1
|
Zage PE, Huo Y, Subramonian D, Le Clorennec C, Ghosh P, Sahoo D. Identification of a novel gene signature for neuroblastoma differentiation using a Boolean implication network. Genes Chromosomes Cancer 2023; 62:313-331. [PMID: 36680522 PMCID: PMC10257350 DOI: 10.1002/gcc.23124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Although induction of differentiation represents an effective strategy for neuroblastoma treatment, the mechanisms underlying neuroblastoma differentiation are poorly understood. We generated a computational model of neuroblastoma differentiation consisting of interconnected gene clusters identified based on symmetric and asymmetric gene expression relationships. We identified a differentiation signature consisting of series of gene clusters comprised of 1251 independent genes that predicted neuroblastoma differentiation in independent datasets and in neuroblastoma cell lines treated with agents known to induce differentiation. This differentiation signature was associated with patient outcomes in multiple independent patient cohorts and validated the role of MYCN expression as a marker of neuroblastoma differentiation. Our results further identified novel genes associated with MYCN via asymmetric Boolean implication relationships that would not have been identified using symmetric computational approaches and that were associated with both neuroblastoma differentiation and patient outcomes. Our differentiation signature included a cluster of genes involved in intracellular signaling and growth factor receptor trafficking pathways that is strongly associated with neuroblastoma differentiation, and we validated the associations of UBE4B, a gene within this cluster, with neuroblastoma cell and tumor differentiation. Our findings demonstrate that Boolean network analyses of symmetric and asymmetric gene expression relationships can identify novel genes and pathways relevant for neuroblastoma tumor differentiation that could represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter E. Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Divya Subramonian
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Pradipta Ghosh
- Department of Medicine, UCSD, La Jolla, CA
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA
- Veterans Affairs Medical Center, La Jolla, CA
| | - Debashis Sahoo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
- Department of Computer Science and Engineering, Jacobs School of Engineering, UCSD, La Jolla, CA
| |
Collapse
|
2
|
Retraction: A Cross-Talk between TrkB and Ret Tyrosine Kinases Receptors Mediates Neuroblastoma Cells Differentiation. PLoS One 2022; 17:e0267929. [PMID: 35476725 PMCID: PMC9045604 DOI: 10.1371/journal.pone.0267929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
3
|
Rozen EJ, Shohet JM. Systematic review of the receptor tyrosine kinase superfamily in neuroblastoma pathophysiology. Cancer Metastasis Rev 2022; 41:33-52. [PMID: 34716856 PMCID: PMC8924100 DOI: 10.1007/s10555-021-10001-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neuroblastoma is a devastating disease accounting for 15% of all childhood cancer deaths. Yet, our understanding of key molecular drivers such as receptor tyrosine kinases (RTKs) in this pathology remains poorly clarified. Here, we provide a systematic analysis of the RTK superfamily in the context of neuroblastoma pathogenesis. METHODS Statistical correlations for all RTK family members' expression to neuroblastoma patient survival across 10 independent patient cohorts were annotated, synthesized, and ranked using the R2: Genomics Analysis and Visualization Platform. Gene expression of selected members across different cancer cell lines was further analyzed in the Cancer Cell Line Encyclopedia, part of the Cancer Dependency Map portal (depmap portal ( http://depmap.org )). Finally, we provide a detailed literature review for highly ranked candidates. RESULTS Our analysis defined two subsets of RTKs showing robust associations with either better or worse survival, constituting potential novel players in neuroblastoma pathophysiology, diagnosis, and therapy. We review the available literature regarding the oncogenic functions of these RTKs, their roles in neuroblastoma pathophysiology, and potential utility as therapeutic targets. CONCLUSIONS Our systematic analysis and review of the RTK superfamily in neuroblastoma pathogenesis provides a new resource to guide the research community towards focused efforts investigating signaling pathways that contribute to neuroblastoma tumor establishment, growth, and/or aggressiveness and targeting these druggable molecules in novel therapeutic strategies.
Collapse
Affiliation(s)
- Esteban Javier Rozen
- Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| | - Jason Matthew Shohet
- Division of Hematology/Oncology, Department of Pediatrics, UMass Chan Medical School, Lazare Research Building LRB603, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
4
|
Siaw JT, Gabre JL, Uçkun E, Vigny M, Zhang W, Van den Eynden J, Hallberg B, Palmer RH, Guan J. Loss of RET Promotes Mesenchymal Identity in Neuroblastoma Cells. Cancers (Basel) 2021; 13:cancers13081909. [PMID: 33921066 PMCID: PMC8071449 DOI: 10.3390/cancers13081909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) drives neuroblastoma (NB). Previous work identified the RET receptor tyrosine kinase (RTK) as a downstream target of ALK activity in NB models. We show here that ALK activation in response to ALKAL2 ligand results in the rapid phosphorylation of RET in NB cells, providing additional insight into the contribution of RET to the ALK-driven gene signature in NB. To further address the role of RET in NB, RET knockout (KO) SK-N-AS cells were generated by CRISPR/Cas9 genome engineering. Gene expression analysis of RET KO NB cells identified a reprogramming of NB cells to a mesenchymal (MES) phenotype that was characterized by increased migration and upregulation of the AXL and MNNG HOS transforming gene (MET) RTKs, as well as integrins and extracellular matrix components. Strikingly, the upregulation of AXL in the absence of RET reflects the development timeline observed in the neural crest as progenitor cells undergo differentiation during embryonic development. Together, these findings suggest that a MES phenotype is promoted in mesenchymal NB cells in the absence of RET, reflective of a less differentiated developmental status.
Collapse
Affiliation(s)
- Joachim T. Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jonatan L. Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Ezgi Uçkun
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Marc Vigny
- Université Pierre et Marie Curie, UPMC, INSERM UMRS-839, 75005 Paris, France;
| | - Wancun Zhang
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
| | - Jimmy Van den Eynden
- Anatomy and Embryology Unit, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium;
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden; (J.T.S.); (J.L.G.); (E.U.); (B.H.); (R.H.P.)
- Department of Pediatric Oncology Surgery, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China;
- Correspondence:
| |
Collapse
|
5
|
Halakos EG, Connell AJ, Glazewski L, Wei S, Mason RW. Bottom up proteomics identifies neuronal differentiation pathway networks activated by cathepsin inhibition treatment in neuroblastoma cells that are enhanced by concurrent 13-cis retinoic acid treatment. J Proteomics 2020; 232:104068. [PMID: 33278663 DOI: 10.1016/j.jprot.2020.104068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/16/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
Neuroblastoma is the second most common pediatric cancer involving the peripheral nervous system in which stage IVS metastatic tumors regress due to spontaneous differentiation. 13-cis retinoic acid (13-cis RA) is currently used in the clinic for its differentiation effects and although it improves outcomes, relapse is seen in half of high-risk patients. Combinatorial therapies have been shown to be more effective in oncotherapy and since cathepsin inhibition reduces tumor growth, we explored the potential of coupling 13-cis RA with a cathepsin inhibitor (K777) to enhance therapeutic efficacy against neuroblastoma. Shotgun proteomics was used to identify proteins affected by K777 and dual (13-cis RA/K777) treatment in neuroblastoma SK-N-SH cells. Cathepsin inhibition was more effective in increasing proteins involved in neuronal differentiation and neurite outgrowth than 13-cis RA alone, but the combination of both treatments enhanced the neuronal differentiation effect. SIGNIFICANCE: As neuroblastoma can spontaneously differentiate, determining which proteins are involved in differentiation can guide development of more accurate diagnostic markers and more effective treatments. In this study, we established a differentiation proteomic map of SK-N-SH cells treated with a cathepsin inhibitor (K777) and K777/13-cis RA (dual). Bioinformatic analysis revealed these treatments enhanced neuronal differentiation and axonogenesis pathways. The most affected proteins in these pathways may become valuable biomarkers of efficacy of drugs designed to enhance differentiation of neuroblastoma [1].
