas, Manaus, Amazonas, Brasil
| | - Elizabeth Ann Veasey
- Departamento de Genética, Universidade de São Paulo, Piracicaba, São Paulo, Brasil
| | - Maria Imaculada Zucchi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
- Agência Paulista de Tecnologia dos Agronegócios, Piracicaba, São Paulo, Brasil
- * E-mail: (MIZ); (AFF)
| |
Collapse
|
16
|
de Faria SV, Zuffo LT, Rezende WM, Caixeta DG, Pereira HD, Azevedo CF, DeLima RO. Phenotypic and molecular characterization of a set of tropical maize inbred lines from a public breeding program in Brazil. BMC Genomics 2022; 23:54. [PMID: 35030994 PMCID: PMC8759194 DOI: 10.1186/s12864-021-08127-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022] Open
Abstract
Background The characterization of genetic diversity and population differentiation for maize inbred lines from breeding programs is of great value in assisting breeders in maintaining and potentially increasing the rate of genetic gain. In our study, we characterized a set of 187 tropical maize inbred lines from the public breeding program of the Universidade Federal de Viçosa (UFV) in Brazil based on 18 agronomic traits and 3,083 single nucleotide polymorphisms (SNP) markers to evaluate whether this set of inbred lines represents a panel of tropical maize inbred lines for association mapping analysis and investigate the population structure and patterns of relationships among the inbred lines from UFV for better exploitation in our maize breeding program. Results Our results showed that there was large phenotypic and genotypic variation in the set of tropical maize inbred lines from the UFV maize breeding program. We also found high genetic diversity (GD = 0.34) and low pairwise kinship coefficients among the maize inbred lines (only approximately 4.00 % of the pairwise relative kinship was above 0.50) in the set of inbred lines. The LD decay distance over all ten chromosomes in the entire set of maize lines with r2 = 0.1 was 276,237 kb. Concerning the population structure, our results from the model-based STRUCTURE and principal component analysis methods distinguished the inbred lines into three subpopulations, with high consistency maintained between both results. Additionally, the clustering analysis based on phenotypic and molecular data grouped the inbred lines into 14 and 22 genetic divergence clusters, respectively. Conclusions Our results indicate that the set of tropical maize inbred lines from UFV maize breeding programs can comprise a panel of tropical maize inbred lines suitable for a genome-wide association study to dissect the variation of complex quantitative traits in maize, mainly in tropical environments. In addition, our results will be very useful for assisting us in the assignment of heterotic groups and the selection of the best parental combinations for new breeding crosses, mapping populations, mapping synthetic populations, guiding crosses that target highly heterotic and yielding hybrids, and predicting untested hybrids in the public breeding program UFV. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08127-7.
Collapse
Affiliation(s)
| | - Leandro Tonello Zuffo
- Department of Agronomy, Universidade Federal de Viçosa, Minas Gerais, Viçosa, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Rajora OP, Zinck JWR. Genetic Diversity, Structure and Effective Population Size of Old-Growth vs. Second-Growth Populations of Keystone and Long-Lived Conifer, Eastern White Pine ( Pinus strobus): Conservation Value and Climate Adaptation Potential. Front Genet 2021; 12:650299. [PMID: 34456961 PMCID: PMC8388927 DOI: 10.3389/fgene.2021.650299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Whether old-growth (OG) forests have higher genetic diversity and effective population size, consequently higher conservation value and climate adaptive potential than second-growth (SG) forests, remain an unresolved issue. We have tested the hypothesis that old-growth forest tree populations have higher genetic diversity, effective population size (NE ), climate adaptive potential and conservation value and lower genetic differentiation than second-growth forest tree populations, employing a keystone and long-lived conifer, eastern white pine (EWP; Pinus strobus). Genetic diversity and population structure of old-growth and second-growth populations of eastern white pine (EWP) were examined using microsatellites of the nuclear and chloroplast genomes and single nucleotide polymorphisms (SNPs) in candidate nuclear genes putatively involved in adaptive responses to climate and underlying multilocus genetic architecture of local adaptation to climate in EWP. Old-growth and second-growth EWP populations had statistically similar genetic diversity, inbreeding coefficient and inter-population genetic differentiation based on nuclear microsatellites (nSSRs) and SNPs. However, old-growth populations had significantly higher chloroplast microsatellites (cpSSRs) haploid diversity than second-growth populations. Old-growth EWP populations had significantly higher coalescence-based historical long-term NE than second-growth EWP populations, but the linkage disequilibrium (LD)-based contemporary NE estimates were statistically similar between the old-growth and second-growth EWP populations. Analyses of population genetic structure and inter-population genetic relationships revealed some genetic constitution differences between the old-growth and second-growth EWP populations. Overall, our results suggest that old-growth and second-growth EWP populations have similar genetic resource conservation value. Because old-growth and second-growth EWP populations have similar levels of genetic diversity in genes putatively involved in adaptive responses to climate, old-growth, and second-growth populations may have similar adaptive potential under climate change. Our results could potentially be generalized across most of the boreal and temperate conifer forest trees. Our study contributes to address a long-standing issue, advances research field and knowledge about conservation and ecological and climate adaptation of forest trees.
Collapse
Affiliation(s)
- Om P Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | - John W R Zinck
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
18
|
Josia C, Mashingaidze K, Amelework AB, Kondwakwenda A, Musvosvi C, Sibiya J. SNP-based assessment of genetic purity and diversity in maize hybrid breeding. PLoS One 2021; 16:e0249505. [PMID: 34343170 PMCID: PMC8330893 DOI: 10.1371/journal.pone.0249505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
Assessment of genetic purity of parental inbred lines and their resultant F1 hybrids is an essential quality control check in maize hybrid breeding, variety release and seed production. In this study, genetic purity, parent-offspring relationship and diversity among the inbred lines were assessed using 92 single-nucleotide polymorphism (SNP) markers. A total of 188 maize genotypes, comprising of 26 inbred lines, four doubled haploid (DH) lines and 158 single-cross maize hybrids were investigated in this study using Kompetitive Allele Specific Polymerase Chain Reaction (KASP) genotyping assays. The bi-allelic data was analyzed for genetic purity and diversity parameters using GenAlex software. The SNP markers were highly polymorphic and 90% had polymorphic information content (PIC) values of > 0.3. Pairwise genetic distances among the lines ranged from 0.05 to 0.56, indicating a high level of dissimilarity among the inbred lines. A maximum genetic distance of (0.56) was observed between inbred lines CKDHL0089 and CML443 while the lowest (0.05) was between I-42 and I-40. The majority (67%) of the inbred lines studied were genetically pure with residual heterozygosity of <5%, while only 33% had heterozygosity levels of >5%. Inbred lines, which were not pure, require purification through further inbreeding. Cluster analysis partitioned the lines into three distinct genetic clusters with the potential to contribute new beneficial alleles to the maize breeding program. Out of the 68 hybrids (43%) that passed the parent-offspring test, seven hybrids namely; SCHP29, SCHP95, SCHP94, SCHP134, SCHP44, SCHP114 and SCHP126, were selected as potential candidates for further evaluation and release due to their outstanding yield performance.
Collapse
Affiliation(s)
- Chimwemwe Josia
- School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Kingstone Mashingaidze
- Agricultural Research Council- Grain Crops Institute (ARC-GCI), Potchefstroom, South Africa
| | - Assefa B. Amelework
- Agricultural Research Council -Vegetable and Ornamental Plants (ARC-VOP), Roodeplaat, Pretoria, South Africa
| | - Aleck Kondwakwenda
- School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
- * E-mail:
| | - Cousin Musvosvi
- School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Julia Sibiya
- School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| |
Collapse
|
19
|
Baggett JP, Tillett RL, Cooper EA, Yerka MK. De novo identification and targeted sequencing of SSRs efficiently fingerprints Sorghum bicolor sub-population identity. PLoS One 2021; 16:e0248213. [PMID: 33684158 PMCID: PMC7939377 DOI: 10.1371/journal.pone.0248213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Recent plant breeding studies of several species have demonstrated the utility of combining molecular assessments of genetic distance into trait-linked SNP genotyping during the development of parent lines to maximize yield gains due to heterosis. SSRs (Short Sequence Repeats) are the molecular marker of choice to determine genetic diversity, but the methods historically used to sequence them have been burdensome. The ability to analyze SSRs in a higher-throughput manner independent of laboratory conditions would increase their utility in molecular ecology, germplasm curation, and plant breeding programs worldwide. This project reports simple bioinformatics methods that can be used to generate genome-wide de novo SSRs in silico followed by targeted Next Generation Sequencing (NGS) validation of those that provide the most information about sub-population identity of a breeding line, which influences heterotic group selection. While these methods were optimized in sorghum [Sorghum bicolor (L.) Moench], they were developed to be applied to any species with a reference genome and high-coverage whole-genome sequencing data of individuals from the sub-populations to be characterized. An analysis of published sorghum genomes selected to represent its five main races (bicolor, caudatum, durra, kafir, and guinea; 75 accessions total) identified 130,120 SSR motifs. Average lengths were 23.8 bp and 95% were between 10 and 92 bp, making them suitable for NGS. Validation through targeted sequencing amplified 188 of 192 assayed SSR loci. Results highlighted the distinctness of accessions from the guinea sub-group margaritiferum from all other sorghum accessions, consistent with previous studies of nuclear and mitochondrial DNA. SSRs that efficiently fingerprinted margaritiferum individuals (Xgma1 -Xgma6) are presented. Developing similar fingerprints of other sub-populations (Xunr1 -Xunr182) was not possible due to the extensive admixture between them in the data set analyzed. In summary, these methods were able to fingerprint specific sub-populations when rates of admixture between them are low.
