1
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy FMA, Alsaadi SB, Abosaoda MK. Role of homeobox genes in cancer: immune system interactions, long non-coding RNAs, and tumor progression. Mol Biol Rep 2024; 51:964. [PMID: 39240390 DOI: 10.1007/s11033-024-09857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
The intricate interplay between Homeobox genes, long non-coding RNAs (lncRNAs), and the development of malignancies represents a rapidly expanding area of research. Specific discernible lncRNAs have been discovered to adeptly regulate HOX gene expression in the context of cancer, providing fresh insights into the molecular mechanisms that govern cancer development and progression. An in-depth comprehension of these intricate associations may pave the way for innovative therapeutic strategies in cancer treatment. The HOX gene family is garnering increasing attention due to its involvement in immune system regulation, interaction with long non-coding RNAs, and tumor progression. Although initially recognized for its crucial role in embryonic development, this comprehensive exploration of the world of HOX genes contributes to our understanding of their diverse functions, potentially leading to immunology, developmental biology, and cancer research discoveries. Thus, the primary objective of this review is to delve into these aspects of HOX gene biology in greater detail, shedding light on their complex functions and potential therapeutic applications.
Collapse
Affiliation(s)
| | - Shireen Hamid Farhan
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
2
|
Gao L, Zhang L, Zhang Y, Madaniyati M, Shi S, Huang L, Song X, Pang W, Chu G, Yang G. miR-10a-5p inhibits steroid hormone synthesis in porcine granulosa cells by targeting CREB1 and inhibiting cholesterol metabolism. Theriogenology 2023; 212:19-29. [PMID: 37683501 DOI: 10.1016/j.theriogenology.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/12/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
During growth, proliferation, differentiation, atresia, ovulation, and luteinization, the morphology and function of granulosa cells (GCs) change. Estrogen and progesterone are steroid hormones secreted by GCs that regulate the ovulation cycle of sows and help maintain pregnancy. miR-10a-5p is highly expressed in GCs and can inhibit GC proliferation. However, the role of miR-10a-5p in the steroid hormone synthesis of porcine GCs is unclear. In this study, miR-10a-5p agomir or antagomir was transfected into GCs. Overexpression of miR-10a-5p in GCs inhibited steroid hormone secretion and significantly downregulated steroid hormone synthesis via 3β-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1. Interference with miR-10a-5p had the opposite effect. Bodipy and Oil Red O staining showed that overexpression of miR-10a-5p significantly reduced the formation of lipid droplets. Overexpression significantly inhibited the content of total cholesterol esters in GCs. The mRNA and protein levels of 3-hydroxy-3-methylglutaryl-CoA reductase and scavenger receptor class B member 1 decreased significantly, and the opposite effects were seen by interference with miR-10a-5p. Bioinformatic analysis of potential targets identified cAMP-responsive element binding protein 1 as a potential target and dual-luciferase reporter system analysis confirmed that miR-10a-5p directly targets the 3' untranslated region. These findings suggest that miR-10a-5p inhibits the expression of 3β-hydroxy steroid dehydrogenase and cytochrome P450 family 19 subfamily A member 1 to inhibit the synthesis of steroid hormones in GCs. In addition, miR-10a-5p inhibits the cholesterol metabolism pathway of GCs to modulate steroid hormone synthesis.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lutong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yuli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Mielie Madaniyati
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shengjie Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Liang Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiangrong Song
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Guiyan Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
3
|
The Role of microRNAs in Inflammation. Int J Mol Sci 2022; 23:ijms232415479. [PMID: 36555120 PMCID: PMC9779565 DOI: 10.3390/ijms232415479] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a biological response of the immune system to various insults, such as pathogens, toxic compounds, damaged cells, and radiation. The complex network of pro- and anti-inflammatory factors and their direction towards inflammation often leads to the development and progression of various inflammation-associated diseases. The role of small non-coding RNAs (small ncRNAs) in inflammation has gained much attention in the past two decades for their regulation of inflammatory gene expression at multiple levels and their potential to serve as biomarkers and therapeutic targets in various diseases. One group of small ncRNAs, microRNAs (miRNAs), has become a key regulator in various inflammatory disease conditions. Their fine-tuning of target gene regulation often turns out to be an important factor in controlling aberrant inflammatory reactions in the system. This review summarizes the biogenesis of miRNA and the mechanisms of miRNA-mediated gene regulation. The review also briefly discusses various pro- and anti-inflammatory miRNAs, their targets and functions, and provides a detailed discussion on the role of miR-10a in inflammation.
Collapse
|
4
|
Ozernyuk N, Schepetov D. HOX-Gene Cluster Organization and Genome Duplications in Fishes and Mammals: Transcript Variant Distribution along the Anterior–Posterior Axis. Int J Mol Sci 2022; 23:ijms23179990. [PMID: 36077385 PMCID: PMC9456325 DOI: 10.3390/ijms23179990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Hox genes play a crucial role in morphogenesis, especially in anterior–posterior body axis patterning. The organization of Hox clusters in vertebrates is a result of several genome duplications: two rounds of duplication in the ancestors of all vertebrates and a third round that was specific for teleost fishes. Teleostei cluster structure has been significantly modified in the evolutionary processes by Hox gene losses and co-options, while mammals show no such tendency. In mammals, the Hox gene number in a single cluster is stable and generally large, and the numbers are similar to those in the Chondrichthyes. Hox gene alternative splicing activity slightly differs between fishes and mammals. Fishes and mammals have differences in their known alternative splicing activity for Hox gene distribution along the anterior–posterior body axis. The analyzed fish groups—the Coelacanthiformes, Chondrichthyes, and Teleostei—all have higher known alternative mRNA numbers from the anterior and posterior regions, whereas mammals have a more uniform Hox transcript distribution along this axis. In fishes, most Hox transcripts produce functioning proteins, whereas mammals have significantly more known transcripts that do not produce functioning proteins.
Collapse
Affiliation(s)
- Nikolay Ozernyuk
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
- Correspondence:
| | - Dimitry Schepetov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
5
|
Liu C, Gao W, Shi Y, Lv L, Tang W. Association between miR-146a rs2910164, miR-196a2 rs11614913, and miR-499 rs3746444 polymorphisms and the risk of esophageal carcinoma: A case-control study. Cancer Med 2022; 11:3949-3959. [PMID: 35499218 PMCID: PMC9636501 DOI: 10.1002/cam4.4729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRNAs) are a group of small, non‐coding, and endogenous RNAs that regulate gene expression and over 50% of them are located at cancer‐related genomic regions or fragile sites. According to previous studies there is significant association of miRNA single nucleotide polymorphisms (SNPs) with tumorigenesis (e.g., esophageal cancer, hepatocellular cancer, gastric cancer, bladder cancer, breast cancer, lung cancer, and colon cancer), however, the conclusions have been inconsistent. To investigate the relationship between miR‐146a rs2910164 C > G, miR‐196a2 rs11614913 T > C, and miR‐499 rs3746444 A > G polymorphisms and the susceptibility to esophageal squamous cell cancer (ESCC) in the Chinese Han nationality, we recruited 829 cases and 1522 controls in our study. In this case–control study, our results suggest that the rs3746444 GG genotype increased ESCC risk [homozygote model: adjusted odds ratio (OR), 2.26; 95% CI, 1.33–3.83; p = 0.003, recessive model: adjusted OR, 2.34; 95% CI, 1.38–3.96; p = 0.002], which remained consistent after Bonferroni correction. There was no association of rs11614913 and rs2910164 polymorphisms with ESCC. After adjusting by age, sex, smoking, and drinking status and body mass index (BMI), the multiple logistic analysis suggested that rs11614913 T → C variation reduced ESCC susceptibility in females and in the ≥63 years old subgroups, while rs2910164 C → G variation increased ESCC risk in both two BMI subgroups.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University (Zhenjiang First People's Hospital), Jiangsu Province, China
| | - Wenhui Gao
- School of Medicine, Jiangsu University, Jiangsu Province, China
| | - Yijun Shi
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University (Zhenjiang First People's Hospital), Jiangsu Province, China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University (Zhenjiang First People's Hospital), Jiangsu Province, China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Jiangsu Province, China
| |
Collapse
|
6
|
Chen K, Ding L, Shui H, Liang Y, Zhang X, Wang T, Li L, Liu S, Wu H. MiR-615 Agomir Encapsulated in Pluronic F-127 Alleviates Neuron Damage and Facilitates Function Recovery After Brachial Plexus Avulsion. J Mol Neurosci 2021; 72:136-148. [PMID: 34569008 PMCID: PMC8755699 DOI: 10.1007/s12031-021-01916-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Brachial plexus avulsion (BPA) is a devastating traumatic peripheral nerve injury complicated with paralysis of the upper extremity. We previously reported that leucine-rich repeat and immunoglobulin-like domain-containing NOGO receptor-interacting protein 1 (LINGO-1) has a potent role in inhibiting neuron survival and axonal regeneration after the central nervous system (CNS) damage and miR-615 is a potential microRNA (miRNA) negatively regulated LINGO-1. However, the effect of miR-615 in BPA remains to be elucidated. Accumulating evidence indicates that pluronic F-127 (PF-127) hydrogel could serve as a promising vehicle for miRNA encapsulation. Thus, to further explore the potential role of hydrogel-miR-615 in BPA-reimplantation, the present study established the BPA rat model and injected miR-615 agomir encapsulated by PF-127 hydrogel into the reimplantation site using a microsyringe. In this study, results indicated that hydrogel-miR-615 agomir effectively alleviated motoneuron loss by LINGO-1 inhibition, promoted musculocutaneous nerve regeneration and myelination, reduced astrocytes activation, promoted angiogenesis and attenuated peripheral amyotrophy, leading to improved motor functional rehabilitation of the upper extremity. In conclusion, our findings demonstrate that miR-615-loaded PF-127 hydrogel may represent a novel therapeutic strategy for BPA treatment.