Collapse
Affiliation(s)
- Effie G Halakos
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Andrew J Connell
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Lisa Glazewski
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Robert W Mason
- Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA; Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
6
|
Mederer T, Schmitteckert S, Volz J, Martínez C, Röth R, Thumberger T, Eckstein V, Scheuerer J, Thöni C, Lasitschka F, Carstensen L, Günther P, Holland-Cunz S, Hofstra R, Brosens E, Rosenfeld JA, Schaaf CP, Schriemer D, Ceccherini I, Rusmini M, Tilghman J, Luzón-Toro B, Torroglosa A, Borrego S, Sze-man Tang C, Garcia-Barceló M, Tam P, Paramasivam N, Bewerunge-Hudler M, De La Torre C, Gretz N, Rappold GA, Romero P, Niesler B. A complementary study approach unravels novel players in the pathoetiology of Hirschsprung disease. PLoS Genet 2020; 16:e1009106. [PMID: 33151932 PMCID: PMC7643938 DOI: 10.1371/journal.pgen.1009106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/08/2020] [Indexed: 11/24/2022] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones. WES datasets of two patients with HSCR and their non-affected parents were analysed, and four novel HSCR candidate genes could be identified: ATP7A, SREBF1, ABCD1 and PIAS2. Further rare variants in these genes were identified in additional HSCR patients, suggesting disease relevance. Transcriptomics revealed that these genes are expressed in embryonic and fetal gastrointestinal tissues. Knockout of these genes in neuronal cells demonstrated impaired cell differentiation, proliferation and/or survival. Our approach identified and validated candidate HSCR genes and provided further insight into the underlying pathomechanisms of HSCR.
Collapse
Affiliation(s)
- Tanja Mederer
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Schmitteckert
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Volz
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Cristina Martínez
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ralph Röth
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | | | - Jutta Scheuerer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cornelia Thöni
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Lasitschka
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Carstensen
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | - Patrick Günther
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Robert Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
| | - Christian P. Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics Laboratories, Houston, Texas, United States of America
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Duco Schriemer
- Department of Neuroscience, University Medical Center, Groningen, The Netherlands
| | - Isabella Ceccherini
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS, Instituto Giannina Gaslini, Genova, Italy
| | - Marta Rusmini
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS, Instituto Giannina Gaslini, Genova, Italy
| | - Joseph Tilghman
- Center for Human Genetics and Genomics, New York University School of Medicine, United States of America
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - Clara Sze-man Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Mercè Garcia-Barceló
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nagarajan Paramasivam
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Norbert Gretz
- Center of Medical Research, Medical Faculty Mannheim, Mannheim, Germany
| | - Gudrun A. Rappold
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| | - Philipp Romero
- Pediatric Surgery Division, Heidelberg University Hospital, Heidelberg, Germany
| | - Beate Niesler
- Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- nCounter Core Facility, Department of Human Molecular Genetics, Heidelberg University Hospital, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Kalwat MA, Huang Z, Binns DD, McGlynn K, Cobb MH. α 2-Adrenergic Disruption of β Cell BDNF-TrkB Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2020; 8:576396. [PMID: 33178692 PMCID: PMC7593622 DOI: 10.3389/fcell.2020.576396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
Adrenergic signaling is a well-known input into pancreatic islet function. Specifically, the insulin-secreting islet β cell expresses the Gi/o-linked α2-adrenergic receptor, which upon activation suppresses insulin secretion. The use of the adrenergic agonist epinephrine at micromolar doses may have supraphysiological effects. We found that pretreating β cells with micromolar concentrations of epinephrine differentially inhibited activation of receptor tyrosine kinases. We chose TrkB as an example because of its relative sensitivity to the effects of epinephrine and due to its potential regulatory role in the β cell. Our characterization of brain-derived neurotrophic factor (BDNF)-TrkB signaling in MIN6 β cells showed that TrkB is activated by BDNF as expected, leading to canonical TrkB autophosphorylation and subsequent downstream signaling, as well as chronic effects on β cell growth. Micromolar, but not nanomolar, concentrations of epinephrine blocked BDNF-induced TrkB autophosphorylation and downstream mitogen-activated protein kinase pathway activation, suggesting an inhibitory phenomenon at the receptor level. We determined epinephrine-mediated inhibition of TrkB activation to be Gi/o-dependent using pertussis toxin, arguing against an off-target effect of high-dose epinephrine. Published data suggested that inhibition of potassium channels or phosphoinositide-3-kinase signaling may abrogate the negative effects of epinephrine; however, these did not rescue TrkB signaling in our experiments. Taken together, these results show that (1) TrkB kinase signaling occurs in β cells and (2) use of epinephrine in studies of insulin secretion requires careful consideration of concentration-dependent effects. BDNF-TrkB signaling in β cells may underlie pro-survival or growth signaling and warrants further study.
Collapse
Affiliation(s)
- Michael A. Kalwat
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| | | | | | | | | |
Collapse
|
8
|
Hoyer N, Zielke P, Hu C, Petersen M, Sauter K, Scharrenberg R, Peng Y, Kim CC, Han C, Parrish JZ, Soba P. Ret and Substrate-Derived TGF-β Maverick Regulate Space-Filling Dendrite Growth in Drosophila Sensory Neurons. Cell Rep 2020; 24:2261-2272.e5. [PMID: 30157422 DOI: 10.1016/j.celrep.2018.07.092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/17/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022] Open
Abstract
Dendrite morphogenesis is a highly regulated process that gives rise to stereotyped receptive fields, which are required for proper neuronal connectivity and function. Specific classes of neurons, including Drosophila class IV dendritic arborization (C4da) neurons, also feature complete space-filling growth of dendrites. In this system, we have identified the substrate-derived TGF-β ligand maverick (mav) as a developmental signal promoting space-filling growth through the neuronal Ret receptor. Both are necessary for radial spreading of C4da neuron dendrites, and Ret is required for neuronal uptake of Mav. Moreover, local changes in Mav levels result in directed dendritic growth toward regions with higher ligand availability. Our results suggest that Mav acts as a substrate-derived secreted signal promoting dendrite growth within not-yet-covered areas of the receptive field to ensure space-filling dendritic growth.