Collapse
Affiliation(s)
- John P. Baggett
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States of America
| | - Richard L. Tillett
- Nevada Center for Bioinformatics, University of Nevada, Reno, NV, United States of America
| | - Elizabeth A. Cooper
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Melinda K. Yerka
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV, United States of America
| |
Collapse
|
20
|
Arca M, Mary-Huard T, Gouesnard B, Bérard A, Bauland C, Combes V, Madur D, Charcosset A, Nicolas SD. Deciphering the Genetic Diversity of Landraces With High-Throughput SNP Genotyping of DNA Bulks: Methodology and Application to the Maize 50k Array. FRONTIERS IN PLANT SCIENCE 2021; 11:568699. [PMID: 33488638 PMCID: PMC7817617 DOI: 10.3389/fpls.2020.568699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/12/2020] [Indexed: 05/13/2023]
Abstract
Genebanks harbor original landraces carrying many original favorable alleles for mitigating biotic and abiotic stresses. Their genetic diversity remains, however, poorly characterized due to their large within genetic diversity. We developed a high-throughput, cheap and labor saving DNA bulk approach based on single-nucleotide polymorphism (SNP) Illumina Infinium HD array to genotype landraces. Samples were gathered for each landrace by mixing equal weights from young leaves, from which DNA was extracted. We then estimated allelic frequencies in each DNA bulk based on fluorescent intensity ratio (FIR) between two alleles at each SNP using a two step-approach. We first tested either whether the DNA bulk was monomorphic or polymorphic according to the two FIR distributions of individuals homozygous for allele A or B, respectively. If the DNA bulk was polymorphic, we estimated its allelic frequency by using a predictive equation calibrated on FIR from DNA bulks with known allelic frequencies. Our approach: (i) gives accurate allelic frequency estimations that are highly reproducible across laboratories, (ii) protects against false detection of allele fixation within landraces. We estimated allelic frequencies of 23,412 SNPs in 156 landraces representing American and European maize diversity. Modified Roger's genetic Distance between 156 landraces estimated from 23,412 SNPs and 17 simple sequence repeats using the same DNA bulks were highly correlated, suggesting that the ascertainment bias is low. Our approach is affordable, easy to implement and does not require specific bioinformatics support and laboratory equipment, and therefore should be highly relevant for large-scale characterization of genebanks for a wide range of species.
Collapse
Affiliation(s)
- Mariangela Arca
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Tristan Mary-Huard
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Brigitte Gouesnard
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Aurélie Bérard
- Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux, Evry-Courcouronnes, France
| | - Cyril Bauland
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Valérie Combes
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Delphine Madur
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Alain Charcosset
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| | - Stéphane D. Nicolas
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Zimmerman SJ, Aldridge CL, Oyler-McCance SJ. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genomics 2020; 21:382. [PMID: 32487020 PMCID: PMC7268520 DOI: 10.1186/s12864-020-06783-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Use of genomic tools to characterize wildlife populations has increased in recent years. In the past, genetic characterization has been accomplished with more traditional genetic tools (e.g., microsatellites). The explosion of genomic methods and the subsequent creation of large SNP datasets has led to the promise of increased precision in population genetic parameter estimates and identification of demographically and evolutionarily independent groups, as well as questions about the future usefulness of the more traditional genetic tools. At present, few empirical comparisons of population genetic parameters and clustering analyses performed with microsatellites and SNPs have been conducted. RESULTS Here we used microsatellite and SNP data generated from Gunnison sage-grouse (Centrocercus minimus) samples to evaluate concordance of the results obtained from each dataset for common metrics of genetic diversity (HO, HE, FIS, AR) and differentiation (FST, GST, DJost). Additionally, we evaluated clustering of individuals using putatively neutral (SNPs and microsatellites), putatively adaptive, and a combined dataset of putatively neutral and adaptive loci. We took particular interest in the conservation implications of any differences. Generally, we found high concordance between microsatellites and SNPs for HE, FIS, AR, and all differentiation estimates. Although there was strong correlation between metrics from SNPs and microsatellites, the magnitude of the diversity and differentiation metrics were quite different in some cases. Clustering analyses also showed similar patterns, though SNP data was able to cluster individuals into more distinct groups. Importantly, clustering analyses with SNP data suggest strong demographic independence among the six distinct populations of Gunnison sage-grouse with some indication of evolutionary independence in two or three populations; a finding that was not revealed by microsatellite data. CONCLUSION We demonstrate that SNPs have three main advantages over microsatellites: more precise estimates of population-level diversity, higher power to identify groups in clustering methods, and the ability to consider local adaptation. This study adds to a growing body of work comparing the use of SNPs and microsatellites to evaluate genetic diversity and differentiation for a species of conservation concern with relatively high population structure and using the most common method of obtaining SNP genotypes for non-model organisms.
Collapse
Affiliation(s)
- Shawna J Zimmerman
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA.
- Department of Ecosystem Science and Sustainability and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80526, USA.
| | - Cameron L Aldridge
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
- Department of Ecosystem Science and Sustainability and Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, 80526, USA
| | - Sara J Oyler-McCance
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Bldg. C, Fort Collins, CO, 80526, USA
| |
Collapse
|
22
|
Pavan Kumar P, Janakiram T, Bhat KV. Microsatellite based DNA fingerprinting and assessment of genetic diversity in bougainvillea cultivars. Gene 2020; 753:144794. [PMID: 32464245 DOI: 10.1016/j.gene.2020.144794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022]
Abstract
Novel microsatellite markers were developed to investigate the genetic diversity and DNA fingerprinting of bougainvillea cultivars. Total of 175 SSRs were designed from over 50,000 SSRs identified in the whole genome sequence data, 33 highly polymorphic markers were identified. These selected SSRs produced a total of 165 alleles with 2 (BOUG-3 and BOUG-50) to 9 (BOUG-69) alleles per loci with an average of 5 alleles per locus. The overall size of the amplified products ranged from 90 bp (BOUG-51 and BOUG-81) to 320 bp (BOUG-162). The gene diversity per locus ranged from 0.13 to 0.91 with a mean of 0.71. Primer BOUG-73 and BOUG-124 exhibited highest gene diversity with greater number of alleles. The mean Nei's genetic diversity index was 0.678 with range of 0.134 (BOUG-77) to 0.958 (BOUG-69). The UPGMA based dendrogram divided the cultivars into seven major clusters. Clustering pattern was more distinct for bract types and variegated cultivars which were also confirmed by PCA scatter plot diagram. The pair-wise genetic distance estimates ranged from 0.089 to 0.86 with an average of 0.56. Each of the 125 cultivar profiled had unique marker profile indicating that the SSR markers identified are useful for identification and differentiation of bougainvillea cultivars. These informative markers identified from the study will be of great utility to assess the genetic diversity, understanding the population structure and in marker assisted breeding for improvement of bougainvillea.
Collapse
Affiliation(s)
- P Pavan Kumar
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - T Janakiram
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K V Bhat
- Division of Genomic Resources, ICAR-National Bureau of Plant Genomic Resources, New Delhi, India.
| |
Collapse
|
23
|
Ocarez N, Jiménez N, Núñez R, Perniola R, Marsico AD, Cardone MF, Bergamini C, Mejía N. Unraveling the Deep Genetic Architecture for Seedlessness in Grapevine and the Development and Validation of a New Set of Markers for VviAGL11-Based Gene-Assisted Selection. Genes (Basel) 2020; 11:E151. [PMID: 32019199 PMCID: PMC7074311 DOI: 10.3390/genes11020151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
Seedless inheritance has been considered a quasi-monogenic trait based on the VvAGL11 gene. An intragenic simple sequence repeat (SSR) marker, p3_VvAGL11, is currently used to opportunely discard seeded progeny, which represents up to 50% of seedlings to be established in the field. However, the rate of false positives remains significant, and this lack of accuracy might be due to a more complex genetic architecture, some intrinsic flaws of p3_VvAGL11, or potential recombination events between p3_VvAGL11 and the causal SNP located in the coding region. The purpose of this study was to update the genetic architecture of this trait in order to better understand its implications in breeding strategies. A total of 573 F1 individuals that segregate for seedlessness were genotyped with a 20K SNP chip and characterized phenotypically during four seasons for a fine QTL mapping analysis. Based on the molecular diversity of p3_VvAGL11 alleles, we redesigned this marker, and based on the causal SNP, we developed a qPCR-HRM marker for high-throughput and a Tetra-ARMS-PCR for simple predictive analyses. Up to 10 new QTLs were identified that describe the complex nature of seedlessness, corresponding to small but stable effects. The positive predictive value, based on VvAGL11 alone (0.647), was improved up to 0.814 when adding three small-effect QTLs in a multi-QTL additive model as a proof of concept. The new SSR, 5U_VviAGL11, is more informative and robust, and easier to analyze. However, we demonstrated that the association can be lost by intragenic recombination and that the e7_VviAGL11 SNP-based marker is thus more reliable and decreases the occurrence of false positives. This study highlights the bases of prediction failure based solely on a major gene and a reduced set of candidate genes, in addition to opportunities for molecular breeding following further and larger validation studies.