Collapse
Affiliation(s)
- Kangzhen Chen
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Lu Ding
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
- Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hua Shui
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China
| | - Yinru Liang
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaomin Zhang
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, 528318, China
| | - Linke Li
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China
| | - Shuxian Liu
- Department of Anesthesiology, Guangzhou Huadu Affiliated Hospital of Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, 510800, China.
| | - Hongfu Wu
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
7
|
miR-615 Fine-Tunes Growth and Development and Has a Role in Cancer and in Neural Repair. Cells 2020; 9:cells9071566. [PMID: 32605009 PMCID: PMC7408929 DOI: 10.3390/cells9071566] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that function as epigenetic modulators regulating almost any gene expression. Similarly, other noncoding RNAs, as well as epigenetic modifications, can regulate miRNAs. This reciprocal interaction forms a miRNA-epigenetic feedback loop, the deregulation of which affects physiological processes and contributes to a great diversity of diseases. In the present review, we focus on miR-615, a miRNA highly conserved across eutherian mammals. It is involved not only during embryogenesis in the regulation of growth and development, for instance during osteogenesis and angiogenesis, but also in the regulation of cell growth and the proliferation and migration of cells, acting as a tumor suppressor or tumor promoter. It therefore serves as a biomarker for several types of cancer, and recently has also been found to be involved in reparative processes and neural repair. In addition, we present the pleiad of functions in which miR-615 is involved, as well as their multiple target genes and the multiple regulatory molecules involved in its own expression. We do this by introducing in a comprehensible way the reported knowledge of their actions and interactions and proposing an integral view of its regulatory mechanisms.
Collapse
|
8
|
Sato T, Kataoka K, Ito Y, Yokoyama S, Inui M, Mori M, Takahashi S, Akita K, Takada S, Ueno-Kudoh H, Asahara H. Lin28a/let-7 pathway modulates the Hox code via Polycomb regulation during axial patterning in vertebrates. eLife 2020; 9:53608. [PMID: 32479258 PMCID: PMC7259951 DOI: 10.7554/elife.53608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
The body plan along the anteroposterior axis and regional identities are specified by the spatiotemporal expression of Hox genes. Multistep controls are required for their unique expression patterns; however, the molecular mechanisms behind the tight control of Hox genes are not fully understood. In this study, we demonstrated that the Lin28a/let-7 pathway is critical for axial elongation. Lin28a–/– mice exhibited axial shortening with mild skeletal transformations of vertebrae, which were consistent with results in mice with tail bud-specific mutants of Lin28a. The accumulation of let-7 in Lin28a–/– mice resulted in the reduction of PRC1 occupancy at the Hox cluster loci by targeting Cbx2. Consistently, Lin28a loss in embryonic stem-like cells led to aberrant induction of posterior Hox genes, which was rescued by the knockdown of let-7. These results suggest that the Lin28/let-7 pathway is involved in the modulation of the ‘Hox code’ via Polycomb regulation during axial patterning.
Collapse
Affiliation(s)
- Tempei Sato
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kensuke Kataoka
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshiaki Ito
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Research Core, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigetoshi Yokoyama
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Metabolism, National Institutes of Health, Bethesda, United States
| | - Masafumi Inui
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Laboratory of Animal Regeneration Systemology, Meiji University, Kanagawa, Japan
| | - Masaki Mori
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Medical Chemistry, Shiga University of Medical Science, Shiga, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, University of Tsukuba, Ibaraki, Japan
| | - Keiichi Akita
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroe Ueno-Kudoh
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,Reproduction Center, Yokohama City University, Yokohama, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan.,AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
9
|
Wu H, Ding L, Wang Y, Zou TB, Wang T, Fu W, Lin Y, Zhang X, Chen K, Lei Y, Zhong C, Luo C. MiR-615 Regulates NSC Differentiation In Vitro and Contributes to Spinal Cord Injury Repair by Targeting LINGO-1. Mol Neurobiol 2020; 57:3057-3074. [PMID: 32462552 DOI: 10.1007/s12035-020-01936-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/13/2020] [Indexed: 01/25/2023]
Abstract
LINGO-1(LRR and Ig domain-containing NOGO receptor interacting protein 1) is a viable target for spinal cord injury (SCI) repair due to its potent negative regulation in neuron survival and axonal regeneration. Although promising, the intracellular mechanism underlying LINGO-1 regulation is unclear. Here, we identified miR-615 as a potential microRNA (miRNA) that directly targets LINGO-1 by binding its 3'-untranslated region (3'-UTR) and caused the translation inhibition of LINGO-1. MiR-615 negatively regulated LINGO-1 during neural stem cell (NSC) differentiation and facilitated its neuronal differentiation in vitro. Interestingly, compared to the control, neurons differentiated from miR-615-treated NSCs were immature with short processes. Further results showed LINGO-1/epidermal growth factor receptor (EGFR) signaling may be involved in this process, as blockade of EGFR using specific antagonist resulted in mature neurons with long processes. Furthermore, intrathecal administration of miR-615 agomir in SCI rats effectively knocked down LINGO-1, increased neuronal survival, enhanced axonal extension and myelination, and improved recovery of hindlimbs motor functions. This work thus uncovers miR-615 as an effective miRNA that regulates LINGO-1 in NSC and SCI animals, and suggests miR-615 as a potential therapeutic target for traumatic central nervous system (CNS) injury.
Collapse
Affiliation(s)
- Hongfu Wu
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, No. 1, Xin Cheng Road, Songshan Lake, Dongguan, 523808, China.
| | - Lu Ding
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, No. 1, Xin Cheng Road, Songshan Lake, Dongguan, 523808, China.,Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuhui Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Tang-Bin Zou
- Department of Nutrition and Food Hygiene, Guangdong Medical University, Dongguan, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Wenjin Fu
- Clinical Laboratory, Dongguan Municipal Houjie Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Yong Lin
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Xiaomin Zhang
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, No. 1, Xin Cheng Road, Songshan Lake, Dongguan, 523808, China
| | - Kangzhen Chen
- Institute of Stem Cells and Regenerative Medicine, Department of Physiology, Guangdong Medical University, No. 1, Xin Cheng Road, Songshan Lake, Dongguan, 523808, China
| | - Yutian Lei
- Hand & Foot Surgery, Dongguan Municipal Houjie Hospital of Guangdong Medical University, Dongguan, Guangdong, China
| | - Caitang Zhong
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong, China
| | - Chuanming Luo
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No.628, Zhenyuan Road, Xinhu Street, Guangming New District, Shenzhen, 518107, China.
| |
Collapse
|
10
|
Zhang Y, Zhou L, Zhang Z, Ren F, Chen L, Lan Z. miR‑10a‑5p inhibits osteogenic differentiation of bone marrow‑derived mesenchymal stem cells. Mol Med Rep 2020; 22:135-144. [PMID: 32377690 PMCID: PMC7248527 DOI: 10.3892/mmr.2020.11110] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
The use of human bone marrow mesenchymal stem cells (hBMSCs) as a tissue engineering application for individuals affected by osteoporosis and other types of bone loss diseases has been well studied in recent years. The osteogenic differentiation of hBMSCs can be regulated by a number of cues. MicroRNAs (miRNAs/miRs) serve as the key regulators of various biological processes; however, to the best of our knowledge, no information exists with regards to the specific modulatory effects of miR-10a-5p on osteogenic differentiation of hBMSCs. The aim of the present study was to investigate the relationship between hBMSCs and miR-10a-5p and, ultimately, to determine how miR-10a-5p affects the osteogenic differentiation process of hBMSCs in vitro and in vivo. The hBMSCs used in the present study were transfected with mirVana™ miRNA inhibitors and mimics, and transfection efficiency was assessed by fluorescence microscopy and reverse transcription-quantitative PCR (RT-qPCR). Viability of hBMSCs following transfection was analyzed using a Cell Counting Kit-8 assay. The mRNA expression levels of specific osteoblast markers, including alkaline phosphatase (ALP) and runt-related transcription factor 2 (RUNX2) were measured using RT-qPCR and western blot analysis. New bone formation was evaluated by Goldner's trichrome staining and micro-CT analysis in vivo. No significant difference in cell viability was observed among the different groups 24 h post-transfection. Overexpression of miR-10a-5p inhibited the expression of osteoblast makers in hBMSCs, whereas inhibition of miR-10a-5p upregulated the expression of ALP and RUNX2 in vitro. Furthermore, miR-10a-5p acted as a suppressor during the process of new bone formation in vivo. In conclusion, the findings of the present study suggested that miR-10a-5p served as a negative regulatory factor during osteoblast differentiation of hBMSCs and may be utilized in a treatment approach for bone repair in osteogenic-related diseases.
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Lishu Zhou
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Fei Ren
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Liangjiao Chen
- Department of Orthodontics, Stomatological Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Zedong Lan
- Department of Orthodontics, Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, Guangdong 518001, P.R. China
| |
Collapse
|
11
|
Ahkin Chin Tai JK, Freeman JL. Zebrafish as an integrative vertebrate model to identify miRNA mechanisms regulating toxicity. Toxicol Rep 2020; 7:559-570. [PMID: 32373477 PMCID: PMC7195498 DOI: 10.1016/j.toxrep.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Zebrafish are an established vertebrate model for toxicity studies. Zebrafish have a fully sequenced genome and the capability to create genetic models. Zebrafish have over 80 % homology for genes related to human disease. Functions of miRNAs in the zebrafish genome are being characterized. Zebrafish are ideal for mechanistic studies on how miRNAs regulate toxicity.
Zebrafish (Danio rerio) are an integrative vertebrate model ideal for toxicity studies. The zebrafish genome is sequenced with detailed characterization of all life stages. With their genetic similarity to humans, zebrafish models are established to study biological processes including development and disease mechanisms for translation to human health. The zebrafish genome, similar to other eukaryotic organisms, contains microRNAs (miRNAs) which function along with other epigenetic mechanisms to regulate gene expression. Studies have now established that exposure to toxins and xenobiotics can change miRNA expression profiles resulting in various physiological and behavioral alterations. In this review, we cover the intersection of miRNA alterations from toxin or xenobiotic exposure with a focus on studies using the zebrafish model system to identify miRNA mechanisms regulating toxicity. Studies to date have addressed exposures to toxins, particulate matter and nanoparticles, various environmental contaminants including pesticides, ethanol, and pharmaceuticals. Current limitations of the completed studies and future directions for this research area are discussed.
Collapse
Affiliation(s)
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
12
|
Gholikhani-Darbroud R. MicroRNA and retinoic acid. Clin Chim Acta 2019; 502:15-24. [PMID: 31812758 DOI: 10.1016/j.cca.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Retinoic acid is a metabolite of vitamin A that is necessary to maintain health in human and most of the other vertebrates. MicroRNAs (miR or miRNAs) are small, non-coding RNA particles that diminish mRNA translation of various genes and so can regulate critical cell processes including cell death, proliferation, development, etc. The aim of this review is to study interrelations between retinoic acid with miRNAs. METHODS We reviewed and summarized all published articles in PubMed, Europe PMC, and Embase databases with any relationship between retinoic acid and miRNAs from Jun 2003 to Dec 2018 that includes 126 articles. RESULTS Results showed direct and indirect relationships between retinoic acid and miRNAs in various levels including effects of retinoic acid on expression of various miRNAs and miRNA-biogenesis enzymes, and effect of miRNAs on metabolism of retinoic acid. DISCUTION AND CONCLUSION This review indicates that retinoic acid has inter-correlations with various miRNA members and their metabolism in health and disease may require implications of the other.