Collapse
Affiliation(s)
- Nina Hoyer
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Philip Zielke
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Chun Hu
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Meike Petersen
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Kathrin Sauter
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Robin Scharrenberg
- Research Group Neuronal Development, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Yun Peng
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | | | - Chun Han
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Peter Soba
- Research Group Neuronal Patterning and Connectivity, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
9
|
Bali P, Banik A, Nehru B, Anand A. Neurotrophic Factors Mediated Activation of Astrocytes Ameliorate Memory Loss by Amyloid Clearance after Transplantation of Lineage Negative Stem Cells. Mol Neurobiol 2019; 56:8420-8434. [PMID: 31250384 DOI: 10.1007/s12035-019-01680-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/14/2019] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is one of the untreatable neurodegenerative disorders with associated societal burden. Current therapies only provide symptomatic relief without altering the rate of disease progression as reported by Lanctot et al. (Therapeutic Advances in Neurological Disorders 2 (3):163-180, 2009). The increased number of failed clinical trials in last two decades indicates the imperative need to explore alternative therapies for AD as reported by Tuszynski et al. (Nature Medicine 11 (5):551-555, 2005) and Liyanage et al. (Alzheimer's & Dementia 4:628-635, 2005). In this study, we aimed to decipher the role of neurotrophic factors in the reversal of memory loss by transplantation of lineage negative (Lin-ve) stem cells in a male mouse model of cognitive impairment induced by intrahippocampal injection of amyloid β-42 (Aβ-42). The efficacy of human umbilical cord blood (hUCB) derived Lin-ve stem cells were analyzed by neurobehavioral parameters, i.e., Morris water maze and passive avoidance after bilateral intra-hippocampal transplantation using stereotaxic surgery. Real-time PCR and immunohistochemistry was carried out in brain tissues in order to analyze the expression of neurotrophic factors, apoptotic, astrocytic, and other neuronal cell markers. The transplantation of Lin-ve stem cells led to reversal of memory loss associated with reduction of Aβ-42 deposition from the brains. The molecular analysis revealed increase in neurotrophic factors, i.e., glial derived neurotrophic factor (GDNF), ciliary derived neurotrophic factor (CNTF), and Brain-derived neurotrophic factor (BDNF) after transplantation. The administration of ANA-12, a TrkB inhibitor, reversed the behavioral and molecular effects of stem cell transplantation suggesting involvement of BDNF-TrkB pathway in the rescue of memory loss. We believe that the amyloid clearance results from activation of astrocytes and anti-apoptotic pathways added by neurotrophic factors.
Collapse
Affiliation(s)
- P Bali
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.,Neuroscience Research Lab, Department of Neurology, Post Graduated Institute of Medical Education and Research, Chandigarh, 160012, India
| | - A Banik
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA, 30322, USA
| | - B Nehru
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduated Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
10
|
Abstract
Receptor tyrosine kinases (RTKs) play important roles in cell growth, motility, differentiation, and survival. These single-pass membrane proteins are grouped into subfamilies based on the similarity of their extracellular domains. They are generally thought to be activated by ligand binding, which promotes homodimerization and then autophosphorylation in trans. However, RTK interactions are more complicated, as RTKs can interact in the absence of ligand and heterodimerize within and across subfamilies. Here, we review the known cross-subfamily RTK heterointeractions and their possible biological implications, as well as the methodologies which have been used to study them. Moreover, we demonstrate how thermodynamic models can be used to study RTKs and to explain many of the complicated biological effects which have been described in the literature. Finally, we discuss the concept of the RTK interactome: a putative, extensive network of interactions between the RTKs. This RTK interactome can produce unique signaling outputs; can amplify, inhibit, and modify signaling; and can allow for signaling backups. The existence of the RTK interactome could provide an explanation for the irreproducibility of experimental data from different studies and for the failure of some RTK inhibitors to produce the desired therapeutic effects. We argue that a deeper knowledge of RTK interactome thermodynamics can lead to a better understanding of fundamental RTK signaling processes in health and disease. We further argue that there is a need for quantitative, thermodynamic studies that probe the strengths of the interactions between RTKs and their ligands and between different RTKs.
Collapse
Affiliation(s)
- Michael D. Paul
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| | - Kalina Hristova
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, and Program in Molecular Biophysics, Johns Hopkins University, Baltimore MD 21218
| |
Collapse
|
11
|
Pertile RAN, Cui X, Hammond L, Eyles DW. Vitamin D regulation of GDNF/Ret signaling in dopaminergic neurons. FASEB J 2018; 32:819-828. [PMID: 29018141 DOI: 10.1096/fj.201700713r] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1,25(OH)2D3 (vitamin D) appears essential for the normal development of dopaminergic neurons. Vitamin D affects dopamine synthesis and metabolism as well as expression of glial cell line-derived neurotrophic factor (GDNF), which is crucial for the survival of dopaminergic neurons. We investigated the role of vitamin D on GDNF and its receptors protooncogene tyrosine-protein kinase receptor Ret (C-Ret) and GDNF family receptor alpha 1 (GFRα1) signaling. To this end, we used a developmental vitamin D-deficient rat model and SH-SY5Y cells transfected with vitamin D receptor (VDR). The absence of vitamin D ligand in gestation reduces C-Ret expression, but not GDNF and GFRα1, in embryo forebrains. Overexpression of VDR in SH-SY5Y in the absence of ligand (mimicking in vivo developmental vitamin D deficiency) also suppressed C-Ret mRNA levels. In the presence of vitamin D, C-Ret mRNA and protein expression were increased. The chromatin immunoprecipitation results suggested that C-Ret is directly regulated by vitamin D via VDR. GDNF was also increased by vitamin D in these cells. Our small interfering RNA studies showed that knocking down VDR leads to an increase in C-Ret in the absence of ligand. Finally, we confirmed the inverse relationship between GFRα1 and C-Ret, as knocking down C-Ret led to increases in GFRα1 expression. These data extend our knowledge of the diverse and important roles played by vitamin D in dopamine physiology.-Pertile, R. A. N., Cui, X., Hammond, L., Eyles, D. W. Vitamin D regulation of GDNF/Ret signaling in dopaminergic neurons.
Collapse
Affiliation(s)
- Renata A N Pertile
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Xiaoying Cui
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Luke Hammond
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, USA
| | - Darryl W Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Queensland Centre for Mental Health Research, Wacol, Queensland, Australia
| |
Collapse
|
12
|
Vitale G, Dicitore A, Pepe D, Gentilini D, Grassi ES, Borghi MO, Gelmini G, Cantone MC, Gaudenzi G, Misso G, Di Blasio AM, Hofland LJ, Caraglia M, Persani L. Synergistic activity of everolimus and 5-aza-2'-deoxycytidine in medullary thyroid carcinoma cell lines. Mol Oncol 2017; 11:1007-1022. [PMID: 28453190 PMCID: PMC5537710 DOI: 10.1002/1878-0261.12070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 12/19/2022] Open
Abstract
Medullary thyroid cancer (MTC) is a tumor highly resistant to chemo‐ and radiotherapy. Drug resistance can be induced by epigenetic changes such as aberrant DNA methylation. To overcome drug resistance, we explored a promising approach based on the use of 5‐aza‐2′‐deoxycytidine (AZA), a demethylating agent, in combination with the mTOR inhibitor everolimus in MTC cells (MZ‐CRC‐1 and TT). This combined treatment showed a strong synergistic antiproliferative activity through the induction of apoptosis. The effect of everolimus and/or AZA on genome‐wide expression profiling was evaluated by Illumina BeadChip in MZ‐CRC‐1 cells. An innovative bioinformatic pipeline identified four potential molecular pathways implicated in the synergy between AZA and everolimus: PI3K‐Akt signaling, the neurotrophin pathway, ECM/receptor interaction, and focal adhesion. Among these, the neurotrophin signaling pathway was most directly involved in apoptosis, through the overexpression of NGFR and Bax genes. The increased expression of genes involved in the NGFR‐MAPK10‐TP53‐Bax/Bcl2 pathway during incubation with AZA plus everolimus was validated by western blotting in MZ‐CRC‐1 cells. Interestingly, addition of a neutralizing anti‐NGFR antibody inhibited the synergistic cytotoxic activity between AZA and everolimus. These results open a new therapeutic scenario for MTC and potentially other neuroendocrine tumors, where therapy with mTOR inhibitors is currently approved.