Collapse
Affiliation(s)
- Nallatt Ocarez
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Platina, Santiago RM 8831314, Chile; (N.O.); (N.J.); (R.N.)
| | - Nicolás Jiménez
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Platina, Santiago RM 8831314, Chile; (N.O.); (N.J.); (R.N.)
| | - Reynaldo Núñez
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Platina, Santiago RM 8831314, Chile; (N.O.); (N.J.); (R.N.)
| | - Rocco Perniola
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, 70010 Sede di Turi (BA), Italy; (R.P.); (A.D.M.); (M.F.C.); (C.B.)
| | - Antonio Domenico Marsico
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, 70010 Sede di Turi (BA), Italy; (R.P.); (A.D.M.); (M.F.C.); (C.B.)
| | - Maria Francesca Cardone
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, 70010 Sede di Turi (BA), Italy; (R.P.); (A.D.M.); (M.F.C.); (C.B.)
| | - Carlo Bergamini
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA), Centro di ricerca Viticoltura ed Enologia, 70010 Sede di Turi (BA), Italy; (R.P.); (A.D.M.); (M.F.C.); (C.B.)
| | - Nilo Mejía
- Instituto de Investigaciones Agropecuarias (INIA), Centro Regional de Investigación La Platina, Santiago RM 8831314, Chile; (N.O.); (N.J.); (R.N.)
| |
Collapse
|
24
|
Core set construction and association analysis of Pinus massoniana from Guangdong province in southern China using SLAF-seq. Sci Rep 2019; 9:13157. [PMID: 31511632 PMCID: PMC6739479 DOI: 10.1038/s41598-019-49737-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/31/2019] [Indexed: 12/31/2022] Open
Abstract
Germplasm resource collection and utilization are important in forestry species breeding. High-through sequencing technologies have been playing increasing roles in forestry breeding. In this study, specific-locus amplified fragment sequencing (SLAF-seq) was employed to analyze 149 masson pine (Pinus massoniana) accessions collected from Guangdong in China. A large number of 471,660 SNPs in the total collection were identified from 599,164 polymorphic SLAF tags. Population structure analysis showed that 149 masson pines could not be obviously divided into subpopulations. Two core sets, containing 29 masson pine accessions for increasing resin and wood yield respectively, were obtained from the total collection. Phenotypic analyses of five traits showed abundant variations, 25 suggestive and 9 significant SNPs were associated with the resin-yielding capacity (RYC') and volume of wood (VW) using EMMAX and FaST-LMM; 22 suggestive and 11 significant SNPs were associated with RYC' and VW using mrMLM and FASTmrMLM. Moreover, a large number of associated SNPs were detected in trait HT, DBH, RW and RYC using mrMLM, FASTmrMLM, FASTmrEMMA and ISIS EM-BLASSO. The core germplasm sets would be a valuable resource for masson pine improvement and breeding. In addition, the associated SNP markers would be meaningful for masson pine resource selection.
Collapse
|
25
|
Roncallo PF, Beaufort V, Larsen AO, Dreisigacker S, Echenique V. Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L. var durum) collection. PLoS One 2019; 14:e0218562. [PMID: 31251752 PMCID: PMC6741835 DOI: 10.1371/journal.pone.0218562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/04/2019] [Indexed: 11/18/2022] Open
Abstract
The aim of this work was to analyze the genetic diversity and linkage disequilibrium in a collection of 168 durum wheat accessions (Triticum turgidum L. var. durum) of different origins. Our collection was mainly composed of released and unreleased Argentinian germplasm, with additional genotypes from Italy, Chile, France, CIMMYT, Cyprus, USA and WANA region. To this end, the entire collection was characterized with 85 Single Nucleotide Polymorphism (SNP) markers obtained by Kompetitive Allele Specific PCR (KASP), giving a heterozygosity (He) mean value of 0.183 and a coefficient of genetic differentiation (Gst) value of 0.139. A subset of 119 accessions was characterized with six Amplified Fragment Length Polymorphism (AFLP) primer combinations. A total of 181 polymorphic markers (125 AFLP and 56 SNP) amplified across this subset revealed He measures of 0.352 and 0.182, respectively. Of these, 134 were selected to estimate the genome-wide linkage disequilibrium obtaining low significant values (r2 = 0.11) in the subset, indicating its suitability for future genome-wide association studies (GWAS). The structure analysis conducted in the entire collection with SNP detected two subpopulations. However, the structure analysis conducted with AFLP markers in the subset of 119 accessions proved to have greater degree of resolution and detect six subpopulations. The information provided by both marker types was complementary and showed a strong association between old Argentinian and Italian germplasm and a contribution of CIMMYT germplasm to modern Argentinian, Chilean and Cypriot accessions. The influence of Mediterranean germplasm, mainly from Italy, on part of the modern Argentinian cultivars or breeding lines was also clearly evidenced. Although our analysis yields conclusive results and useful information for association mapping studies, further analyses are needed to refine the number of subpopulations present in the germplasm collection analyzed.
Collapse
Affiliation(s)
- Pablo Federico Roncallo
- Centro de Recursos Naturales Renovables de la Zona Semiárida
(CERZOS–CCT–CONICET Bahía Blanca) and Departamento de Agronomía, Universidad
Nacional del Sur, Bahía Blanca, Argentina
| | - Valeria Beaufort
- Centro de Recursos Naturales Renovables de la Zona Semiárida
(CERZOS–CCT–CONICET Bahía Blanca) and Departamento de Agronomía, Universidad
Nacional del Sur, Bahía Blanca, Argentina
| | - Adelina Olga Larsen
- CEI Barrow, Instituto Nacional de Tecnología Agropecuaria (INTA), Tres
Arroyos, Buenos Aires, Argentina
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Edo.
de México, México
| | - Viviana Echenique
- Centro de Recursos Naturales Renovables de la Zona Semiárida
(CERZOS–CCT–CONICET Bahía Blanca) and Departamento de Agronomía, Universidad
Nacional del Sur, Bahía Blanca, Argentina
- * E-mail:
| |
Collapse
|
26
|
Wang T, Li HT, Zhu H, Qi SY, Zhang YM, Zhang ZJ, Zou QD. Comparative Analyses of Genetic Variation in a Tomato (Solanum lycopersicum L.) Germplasm Collection with Single Nucleotide Polymorphism and Insertion-Deletion Markers. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419020182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Boakyewaa Adu G, Badu-Apraku B, Akromah R, Garcia-Oliveira AL, Awuku FJ, Gedil M. Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS One 2019; 14:e0214810. [PMID: 30964890 PMCID: PMC6456193 DOI: 10.1371/journal.pone.0214810] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/20/2019] [Indexed: 11/23/2022] Open
Abstract
Information on genetic diversity and population structure are very important in any breeding programme for the improvement of traits of interest and the development of outstanding products for commercialization. In the present study, we assessed the genetic diversity of 94 early-maturing white and yellow tropical maize inbred lines using single nucleotide polymorphism (SNP) markers. The larger number of SNP markers used in this study allowed a clearer inference of the population structure of the 94 inbred lines. Cluster analysis resolved the inbred lines into different clusters based on their pedigree, selection history and endosperm colour. However, three heterotic groups were revealed by population structure analysis, but additional field evaluation could be more informative to confirm the heterotic groups identified. Nevertheless, wide genetic variability existed among the inbred lines making them unique with the potential to contribute new beneficial alleles to maize breeding programmes in the tropics, especially in the West and Central Africa (WCA) sub-region.
Collapse
Affiliation(s)
| | - Baffour Badu-Apraku
- International Institute of Tropical Agriculture (UK) Limited, Carolyn House, Croydon, United Kignodm
- * E-mail:
| | - Richard Akromah
- Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Melaku Gedil
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| |
Collapse
|
28
|
Lu X, Nevame Adedze YM, Chofong GN, Gandeka M, Deng Z, Teng L, Zhang X, Sun G, Si L, Li W. Identification of high-efficiency SSR markers for assessing watermelon genetic purity. J Genet 2018; 97:1295-1306. [PMID: 30555078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genomic simple sequence repeat (SSR) markers were used to fingerprint and determine genetic similarity (GS) of the watermelon breeding lines, as well as the purity of their hybrid derivatives. Cluster analysis and Jaccard's distance coefficients using the unweighted pair group method with arithmetic mean (UPGMA) have classified these lines into three major groups. Notwithstanding,the genetic background of these lines is narrow as revealed by the restricted GS coefficients. Fifty-five sets of SSR markers were employed in this study. Fourteen of these markers were polymorphic between the breeding lines and were used for assessing hybrid purity. Cross-checking assay validated nine SSR markers as informative SSR markers for purity detection of these hybrids. To confirm the accuracy and efficiency of these markers, their derived PCR products were further sequenced, and ClSSR09643, ClSSR18153 and ClSSR01623 were selected as high-efficiency SSR markers. Interestingly, SSR markers ClSSR09643 and ClSSR18153 were broadly applied for purity detection of more than two different hybrids, while SSR marker ClSSR01623 behaved as a specific marker forpurity detection in this study. Genetic purity of six commercial watermelon hybrids was definitely evaluated using these SSR markers. Genetic purity of all tested hybrids exceeded 96% while the field purity was above 98%. Genetic purity test was an emergency for identifying off-types and selfed female in a lot of hybrid seeds. Here, we elucidated the potential of nine SSR markers including threewith higher breeding selection efficiency. We recommended them to seed company for purity improvement of watermelon commercial hybrid varieties.