Collapse
Affiliation(s)
- Reza Gholikhani-Darbroud
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
13
|
Durston AJ. Some Questions and Answers About the Role of Hox Temporal Collinearity in Vertebrate Axial Patterning. Front Cell Dev Biol 2019; 7:257. [PMID: 31850338 PMCID: PMC6895010 DOI: 10.3389/fcell.2019.00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023] Open
Abstract
The vertebrate anterior-posterior (A-P = craniocaudal) axis is evidently made by a timing mechanism. Evidence has accumulated that tentatively identifies the A-P timer as being or involving Hox temporal collinearity (TC). Here, I focus on the two current competing models based on this premise. Common features and points of dissent are examined and a common model is distilled from what remains. This is an attempt to make sense of the literature.
Collapse
|
14
|
Salas‐Huetos A, James ER, Aston KI, Carrell DT, Jenkins TG, Yeste M. The role of miRNAs in male human reproduction: a systematic review. Andrology 2019; 8:7-26. [DOI: 10.1111/andr.12714] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Affiliation(s)
- A. Salas‐Huetos
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - E. R. James
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
- Department of Human Genetics University of Utah School of Medicine Salt Lake City UT USA
| | - K. I. Aston
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - D. T. Carrell
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
- Department of Human Genetics University of Utah School of Medicine Salt Lake City UT USA
- Department of Obstetrics and Gynecology University of Utah School of Medicine Salt Lake City UT USA
| | - T. G. Jenkins
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - M. Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm) Unit of Cell Biology Department of Biology Faculty of Sciences Institute of Food and Agricultural Technology University of Girona Girona Spain
| |
Collapse
|
15
|
Franchini P, Xiong P, Fruciano C, Schneider RF, Woltering JM, Hulsey CD, Meyer A. MicroRNA Gene Regulation in Extremely Young and Parallel Adaptive Radiations of Crater Lake Cichlid Fish. Mol Biol Evol 2019; 36:2498-2511. [PMID: 31397871 DOI: 10.1093/molbev/msz168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022] Open
Abstract
AbstractCichlid fishes provide textbook examples of explosive phenotypic diversification and sympatric speciation, thereby making them ideal systems for studying the molecular mechanisms underlying rapid lineage divergence. Despite the fact that gene regulation provides a critical link between diversification in gene function and speciation, many genomic regulatory mechanisms such as microRNAs (miRNAs) have received little attention in these rapidly diversifying groups. Therefore, we investigated the posttranscriptional regulatory role of miRNAs in the repeated sympatric divergence of Midas cichlids (Amphilophus spp.) from Nicaraguan crater lakes. Using miRNA and mRNA sequencing of embryos from five Midas species, we first identified miRNA binding sites in mRNAs and highlighted the presences of a surprising number of novel miRNAs in these adaptively radiating species. Then, through analyses of expression levels, we identified putative miRNA/gene target pairs with negatively correlated expression level that were consistent with the role of miRNA in downregulating mRNA. Furthermore, we determined that several miRNA/gene pairs show convergent expression patterns associated with the repeated benthic/limnetic sympatric species divergence implicating these miRNAs as potential molecular mechanisms underlying replicated sympatric divergence. Finally, as these candidate miRNA/gene pairs may play a central role in phenotypic diversification in these cichlids, we characterized the expression domains of selected miRNAs and their target genes via in situ hybridization, providing further evidence that miRNA regulation likely plays a role in the Midas cichlid adaptive radiation. These results provide support for the hypothesis that extremely quickly evolving miRNA regulation can contribute to rapid evolutionary divergence even in the presence of gene flow.
Collapse
Affiliation(s)
- Paolo Franchini
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Peiwen Xiong
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Carmelo Fruciano
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
- Institut de biologie de l’Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, PSL Université Paris, Paris, France
| | - Ralf F Schneider
- Marine Ecology, Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), Düsternbrooker Weg 20, Kiel, Germany
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Joost M Woltering
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Christopher Darrin Hulsey
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Axel Meyer
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
16
|
Zhou Y, Guo X, Chen W, Liu J. Angelica polysaccharide mitigates lipopolysaccharide-evoked inflammatory injury by regulating microRNA-10a in neuronal cell line HT22. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3194-3201. [PMID: 31353963 DOI: 10.1080/21691401.2019.1614595] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuni Zhou
- Department of Neurology, Jining Psychiatric Hospital, Jining, China
| | - Xiaoqian Guo
- Department of Neurology, Jining No.1 People’s Hospital, Jining, China
| | - Weimei Chen
- Department of Neurology, Jining No.1 People’s Hospital, Jining, China
| | - Jun Liu
- Department of Neurosurgery, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
17
|
Mjelle R, Sjursen W, Thommesen L, Sætrom P, Hofsli E. Small RNA expression from viruses, bacteria and human miRNAs in colon cancer tissue and its association with microsatellite instability and tumor location. BMC Cancer 2019; 19:161. [PMID: 30786859 PMCID: PMC6381638 DOI: 10.1186/s12885-019-5330-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNA) and other small RNAs are frequently dysregulated in cancer and are promising biomarkers for colon cancer. Here we profile human, virus and bacteria small RNAs in normal and tumor tissue from early stage colon cancer and correlate the expression with clinical parameters. METHODS Small RNAs from colon cancer tissue and adjacent normal mucosa of 48 patients were sequenced using Illumina high-throughput sequencing. Clinical parameters were correlated with the small RNA expression data using linear models. We performed a meta-analysis by comparing publicly available small RNA sequencing datasets with our original sequencing data to confirm the main findings. RESULTS We identified 331 differentially expressed miRNAs between tumor and normal samples. We found that the major changes in miRNA expression between left and right colon are due to miRNAs located within the Hox-developmental genes, including miR-10b, miR-196b and miR-615. Further, we identified new miRNAs associated with microsatellite instability (MSI), including miR-335, miR-26 and miR-625. We performed a meta-analysis on all publicly available miRNA-seq datasets and identified 117 common miRNAs that were differentially expressed between tumor and normal tissue. The miRNAs miR-135b and miR-31 were the most significant upregulated miRNA in tumor across all datasets. The miRNA miR-133a was the most strongly downregulated miRNA in our dataset and also showed consistent downregulation in the other datasets. The miRNAs associated with MSI and tumor location in our data showed similar changes in the other datasets. Finally, we show that small RNAs from Epstein-Barr virus and Fusobacterium nucleatum are differentially expressed between tumor and normal adjacent tissue. CONCLUSIONS Small RNA profiling in colon cancer tissue revealed novel RNAs associated with MSI and tumor location. We show that Fusobacterium nucleatum are detectable at the RNA-level in colon tissue, and that both Fusobacterium nucleatum and Epstein-Barr virus separate tumor and normal tissue.
Collapse
Affiliation(s)
- Robin Mjelle
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.
| | - Wenche Sjursen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,Department of Medical Genetics, St Olavs Hospital, Trondheim Norway, Erling Skjalgssons gt 1, 7030, Trondheim, Norway
| | - Liv Thommesen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Pål Sætrom
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,Department of Computer and Information Science, Norwegian University of Science and Technology, NTNU, Sem Sælandsvei 9, 7491, Trondheim, Norway.,Bioinformatics core facility-BioCore, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway.,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, NTNU, 7491, Trondheim, Norway
| | - Eva Hofsli
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Erling Skjalgssons gt 1, 7030, Trondheim, Norway.,The Cancer Clinic, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
18
|
Godfrey TC, Wildman BJ, Beloti MM, Kemper AG, Ferraz EP, Roy B, Rehan M, Afreen LH, Kim E, Lengner CJ, Hassan Q. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem 2018; 293:17646-17660. [PMID: 30242124 DOI: 10.1074/jbc.ra118.003052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/22/2018] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRs) and Hox transcription factors have decisive roles in postnatal bone formation and homeostasis. In silico analysis identified extensive interaction between HOXA cluster mRNA and microRNAs from the miR-23a cluster. However, Hox regulation by the miR-23a cluster during osteoblast differentiation remains undefined. We examined this regulation in preosteoblasts and in a novel miR-23a cluster knockdown mouse model. Overexpression and knockdown of the miR-23a cluster in preosteoblasts decreased and increased, respectively, the expression of the proteins HOXA5, HOXA10, and HOXA11; these proteins' mRNAs exhibited significant binding with the miR-23a cluster miRNAs, and miRNA 3'-UTR reporter assays confirmed repression. Importantly, during periods correlating with development and differentiation of bone cells, we found an inverse pattern of expression between HoxA factors and members of the miR-23a cluster. HOXA5 and HOXA11 bound to bone-specific promoters, physically interacted with transcription factor RUNX2, and regulated bone-specific genes. Depletion of HOXA5 or HOXA11 in preosteoblasts also decreased cellular differentiation. Additionally, stable overexpression of the miR-23a cluster in osteoblasts decreased the recruitment of HOXA5 and HOXA11 to osteoblast gene promoters, significantly inhibiting histone H3 acetylation. Heterozygous miR-23a cluster knockdown female mice (miR-23a ClWT/ZIP) had significantly increased trabecular bone mass when compared with WT mice. Furthermore, miR-23a cluster knockdown in calvarial osteoblasts of these mice increased the recruitment of HOXA5 and HOXA11, with a substantial enrichment of promoter histone H3 acetylation. Taken together, these findings demonstrate that the miR-23a cluster is required for maintaining stage-specific HoxA factor expression during osteogenesis.