Collapse
Affiliation(s)
- Giovanni Vitale
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Alessandra Dicitore
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | | | - Davide Gentilini
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Elisa S Grassi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Maria O Borghi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Experimental Laboratory of Immuno-rheumatologic Researches, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Giulia Gelmini
- Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Maria C Cantone
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Germano Gaudenzi
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - Anna M Di Blasio
- Molecular Biology Laboratory, Istituto Auxologico Italiano, Milan, Italy
| | - Leo J Hofland
- Section Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health (DISCCO), University of Milan, Italy.,Laboratory of Endocrine and Metabolic Research, Istituto Auxologico Italiano IRCCS, Milan, Italy
| |
Collapse
|
13
|
Iaboni M, Fontanella R, Rienzo A, Capuozzo M, Nuzzo S, Santamaria G, Catuogno S, Condorelli G, de Franciscis V, Esposito CL. Targeting Insulin Receptor with a Novel Internalizing Aptamer. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e365. [PMID: 27648925 PMCID: PMC5056995 DOI: 10.1038/mtna.2016.73] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/26/2016] [Indexed: 12/18/2022]
Abstract
Nucleic acid-based aptamers are emerging as therapeutic antagonists of disease-associated proteins such as receptor tyrosine kinases. They are selected by an in vitro combinatorial chemistry approach, named Systematic Evolution of Ligands by Exponential enrichment (SELEX), and thanks to their small size and unique chemical characteristics, they possess several advantages over antibodies as diagnostics and therapeutics. In addition, aptamers that rapidly internalize into target cells hold as well great potential for their in vivo use as delivery tools of secondary therapeutic agents. Here, we describe a nuclease resistant RNA aptamer, named GL56, which specifically recognizes the insulin receptor (IR). Isolated by a cell-based SELEX method that allows enrichment for internalizing aptamers, GL56 rapidly internalizes into target cells and is able to discriminate IR from the highly homologous insulin-like growth factor receptor 1. Notably, when applied to IR expressing cancer cells, the aptamer inhibits IR dependent signaling. Given the growing interest in the insulin receptor as target for cancer treatment, GL56 reveals a novel molecule with great translational potential as inhibitor and delivery tool for IR-dependent cancers.
Collapse
Affiliation(s)
- Margherita Iaboni
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.,Current address: Bracco Imaging S.p.A., Turin, Italy
| | | | | | | | - Silvia Nuzzo
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.,IEOS, CNR, Naples, Italy
| | - Gianluca Santamaria
- Research Center of Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.,IEOS, CNR, Naples, Italy
| | | | | |
Collapse
|
14
|
Lin C, Lu W, Ren Z, Tang Y, Zhang C, Yang R, Chen Y, Cao W, Wang L, Wang X, Ji T. Elevated RET expression enhances EGFR activation and mediates EGFR inhibitor resistance in head and neck squamous cell carcinoma. Cancer Lett 2016; 377:1-10. [PMID: 27090738 DOI: 10.1016/j.canlet.2016.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM Co-activation of EGFR by alternative receptor tyrosine kinases (RTKs) might mediate resistance to EGFR inhibition in head and neck squamous cell carcinoma (HNSCC). Here we found a novel mechanism to improve the efficacy of EGFR inhibitor erlotinib on HNSCC. METHOD Immunohistochemistry, western blot, cell migration and invasion assays, cell proliferation, cell cycle analysis and in vivo serial transplantation assays were used to evaluate the role of RET on HNSCC cells. RESULTS The elevated levels of a rearranged during transfection (RET) are observed in HNSCC and that high levels of RET correlate with increased tumor size, advanced tumor stage and decreased overall survival rate. The HNSCC cell proliferation and invasion were inhibited by RET knockdown in vitro and in vivo. The inhibition of RET expression markedly reduced EGFR phosphorylation and downstream EGFR signaling. The inhibition of RET signaling significantly increased the sensitivity of HNSCC cells to the EGFR inhibitor erlotinib in both in vitro and in vivo models. CONCLUSION Our results offer a preclinical proof-of-concept supporting a role for RET signaling inhibition in a targeted therapeutic approach to improve the efficacy of EGFR inhibition in HNSCC.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Cycle/drug effects
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/drug effects
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Erlotinib Hydrochloride/pharmacology
- Gene Expression Regulation, Neoplastic
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/enzymology
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Phenylurea Compounds/pharmacology
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-ret/antagonists & inhibitors
- Proto-Oncogene Proteins c-ret/genetics
- Proto-Oncogene Proteins c-ret/metabolism
- Pyridines/pharmacology
- RNA Interference
- Signal Transduction/drug effects
- Squamous Cell Carcinoma of Head and Neck
- Time Factors
- Transfection
- Tumor Burden/drug effects
- Up-Regulation
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chengzhong Lin
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wei Lu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Zhenhu Ren
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yu Tang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Chunye Zhang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rong Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yiming Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Lizhen Wang
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Tong Ji
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
15
|
Lewis JE, Brameld JM, Hill P, Wilson D, Barrett P, Ebling FJP, Jethwa PH. Thyroid hormone and vitamin D regulate VGF expression and promoter activity. J Mol Endocrinol 2016; 56:123-34. [PMID: 26643910 PMCID: PMC4705542 DOI: 10.1530/jme-15-0224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 01/20/2023]
Abstract
The Siberian hamster (Phodopus sungorus) survives winter by decreasing food intake and catabolizing abdominal fat reserves, resulting in a sustained, profound loss of body weight. Hypothalamic tanycytes are pivotal for this process. In these cells, short-winter photoperiods upregulate deiodinase 3, an enzyme that regulates thyroid hormone availability, and downregulate genes encoding components of retinoic acid (RA) uptake and signaling. The aim of the current studies was to identify mechanisms by which seasonal changes in thyroid hormone and RA signaling from tanycytes might ultimately regulate appetite and energy expenditure. proVGF is one of the most abundant peptides in the mammalian brain, and studies have suggested a role for VGF-derived peptides in the photoperiodic regulation of body weight in the Siberian hamster. In silico studies identified possible thyroid and vitamin D response elements in the VGF promoter. Using the human neuroblastoma SH-SY5Y cell line, we demonstrate that RA increases endogenous VGF expression (P<0.05) and VGF promoter activity (P<0.0001). Similarly, treatment with 1,25-dihydroxyvitamin D3 increased endogenous VGF mRNA expression (P<0.05) and VGF promoter activity (P<0.0001), whereas triiodothyronine (T3) decreased both (P<0.01 and P<0.0001). Finally, intra-hypothalamic administration of T3 blocked the short day-induced increase in VGF expression in the dorsomedial posterior arcuate nucleus of Siberian hamsters. Thus, we conclude that VGF expression is a likely target of photoperiod-induced changes in tanycyte-derived signals and is potentially a regulator of seasonal changes in appetite and energy expenditure.
Collapse
Affiliation(s)
- Jo E Lewis
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - John M Brameld
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Phil Hill
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Dana Wilson
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Perry Barrett
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Francis J P Ebling
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| | - Preeti H Jethwa
- Division of Nutritional SciencesSchool of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UKSchool of Life SciencesUniversity of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UKThe Rowett Institute of Nutrition and HealthUniversity of Aberdeen, Bucksburn, Aberdeen AB21 9SB, UK
| |
Collapse
|
16
|
Amero P, Esposito CL, Rienzo A, Moscato F, Catuogno S, de Franciscis V. Identification of an Interfering Ligand Aptamer for EphB2/3 Receptors. Nucleic Acid Ther 2016; 26:102-10. [PMID: 26824783 DOI: 10.1089/nat.2015.0580] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Eph receptors are transmembrane proteins that belong to the receptor tyrosine kinases superfamily. Elevated Eph/ephrin expression levels have been associated with angiogenesis and tumor vasculature in many types of human cancers, including breast, lung, and prostate cancers, melanoma, and leukemia. In glioblastoma (GBM), the dysregulated expression of Eph receptors and of corresponding ephrin ligands has been associated with higher tumor grade and poor prognosis making them effective targets for therapeutic drugs. In this study, we describe the GL43.T, an anti-Eph aptamer, able to bind at high-affinity EphB3 and EphB2. Moreover, the GL43.T aptamer inhibits the glioma cell vitality and interferes with ephrine-B1 inhibition of chemotactic serum-stimulated cell migration. GL43.T aptamer represents a promising therapeutic molecule for EphB3-dependent cancers.