Collapse
Affiliation(s)
- Xia Lu
- Jiangsu Green Port Modern Agriculture Development Company, NanCai Township Road No. 1, Suqian city 223800, People's Republic of China. ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lu X, Adedze YMN, Chofong GN, Gandeka M, Deng Z, Teng L, Zhang X, Sun G, Si L, Li W. Identification of high-efficiency SSR markers for assessing watermelon genetic purity. J Genet 2018. [DOI: 10.1007/s12041-018-1027-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Chen C, He W, Nassirou TY, Nsabiyumva A, Dong X, Adedze YMN, Jin D. Molecular characterization and genetic diversity of different genotypes of Oryza sativa and Oryza glaberrima. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Rasheed A, Hao Y, Xia X, Khan A, Xu Y, Varshney RK, He Z. Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives. MOLECULAR PLANT 2017; 10:1047-1064. [PMID: 28669791 DOI: 10.1016/j.molp.2017.06.008] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/29/2017] [Accepted: 06/19/2017] [Indexed: 05/18/2023]
Abstract
There is a rapidly rising trend in the development and application of molecular marker assays for gene mapping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of genotyping-by-sequencing (GBS) platforms have been developed in over 25 crop species and perennial trees. However, much less effort has been made on developing ultra-high-throughput and cost-effective genotyping platforms for applied breeding programs. In this review, we discuss the scientific bottlenecks in existing SNP arrays and GBS technologies and the strategies to develop targeted platforms for crop molecular breeding. We propose that future practical breeding platforms should adopt automated genotyping technologies, either array or sequencing based, target functional polymorphisms underpinning economic traits, and provide desirable prediction accuracy for quantitative traits, with universal applications under wide genetic backgrounds in crops. The development of such platforms faces serious challenges at both the technological level due to cost ineffectiveness, and the knowledge level due to large genotype-phenotype gaps in crop plants. It is expected that such genotyping platforms will be achieved in the next ten years in major crops in consideration of (a) rapid development in gene discovery of important traits, (b) deepened understanding of quantitative traits through new analytical models and population designs, (c) integration of multi-layer -omics data leading to identification of genes and pathways responsible for important breeding traits, and (d) improvement in cost effectiveness of large-scale genotyping. Crop breeding chips and genotyping platforms will provide unprecedented opportunities to accelerate the development of cultivars with desired yield potential, quality, and enhanced adaptation to mitigate the effects of climate change.
Collapse
Affiliation(s)
- Awais Rasheed
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Awais Khan
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY, USA
| | - Yunbi Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing 100081, China
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, India
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), c/o CAAS, Beijing 100081, China.
| |
Collapse
|
32
|
Mangin B, Pouilly N, Boniface MC, Langlade NB, Vincourt P, Vear F, Muños S. Molecular diversity of sunflower populations maintained as genetic resources is affected by multiplication processes and breeding for major traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1099-1112. [PMID: 28255669 DOI: 10.1007/s00122-017-2872-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/04/2017] [Indexed: 05/20/2023]
Abstract
SNP genotyping of 114 cultivated sunflower populations showed that the multiplication process and the main traits selected during breeding of sunflower cultivars drove molecular diversity of the populations. The molecular diversity in a set of 114 cultivated sunflower populations was studied by single-nucleotide polymorphism genotyping. These populations were chosen as representative of the 400 entries in the INRA collection received or developed between 1962 and 2011 and made up of land races, open-pollinated varieties, and breeding pools. Mean allele number varied from 1.07 to 1.90. Intra-population variability was slightly reduced according to the number of multiplications since entry but some entries were probably largely homozygous when received. A principal component analysis was used to study inter-population variability. The first 3 axes accounted for 17% of total intra-population variability. The first axis was significantly correlated with seed oil content, more closely than just the distinction between oil and confectionary types. The second axis was related to the presence or absence of restorer genes and the third axis to flowering date and possibly to adaptation to different climates. Our results provide arguments highlighting the effect of the maintenance process on the within population genetic variability as well as on the impact of breeding for major agronomic traits on the between population variability of the collection. Propositions are made to improve sunflower population maintenance procedures to keep maximum genetic variability for future breeding.
Collapse
Affiliation(s)
- Brigitte Mangin
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Nicolas Pouilly
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | | | | | - Patrick Vincourt
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Felicity Vear
- GDEC, INRA, Université Clermont II Blaise Pascal, Clermont-Ferrand, France
| | - Stéphane Muños
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France.
| |
Collapse
|
33
|
Baldemir A, Topçu H, Paksoy MY, Motalebipour EZ, Kafkas S. First microsatellite markers for Scaligeria lazicaBoiss. (Apiaceae) by next-generation sequencing: population structure and genetic diversity analysis. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1301784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ayşe Baldemir
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Erciyes, Kayseri, Turkey
| | - Hayat Topçu
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, Turkey
| | - Mehmet Yavuz Paksoy
- Department of Environmental Engineering, Faculty of Engineering, University of Tunceli, Tunceli, Turkey
| | | | - Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana, Turkey
| |
Collapse
|
34
|
Chen W, Hou L, Zhang Z, Pang X, Li Y. Genetic Diversity, Population Structure, and Linkage Disequilibrium of a Core Collection of Ziziphus jujuba Assessed with Genome-wide SNPs Developed by Genotyping-by-sequencing and SSR Markers. FRONTIERS IN PLANT SCIENCE 2017; 8:575. [PMID: 28458680 PMCID: PMC5394126 DOI: 10.3389/fpls.2017.00575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/30/2017] [Indexed: 05/24/2023]
Abstract
Chinese jujube (Ziziphus jujuba Mill) is an economically important fruit species native to China with high nutritious and medicinal value. Genotyping-by-sequencing was used to detect and genotype single nucleotide polymorphisms (SNPs) in a core collection of 150 Chinese jujube accessions and further to characterize their genetic diversity, population structure, and linkage disequilibrium (LD). A total of 4,680 high-quality SNPs were identified, of which 38 sets of tri-allelic SNPs were detected. The average polymorphism information content (PIC) values based on bi-allelic SNPs and tri-allelic SNPs were 0.27 and 0.38, respectively. STRUCTURE and principal coordinate analyses based on SNPs revealed that the 150 accessions could be clustered into two groups. However, neighbor-joining trees indicated the accessions should be grouped into three major clusters. Our data confirm that the resolving power for genetic diversity was similar for the SSRs and SNPs. In contrast, regarding population structure, the resolving power was higher for SSRs than for SNPs. The LD pattern in Chinese jujube was investigated for the first time. We observed a relatively rapid LD decay with a short range (∼10 kb) for all pseudo-chromosomes and for individual pseudo-chromosomes. Our findings provide important information for future genome-wide association analyses and marker-assisted selective breeding of Chinese jujube.
Collapse
Affiliation(s)
- Wu Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Lu Hou
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Zhiyong Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry UniversityBeijing, China
| | - Xiaoming Pang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| | - Yingyue Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijing, China
| |
Collapse
|
35
|
Construction of a High-Density American Cranberry ( Vaccinium macrocarpon Ait.) Composite Map Using Genotyping-by-Sequencing for Multi-pedigree Linkage Mapping. G3-GENES GENOMES GENETICS 2017; 7:1177-1189. [PMID: 28250016 PMCID: PMC5386866 DOI: 10.1534/g3.116.037556] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The American cranberry (Vaccinium macrocarpon Ait.) is a recently domesticated, economically important, fruit crop with limited molecular resources. New genetic resources could accelerate genetic gain in cranberry through characterization of its genomic structure and by enabling molecular-assisted breeding strategies. To increase the availability of cranberry genomic resources, genotyping-by-sequencing (GBS) was used to discover and genotype thousands of single nucleotide polymorphisms (SNPs) within three interrelated cranberry full-sib populations. Additional simple sequence repeat (SSR) loci were added to the SNP datasets and used to construct bin maps for the parents of the populations, which were then merged to create the first high-density cranberry composite map containing 6073 markers (5437 SNPs and 636 SSRs) on 12 linkage groups (LGs) spanning 1124 cM. Interestingly, higher rates of recombination were observed in maternal than paternal gametes. The large number of markers in common (mean of 57.3) and the high degree of observed collinearity (mean Pair-wise Spearman rank correlations >0.99) between the LGs of the parental maps demonstrates the utility of GBS in cranberry for identifying polymorphic SNP loci that are transferable between pedigrees and populations in future trait-association studies. Furthermore, the high-density of markers anchored within the component maps allowed identification of segregation distortion regions, placement of centromeres on each of the 12 LGs, and anchoring of genomic scaffolds. Collectively, the results represent an important contribution to the current understanding of cranberry genomic structure and to the availability of molecular tools for future genetic research and breeding efforts in cranberry.