Collapse
Affiliation(s)
- Tanner C Godfrey
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Benjamin J Wildman
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Marcio M Beloti
- the School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil, and
| | - Austin G Kemper
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Emanuela P Ferraz
- the School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil, and
| | - Bhaskar Roy
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Mohammad Rehan
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Lubana H Afreen
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Eddy Kim
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294
| | - Christopher J Lengner
- the Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Quamarul Hassan
- From the RNA Biology and Epigenetics Laboratory, Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Alabama Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
19
|
Romney ALT, Podrabsky JE. Small noncoding RNA profiles along alternative developmental trajectories in an annual killifish. Sci Rep 2018; 8:13364. [PMID: 30190591 PMCID: PMC6127099 DOI: 10.1038/s41598-018-31466-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 08/13/2018] [Indexed: 11/24/2022] Open
Abstract
Embryonic development of Austrofundulus limnaeus can occur along two phenotypic trajectories that are physiologically and biochemically distinct. Phenotype appears to be influenced by maternal provisioning based on the observation that young females produce predominately non-diapausing embryos and older females produce mostly diapausing embryos. Embryonic incubation temperature can override this pattern and alter trajectory. We hypothesized that temperature-induced phenotypic plasticity may be regulated by post-transcriptional modification via noncoding RNAs. As a first step to exploring this possibility, RNA-seq was used to generate transcriptomic profiles of small noncoding RNAs in embryos developing along the two alternative trajectories. We find distinct profiles of mature sequences belonging to the miR-10 family expressed in increasing abundance during development and mature sequences of miR-430 that follow the opposite pattern. Furthermore, miR-430 sequences are enriched in escape trajectory embryos. MiR-430 family members are known to target maternally provisioned mRNAs in zebrafish and may operate similarly in A. limnaeus in the context of normal development, and also by targeting trajectory-specific mRNAs. This expression pattern and function for miR-430 presents a potentially novel model for maternal-embryonic conflict in gene regulation that provides the embryo the ability to override maternal programming in the face of altered environmental conditions.
Collapse
Affiliation(s)
- Amie L T Romney
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR, 97207, USA.
- Department of Anatomy, Physiology & Cell Biology, University of California at Davis School of Veterinary Medicine, One Shields Ave, Davis, CA, 95616, USA.
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR, 97207, USA.
| |
Collapse
|
20
|
Durston AJ. Two Tier Hox Collinearity Mediates Vertebrate Axial Patterning. Front Cell Dev Biol 2018; 6:102. [PMID: 30234110 PMCID: PMC6131192 DOI: 10.3389/fcell.2018.00102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/10/2018] [Indexed: 12/04/2022] Open
Abstract
A two tier mechanism mediates Hox collinearity. Besides the familiar collinear chromatin modification within each Hox cluster (nanocollinearity), there is also a macrocollinearity tier. Individual Hox clusters and individual cells are coordinated and synchronized to generate multiscale (macro and nano) collinearity in the early vertebrate embryo. Macro-collinearity is mediated by three non-cell autonomous Hox–Hox interactions. These mediate temporal collinearity in early NOM (non-organizer mesoderm), time space translation where temporal collinearity is translated to spatial collinearity along the early embryo’s main body axis and neural transformation, where Hox expression is copied monospecifically from NOM mesoderm to overlying neurectoderm in the late gastrula. Unlike nanocollinearity, which is Hox cluster restricted, axial macrocollinearity extends into the head and EAD domains, thus covering the whole embryonic anterior-posterior (A-P) axis. EAD: extreme anterior domain, the only A-P axial domain anterior to the head. The whole time space translation mechanism interacts with A-P signaling pathways via “decision points,” separating different domains on the axis.
Collapse
Affiliation(s)
- Antony J Durston
- Faculty of Science, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
21
|
Discovery and functional characterization of microRNAs and their potential roles for gonadal development in spotted knifejaw, Oplegnathus punctatus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:1-8. [PMID: 29800760 DOI: 10.1016/j.cbd.2018.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/04/2018] [Accepted: 05/13/2018] [Indexed: 01/28/2023]
Abstract
The spotted knifejaw (Oplegnathus punctatus) is a newly emerging economical fishery species in China. Studies focused on the regulation of gonadal development and gametogenesis of spotted knifejaw are still insufficient. As a key post-transcriptional regulator, miRNAs have been shown to play important roles in development and reproduction systems. In this study, small RNA deep sequencing in ovary and testis of spotted knifejaw were performed to screen miRNA expression patterns. After sequencing and bioinformatics analysis, a total of 247 conserved known miRNAs and 41 novel miRNAs were identified in spotted knifejaw gonads for the first time. In addition, 36 miRNAs were differentially expressed between testis and ovary. The putative target genes of differentially expressed (DE) miRNAs were significantly enriched in several pathways related to sexual differentiation and gonadal development, such as steroid hormone biosynthesis. Sequencing data was validated through qRT-PCR analysis of selected DE miRNAs. Dual-luciferase reporter analyses of filtered miRNA-target gene pairs confirmed that opu-miR-27b-3p targeted in piwi2 and mov10l1 3' UTRs and down-regulated their expressions in spotted knifejaw. The notion that mov10l1 and piwi2 enhance germ cells proliferation and regulate gonadal development and gametogenesis suggests that opu-miR-27b-3p may attenuated this process in the gonads of spotted knifejaw. These findings provided insights into regulatory roles of gonadal miRNAs and supplied fundamental resources for further studies on miRNA-mediated post-transcriptional regulation in reproductive system of spotted knifejaw.
Collapse
|
22
|
Neuronal activity regulates DROSHA via autophagy in spinal muscular atrophy. Sci Rep 2018; 8:7907. [PMID: 29784949 PMCID: PMC5962575 DOI: 10.1038/s41598-018-26347-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
Dysregulated miRNA expression and mutation of genes involved in miRNA biogenesis have been reported in motor neuron diseases including spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Therefore, identifying molecular mechanisms governing miRNA expression is important to understand these diseases. Here, we report that expression of DROSHA, which is a critical enzyme in the microprocessor complex and essential for miRNA biogenesis, is reduced in motor neurons from an SMA mouse model. We show that DROSHA is degraded by neuronal activity induced autophagy machinery, which is also dysregulated in SMA. Blocking neuronal activity or the autophagy-lysosome pathway restores DROSHA levels in SMA motor neurons. Moreover, reducing DROSHA levels enhances axonal growth. As impaired axonal growth is a well described phenotype of SMA motor neurons, these data suggest that DROSHA reduction by autophagy may mitigate the phenotype of SMA. In summary, these findings suggest that autophagy regulates RNA metabolism and neuronal growth via the DROSHA/miRNA pathway and this pathway is dysregulated in SMA.
Collapse
|
23
|
|
24
|
Zhang H, Zhang L, Sun T. Cohesive Regulation of Neural Progenitor Development by microRNA miR-26, Its Host Gene Ctdsp and Target Gene Emx2 in the Mouse Embryonic Cerebral Cortex. Front Mol Neurosci 2018. [PMID: 29515367 PMCID: PMC5825903 DOI: 10.3389/fnmol.2018.00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proper proliferation and differentiation of neural progenitors (NPs) in the developing cerebral cortex are critical for normal brain formation and function. Emerging evidence has shown the importance of microRNAs (miRNAs) in regulating cortical development and the etiology of neurological disorders. Here we show that miR-26 is co-expressed with its host gene Ctdsp in the mouse embryonic cortex. We demonstrate that similar to its host gene Ctdsp2, miR-26 positively regulates proliferation of NPs through controlling the cell-cycle progression, by using miR-26 overexpression and sponge approaches. On the contrary, miR-26 target gene Emx2 limits expansion of cortical NPs, and promotes transcription of miR-26 host gene Ctdsp. Our study suggests that miR-26, its target Emx2 and its host gene Ctdsp cohesively regulate proliferation of NPs during the mouse cortical development.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, NY, United States.,Department of Genetic Medicine, Weill Cornell Medical College, Cornell University, New York, NY, United States
| | - Longbin Zhang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Tao Sun
- Department of Cell and Developmental Biology, Weill Cornell Medical College, Cornell University, New York, NY, United States.,Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| |
Collapse
|
25
|
Mangiavacchi A, Sorci M, Masciarelli S, Larivera S, Legnini I, Iosue I, Bozzoni I, Fazi F, Fatica A. The miR-223 host non-coding transcript linc-223 induces IRF4 expression in acute myeloid leukemia by acting as a competing endogenous RNA. Oncotarget 2018; 7:60155-60168. [PMID: 27517498 PMCID: PMC5312375 DOI: 10.18632/oncotarget.11165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
Alterations in genetic programs required for terminal myeloid differentiation and aberrant proliferation characterize acute myeloid leukemia (AML) cells. Here, we identify the host transcript of miR-223, linc-223, as a novel functional long non-coding RNA (lncRNA) in AML. We show that from the primary nuclear transcript, the alternative production of miR-223 and linc-223 is finely regulated during monocytic differentiation. Moreover, linc-223 expression inhibits cell cycle progression and promotes monocytic differentiation of AML cells. We also demonstrate that endogenous linc-223 localizes in the cytoplasm and acts as a competing endogenous RNA for miR-125-5p, an oncogenic microRNA in leukemia. In particular, we show that linc-223 directly binds to miR-125-5p and that its knockdown increases the repressing activity of miR-125-5p resulting in the downregulation of its target interferon regulatory factor 4 (IRF4), which it was previously shown to inhibit the oncogenic activity of miR-125-5p in vivo. Furthermore, data from primary AML samples show significant downregulation of linc-223 in different AML subtypes. Therein, these findings indicate that the newly identified lncRNA linc-223 may have an important role in myeloid differentiation and leukemogenesis, at least in part, by cross-talking with IRF4 mRNA.