Collapse
Affiliation(s)
- Paola Amero
- Istituto di Endocrinologia ed Oncologia Sperimentale , CNR, Naples, Italy
| | | | - Anna Rienzo
- Istituto di Endocrinologia ed Oncologia Sperimentale , CNR, Naples, Italy
| | - Fortunato Moscato
- Istituto di Endocrinologia ed Oncologia Sperimentale , CNR, Naples, Italy
| | - Silvia Catuogno
- Istituto di Endocrinologia ed Oncologia Sperimentale , CNR, Naples, Italy
| | | |
Collapse
|
17
|
Di Francesco AM, Cusano G, Franzese O, Orienti I, Falconi M, Vesci L, Riccardi R. Resistance to the atypical retinoid ST1926 in SK-N-AS cells selected the subline rAS-ST with enhanced sensitivity to ATRA mediated by not conventional mechanisms: DNA damage, G2 accumulation and late telomerase inhibition. Toxicol In Vitro 2015; 29:1628-38. [PMID: 26096597 DOI: 10.1016/j.tiv.2015.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE 13-cis-Retinoic acid represents a well-established clinical strategy for the management of minimal residual disease of high risk neuroblastoma (NB) patients. However, the clinical efficacy on the overall survival of these patients remains limited, addressing the issue of better understanding the molecular mechanisms and intracellular pathways mediating Retinoic Acid (RA) clinical effects. EXPERIMENTAL APPROACH This work investigates the mechanism underlying the sensitivity/resistance to RA in NB by taking advantage of the paired SK-N-AS/rAS-ST cells showing different responsivity to ATRA. The subline rAS-ST was selected by inducing resistance to the novel retinoid ST1926 in the NB SK-N-AS cell line. KEY RESULTS Resistance to ST1926 was neither dependent on cellular uptake nor on multi-drug resistance phenotype. Rather, both delayed/lower DNA damage and apoptosis appeared involved in reduced sensitivity of rAS-ST cells to ST1926. This subline showed enhanced responsivity to ATRA compared to the wt counterpart, that was associated with enhanced RARα/β expression, DNA damage, G2 accumulation, PI3K/AKT pathway inhibition, cellular differentiation and delayed telomerase inhibition, without involvement of either p27/p53 or caspase-mediated apoptosis. CONCLUSIONS AND IMPLICATIONS The present data add important information to the understanding of RA sensitivity in NB, providing further insights towards a more efficacious clinical use of this drug.
Collapse
Affiliation(s)
- A M Di Francesco
- Division of Paediatric Oncology, Catholic University of Rome, Rome, Italy.
| | - G Cusano
- Division of Paediatric Oncology, Catholic University of Rome, Rome, Italy
| | - O Franzese
- Department of Systems Medicine, Section of Pharmacology, University of Rome "Tor Vergata", Italy
| | - I Orienti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - M Falconi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - L Vesci
- Research & Development, Sigma Tau, Pomezia, Rome, Italy
| | - R Riccardi
- Division of Paediatric Oncology, Catholic University of Rome, Rome, Italy
| |
Collapse
|
18
|
Nahorski MS, Al-Gazali L, Hertecant J, Owen DJ, Borner GHH, Chen YC, Benn CL, Carvalho OP, Shaikh SS, Phelan A, Robinson MS, Royle SJ, Woods CG. A novel disorder reveals clathrin heavy chain-22 is essential for human pain and touch development. Brain 2015; 138:2147-60. [PMID: 26068709 PMCID: PMC4511860 DOI: 10.1093/brain/awv149] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/04/2015] [Indexed: 12/31/2022] Open
Abstract
Congenital inability to feel pain is very rare but the identification of causative genes has yielded significant insights into pain pathways and also novel targets for pain treatment. We report a novel recessive disorder characterized by congenital insensitivity to pain, inability to feel touch, and cognitive delay. Affected individuals harboured a homozygous missense mutation in CLTCL1 encoding the CHC22 clathrin heavy chain, p.E330K, which we demonstrate to have a functional effect on the protein. We found that CLTCL1 is significantly upregulated in the developing human brain, displaying an expression pattern suggestive of an early neurodevelopmental role. Guided by the disease phenotype, we investigated the role of CHC22 in two human neural crest differentiation systems; human induced pluripotent stem cell-derived nociceptors and TRKB-dependant SH-SY5Y cells. In both there was a significant downregulation of CHC22 upon the onset of neural differentiation. Furthermore, knockdown of CHC22 induced neurite outgrowth in neural precursor cells, which was rescued by stable overexpression of small interfering RNA-resistant CHC22, but not by mutant CHC22. Similarly, overexpression of wild-type, but not mutant, CHC22 blocked neurite outgrowth in cells treated with retinoic acid. These results reveal an essential and non-redundant role for CHC22 in neural crest development and in the genesis of pain and touch sensing neurons.
Collapse
Affiliation(s)
- Michael S Nahorski
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Lihadh Al-Gazali
- 2 Department of Paediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | | | - David J Owen
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Georg H H Borner
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK 4 Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Ya-Chun Chen
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Caroline L Benn
- 5 Neusentis, The Portway Building, Granta Park, Cambridge. CB21 6GS, UK
| | - Ofélia P Carvalho
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Samiha S Shaikh
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anne Phelan
- 5 Neusentis, The Portway Building, Granta Park, Cambridge. CB21 6GS, UK
| | - Margaret S Robinson
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Stephen J Royle
- 6 Division of Biomedical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - C Geoffrey Woods
- 1 Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK
| |
Collapse
|
19
|
Newburn EN, Duchemin AM, Neff NH, Hadjiconstantinou M. GM1 ganglioside enhances Ret signaling in striatum. J Neurochem 2014; 130:541-54. [DOI: 10.1111/jnc.12760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Erin N. Newburn
- Department of Pharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| | - Anne-Marie Duchemin
- Department of Psychiatry; Division of Molecular Psychopharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| | - Norton H. Neff
- Department of Pharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
- Department of Psychiatry; Division of Molecular Psychopharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| | - Maria Hadjiconstantinou
- Department of Pharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
- Department of Psychiatry; Division of Molecular Psychopharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| |
Collapse
|
20
|
Shukla A, Mohapatra TM, Parmar D, Seth K. Neuroprotective potentials of neurotrophin rich olfactory ensheathing cell's conditioned media against 6OHDA-induced oxidative damage. Free Radic Res 2014; 48:560-71. [PMID: 24528157 DOI: 10.3109/10715762.2014.894636] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
On the basis of recent reports, we propose that impaired neurotrophin signaling (PI3k/Akt), low antioxidant levels, and generation of reactive oxygen species (ROS) conjointly participate in the progressive events responsible for the dopaminergic cell loss in Parkinson's disease (PD). In the present study we tried to target these deficits collectively through multiple neurotrophic factors (NTFs) support in the form of Olfactory Ensheathing Cell's Conditioned Media (OEC CM) using human SH-SY5Y neuroblastoma cell line exposed to 6 hydroxydopamine (6OHDA). 6OHDA exposure induced, oxidative stress-mediated apoptotic cell death viz. enhanced ROS generation, diffused cytosolic cytochrome c (cyt c), impaired Bcl-2: Bax levels along with decrease in GSH content. These changes were accompanied by loss in Akt phosphorylation and TH levels in SH-SY5Y cells. OEC CM significantly checked apoptotic cell death by preserving pAkt levels which coincided with enhanced GSH and suppressed oxidative injury. Functional integrity of OEC CM supported cells was evident by maintained tyrosine hydroxylase (TH) expression. Intercepting Akt signaling by specific inhibitor LY294002 blocked the protective effect. Taken together our findings provide important evidence that the key to protective effect of multiple NTF support via OEC CM is enhanced Akt survival signaling which promotes antioxidant defense leading to suppression of oxidative damage.