Collapse
|
36
|
Su W, Wang L, Lei J, Chai S, Liu Y, Yang Y, Yang X, Jiao C. Genome-wide assessment of population structure and genetic diversity and development of a core germplasm set for sweet potato based on specific length amplified fragment (SLAF) sequencing. PLoS One 2017; 12:e0172066. [PMID: 28187178 PMCID: PMC5302839 DOI: 10.1371/journal.pone.0172066] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/30/2017] [Indexed: 01/18/2023] Open
Abstract
Sweet potato, Ipomoea batatas (L.) Lam., is an important food crop that is cultivated worldwide. However, no genome-wide assessment of the genetic diversity of sweet potato has been reported to date. In the present study, the population structure and genetic diversity of 197 sweet potato accessions most of which were from China were assessed using 62,363 SNPs. A model-based structure analysis divided the accessions into three groups: group 1, group 2 and group 3. The genetic relationships among the accessions were evaluated using a phylogenetic tree, which clustered all the accessions into three major groups. A principal component analysis (PCA) showed that the accessions were distributed according to their population structure. The mean genetic distance among accessions ranged from 0.290 for group 1 to 0.311 for group 3, and the mean polymorphic information content (PIC) ranged from 0.232 for group 1 to 0.251 for group 3. The mean minor allele frequency (MAF) ranged from 0.207 for group 1 to 0.222 for group 3. Analysis of molecular variance (AMOVA) showed that the maximum diversity was within accessions (89.569%). Using CoreHunter software, a core set of 39 accessions was obtained, which accounted for approximately 19.8% of the total collection. The core germplasm set of sweet potato developed will be a valuable resource for future sweet potato improvement strategies.
Collapse
Affiliation(s)
- Wenjin Su
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Lianjun Wang
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Jian Lei
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shasha Chai
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yi Liu
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yuanyuan Yang
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Xinsun Yang
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- * E-mail: (XY); (CJ)
| | - Chunhai Jiao
- Hubei Academy of Agricultural Sciences, Wuhan, China
- * E-mail: (XY); (CJ)
| |
Collapse
|
37
|
Hinze LL, Hulse-Kemp AM, Wilson IW, Zhu QH, Llewellyn DJ, Taylor JM, Spriggs A, Fang DD, Ulloa M, Burke JJ, Giband M, Lacape JM, Van Deynze A, Udall JA, Scheffler JA, Hague S, Wendel JF, Pepper AE, Frelichowski J, Lawley CT, Jones DC, Percy RG, Stelly DM. Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array. BMC PLANT BIOLOGY 2017; 17:37. [PMID: 28158969 PMCID: PMC5291959 DOI: 10.1186/s12870-017-0981-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 01/23/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured. A combination of both methods would greatly enhance our ability to characterize germplasm resources. Recent efforts have culminated in the identification of sufficient SNP markers to establish high-throughput genotyping systems, such as the CottonSNP63K array, which enables a researcher to efficiently analyze large numbers of SNP markers and obtain highly repeatable results. In the current investigation, we have utilized the SNP array for analyzing genetic diversity primarily among cotton cultivars, making comparisons to SSR-based phylogenetic analyses, and identifying loci associated with seed nutritional traits. RESULTS The SNP markers distinctly separated G. hirsutum from other Gossypium species and distinguished the wild from cultivated types of G. hirsutum. The markers also efficiently discerned differences among cultivars, which was the primary goal when designing the CottonSNP63K array. Population structure within the genus compared favorably with previous results obtained using SSR markers, and an association study identified loci linked to factors that affect cottonseed protein content. CONCLUSIONS Our results provide a large genome-wide variation data set for primarily cultivated cotton. Thousands of SNPs in representative cotton genotypes provide an opportunity to finely discriminate among cultivated cotton from around the world. The SNPs will be relevant as dense markers of genome variation for association mapping approaches aimed at correlating molecular polymorphisms with variation in phenotypic traits, as well as for molecular breeding approaches in cotton.
Collapse
Affiliation(s)
- Lori L. Hinze
- USDA-ARS, Crop Germplasm Research Unit, College Station, TX 77845 USA
| | - Amanda M. Hulse-Kemp
- Department of Plant Sciences and Seed Biotechnology Center, University of California-Davis, Davis, CA 95616 USA
| | - Iain W. Wilson
- CSIRO Agriculture & Food, Black Mountain Laboratories, Canberra, ACT 2601 Australia
| | - Qian-Hao Zhu
- CSIRO Agriculture & Food, Black Mountain Laboratories, Canberra, ACT 2601 Australia
| | - Danny J. Llewellyn
- CSIRO Agriculture & Food, Black Mountain Laboratories, Canberra, ACT 2601 Australia
| | - Jen M. Taylor
- CSIRO Agriculture & Food, Black Mountain Laboratories, Canberra, ACT 2601 Australia
| | - Andrew Spriggs
- CSIRO Agriculture & Food, Black Mountain Laboratories, Canberra, ACT 2601 Australia
| | - David D. Fang
- USDA-ARS, Cotton Fiber Bioscience Research Unit, New Orleans, LA 70124 USA
| | - Mauricio Ulloa
- USDA-ARS, Cropping Systems Research Laboratory, Plant Stress and Germplasm Development Research Unit, Lubbock, TX 79415 USA
| | - John J. Burke
- USDA-ARS, Cropping Systems Research Laboratory, Plant Stress and Germplasm Development Research Unit, Lubbock, TX 79415 USA
| | - Marc Giband
- CIRAD, UMR AGAP, Montpellier, F34398 France
- EMBRAPA, Algodão, Nucleo Cerrado, 75.375-000 Santo Antônio de Goias, GO Brazil
| | | | - Allen Van Deynze
- Department of Plant Sciences and Seed Biotechnology Center, University of California-Davis, Davis, CA 95616 USA
| | - Joshua A. Udall
- Plant and Wildlife Science Department, Brigham Young University, Provo, UT 84602 USA
| | - Jodi A. Scheffler
- USDA-ARS, Jamie Whitten Delta States Research Center, Stoneville, MS 38776 USA
| | - Steve Hague
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011 USA
| | - Alan E. Pepper
- Department of Biology, Texas A&M University, College Station, TX 77843 USA
- Interdisciplinary Department of Genetics, Texas A&M University, College Station, TX 77843 USA
| | | | - Cindy T. Lawley
- Illumina Inc., 499 Illinois Street, San Francisco, CA 94158 USA
| | - Don C. Jones
- Cotton Incorporated, Agricultural Research, Cary, NC 27513 USA
| | - Richard G. Percy
- USDA-ARS, Crop Germplasm Research Unit, College Station, TX 77845 USA
| | - David M. Stelly
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX 77843 USA
- Interdisciplinary Department of Genetics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
38
|
Fischer MC, Rellstab C, Leuzinger M, Roumet M, Gugerli F, Shimizu KK, Holderegger R, Widmer A. Estimating genomic diversity and population differentiation - an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 2017; 18:69. [PMID: 28077077 PMCID: PMC5225627 DOI: 10.1186/s12864-016-3459-7] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 12/22/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Microsatellite markers are widely used for estimating genetic diversity within and differentiation among populations. However, it has rarely been tested whether such estimates are useful proxies for genome-wide patterns of variation and differentiation. Here, we compared microsatellite variation with genome-wide single nucleotide polymorphisms (SNPs) to assess and quantify potential marker-specific biases and derive recommendations for future studies. Overall, we genotyped 180 Arabidopsis halleri individuals from nine populations using 20 microsatellite markers. Twelve of these markers were originally developed for Arabidopsis thaliana (cross-species markers) and eight for A. halleri (species-specific markers). We further characterized 2 million SNPs across the genome with a pooled whole-genome re-sequencing approach (Pool-Seq). RESULTS Our analyses revealed that estimates of genetic diversity and differentiation derived from cross-species and species-specific microsatellites differed substantially and that expected microsatellite heterozygosity (SSR-H e) was not significantly correlated with genome-wide SNP diversity estimates (SNP-H e and θ Watterson) in A. halleri. Instead, microsatellite allelic richness (A r) was a better proxy for genome-wide SNP diversity. Estimates of genetic differentiation among populations (F ST) based on both marker types were correlated, but microsatellite-based estimates were significantly larger than those from SNPs. Possible causes include the limited number of microsatellite markers used, marker ascertainment bias, as well as the high variance in microsatellite-derived estimates. In contrast, genome-wide SNP data provided unbiased estimates of genetic diversity independent of whether genome- or only exome-wide SNPs were used. Further, we inferred that a few thousand random SNPs are sufficient to reliably estimate genome-wide diversity and to distinguish among populations differing in genetic variation. CONCLUSIONS We recommend that future analyses of genetic diversity within and differentiation among populations use randomly selected high-throughput sequencing-based SNP data to draw conclusions on genome-wide diversity patterns. In species comparable to A. halleri, a few thousand SNPs are sufficient to achieve this goal.