Collapse
Affiliation(s)
- Arianna Mangiavacchi
- Department of Biology and Biotechnology "C. Darwiny", Sapienza University of Rome, Rome, 00185, Italy.,Present address: KAUST Environmental Epigenetics Research Program, Biological Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Melissa Sorci
- Department of Biology and Biotechnology "C. Darwiny", Sapienza University of Rome, Rome, 00185, Italy
| | - Silvia Masciarelli
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, 00185, Italy
| | - Simone Larivera
- Department of Biology and Biotechnology "C. Darwiny", Sapienza University of Rome, Rome, 00185, Italy
| | - Ivano Legnini
- Department of Biology and Biotechnology "C. Darwiny", Sapienza University of Rome, Rome, 00185, Italy
| | - Ilaria Iosue
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, 00185, Italy
| | - Irene Bozzoni
- Department of Biology and Biotechnology "C. Darwiny", Sapienza University of Rome, Rome, 00185, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, 00161, Italy.,Institute Pasteur Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, 00185, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, 00185, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "C. Darwiny", Sapienza University of Rome, Rome, 00185, Italy
| |
Collapse
|
26
|
Ward NJ, Green D, Higgins J, Dalmay T, Münsterberg A, Moxon S, Wheeler GN. microRNAs associated with early neural crest development in Xenopus laevis. BMC Genomics 2018; 19:59. [PMID: 29347911 PMCID: PMC5774138 DOI: 10.1186/s12864-018-4436-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The neural crest (NC) is a class of transitory stem cell-like cells unique to vertebrate embryos. NC cells arise within the dorsal neural tube where they undergo an epithelial to mesenchymal transition in order to migrate and differentiate throughout the developing embryo. The derivative cell types give rise to multiple tissues, including the craniofacial skeleton, peripheral nervous system and skin pigment cells. Several well-studied gene regulatory networks underpin NC development, which when disrupted can lead to various neurocristopathies such as craniofrontonasal dysplasia, DiGeorge syndrome and some forms of cancer. Small RNAs, such as microRNAs (miRNAs) are non-coding RNA molecules important in post-transcriptional gene silencing and critical for cellular regulation of gene expression. RESULTS To uncover novel small RNAs in NC development we used high definition adapters and next generation sequencing of libraries derived from ectodermal explants of Xenopus laevis embryos induced to form neural and NC tissue. Ectodermal and blastula animal pole (blastula) stage tissues were also sequenced. We show that miR-427 is highly abundant in all four tissue types though in an isoform specific manner and we define a set of 11 miRNAs that are enriched in the NC. In addition, we show miR-301a and miR-338 are highly expressed in both the NC and blastula suggesting a role for these miRNAs in maintaining the stem cell-like phenotype of NC cells. CONCLUSION We have characterised the miRNAs expressed in Xenopus embryonic explants treated to form ectoderm, neural or NC tissue. This has identified novel tissue specific miRNAs and highlighted differential expression of miR-427 isoforms.
Collapse
Affiliation(s)
- Nicole J. Ward
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Janet Higgins
- Regulatory Genomics, Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Andrea Münsterberg
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Grant N. Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
27
|
Valenzuela-Muñoz V, Novoa B, Figueras A, Gallardo-Escárate C. Modulation of Atlantic salmon miRNome response to sea louse infestation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:380-391. [PMID: 28711463 DOI: 10.1016/j.dci.2017.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs are non-coding RNA that plays a crucial role in post-transcriptional regulation and immune system regulation. On other hand, sea lice are prevalent parasites that affect salmon farming, generating different degrees of immune suppression depending on the salmon and sea louse species. Caligus rogercresseyi for example, which affects the salmon industry in Chile, decreases Th1 response, macrophage activation, TLR-mediated response and iron regulation in infected fish. In this study, we explore Atlantic salmon miRNome during infestation by C. rogercresseyi. Using small RNA sequencing, we annotated 1718 miRNAs for skin and head kidney from infected Atlantic salmon. The most abundant families identified were mir-10, mir-21, mir-30, mir-181 and let7. Significant differences were found between tissue, with 1404 annotated miRNA in head kidney and 529 in skin. Differential analysis of transcript expression indicated that at an early stage of infestation miRNA expression was higher in head kidney than in skin tissue, revealing tissue-specific expression patterns. In parallel, miRNA target prediction using 3'UTRs from highly regulated immune-related genes and iron metabolism showed that mir-140-4 and mir-181a-2-5 modulate the expression of TLR22 and Aminolevulinic acid synthase, respectively. This study contributes knowledge about the immune response of Atlantic salmon during infestation with sea lice.
Collapse
Affiliation(s)
- Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research, Department of Oceanography, University of Concepcion, Barrio Universitario s/n, Concepción, Chile
| | - Beatriz Novoa
- Institute of Marine Research, Spanish National Research Council (CSIC), Eduardo Cabello 6, Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research, Spanish National Research Council (CSIC), Eduardo Cabello 6, Vigo, Spain
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research, Department of Oceanography, University of Concepcion, Barrio Universitario s/n, Concepción, Chile.
| |
Collapse
|
28
|
Divoux A, Xie H, Li JL, Karastergiou K, Perera RJ, Chang RJ, Fried SK, Smith SR. MicroRNA-196 Regulates HOX Gene Expression in Human Gluteal Adipose Tissue. Obesity (Silver Spring) 2017; 25. [PMID: 28649807 PMCID: PMC5551414 DOI: 10.1002/oby.21896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Lower body fat is associated with diminishing cardiometabolic risk. Physiological differences between gluteofemoral and abdominal subcutaneous adipocyte functions are known, but the molecular basis for depot differences in adipocyte function is poorly understood. The objective of this study was to identify depot differences in microRNA (miRNA) expression in human abdominal and gluteofemoral subcutaneous adipose tissues and their implication in gene regulation. METHODS Abdominal and gluteofemoral adipose tissue aspirates obtained from 18 participants (9 male and 9 female, age 30 ± 1.5 y, BMI 27.3 ± 1.23 kg/m2 ) were analyzed for miRNA expression profiles by next-generation DNA sequencing. The raw reads were mapped to miRBase 17, and differentially expressed miRNAs were confirmed by qRT-PCR. The hsa-mimic-miR196a was transfected into cultured abdominal preadipocytes isolated from five women with obesity. Target gene expression was evaluated by RT-qPCR. RESULTS Among the 640 miRNAs detected in adipose tissue, miR196a2, miR196a1, miR196b, and miR204 showed a higher expression in the gluteofemoral depot (fold change = 2.7, 2.3, 1.7, and 2.3, respectively) independent of sex. Bioinformatic analyses and human primary preadipocyte transfection with miR196 suggested that the differentially expressed miRNAs could directly or indirectly modulate homeobox (HOX) gene expression. CONCLUSIONS The miR196 gene family could play an important role in the regulation of HOX gene expression in subcutaneous adipose tissue and in fat distribution variation.
Collapse
Affiliation(s)
- Adeline Divoux
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Hui Xie
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Jian-Liang Li
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Kalypso Karastergiou
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Ranjan J Perera
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - R Jeffrey Chang
- Division of Reproductive Endocrinology, Department of Reproductive Medicine, University of California, San Diego, La Jolla, California, USA
| | - Susan K Fried
- Obesity Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Steven R Smith
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| |
Collapse
|
29
|
Jo A, Im J, Lee HE, Jang D, Nam GH, Mishra A, Kim WJ, Kim W, Cha HJ, Kim HS. Evolutionary conservation and expression of miR-10a-3p in olive flounder and rock bream. Gene 2017; 628:16-23. [PMID: 28698161 DOI: 10.1016/j.gene.2017.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/01/2017] [Accepted: 07/07/2017] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that mainly bind to the seed sequences located within the 3' untranslated region (3' UTR) of target genes. They perform an important biological function as regulators of gene expression. Different genes can be regulated by the same miRNA, whilst different miRNAs can be regulated by the same genes. Here, the evolutionary conservation and expression pattern of miR-10a-3p in olive flounder and rock bream was examined. Binding sites (AAAUUC) to seed region of the 3' UTR of target genes were highly conserved in various species. The expression pattern of miR-10a-3p was ubiquitous in the examined tissues, whilst its expression level was decreased in gill tissues infected by viral hemorrhagic septicemia virus (VHSV) compared to the normal control. In the case of rock bream, the spleen, kidney, and liver tissues showed dominant expression levels of miR-10a-3p. Only the liver tissues in the rock bream samples infected by the iridovirus indicated a dominant miR-10a-3p expression. The gene ontology (GO) analysis of predicted target genes for miR-10a-3p revealed that multiple genes are related to binding activity, catalytic activity, cell components as well as cellular and metabolic process. Overall the results imply that the miR-10a-3p could be used as a biomarker to detect VHSV infection in olive flounder and iridovirus infection in rock bream. In addition, the data provides fundamental information for further study of the complex interaction between miR-10a-3p and gene expression.
Collapse
Affiliation(s)
- Ara Jo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Genetic Engineering Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Jennifer Im
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Genetic Engineering Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Dongmin Jang
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Gyu-Hwi Nam
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Genetic Engineering Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Anshuman Mishra
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Genetic Engineering Institute, Pusan National University, Busan 46241, Republic of Korea
| | - Woo-Jin Kim
- Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Republic of Korea
| | - Won Kim
- School of Biological Sciences, Seoul National University, Seoul 08824, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea; Genetic Engineering Institute, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
30
|
Ten Broek CMA, Bots J, Bugiani M, Galis F, Van Dongen S. No relationship between vertebral column shifts and limb fluctuating asymmetry in human foetuses. PeerJ 2017. [PMID: 28626605 PMCID: PMC5470575 DOI: 10.7717/peerj.3359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Disturbance from the normal developmental trajectory of a trait during growth—the so-called developmental instability—can be observed morphologically through phenodeviants and subtle deviations from perfect symmetry (fluctuating asymmetry). This study investigates the relationship between phenodeviance in the human vertebral column (as a result of axial patterning defects) and limb fluctuating asymmetry. Since both types of markers of developmental instability have been found associated with congenital abnormalities in humans, we anticipate a relationship between them if the concept of developmental instability, measured through either phenodeviants or asymmetry, would reflect an organism-wide process. Yet we did not find any support for this hypothesis. We argue that the vast differences in the developmental processes involved in both systems renders these two markers of developmental instability unrelated, in spite of their associations with other congenital abnormalities. Our results thus contribute to the growing awareness that developmental instability is not an organism-wide property.
Collapse
Affiliation(s)
- Clara M A Ten Broek
- Naturalis Biodiversity Center, Leiden, Netherlands.,Evolutionary Ecology Group, Department of Biology, Universiteit Antwerpen, Wilrijk, Antwerp, Belgium
| | - Jessica Bots
- Evolutionary Ecology Group, Department of Biology, Universiteit Antwerpen, Wilrijk, Antwerp, Belgium
| | - Marianna Bugiani
- Department of Pathology, VU Medical Center, Amsterdam, Netherlands
| | | | - Stefan Van Dongen
- Evolutionary Ecology Group, Department of Biology, Universiteit Antwerpen, Wilrijk, Antwerp, Belgium
| |
Collapse
|
31
|
Zhu K, Spaink HP, Durston AJ. Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis. PLoS One 2017; 12:e0175287. [PMID: 28399140 PMCID: PMC5388487 DOI: 10.1371/journal.pone.0175287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/23/2017] [Indexed: 02/07/2023] Open
Abstract
Investigating regulation and function of the Hox genes, key regulators of positional identity in the embryo, opened a new vista in developmental biology. One of their most striking features is collinearity: the temporal and spatial orders of expression of these clustered genes each match their 3’ to 5’ order on the chromosome. Despite recent progress, the mechanisms underlying collinearity are not understood. Here we show that ectopic expression of 4 different single Hox genes predictably induces and represses expression of others, leading to development of different predictable specific sections of the body axis. We use ectopic expression in wild-type and noggin—dorsalised (Hox-free) Xenopus embryos, to show that two Hox-Hox interactions are important. Posterior induction (induction of posterior Hox genes by anterior ones: PI), drives Hox temporal collinearity (Hox timer), which itself drives anteroposterior (A-P) patterning. Posterior prevalence (repression of anterior Hox genes by posterior ones: PP) is important in translating temporal to spatial collinearity. We thus demonstrate for the first time that two collinear Hox interactions are important for vertebrate axial patterning. These findings considerably extend and clarify earlier work suggesting the existence and importance of PP and PI, and provide a major new insight into genesis of the body axis.