Collapse
Affiliation(s)
- A Shukla
- Indian Institute of Toxicology Research (CSIR), Developmental Toxicology Division , Lucknow , India
| | | | | | | |
Collapse
|
21
|
Abstract
The RET receptor tyrosine kinase is crucial for normal development but also contributes to pathologies that reflect both the loss and the gain of RET function. Activation of RET occurs via oncogenic mutations in familial and sporadic cancers - most notably, those of the thyroid and the lung. RET has also recently been implicated in the progression of breast and pancreatic tumours, among others, which makes it an attractive target for small-molecule kinase inhibitors as therapeutics. However, the complex roles of RET in homeostasis and survival of neural lineages and in tumour-associated inflammation might also suggest potential long-term pitfalls of broadly targeting RET.
Collapse
Affiliation(s)
- Lois M Mulligan
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
22
|
Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer. Mol Ther 2014; 22:828-41. [PMID: 24566984 DOI: 10.1038/mt.2013.300] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/18/2013] [Indexed: 12/28/2022] Open
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) is a cell-surface tyrosine kinase receptor implicated in several cellular processes including proliferation, migration, and angiogenesis. It represents a compelling therapeutic target in many human tumors, including glioma. A number of tyrosine kinase inhibitors under development as antitumor agents have been found to inhibit PDGFRβ. However, they are not selective as they present multiple tyrosine kinase targets. Here, we report a novel PDGFRβ-specific antagonist represented by a nuclease-resistant RNA-aptamer, named Gint4.T. This aptamer is able to specifically bind to the human PDGFRβ ectodomain (Kd: 9.6 nmol/l) causing a strong inhibition of ligand-dependent receptor activation and of downstream signaling in cell lines and primary cultures of human glioblastoma cells. Moreover, Gint4.T aptamer drastically inhibits cell migration and proliferation, induces differentiation, and blocks tumor growth in vivo. In addition, Gint4.T aptamer prevents PDGFRβ heterodimerization with and resultant transactivation of epidermal growth factor receptor. As a result, the combination of Gint4.T and an epidermal growth factor receptor-targeted aptamer is better at slowing tumor growth than either single aptamer alone. These findings reveal Gint4.T as a PDGFRβ-drug candidate with translational potential.
Collapse
|
23
|
Volinsky N, Kholodenko BN. Complexity of receptor tyrosine kinase signal processing. Cold Spring Harb Perspect Biol 2013; 5:a009043. [PMID: 23906711 DOI: 10.1101/cshperspect.a009043] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our knowledge of molecular mechanisms of receptor tyrosine kinase (RTK) signaling advances with ever-increasing pace. Yet our understanding of how the spatiotemporal dynamics of RTK signaling control specific cellular outcomes has lagged behind. Systems-centered experimental and computational approaches can help reveal how overlapping networks of signal transducers downstream of RTKs orchestrate specific cell-fate decisions. We discuss how RTK network regulatory structures, which involve the immediate posttranslational and delayed transcriptional controls by multiple feed forward and feedback loops together with pathway cross talk, adapt cells to the combinatorial variety of external cues and conditions. This intricate network circuitry endows cells with emerging capabilities for RTK signal processing and decoding. We illustrate how mathematical modeling facilitates our understanding of RTK network behaviors by unraveling specific systems properties, including bistability, oscillations, excitable responses, and generation of intricate landscapes of signaling activities.
Collapse
Affiliation(s)
- Natalia Volinsky
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
24
|
TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 2013; 14:10122-42. [PMID: 23670594 PMCID: PMC3676832 DOI: 10.3390/ijms140510122] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/27/2013] [Accepted: 04/28/2013] [Indexed: 02/06/2023] Open
Abstract
The Trk family of receptors play a wide variety of roles in physiological and disease processes in both neuronal and non-neuronal tissues. Amongst these the TrkB receptor in particular has attracted major attention due to its critical role in signalling for brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4 (NT4). TrkB signalling is indispensable for the survival, development and synaptic plasticity of several subtypes of neurons in the nervous system. Substantial evidence has emerged over the last decade about the involvement of aberrant TrkB signalling and its compromise in various neuropsychiatric and degenerative conditions. Unusual changes in TrkB signalling pathway have also been observed and implicated in a range of cancers. Variations in TrkB pathway have been observed in obesity and hyperphagia related disorders as well. Both BDNF and TrkB have been shown to play critical roles in the survival of retinal ganglion cells in the retina. The ability to specifically modulate TrkB signalling can be critical in various pathological scenarios associated with this pathway. In this review, we discuss the mechanisms underlying TrkB signalling, disease implications and explore plausible ameliorative or preventive approaches.
Collapse
|
25
|
Boscia F, Esposito CL, Casamassa A, de Franciscis V, Annunziato L, Cerchia L. The isolectin IB4 binds RET receptor tyrosine kinase in microglia. J Neurochem 2013; 126:428-36. [PMID: 23413818 DOI: 10.1111/jnc.12209] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 02/01/2023]
Abstract
Ret receptor tyrosine kinase is the signaling component of the receptor complex for the family ligands of the glial cell line-derived neurotrophic factor (GDNF). Ret is involved in the development of enteric nervous system, of sympathetic, parasympathetic, motor and sensory neurons, and it is necessary for the post-natal maintenance of dopaminergic neurons. Ret expression has been as well demonstrated on microglia and several evidence indicate that GDNF regulates not only neuronal survival and maturation but also certain functions of microglia in the brain. Here, we demonstrated that the plant lectin Griffonia (Bandeiraea) simplicifolia lectin I, isolectin B4 (IB4), commonly used as a microglial marker in the brain, binds to the glycosylated extracellular domain of Ret on the surface of living NIH3T3 fibroblasts cells stably transfected with Ret as well as in adult rat brain as revealed by immunoblotting. Furthermore, confocal immunofluorescence analysis demonstrated a clear overlap in staining between pRet and IB4 in primary microglia cultures as well as in adult rat sections obtained from control or post-ischemic brain after permanent middle artery occlusion (pMCAO). Interestingly, IB4 staining identified activated or ameboid Ret-expressing microglia under ischemic conditions. Collectively, our data indicate Ret receptor as one of the IB4-reactive glycoconjugate accounting for the IB4 stain in microglia under physiological and ischemic conditions.