Collapse
Affiliation(s)
- Martin C. Fischer
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Christian Rellstab
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Marianne Leuzinger
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Marie Roumet
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies and Institute of Plant Biology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Rolf Holderegger
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
- WSL Swiss Federal Research Institute, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Alex Widmer
- ETH Zürich, Institute of Integrative Biology, Universitätstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
39
|
Steffler LM, Dolabella SS, Ribolla PEM, Dreyer CS, Araújo ED, Oliveira RG, Martins WFS, La Corte R. Genetic variability and spatial distribution in small geographic scale of Aedes aegypti (Diptera: Culicidae) under different climatic conditions in Northeastern Brazil. Parasit Vectors 2016; 9:530. [PMID: 27716392 PMCID: PMC5050563 DOI: 10.1186/s13071-016-1814-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The study of the genetic structure of Aedes aegypti is essential to understanding their population dynamics as well as for the analysis of factors responsible for their resistance and ecological adaptation. The use of molecular markers in identifying differences amongst populations of Ae. aegypti in different geographical areas as well as the temporal variation of the vector populations has contributed to the improvement of vector control strategies. The present study aims to determine the genetic variability of Ae. aegypti populations in a small geographical area (state of Sergipe, Northeastern Brazil) by means of inter-simple sequence repeat (ISSR) and single nucleotide polymorphism (SNP) molecular markers. RESULTS ISSR markers revealed a more heterogeneous pattern of genetic diversity among the populations with an expected heterozygosity (H E) ranging from 0.261 ± 0.03 to 0.120 ± 0.032, while a similar trend was detected through SNPs across populations with an H E between 0.375 ± 0.054 and 0.269 ± 0.042. The population's genetic differentiation assessed with ISSR and SNP markers indicated a very low structuring among the populations with the highest diversity observed within the populations 72 % (ISSR) and 92 % (SNP). Clustering analysis also suggested little variation among populations: the seven populations were grouped into only three ISSR clusters and a single panmictic group based on SNP markers. The present study identified a close relationship between the populations, which probably results mainly from passive gene flow between mosquitoes from distinct geographic regions, influenced by humans commuting along roads. CONCLUSIONS There was an intense migration of mosquitos across municipalities, leading to a potential increase in risk of arbovirus and insecticide resistance associated-alleles spreading between mosquito populations.
Collapse
Affiliation(s)
- Lizandra Makowski Steffler
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, Av. Mal Rondon s/n, CEP 49.100-000, São Cristóvão, Sergipe, Brazil
| | - Silvio Santana Dolabella
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, Av. Mal Rondon s/n, CEP 49.100-000, São Cristóvão, Sergipe, Brazil.,Departamento de Morfologia, Universidade Federal de Sergipe, Av. Mal Rondon s/n, CEP 49.100-000, São Cristóvão, Sergipe, Brazil
| | - Paulo Eduardo Martins Ribolla
- Departamento de Parasitologia, Universidade Estadual Júlio de Mesquita Filho, Rubião Junior, CP 510, CEP 18618-900, Botucatu, São Paulo, Brazil
| | - Carine Spenassatto Dreyer
- Departamento de Parasitologia, Universidade Estadual Júlio de Mesquita Filho, Rubião Junior, CP 510, CEP 18618-900, Botucatu, São Paulo, Brazil
| | - Edilson Divino Araújo
- Departamento de Biologia, Universidade Federal de Sergipe, Av. Mal Rondon s/n, CEP 49.100-000, São Cristóvão, Sergipe, Brazil.,Programa de Pós-Graduação em Biotecnologia, Rede Nordeste de Biotecnologia, Universidade Federal de Sergipe, Av. Mal Rondon s/n, CEP 49.100-000, São Cristóvão, Sergipe, Brazil
| | - Rosane Gomes Oliveira
- Programa de Pós-Graduação em Biotecnologia, Rede Nordeste de Biotecnologia, Universidade Federal de Sergipe, Av. Mal Rondon s/n, CEP 49.100-000, São Cristóvão, Sergipe, Brazil
| | - Walter Fabrício Silva Martins
- Departamento de Biologia/CCBS, Universidade Estadual da Paraíba, R. Baraúnas 351, Campina Grande, CEP 58.429-500, Paraíba, Brasil
| | - Roseli La Corte
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, Av. Mal Rondon s/n, CEP 49.100-000, São Cristóvão, Sergipe, Brazil. .,Departamento de Morfologia, Universidade Federal de Sergipe, Av. Mal Rondon s/n, CEP 49.100-000, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
40
|
Zhu H, Song P, Koo DH, Guo L, Li Y, Sun S, Weng Y, Yang L. Genome wide characterization of simple sequence repeats in watermelon genome and their application in comparative mapping and genetic diversity analysis. BMC Genomics 2016; 17:557. [PMID: 27495254 PMCID: PMC4974753 DOI: 10.1186/s12864-016-2870-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/01/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microsatellite markers are one of the most informative and versatile DNA-based markers used in plant genetic research, but their development has traditionally been difficult and costly. The whole genome sequencing with next-generation sequencing (NGS) technologies provides large amounts of sequence data to develop numerous microsatellite markers at whole genome scale. SSR markers have great advantage in cross-species comparisons and allow investigation of karyotype and genome evolution through highly efficient computation approaches such as in silico PCR. Here we described genome wide development and characterization of SSR markers in the watermelon (Citrullus lanatus) genome, which were then use in comparative analysis with two other important crop species in the Cucurbitaceae family: cucumber (Cucumis sativus L.) and melon (Cucumis melo L.). We further applied these markers in evaluating the genetic diversity and population structure in watermelon germplasm collections. RESULTS A total of 39,523 microsatellite loci were identified from the watermelon draft genome with an overall density of 111 SSRs/Mbp, and 32,869 SSR primers were designed with suitable flanking sequences. The dinucleotide SSRs were the most common type representing 34.09 % of the total SSR loci and the AT-rich motifs were the most abundant in all nucleotide repeat types. In silico PCR analysis identified 832 and 925 SSR markers with each having a single amplicon in the cucumber and melon draft genome, respectively. Comparative analysis with these cross-species SSR markers revealed complicated mosaic patterns of syntenic blocks among the genomes of three species. In addition, genetic diversity analysis of 134 watermelon accessions with 32 highly informative SSR loci placed these lines into two groups with all accessions of C.lanatus var. citorides and three accessions of C. colocynthis clustered in one group and all accessions of C. lanatus var. lanatus and the remaining accessions of C. colocynthis clustered in another group. Furthermore, structure analysis was consistent with the dendrogram indicating the 134 watermelon accessions were classified into two populations. CONCLUSION The large number of genome wide SSR markers developed herein from the watermelon genome provides a valuable resource for genetic map construction, QTL exploration, map-based gene cloning and marker-assisted selection in watermelon which has a very narrow genetic base and extremely low polymorphism among cultivated lines. Furthermore, the cross-species transferable SSR markers identified herein should also have practical uses in many applications in species of Cucurbitaceae family whose whole genome sequences are not yet available.
Collapse
Affiliation(s)
- Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002 China
| | - Pengyao Song
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002 China
| | - Dal-Hoe Koo
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
| | - Luqin Guo
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002 China
| | - Yanman Li
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002 China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002 China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison, WI 53706 USA
- US Department of Agriculture/Agricultural Research Service, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, WI 53706 USA
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002 China
| |
Collapse
|
41
|
Quesada-Ocampo LM, Al-Haddad J, Scruggs AC, Buell CR, Trail F. Susceptibility of Maize to Stalk Rot Caused by Fusarium graminearum Deoxynivalenol and Zearalenone Mutants. PHYTOPATHOLOGY 2016; 106:920-7. [PMID: 27050573 DOI: 10.1094/phyto-09-15-0199-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fusarium graminearum is a destructive pathogen of cereals that can cause stalk rot in maize. Stalk rot results in yield losses due to impaired grain filling, premature senescence, and lodging, which limits production and harvesting of ears. In addition, mycotoxins can make infected tissues unfit for silage. Our objectives were to evaluate the natural variation in stalk rot resistance among maize inbreds, to establish whether deoxynivalenol (DON)- and zearalenone (ZEA)-deficient strains are pathogenic on a panel of diverse inbreds, and to quantify the accumulation of DON in infected stalk tissue. Wild-type F. graminearum and mycotoxin mutants (DON and ZEA) were used to separately inoculate stalks of 9-week-old plants of 20 inbreds in the greenhouse. Plants were evaluated for lesion area at the inoculation point at 0, 2, 14, and 28 days postinoculation and tissues around lesions were sampled to determine the DON content. Regardless of their ability to produce DON or ZEA, all tested F. graminearum strains caused stalk rot; however, significant differences in disease levels were detected. Among the tested inbreds, Mp717 was resistant to all three F. graminearum strains while Mp317 and HP301 were only partially resistant. Accumulation of DON was significantly lower in infected stalks of the resistant and partially resistant inbreds than the susceptible inbreds. Analysis of the 20 inbreds using data from 17 simple-sequence repeats revealed population structure among the individuals; however, there was no association between genetic clustering and stalk rot resistance. These findings are an additional step toward breeding maize inbreds suitable for planting in fields infested with F. graminearum.