Collapse
Affiliation(s)
- Kongju Zhu
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Herman P. Spaink
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Antony J. Durston
- Institute of Biology, Leiden University, Leiden, the Netherlands
- * E-mail:
| |
Collapse
|
32
|
MicroRNA filters Hox temporal transcription noise to confer boundary formation in the spinal cord. Nat Commun 2017; 8:14685. [PMID: 28337978 PMCID: PMC5376671 DOI: 10.1038/ncomms14685] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/24/2017] [Indexed: 01/17/2023] Open
Abstract
The initial rostrocaudal patterning of the neural tube leads to differential expression of Hox genes that contribute to the specification of motor neuron (MN) subtype identity. Although several 3' Hox mRNAs are expressed in progenitors in a noisy manner, these Hox proteins are not expressed in the progenitors and only become detectable in postmitotic MNs. MicroRNA biogenesis impairment leads to precocious expression and propagates the noise of Hoxa5 at the protein level, resulting in an imprecise Hoxa5-Hoxc8 boundary. Here we uncover, using in silico simulation, two feed-forward Hox-miRNA loops accounting for the precocious and noisy Hoxa5 expression, as well as an ill-defined boundary phenotype in Dicer mutants. Finally, we identify mir-27 as a major regulator coordinating the temporal delay and spatial boundary of Hox protein expression. Our results provide a novel trans Hox-miRNA circuit filtering transcription noise and controlling the timing of protein expression to confer robust individual MN identity.
Collapse
|
33
|
Luo H, Gao H, Liu F, Qiu B. Regulation of Runx2 by microRNA-9 and microRNA-10 modulates the osteogenic differentiation of mesenchymal stem cells. Int J Mol Med 2017; 39:1046-1052. [DOI: 10.3892/ijmm.2017.2918] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/24/2017] [Indexed: 11/05/2022] Open
|
34
|
Gomes F, Watanabe L, Nozawa S, Oliveira L, Cardoso J, Vianez J, Nunes M, Schneider H, Sampaio I. Identification and characterization of the expression profile of the microRNAs in the Amazon species Colossoma macropomum by next generation sequencing. Genomics 2017; 109:67-74. [PMID: 28192178 DOI: 10.1016/j.ygeno.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 01/20/2023]
Abstract
Colossoma macropomum is a resistant species native of Amazonas and Orinoco river basins. It is regarded as the second largest finfish of Solimões and Amazon rivers, representing a major fishery resource in Amazonas and an important species in tropical aquaculture. MicroRNAs are non-coding endogenous riboregulators of nearly 22 nucleotides that play a key role in post-transcriptional gene regulation of several organisms. We analyzed samples of liver and skin from specimens of C. macropomum using next generation sequencing. The dataset was evaluated using computational programs to check the quality of sequences, identification of miRNAs, as well as to evaluate the expression levels of these microRNAs and interaction of target genes. We identified 279 conserved miRNAs, being 257 from liver and 272 from skin, with several miRNAs shared between tissues, with divergence in the number of reads. The strands miR-5p and miR-3p were observed in 72 miRNAs, some of them presenting a higher number of 3p reads. The functional annotation of the most expressed miRNAs resulted in 27 pathways for the liver and skin mainly related to the "biological processes" domain. Based on the identified pathways, we visualized a large gene network, suggesting the regulation of selected miRNA over this interactive dataset. We were able to identify and characterize the expression levels of miRNAs in two tissues of great activity in C. macropomum, which stands out as the beginning of several studies that can be carried out to elucidate the influence of miRNAs in this species and their applicability as biotechnological tools.
Collapse
Affiliation(s)
- Fátima Gomes
- Institute of Coastal Studies, Laboratory of Genetics and Molecular Biology, Federal University of Pará, Campus of Bragança, 68600-000 Bragança, PA, Brazil.
| | - Luciana Watanabe
- Institute of Coastal Studies, Laboratory of Genetics and Molecular Biology, Federal University of Pará, Campus of Bragança, 68600-000 Bragança, PA, Brazil.
| | - Sérgio Nozawa
- Dow AgroSciences, Av Antonio Diederichsen, 400, - Ribeirão Preto, SP 14020-250, Brazil.
| | - Layanna Oliveira
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, 67030-000 Ananindeua, PA, Brazil.
| | - Jedson Cardoso
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, 67030-000 Ananindeua, PA, Brazil; Postgraduate Program in Virology (PPGV), Evandro Chagas Institute, Ministry of Health, Ananindeua, PA 67030-000, Brazil.
| | - João Vianez
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, 67030-000 Ananindeua, PA, Brazil.
| | - Márcio Nunes
- Center for Technological Innovation, Evandro Chagas Institute, Ministry of Health, 67030-000 Ananindeua, PA, Brazil.
| | - Horacio Schneider
- Institute of Coastal Studies, Laboratory of Genetics and Molecular Biology, Federal University of Pará, Campus of Bragança, 68600-000 Bragança, PA, Brazil.
| | - Iracilda Sampaio
- Institute of Coastal Studies, Laboratory of Genetics and Molecular Biology, Federal University of Pará, Campus of Bragança, 68600-000 Bragança, PA, Brazil.
| |
Collapse
|
35
|
Chen H, Fan Y, Xu W, Chen J, Xu C, Wei X, Fang D, Feng Y. miR-10b Inhibits Apoptosis and Promotes Proliferation and Invasion of Endometrial Cancer Cells via Targeting HOXB3. Cancer Biother Radiopharm 2017; 31:225-31. [PMID: 27447302 DOI: 10.1089/cbr.2016.1998] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs are small RNA that are tightly interrelated with the initiation, development, and metastasis of cancers. Studies have shown that miR-10b is increased in various cancers. However, the underlying mechanisms of miR-10b in the occurrence and metastasis of endometrial cancer are poorly understood. To investigate its roles and correlations with Homeobox box 3 (HOXB3) in endometrial cancer, cancer tissues and adjacent normal endometrium tissues from 20 patients with endometrial cancer were studied. miR-10b expression was significantly up-regulated (p < 0.01) in endometrial cancer tissue, whereas HOXB3 was lowly expressed. The silence of miR-10b resulted in significantly enhanced cell apoptosis, and remarkably reduced cell proliferation, migration, and invasion (p < 0.05). Moreover, the protein levels of HOXB3 were increased in KLE cells with silenced miR-10b, and dual-luciferase reporter assay suggested that miR-10b could directly target HOXB3. Furthermore, overexpression of HOXB3 promoted cell apoptosis but inhibited cell proliferation, migration, and invasion (p < 0.01). To conclude, miR-10b might control cell apoptosis, proliferation, migration, and invasion in endometrial cancer via regulation of HOXB3 expression.
Collapse
Affiliation(s)
- Hong Chen
- Department of Gynaecology, The First Affiliated Hospital of GuangXi Medical University , Nanning, Guangxi Province, The People's Republic of China
| | - Yujuan Fan
- Department of Gynaecology, The First Affiliated Hospital of GuangXi Medical University , Nanning, Guangxi Province, The People's Republic of China
| | - Wensheng Xu
- Department of Gynaecology, The First Affiliated Hospital of GuangXi Medical University , Nanning, Guangxi Province, The People's Republic of China
| | - Junying Chen
- Department of Gynaecology, The First Affiliated Hospital of GuangXi Medical University , Nanning, Guangxi Province, The People's Republic of China
| | - Chaohuan Xu
- Department of Gynaecology, The First Affiliated Hospital of GuangXi Medical University , Nanning, Guangxi Province, The People's Republic of China
| | - Xiaoning Wei
- Department of Gynaecology, The First Affiliated Hospital of GuangXi Medical University , Nanning, Guangxi Province, The People's Republic of China
| | - Di Fang
- Department of Gynaecology, The First Affiliated Hospital of GuangXi Medical University , Nanning, Guangxi Province, The People's Republic of China
| | - Yi Feng
- Department of Gynaecology, The First Affiliated Hospital of GuangXi Medical University , Nanning, Guangxi Province, The People's Republic of China
| |
Collapse
|
36
|
Conserved miR-10 family represses proliferation and induces apoptosis in ovarian granulosa cells. Sci Rep 2017; 7:41304. [PMID: 28112253 PMCID: PMC5256277 DOI: 10.1038/srep41304] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/16/2016] [Indexed: 01/06/2023] Open
Abstract
Granulosa cells (GCs) are essential somatic cells in the ovary and play an important role in folliculogenesis. Brain-derived neurotropic factor (BDNF) and the TGF-β pathway have been identified as a critical hormone and signalling pathway, respectively, in GCs. In this study, we found that a conserved microRNA family that includes miR-10a and miR-10b repressed proliferation and induced apoptosis in human, mouse, and rat GCs (hGCs, mGCs and rGCs, respectively). Moreover, essential hormones and growth factors in the follicle, such as FSH, FGF9 and some ligands in the TGF-β pathway (TGFβ1, Activin A, BMP4 and BMP15), inhibited miR-10a and miR-10b expression in GCs. In contrast, the miR-10 family suppressed many key genes in the TGF-β pathway, suggesting a negative feedback loop between the miR-10 family and the TGF-β pathway in GCs. By using bioinformatics approaches, RNA-seq, qPCR, FISH, immunofluorescence, Western blot and luciferase reporter assays, BDNF was identified as a direct target of the miR-10 family in GCs. Additionally, reintroduction of BDNF rescued the effects of miR-10a and miR-10b in GCs. Collectively, miR-10a and miR-10b repressed GC development during folliculogenesis by repressing BDNF and the TGF-β pathway. These effects by the miR-10 family on GCs are conserved among different species.