Collapse
Affiliation(s)
- Francesca Boscia
- Dipartimento di Neuroscienze, Sezione di Farmacologia, Facolta' di Medicina e Chirurgia, Universita' degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Odate S, Nakamura K, Onishi H, Kojima M, Uchiyama A, Nakano K, Kato M, Tanaka M, Katano M. TrkB/BDNF signaling pathway is a potential therapeutic target for pulmonary large cell neuroendocrine carcinoma. Lung Cancer 2013; 79:205-14. [DOI: 10.1016/j.lungcan.2012.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/29/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
|
27
|
Martucciello G, Lerone M, Bricco L, Tonini GP, Lombardi L, Del Rossi CG, Bernasconi S. Multiple endocrine neoplasias type 2B and RET proto-oncogene. Ital J Pediatr 2012; 38:9. [PMID: 22429913 PMCID: PMC3368781 DOI: 10.1186/1824-7288-38-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/19/2012] [Indexed: 02/06/2023] Open
Abstract
Multiple Endocrine Neoplasia type 2B (MEN 2B) is an autosomal dominant complex oncologic neurocristopathy including medullary thyroid carcinoma, pheochromocytoma, gastrointestinal disorders, marphanoid face, and mucosal multiple ganglioneuromas. Medullary thyroid carcinoma is the major cause of mortality in MEN 2B syndrome, and it often appears during the first years of life. RET proto-oncogene germline activating mutations are causative for MEN 2B. The 95% of MEN 2B patients are associated with a point mutation in exon 16 (M918/T). A second point mutation at codon 883 has been found in 2%-3% of MEN 2B cases. RET proto-oncogene is also involved in different neoplastic and not neoplastic neurocristopathies. Other RET mutations cause MEN 2A syndrome, familial medullary thyroid carcinoma, or Hirschsprung's disease. RET gene expression is also involved in Neuroblastoma. The main diagnosis standards are the acetylcholinesterase study of rectal mucosa and the molecular analysis of RET. In our protocol the rectal biopsy is, therefore, the first approach. RET mutation detection offers the possibility to diagnose MEN 2B predisposition at a pre-clinical stage in familial cases, and to perform an early total prophylactic thyroidectomy. The surgical treatment of MEN 2B is total thyroidectomy with cervical limphadenectomy of the central compartment of the neck. When possible, this intervention should be performed with prophylactic aim before 1 year of age in patients with molecular genetic diagnosis. Recent advances into the mechanisms of RET proto-oncogene signaling and pathways of RET signal transduction in the development of MEN 2 and MTC will allow new treatment possibilities.
Collapse
Affiliation(s)
- Giuseppe Martucciello
- University of Genova, Associate Professor of Pediatric Surgery - DIPE, Via Gaslini, 5 Genova (16147), Italy
| | - Margherita Lerone
- Laboratory of Molecular Genetic, Istituto G. Gaslini, Genova (16147), Italy
| | - Lara Bricco
- Laboratory of Molecular Genetic, Istituto G. Gaslini, Genova (16147), Italy
| | - Gian Paolo Tonini
- Traslational Oncopathology National Cancer Research Institute, Genova (16100), Italy
| | - Laura Lombardi
- Department of Pediatric Surgery, Ospedale Maggiore, Via Antonio Gramsci 14, Parma (43010), Italy
| | - Carmine G Del Rossi
- Department of Pediatric Surgery, Ospedale Maggiore, Via Antonio Gramsci 14, Parma (43010), Italy
| | | |
Collapse
|
28
|
Shiohira H, Kitaoka A, Enjoji M, Uno T, Nakashima M. Am80 induces neuronal differentiation via increased tropomyosin-related kinase B expression in a human neuroblastoma SH-SY5Y cell line. Biomed Res 2012; 33:291-7. [DOI: 10.2220/biomedres.33.291] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Guo D, Hou X, Zhang H, Sun W, Zhu L, Liang J, Jiang X. More expressions of BDNF and TrkB in multiple hepatocellular carcinoma and anti-BDNF or K252a induced apoptosis, supressed invasion of HepG2 and HCCLM3 cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2011; 30:97. [PMID: 21999199 PMCID: PMC3212909 DOI: 10.1186/1756-9966-30-97] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/14/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) and its receptor Tropomysin-related kinase B (TrkB) are commonly up-regulated in a variety of human tumors. However, the roles of BDNF/TrkB in hepatocellular carcinoma (HCC) have been poorly investigated. METHODS We evaluated the expressions of BDNF and TrkB in 65 cases of HCC by immunohistochemical staining. Moreover, in human HCC cell lines of HepG2 and high metastatic HCCLM3, the secretory BDNF in supernatant was measured by ELISA, the effects of BDNF neutralizing antibody or Trk tyrosine kinase inhibitor K252a on apoptosis and invasion were examined by flow cytometry and transwell assay respectively. RESULTS Higher expression of BDNF (63.1%) or positive expression of TrkB (55.4%) was found in HCC specimens, which was significantly correlated with multiple and advanced stage of HCC. BDNF secretory level in HCCLM3 was higher than that in HepG2 cells. Both anti-BDNF and K252a effectively induced apoptosis and suppressed invasion of HepG2 and HCCLM3 cells. CONCLUSIONS These findings suggested that BDNF/TrkB are essential for HCC cells survival and invasion. BDNF/TrkB signaling should probably be an effective target to prevent HCC advancement.
Collapse
Affiliation(s)
- Dawei Guo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Esposito CL, Passaro D, Longobardo I, Condorelli G, Marotta P, Affuso A, de Franciscis V, Cerchia L. A neutralizing RNA aptamer against EGFR causes selective apoptotic cell death. PLoS One 2011; 6:e24071. [PMID: 21915281 PMCID: PMC3167817 DOI: 10.1371/journal.pone.0024071] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 07/29/2011] [Indexed: 02/07/2023] Open
Abstract
Nucleic acid aptamers have been developed as high-affinity ligands that may act as antagonists of disease-associated proteins. Aptamers are non immunogenic and characterised by high specificity and low toxicity thus representing a valid alternative to antibodies or soluble ligand receptor traps/decoys to target specific cancer cell surface proteins in clinical diagnosis and therapy. The epidermal growth factor receptor (EGFR) has been implicated in the development of a wide range of human cancers including breast, glioma and lung. The observation that its inhibition can interfere with the growth of such tumors has led to the design of new drugs including monoclonal antibodies and tyrosine kinase inhibitors currently used in clinic. However, some of these molecules can result in toxicity and acquired resistance, hence the need to develop novel kinds of EGFR-targeting drugs with high specificity and low toxicity. Here we generated, by a cell-Systematic Evolution of Ligands by EXponential enrichment (SELEX) approach, a nuclease resistant RNA-aptamer that specifically binds to EGFR with a binding constant of 10 nM. When applied to EGFR-expressing cancer cells the aptamer inhibits EGFR-mediated signal pathways causing selective cell death. Furthermore, at low doses it induces apoptosis even of cells that are resistant to the most frequently used EGFR-inhibitors, such as gefitinib and cetuximab, and inhibits tumor growth in a mouse xenograft model of human non-small-cell lung cancer (NSCLC). Interestingly, combined treatment with cetuximab and the aptamer shows clear synergy in inducing apoptosis in vitro and in vivo. In conclusion, we demonstrate that this neutralizing RNA-aptamer is a promising bio-molecule that can be developed as a more effective alternative to the repertoire of already existing EGFR-inhibitors.