Collapse
Affiliation(s)
- L M Quesada-Ocampo
- First and third authors; Department of Plant Pathology, North Carolina State University, Raleigh 27695; and second, fourth, and fifth authors: Department of Plant Biology, Michigan State University, East Lansing 48824
| | - J Al-Haddad
- First and third authors; Department of Plant Pathology, North Carolina State University, Raleigh 27695; and second, fourth, and fifth authors: Department of Plant Biology, Michigan State University, East Lansing 48824
| | - A C Scruggs
- First and third authors; Department of Plant Pathology, North Carolina State University, Raleigh 27695; and second, fourth, and fifth authors: Department of Plant Biology, Michigan State University, East Lansing 48824
| | - C R Buell
- First and third authors; Department of Plant Pathology, North Carolina State University, Raleigh 27695; and second, fourth, and fifth authors: Department of Plant Biology, Michigan State University, East Lansing 48824
| | - F Trail
- First and third authors; Department of Plant Pathology, North Carolina State University, Raleigh 27695; and second, fourth, and fifth authors: Department of Plant Biology, Michigan State University, East Lansing 48824
| |
Collapse
|
42
|
Jaimes YY, Gonzalez C, Rojas J, Cornejo OE, Mideros MF, Restrepo S, Cilas C, Furtado EL. Geographic Differentiation and Population Genetic Structure of Moniliophthora roreri in the Principal Cocoa Production Areas in Colombia. PLANT DISEASE 2016; 100:1548-1558. [PMID: 30686241 DOI: 10.1094/pdis-12-15-1498-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Frosty pod rot (FPR) disease on cocoa, caused by Moniliophthora roreri, is one of the most devastating cocoa disease in the Western Hemisphere. In Colombia, the disease is particularly severe in the Magdalena Valley, which is considered the possible center of origin for the pathogen species. We analyzed the genetic diversity of isolates from the departments of Santander, Antioquia, Tolima, and Huila in Colombia using 23 simple-sequence repeats (SSR) markers. In total, 117 different multilocus genotypes were found among 120 isolates, each one representing a unique haplotype. High mutation rates in the SSR and gene flow can explain the high levels of diversity. Also, the observed and standardized indexes of association (IA and řd) indicate that the populations of M. roreri are clonal. Furthermore, given the high haplotype diversity and the significant linkage disequilibrium observed, we hypothesize that M. roreri could be a primarily asexual species undergoing sporadic recombination or partial recombination through parasexuality. A Bayesian clustering analysis implemented by STRUCTURE showed that the most probable number of genetic groups in the data was three, confirming the geographical differentiation among isolates. Similar results were obtained by a discriminant analysis of principal components, a principal coordinate analysis, and a neighbor-joining tree from microsatellite loci base on Nei distance. Cacao genotypes and environmental variables did contribute to the genetic differentiation of the groups. We discuss how this information could be used to improve the management of FPR at the regional level.
Collapse
Affiliation(s)
- Yeirme Y Jaimes
- Corpoica, Research Center La Suiza, Rionegro-Santander, Colombia; CAPES PEC-PG Fellow; and Plant Protection Department, Faculty of Agricultural Sciences, São Paulo State University, Botucatu, SP, Brasil
| | | | | | - Omar E Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA
| | - Maria F Mideros
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Silvia Restrepo
- Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Christian Cilas
- CIRAD, UR Bioagresseurs, Campus de Baillarguet, TA A-106/D, 34398 Montpellier Cedex 5, France
| | - E L Furtado
- CNPq Fellow, Plant Protection Department, Faculty of Agricultural Sciences, São Paulo State University, Botucatu, SP, Brasil
| |
Collapse
|
43
|
Parida SK, Kalia S, Pandit A, Nayak P, Singh RK, Gaikwad K, Srivastava PS, Singh NK, Mohapatra T. Single nucleotide polymorphism in sugar pathway and disease resistance genes in sugarcane. PLANT CELL REPORTS 2016; 35:1629-1653. [PMID: 27289592 DOI: 10.1007/s00299-016-1978-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/21/2016] [Indexed: 06/06/2023]
Abstract
Single nucleotide polymorphism in sugar pathway and disease resistance genes showing genetic association with sugar content and red rot resistance would be useful in marker-assisted genetic improvement of sugarcane. Validation and genotyping of potential sequence variants in candidate genes are necessary to understand their functional significance and trait association potential. We discovered, characterized, validated and genotyped SNPs and InDels in sugar pathway and disease resistance genes of Saccharum complex and sugarcane varieties using amplicon sequencing and CAPS assays. The SNPs were abundant in the non-coding 3'UTRs than 5'UTRs and coding sequences depicting a strong bias toward C to T transition substitutions than transversions. Sequencing of cloned amplicons validated 61.6 and 45.2 % SNPs detected in silico in 21 sugar pathway and 16 disease resistance genes, respectively. Sixteen SNPs in four sugar pathway genes and 10 SNPs in nine disease resistance genes were validated through cost-effective CAPS assay. Functional and adaptive significance of SNP and protein haplotypes identified in sugar pathway and disease resistance genes was assessed by correlating their allelic variation with missense amino acid substitutions in the functional domains, alteration in protein structure models and possible modulation of catalytic enzyme activity in contrasting high and low sugar and moderately red rot resistant and highly susceptible sugarcane genotypes. A strong genetic association of five SNPs in the sugar pathway and disease resistance genes, and an InDel marker in the promoter sequence of sucrose synthase-2 gene, with sugar content and red rot resistance, was evident. The functionally relevant SNPs and InDels, detected and validated in sugar pathway and disease resistance genes, and genic CAPS markers designed, would be of immense use in marker-assisted genetic improvement of sugarcane for sugar content and disease resistance.
Collapse
Affiliation(s)
- Swarup K Parida
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjay Kalia
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- Department of Biotechnology, CGO Complex, Lodhi Road, New Delhi, 110003, India
| | - Awadhesh Pandit
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
- National Centre for Biological Sciences, Bengaluru, 560065, Karnataka , India
| | - Preetam Nayak
- Utkal University, Vanivihar, Bhubaneswar, Odisha, 751004, India
| | - Ram Kushal Singh
- U.P. Council of Sugarcane Research, Shahjahanpur, Uttar Pradesh, 242001, India
| | - Kishor Gaikwad
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | | | - Nagendra K Singh
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India
| | - Trilochan Mohapatra
- National Research Centre on Plant Biotechnology, New Delhi, 110012, India.
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
44
|
Rajora OP, Eckert AJ, Zinck JWR. Single-Locus versus Multilocus Patterns of Local Adaptation to Climate in Eastern White Pine (Pinus strobus, Pinaceae). PLoS One 2016; 11:e0158691. [PMID: 27387485 PMCID: PMC4936701 DOI: 10.1371/journal.pone.0158691] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/20/2016] [Indexed: 11/18/2022] Open
Abstract
Natural plant populations are often adapted to their local climate and environmental conditions, and populations of forest trees offer some of the best examples of this pattern. However, little empirical work has focused on the relative contribution of single-locus versus multilocus effects to the genetic architecture of local adaptation in plants/forest trees. Here, we employ eastern white pine (Pinus strobus) to test the hypothesis that it is the inter-genic effects that primarily drive climate-induced local adaptation. The genetic structure of 29 range-wide natural populations of eastern white pine was determined in relation to local climatic factors using both a reference set of SSR markers, and SNPs located in candidate genes putatively involved in adaptive response to climate. Comparisons were made between marker sets using standard single-locus outlier analysis, single-locus and multilocus environment association analyses and a novel implementation of Population Graphs. Magnitudes of population structure were similar between the two marker sets. Outlier loci consistent with diversifying selection were rare for both SNPs and SSRs. However, genetic distances based on the multilocus among population covariances (cGD) were significantly more correlated to climate, even after correcting for spatial effects, for SNPs as compared to SSRs. Coalescent simulations confirmed that the differences in mutation rates between SSRs and SNPs did not affect the topologies of the Population Graphs, and hence values of cGD and their correlations with associated climate variables. We conclude that the multilocus covariances among populations primarily reflect adaptation to local climate and environment in eastern white pine. This result highlights the complexity of the genetic architecture of adaptive traits, as well as the need to consider multilocus effects in studies of local adaptation.
Collapse
Affiliation(s)
- Om P. Rajora
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
- * E-mail:
| | - Andrew J. Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - John W. R. Zinck
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| |
Collapse
|
45
|
Nice LM, Steffenson BJ, Brown-Guedira GL, Akhunov ED, Liu C, Kono TJY, Morrell PL, Blake TK, Horsley RD, Smith KP, Muehlbauer GJ. Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley. Genetics 2016; 203:1453-67. [PMID: 27182953 PMCID: PMC4937491 DOI: 10.1534/genetics.116.190736] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/02/2016] [Indexed: 12/29/2022] Open
Abstract
The ability to access alleles from unadapted germplasm collections is a long-standing problem for geneticists and breeders. Here we developed, characterized, and demonstrated the utility of a wild barley advanced backcross-nested association mapping (AB-NAM) population. We developed this population by backcrossing 25 wild barley accessions to the six-rowed malting barley cultivar Rasmusson. The 25 wild barley parents were selected from the 318 accession Wild Barley Diversity Collection (WBDC) to maximize allelic diversity. The resulting 796 BC2F4:6 lines were genotyped with 384 SNP markers, and an additional 4022 SNPs and 263,531 sequence variants were imputed onto the population using 9K iSelect SNP genotypes and exome capture sequence of the parents, respectively. On average, 96% of each wild parent was introgressed into the Rasmusson background, and the population exhibited low population structure. While linkage disequilibrium (LD) decay (r(2) = 0.2) was lowest in the WBDC (0.36 cM), the AB-NAM (9.2 cM) exhibited more rapid LD decay than comparable advanced backcross (28.6 cM) and recombinant inbred line (32.3 cM) populations. Three qualitative traits: glossy spike, glossy sheath, and black hull color were mapped with high resolution to loci corresponding to known barley mutants for these traits. Additionally, a total of 10 QTL were identified for grain protein content. The combination of low LD, negligible population structure, and high diversity in an adapted background make the AB-NAM an important tool for high-resolution gene mapping and discovery of novel allelic variation using wild barley germplasm.