Collapse
|
37
|
Rebijith KB, Asokan R, Hande HR, Krishna Kumar NK. The First Report of miRNAs from a Thysanopteran Insect, Thrips palmi Karny Using High-Throughput Sequencing. PLoS One 2016; 11:e0163635. [PMID: 27685664 PMCID: PMC5042526 DOI: 10.1371/journal.pone.0163635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022] Open
Abstract
Thrips palmi Karny (Thysanoptera: Thripidae) is the sole vector of Watermelon bud necrosis tospovirus, where the crop loss has been estimated to be around USD 50 million annually. Chemical insecticides are of limited use in the management of T. palmi due to the thigmokinetic behaviour and development of high levels of resistance to insecticides. There is an urgent need to find out an effective futuristic management strategy, where the small RNAs especially microRNAs hold great promise as a key player in the growth and development. miRNAs are a class of short non-coding RNAs involved in regulation of gene expression either by mRNA cleavage or by translational repression. We identified and characterized a total of 77 miRNAs from T. palmi using high-throughput deep sequencing. Functional classifications of the targets for these miRNAs revealed that majority of them are involved in the regulation of transcription and translation, nucleotide binding and signal transduction. We have also validated few of these miRNAs employing stem-loop RT-PCR, qRT-PCR and Northern blot. The present study not only provides an in-depth understanding of the biological and physiological roles of miRNAs in governing gene expression but may also lead as an invaluable tool for the management of thysanopteran insects in the future.
Collapse
Affiliation(s)
- K. B. Rebijith
- Division of Biotechnology, Indian Institute of Horticultural Research, Bangalore, India
- * E-mail: ;
| | - R. Asokan
- Division of Biotechnology, Indian Institute of Horticultural Research, Bangalore, India
- * E-mail: ;
| | - H. Ranjitha Hande
- Division of Biotechnology, Indian Institute of Horticultural Research, Bangalore, India
| | - N. K. Krishna Kumar
- Division of Horticultural Science, Indian Council of Agricultural Research, New Delhi, India
| |
Collapse
|
38
|
Characterization and comparative profiling of the small RNA transcriptomes in the Hemipteran insect Nilaparvata lugens. Gene 2016; 595:83-91. [PMID: 27693372 DOI: 10.1016/j.gene.2016.09.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/12/2016] [Accepted: 09/26/2016] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are a group of small RNAs involved in various biological processes through negative regulation of mRNAs at the post-transcriptional level. The brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most serious and destructive insect pests of rice. In the present study, two small RNA libraries of virulent N. lugens populations (Biotype I survives on susceptive rice variety TN1 and Biotype Y survives on moderately resistant rice variety YHY15) were constructed and sequenced using the high-throughput sequencing technology in order to identify the relationship between miRNAs of N.lugens and adaptation of BPH pests to rice resistance. In total 15,758,632 and 11,442,592 reads, corresponding to 3,144,026 and 2,550,049 unique sequences, were obtained in the two libraries (BPH-TN1 and BPH-YHY15 libraries), respectively. A total of 41 potential novel miRNAs were predicted in the two libraries, and 26 miRNAs showed significantly differential expression between two libraries. All miRNAs were significantly up-regulated in the BPH-TN1 library. Target genes likely regulated by these differentially expressed miRNAs were predicted using computational prediction. The functional annotation of target genes performed by Gene Ontology enrichment (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis (KEGG) indicated that a majority of differential miRNAs were involved in "Metabolism" pathway. These results provided an understanding of the role of miRNAs in BPH to adaptability of BPH on rice resistance, and will be useful in developing new control strategies for host defense against BPH.
Collapse
|
39
|
The function of homeobox genes and lncRNAs in cancer. Oncol Lett 2016; 12:1635-1641. [PMID: 27588114 DOI: 10.3892/ol.2016.4901] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/24/2016] [Indexed: 02/02/2023] Open
Abstract
Recently, the homeobox (HOX) gene family has been reported as a factor in tumorigenesis. In the human genome, the HOX gene family contains 4 clusters with 39 genes and multiple transcripts. Mutation or abnormal expression of genes is responsible for developmental disorders. In addition, changes in the levels and activation of certain HOX genes has been associated with the development of cancer. Long non-coding RNAs (lncRNAs) have also been identified to serve critical functions in cancer. Although a limited number of lncRNAs have been previously investigated, the list of functional lncRNA genes has recently grown. Two of the most important and well-studied lncRNAs and HOX transcript genes are HOX transcript antisense RNA (HOTAIR) and HOXA distal transcript antisense RNA (HOTTIP). The present study aimed to review not only the function of the HOTAIR and HOTTIP genes in certain forms of cancer, but also to review other HOX genes and protein functions in cancer, particularly HOX family genes associated with lncRNAs.
Collapse
|
40
|
Wirbisky SE, Weber GJ, Schlotman KE, Sepúlveda MS, Freeman JL. Embryonic atrazine exposure alters zebrafish and human miRNAs associated with angiogenesis, cancer, and neurodevelopment. Food Chem Toxicol 2016; 98:25-33. [PMID: 27046698 DOI: 10.1016/j.fct.2016.03.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 03/26/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are short, single-stranded RNA that regulate post-transcriptional control of mRNA translation. Knowledge on the role of these critical regulators in toxicological responses in increasing, but is still limited. Atrazine is a herbicide used throughout the Midwestern US that is reported to frequently contaminate potable water supplies above the maximum contaminant level of 3 parts per billion. Atrazine is a suspected endocrine disrupting chemical and studies have begun to investigate the genetic mechanisms of toxicity; however, studies investigating epigenetic mechanisms are limited. In this study both zebrafish and human miRNAs were significantly altered in response to an embryonic atrazine exposure of 0.3, 3, or 30 ppb in zebrafish. Altered miRNAs are known to play a role in angiogenesis, cancer, or neuronal development, differentiation, and maturation. Targeted analysis of altered human miRNAs with genes previously identified to be altered by atrazine exposure revealed several targets linked to cell cycle and cell signaling. Further analysis of hsa-miRNA-126-3p, which had altered expression in all three atrazine treatments at 72 hpf, revealed alterations also occurred at 60 hpf in the 30 ppb treatment group. Results from this study indicate miRNA deregulation in zebrafish and human miRNAs following an embryonic atrazine exposure in zebrafish.
Collapse
Affiliation(s)
- Sara E Wirbisky
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Gregory J Weber
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Kelly E Schlotman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
41
|
Jönsson ME, Nelander Wahlestedt J, Åkerblom M, Kirkeby A, Malmevik J, Brattaas PL, Jakobsson J, Parmar M. Comprehensive analysis of microRNA expression in regionalized human neural progenitor cells reveals microRNA-10 as a caudalizing factor. Development 2016; 142:3166-77. [PMID: 26395143 PMCID: PMC4582174 DOI: 10.1242/dev.122747] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
MicroRNAs (miRNAs) have been implicated in regulating multiple processes during brain development in various species. However, the function of miRNAs in human brain development remains largely unexplored. Here, we provide a comprehensive analysis of miRNA expression of regionalized neural progenitor cells derived from human embryonic stem cells and human foetal brain. We found miR-92b-3p and miR-130b-5p to be specifically associated with neural progenitors and several miRNAs that display both age-specific and region-specific expression patterns. Among these miRNAs, we identified miR-10 to be specifically expressed in the human hindbrain and spinal cord, while being absent from rostral regions. We found that miR-10 regulates a large number of genes enriched for functions including transcription, actin cytoskeleton and ephrin receptor signalling. When overexpressed, miR-10 influences caudalization of human neural progenitor cells. Together, these data confirm a role for miRNAs in establishing different human neural progenitor populations. This dataset also provides a comprehensive resource for future studies investigating the functional role of different miRNAs in human brain development. Summary: The profiling of neural progenitors derived from human ESCs and foetal brain shows that miRNAs display region-specific expression patterns, suggesting that they contribute to establishing regional identity.
Collapse
Affiliation(s)
- Marie E Jönsson
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Jenny Nelander Wahlestedt
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Malin Åkerblom
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Agnete Kirkeby
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Josephine Malmevik
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Per Ludvik Brattaas
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Johan Jakobsson
- Lab of Molecular Neurogenetics, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund 221 84, Sweden
| |
Collapse
|
42
|
Jiang Y, Zhang Y, Li F, Du X, Zhang J. CDX2 inhibits pancreatic adenocarcinoma cell proliferation via promoting tumor suppressor miR-615-5p. Tumour Biol 2016; 37:1041-9. [PMID: 26269116 DOI: 10.1007/s13277-015-3900-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022] Open
Abstract
CDX2 has recently been identified as a prognostic marker for pancreatic adenocarcinoma. However, the role and mechanism of CDX2 in progression of pancreatic adenocarcinoma are still elusive. In this study, we observed that CDX2 expression was much lower in mouse pancreatic adenocarcinoma tissues and pancreatic cancer cells. A network integrated by ChIPBase platform hinted that miR-615-5p, a most newly discovered tumor suppressor, was probably bound by CDX2 in the promoter region. Chromatin immunoprecipitation (ChIP)-qPCR assay showed that CDX2 exhibited a high capacity of binding to miR-615-5p promoter region compared to the negative control. Real-time PCR and western blotting analyses revealed that CDX2 overexpression caused inflation of miR-615-5p and depression of insulin-like growth factor 2 (IGF2), a direct target of miR-615-5p. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and EdU approaches showed that CDX2 overexpression markedly suppressed pancreatic adenocarcinoma cell proliferation. CDX2 small interfering RNA (siRNA) transfection showed an opposite effect on gene expression and cell proliferation to that of CDX2 overexpression. Collectively, CDX2 inhibited pancreatic adenocarcinoma cell proliferation via promoting tumor suppressor miR-615-5p. Our findings suggested a potential molecular target for pancreatic adenocarcinoma therapy.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Gastroenterology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yan Zhang
- Department of Gastroenterology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Fuqing Li
- Department of Gastroenterology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaolin Du
- Department of Gastroenterology, The Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jinping Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Eastern Road, Erqi District, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
43
|
Subdivision of the lateral plate mesoderm and specification of the forelimb and hindlimb forming domains. Semin Cell Dev Biol 2016; 49:102-8. [DOI: 10.1016/j.semcdb.2015.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 11/15/2022]
|
44
|
Quah S, Holland PWH. The Hox cluster microRNA miR-615: a case study of intronic microRNA evolution. EvoDevo 2015; 6:31. [PMID: 26451238 PMCID: PMC4597612 DOI: 10.1186/s13227-015-0027-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/25/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Introns represent a potentially rich source of existing transcription for the evolution of novel microRNAs (miRNAs). Within the Hox gene clusters, a miRNA gene, miR-615, is located within the intron of the Hoxc5 gene. This miRNA has a restricted phylogenetic distribution, providing an opportunity to examine the origin and evolution of a new miRNA within the intron of a developmentally-important homeobox gene. RESULTS Alignment and structural analyses show that the sequence is highly conserved across eutherian mammals and absent in non-mammalian tetrapods. Marsupials possess a similar sequence which we predict will not be efficiently processed as a miRNA. Our analyses suggest that transcription of HOXC5 in humans is accompanied by expression of miR-615 in all cases, but that the miRNA can also be transcribed independently of its host gene through the use of an intragenic promoter. We present scenarios for the evolution of miR-615 through intronic exaptation, and speculate on the acquisition of independent transcriptional regulation. Target prediction and transcriptomic analyses suggest that the dominant product of miR-615 is involved in the regulation of growth and a range of developmental processes. CONCLUSIONS The miR-615 gene evolved within the intron of Hoxc5 in the ancestor of placental mammals. Using miR-615 as a case study, we propose a model by which a functional miRNA can emerge within an intron gradually, by selection on secondary structure followed by evolution of an independent miRNA promoter. The location within a Hox gene intron is of particular interest as the miRNA is specific to placental mammals, is co-expressed with its host gene and may share complementary functions.
Collapse
Affiliation(s)
- Shan Quah
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| | - Peter W. H. Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS UK
| |
Collapse
|
45
|
Abstract
How vertebrates generate their anterior-posterior axis is a >90-year-old unsolved probem. This mechanism clearly works very differently in vertebrates than in Drosophila. Here, we present evidence from the Amphibian Xenopus that a time space translation mechanism underlies initial axial patterning in the trunk part of the axis. We show that a timer in the gastrula's non organiser mesoderm (NOM) undergoes sequential timed interactions with the Spemann organiser (SO) during gastrulation to generate the spatial axial pattern. Evidence is also presented that this mechanism works via Hox collinearity and that it requires Hox functionality. The NOM timer is putatively Hox temporal collinearity. This generates a spatially collinear axial Hox pattern in the emerging dorsal central nervous system and dorsal paraxial mesoderm. The interactions with the organiser are mediated by a BMP-anti BMP dependent mechanism. Hox functionality is implicated because knocking out the Hox1 paralogue group not only disrupts expression of Hox1 genes but also of the whole spatially collinear axial Hox sequence in the early embryo's A-P axis. This mechanism and its nature are discussed. The evidence supporting this hypothesis is presented and critically assessed. Strengths and weaknesses, questions, uncertainties and holes in the evidence are identified. Future directions are indicated.
Collapse
|
46
|
Johar D, Siragam V, Mahood TH, Keijzer R. New insights into lung development and diseases: the role of microRNAs. Biochem Cell Biol 2014; 93:139-48. [PMID: 25563747 DOI: 10.1139/bcb-2014-0103] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are short endogenous noncoding RNA molecules (∼ 22 nucleotides) that can regulate gene expression at the post-transcription level. Research interest in the role of miRNAs in lung biology is emerging. MiRNAs have been implicated in a range of processes such as development, homeostasis, and inflammatory diseases in lung tissues and are capable of inducing differentiation, morphogenesis, and apoptosis. In recent years, several studies have reported that miRNAs are differentially regulated in lung development and lung diseases in response to epigenetic changes, providing new insights for their versatile role in various physiological and pathological processes in the lung. In this review, we discuss the contribution of miRNAs to lung development and diseases and possible future implications in the field of lung biology.
Collapse
Affiliation(s)
- Dina Johar
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology (adjunct), University of Manitoba and Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba R3E 3P4, Canada
| | | | | | | |
Collapse
|
47
|
Abstract
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts.
Collapse
Affiliation(s)
| | - Igor Babiak
- Faculty of Aquaculture and Biosciences, University of Nordland, Bodø, Norway
| |
Collapse
|
48
|
Salas-Huetos A, Blanco J, Vidal F, Mercader JM, Garrido N, Anton E. New insights into the expression profile and function of micro-ribonucleic acid in human spermatozoa. Fertil Steril 2014; 102:213-222.e4. [PMID: 24794309 DOI: 10.1016/j.fertnstert.2014.03.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/28/2014] [Accepted: 03/18/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To characterize the microRNA (miRNA) expression profile in spermatozoa from human fertile individuals and their implications in human fertility. DESIGN The expression levels of 736 miRNAs were evaluated using TaqMan arrays. Ontologic analyses were performed to determine the presence of enriched biological processes among their targets. SETTING University research and clinical institutes. PATIENT(S) Ten individuals with normal seminogram, standard karyotype, and proven fertility. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Expression levels of 736 miRNAs, presence of enriched metabolic routes among their targets, homogeneity of the population, influence of demographic features in the results, presence of miRNA stable pairs, and best miRNA normalizing candidates. RESULT(S) A total of 221 miRNAs were consistently present in all individuals, 452 were only detected in some individuals, and 63 did not appear in any sample. The ontologic analysis of the 2,356 potential targets of the ubiquitous miRNAs showed an enrichment of processes related to cell differentiation, development, morphogenesis, and embryogenesis. None of the miRNAs were significantly correlated with age, semen volume, sperm concentration, motility, or morphology. Correlations between samples were statistically significant, indicating a high homogeneity of the population. A set of 48 miRNA pairs displayed a stable expression, a particular behavior that is discussed in relationship to their usefulness as fertility biomarkers. Hsa-miR-532-5p, hsa-miR-374b-5p, and hsa-miR-564 seemed to be the best normalizing miRNA candidates. CONCLUSION(S) Human sperm contain a stable population of miRNAs potentially related to embryogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Albert Salas-Huetos
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Joan Blanco
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Francesca Vidal
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Josep M Mercader
- Joint Institution for Research in Biomedicine-Barcelona Supercomputing Center Program on Computational Biology, Barcelona Supercomputing Center, Barcelona, Spain
| | - Nicolás Garrido
- Laboratorio de Andrología y Banco de Semen, Instituto Valenciano de Infertilidad Valencia, Valencia, Spain
| | - Ester Anton
- Unitat de Biologia Cel·lular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain.
| |
Collapse
|
49
|
Hoss AG, Kartha VK, Dong X, Latourelle JC, Dumitriu A, Hadzi TC, MacDonald ME, Gusella JF, Akbarian S, Chen JF, Weng Z, Myers RH. MicroRNAs located in the Hox gene clusters are implicated in huntington's disease pathogenesis. PLoS Genet 2014; 10:e1004188. [PMID: 24586208 PMCID: PMC3937267 DOI: 10.1371/journal.pgen.1004188] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 01/06/2014] [Indexed: 12/12/2022] Open
Abstract
Transcriptional dysregulation has long been recognized as central to the pathogenesis of Huntington's disease (HD). MicroRNAs (miRNAs) represent a major system of post-transcriptional regulation, by either preventing translational initiation or by targeting transcripts for storage or for degradation. Using next-generation miRNA sequencing in prefrontal cortex (Brodmann Area 9) of twelve HD and nine controls, we identified five miRNAs (miR-10b-5p, miR-196a-5p, miR-196b-5p, miR-615-3p and miR-1247-5p) up-regulated in HD at genome-wide significance (FDR q-value<0.05). Three of these, miR-196a-5p, miR-196b-5p and miR-615-3p, were expressed at near zero levels in control brains. Expression was verified for all five miRNAs using reverse transcription quantitative PCR and all but miR-1247-5p were replicated in an independent sample (8HD/8C). Ectopic miR-10b-5p expression in PC12 HTT-Q73 cells increased survival by MTT assay and cell viability staining suggesting increased expression may be a protective response. All of the miRNAs but miR-1247-5p are located in intergenic regions of Hox clusters. Total mRNA sequencing in the same samples identified fifteen of 55 genes within the Hox cluster gene regions as differentially expressed in HD, and the Hox genes immediately adjacent to the four Hox cluster miRNAs as up-regulated. Pathway analysis of mRNA targets of these miRNAs implicated functions for neuronal differentiation, neurite outgrowth, cell death and survival. In regression models among the HD brains, huntingtin CAG repeat size, onset age and age at death were independently found to be inversely related to miR-10b-5p levels. CAG repeat size and onset age were independently inversely related to miR-196a-5p, onset age was inversely related to miR-196b-5p and age at death was inversely related to miR-615-3p expression. These results suggest these Hox-related miRNAs may be involved in neuroprotective response in HD. Recently, miRNAs have shown promise as biomarkers for human diseases and given their relationship to disease expression, these miRNAs are biomarker candidates in HD.
Collapse
Affiliation(s)
- Andrew G. Hoss
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Vinay K. Kartha
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Xianjun Dong
- Program in Bioinformatics and Integrative Biology, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jeanne C. Latourelle
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alexandra Dumitriu
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Tiffany C. Hadzi
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marcy E. MacDonald
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - James F. Gusella
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Schahram Akbarian
- Friedman Brain Institute, Department of Psychiatry, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard H. Myers
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Genome Science Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Sharma S, Eghbali M. Influence of sex differences on microRNA gene regulation in disease. Biol Sex Differ 2014; 5:3. [PMID: 24484532 PMCID: PMC3912347 DOI: 10.1186/2042-6410-5-3] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 12/30/2013] [Indexed: 12/21/2022] Open
Abstract
Sexual dimorphism is observed in most human diseases. The difference in the physiology and genetics between sexes can contribute tremendously to the disease prevalence, severity, and outcome. Both hormonal and genetic differences between males and females can lead to differences in gene expression patterns that can influence disease risk and course. MicroRNAs have emerged as potential regulatory molecules in all organisms. They can have a broad effect on every aspect of physiology, including embryogenesis, metabolism, and growth and development. Numerous microRNAs have been identified and elucidated to play a key role in cardiovascular diseases, as well as in neurological and autoimmune disorders. This is especially important as microRNA-based tools can be exploited as beneficial therapies for disease treatment and prevention. Sex steroid hormones as well as X-linked genes can have a considerable influence on the regulation of microRNAs. However, there are very few studies highlighting the role of microRNAs in sex biased diseases. This review attempts to summarize differentially regulated microRNAs in males versus females in different diseases and calls for more attention in this underexplored area that should set the basis for more effective therapeutic strategies for sexually dimorphic diseases.
Collapse
Affiliation(s)
| | - Mansoureh Eghbali
- Department of Anesthesiology, Division of Molecular Medicine, and Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, BH-160CHS, Los Angeles, CA 90095-7115, USA.
| |
Collapse
|