Collapse
Affiliation(s)
- Liana M Nice
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota 55108
| | - Gina L Brown-Guedira
- United States Department of Agriculture-Agricultural Research Service, North Carolina State University, Raleigh, North Carolina 27607
| | - Eduard D Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Chaochih Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Thomas J Y Kono
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Thomas K Blake
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana 59717
| | - Richard D Horsley
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58108
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108 Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
46
|
Yaro M, Munyard KA, Stear MJ, Groth DM. Molecular identification of livestock breeds: a tool for modern conservation biology. Biol Rev Camb Philos Soc 2016; 92:993-1010. [DOI: 10.1111/brv.12265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 02/14/2016] [Accepted: 02/18/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Mohammed Yaro
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| | - Kylie A. Munyard
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| | - Michael J. Stear
- Institute of Biodiversity, Animal Health and Comparative Medicine; University of Glasgow; Bearsden Road Glasgow G61 1QH U.K
| | - David M. Groth
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Faculty of Health Sciences; Curtin University; GPO Box U1987 Perth WA 6845 Australia
| |
Collapse
|
47
|
Kawamura K, Kawanabe T, Shimizu M, Nagano AJ, Saeki N, Okazaki K, Kaji M, Dennis ES, Osabe K, Fujimoto R. Genetic distance of inbred lines of Chinese cabbage and its relationship to heterosis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.plgene.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Bonatelli IAS, Carstens BC, Moraes EM. Using Next Generation RAD Sequencing to Isolate Multispecies Microsatellites for Pilosocereus (Cactaceae). PLoS One 2015; 10:e0142602. [PMID: 26561396 PMCID: PMC4641700 DOI: 10.1371/journal.pone.0142602] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Microsatellite markers (also known as SSRs, Simple Sequence Repeats) are widely used in plant science and are among the most informative molecular markers for population genetic investigations, but the development of such markers presents substantial challenges. In this report, we discuss how next generation sequencing can replace the cloning, Sanger sequencing, identification of polymorphic loci, and testing cross-amplification that were previously required to develop microsatellites. We report the development of a large set of microsatellite markers for five species of the Neotropical cactus genus Pilosocereus using a restriction-site-associated DNA sequencing (RAD-seq) on a Roche 454 platform. We identified an average of 165 microsatellites per individual, with the absolute numbers across individuals proportional to the sequence reads obtained per individual. Frequency distribution of the repeat units was similar in the five species, with shorter motifs such as di- and trinucleotide being the most abundant repeats. In addition, we provide 72 microsatellites that could be potentially amplified in the sampled species and 22 polymorphic microsatellites validated in two populations of the species Pilosocereus machrisii. Although low coverage sequencing among individuals was observed for most of the loci, which we suggest to be more related to the nature of the microsatellite markers and the possible bias inserted by the restriction enzymes than to the genome size, our work demonstrates that an NGS approach is an efficient method to isolate multispecies microsatellites even in non-model organisms.
Collapse
Affiliation(s)
| | - Bryan C. Carstens
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Evandro M. Moraes
- Department of Biology, Federal University of São Carlos, Sorocaba, São Paulo, Brazil
| |
Collapse
|
49
|
Wu X, Li Y, Li X, Li C, Shi Y, Song Y, Zheng Z, Li Y, Wang T. Analysis of genetic differentiation and genomic variation to reveal potential regions of importance during maize improvement. BMC PLANT BIOLOGY 2015; 15:256. [PMID: 26496865 PMCID: PMC4620006 DOI: 10.1186/s12870-015-0646-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/15/2015] [Indexed: 05/25/2023]
Abstract
BACKGROUND Exploring genetic differentiation and genomic variation is important for both the utilization of heterosis and the dissection of the genetic bases of complex traits. METHODS We integrated 1857 diverse maize accessions from America, Africa, Europe and Asia to investigatetheir genetic differentiation, genomic variation using 43,252 high-quality single-nucleotide polymorphisms(SNPs),combing GWAS and linkage analysis strategy to exploring the function of relevant genetic segments. RESULTS We uncovered many more subpopulations that recently or historically formed during the breeding process. These patterns are represented by the following lines: Mo17, GB, E28, Ye8112, HZS, Shen137, PHG39, B73, 207, A634, Oh43, Reid Yellow Dent, and the Tropical/subtropical (TS) germplasm. A total of 85 highly differentiated regions with a DEST of more than 0.2 were identified between the TS and temperate subpopulations. These regions comprised 79% of the genetic variation, and most were significantly associated with adaptive traits. For example, the region containing the SNP tag PZE.108075114 was highly differentiated, and this region was significantly associated with flowering time (FT)-related traits, as supported by a genome-wide association study (GWAS) within the interval of FT-related quantitative trait loci (QTL). This region was also closely linked to zcn8 and vgt1, which were shown to be involved in maize adaptation. Most importantly, 197 highly differentiated regions between different subpopulation pairs were located within an FT- or plant architecture-related QTL. CONCLUSIONS Here we reported that 700-1000 SNPs were necessary needed to robustly estimate the genetic differentiation of a naturally diverse panel. In addition, 13 subpopulations were observed in maize germplasm, 85 genetic regions with higher differentiation between TS and temperate maize germplasm, 197 highly differentiated regions between different subpopulation pairs, which contained some FT- related QTNs/QTLs/genes supported by GWAS and linkage analysis, and these regions were expected to play important roles in maize adaptation.
Collapse
Affiliation(s)
- Xun Wu
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China.
- Nanchong Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Yongxiang Li
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China.
| | - Xin Li
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China.
| | - Chunhui Li
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Yunsu Shi
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Yanchun Song
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China
| | - Zuping Zheng
- Nanchong Academy of Agricultural Sciences, Nanchong, Sichuan, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China.
| | - Tianyu Wang
- Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing, China.
| |
Collapse
|
50
|
Leng P, Ji Q, Tao Y, Ibrahim R, Pan G, Xu M, Lübberstedt T. Characterization of Sugarcane Mosaic Virus Scmv1 and Scmv2 Resistance Regions by Regional Association Analysis in Maize. PLoS One 2015; 10:e0140617. [PMID: 26488483 PMCID: PMC4619251 DOI: 10.1371/journal.pone.0140617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/27/2015] [Indexed: 11/18/2022] Open
Abstract
Sugarcane Mosaic Virus (SCMV) causes one of the most severe virus diseases in maize worldwide, resulting in reduced grain and forage yield in susceptible cultivars. In this study, two association panels consisting of 94 inbred lines each, from China and the U.S., were characterized for resistance to two isolates: SCMV-Seehausen and SCMV-BJ. The population structure of both association panels was analyzed using 3072 single nucleotide polymorphism (SNP) markers. The Chinese and the U.S. panel were both subdivided into two sub-populations, the latter comprised of Stiff Stalk Synthetic (SS) lines and Non Stiff Stalk Synthetic (NSS). The relative kinships were calculated using informative 2947 SNPs with minor allele frequency ≥ 5% and missing data ≤ 20% for the Chinese panel and 2841 SNPs with the same characteristics were used for the U.S. panel. The Scmv1 region was genotyped using 7 single sequence repeat (SSR) and sequence-tagged site (STS) markers, and 12 SSR markers were used for the Scmv2 region in the U.S. panel, while 5 of them were used for the Chinese panel. For all traits, a MLM (Mix Linear Model) controlling both population structure and relative kinship (Q + K) was used for association analysis. Three markers Trx-1, STS-11, and STS-12 located in the Scmv1 region were strongly associated (P = 0.001) with SCMV resistance, and explained more than 16.0%, 10.6%, and 19.7% of phenotypic variation, respectively. 207FG003 located in the Scmv2 region was significantly associated (P = 0.001) with SCMV resistance, and explained around 18.5% of phenotypic variation.
Collapse
Affiliation(s)
- Pengfei Leng
- National Maize Improvement Center, China Agricultural University, Beijing, 100094, China; Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Qing Ji
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Yongfu Tao
- National Maize Improvement Center, China Agricultural University, Beijing, 100094, China
| | - Rania Ibrahim
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Guangtang Pan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mingliang Xu
- National Maize Improvement Center, China Agricultural University, Beijing, 100094, China
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, Ames, Iowa, 50011, United States of America
| |
Collapse
|