Collapse
Affiliation(s)
- Carla Lucia Esposito
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR “G. Salvatore”, Naples, Italy
| | - Diana Passaro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, University of Naples “Federico II”, Naples, Italy
| | - Immacolata Longobardo
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, University of Naples “Federico II”, Naples, Italy
| | - Gerolama Condorelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR “G. Salvatore”, Naples, Italy
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, University of Naples “Federico II”, Naples, Italy
- Facoltà di Scienze Biotecnologiche, University of Naples “Federico II”, Naples, Italy
| | - Pina Marotta
- Animal Model Facility, Biogem s.c.a.r.l., Ariano Irpino, Avellino, Italy
| | - Andrea Affuso
- Animal Model Facility, Biogem s.c.a.r.l., Ariano Irpino, Avellino, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Vittorio de Franciscis
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR “G. Salvatore”, Naples, Italy
| | - Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR “G. Salvatore”, Naples, Italy
- * E-mail:
| |
Collapse
|
31
|
Ding VMY, Boersema PJ, Foong LY, Preisinger C, Koh G, Natarajan S, Lee DY, Boekhorst J, Snel B, Lemeer S, Heck AJR, Choo A. Tyrosine phosphorylation profiling in FGF-2 stimulated human embryonic stem cells. PLoS One 2011; 6:e17538. [PMID: 21437283 PMCID: PMC3060089 DOI: 10.1371/journal.pone.0017538] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/08/2011] [Indexed: 01/05/2023] Open
Abstract
The role of fibroblast growth factor-2 (FGF-2) in maintaining undifferentiated human embryonic stem cells (hESC) was investigated using a targeted phosphoproteomics approach to specifically profile tyrosine phosphorylation events following FGF-2 stimulation. A cumulative total number of 735 unique tyrosine phosphorylation sites on 430 proteins were identified, by far the largest inventory to date for hESC. Early signaling events in FGF-2 stimulated hESC were quantitatively monitored using stable isotope dimethyl labeling, resulting in temporal tyrosine phosphorylation profiles of 316 unique phosphotyrosine peptides originating from 188 proteins. Apart from the rapid activation of all four FGF receptors, trans-activation of several other receptor tyrosine kinases (RTKs) was observed as well as induced tyrosine phosphorylation of downstream proteins such as PI3-K, MAPK and several Src family members. Both PI3-K and MAPK have been linked to hESC maintenance through FGF-2 mediated signaling. The observed activation of the Src kinase family members by FGF-2 and loss of pluripotent marker expression post Src kinase inhibition may point to the regulation of cytoskeletal and actin depending processes to maintain undifferentiated hESC.
Collapse
Affiliation(s)
- Vanessa M. Y. Ding
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Centre for Life Sciences (CeLS), NUS Graduate School for Integrative Sciences and Engineering (NGS), Singapore, Singapore
| | - Paul J. Boersema
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Leong Yan Foong
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Christian Preisinger
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Geoffrey Koh
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Subaashini Natarajan
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dong-Yup Lee
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Centre for Life Sciences (CeLS), NUS Graduate School for Integrative Sciences and Engineering (NGS), Singapore, Singapore
| | - Jos Boekhorst
- Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Berend Snel
- Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Netherlands Proteomics Centre, Utrecht, The Netherlands
- Centre for Biomedical Genetics, Utrecht, The Netherlands
- * E-mail: (AC); (AJRH)
| | - Andre Choo
- Stem Cell Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
- * E-mail: (AC); (AJRH)
| |
Collapse
|
32
|
Meseguer S, Mudduluru G, Escamilla JM, Allgayer H, Barettino D. MicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J Biol Chem 2010; 286:4150-64. [PMID: 21118818 DOI: 10.1074/jbc.m110.167817] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are an emerging class of non-coding endogenous RNAs involved in multiple cellular processes, including cell differentiation. Treatment with retinoic acid (RA) results in neural differentiation of neuroblastoma cells. We wanted to elucidate whether miRNAs contribute to the gene expression changes induced by RA in neuroblastoma cells and whether miRNA regulation is involved in the transduction of the RA signal. We show here that RA treatment of SH-SY5Y neuroblastoma cells results in profound changes in the expression pattern of miRNAs. Up to 42 different miRNA species significantly changed their expression (26 up-regulated and 16 down-regulated). Among them, the closely related miR-10a and -10b showed the most prominent expression changes. Induction of miR-10a and -10b by RA also could be detected in LA-N-1 neuroblastoma cells. Loss of function experiments demonstrated that miR-10a and -10b are essential mediators of RA-induced neuroblastoma differentiation and of the associated changes in migration, invasion, and in vivo metastasis. In addition, we found that the SR-family splicing factor SFRS1 (SF2/ASF) is a target for miR-10a -and -10b in HeLa and SH-SY5Y neuroblastoma cells. We show here that changes in miR-10a and -10b expression levels may regulate SFRS1-dependent alternative splicing and translational functions. Taken together, our results give support to the idea that miRNA regulation plays a key role in RA-induced neuroblastoma cell differentiation. The discovery of SFRS1 as direct target of miR-10a and -10b supports the emerging functional interaction between two post-transcriptional mechanisms, microRNAs and splicing, in the neuronal differentiation context.
Collapse
Affiliation(s)
- Salvador Meseguer
- Biology of Hormone Action Unit, Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia E-46010, Spain
| | | | | | | | | |
Collapse
|
33
|
Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol 2010; 28:517-25. [PMID: 20719399 DOI: 10.1016/j.tibtech.2010.07.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/12/2010] [Accepted: 07/15/2010] [Indexed: 01/11/2023]
Abstract
Aptamers are short, structured, single-stranded RNA or DNA ligands that bind with high affinity to their target molecules, which range from small chemicals to large cell-surface and transmembrane proteins. Aptamers are now emerging as promising molecules to target specific cancer epitopes in clinical diagnosis and therapy. Furthermore, because of their high specificity and low toxicity, aptamers might be considered as the compounds-of-choice for in vivo cell recognition. Specific cancer cell recognition could be capitalized upon for delivering therapeutic nanoparticles, small interfering RNA bioconjugates, chemotherapeutic cargos or molecular imaging probes. In this article, we review recent advances in the use of aptamers for in vivo cancer cell recognition, with a particular focus on novel applications of aptamers for targeting the cell surface.
Collapse
|
34
|
Cerchia L, Esposito CL, Jacobs AH, Tavitian B, de Franciscis V. Differential SELEX in human glioma cell lines. PLoS One 2009; 4:e7971. [PMID: 19956692 PMCID: PMC2776989 DOI: 10.1371/journal.pone.0007971] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 10/29/2009] [Indexed: 11/18/2022] Open
Abstract
The hope of success of therapeutic interventions largely relies on the possibility to distinguish between even close tumor types with high accuracy. Indeed, in the last ten years a major challenge to predict the responsiveness to a given therapeutic plan has been the identification of tumor specific signatures, with the aim to reduce the frequency of unwanted side effects on oncologic patients not responding to therapy. Here, we developed an in vitro evolution-based approach, named differential whole cell SELEX, to generate a panel of high affinity nucleic acid ligands for cell surface epitopes. The ligands, named aptamers, were obtained through the iterative evolution of a random pool of sequences using as target human U87MG glioma cells. The selection was designed so as to distinguish U87MG from the less malignant cell line T98G. We isolated molecules that generate unique binding patterns sufficient to unequivocally identify any of the tested human glioma cell lines analyzed and to distinguish high from low or non-tumorigenic cell lines. Five of such aptamers act as inhibitors of specific intracellular pathways thus indicating that the putative target might be important surface signaling molecules. Differential whole cell SELEX reveals an exciting strategy widely applicable to cancer cells that permits generation of highly specific ligands for cancer biomarkers.
Collapse
Affiliation(s)
- Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR “G. Salvatore”, Naples, Italy
| | - Carla Lucia Esposito
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli “Federico II”, Naples, Italy
| | - Andreas H. Jacobs
- European Institute of Molecular Imaging (EIMI), University of Muenster, Muenster, Germany
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck Institute for Neurological Research, Cologne, Germany
| | - Bertrand Tavitian
- CEA/DSV/DRM Service Hospitalier Frederic, Joliot, INSERM ERM 103, Orsay, France
| | - Vittorio de Franciscis
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del CNR “G. Salvatore”, Naples, Italy
- * E-mail:
| |
Collapse
|
35
|
Epping MT, Meijer LAT, Bos JL, Bernards R. UNC45A confers resistance to histone deacetylase inhibitors and retinoic acid. Mol Cancer Res 2009; 7:1861-70. [PMID: 19843631 DOI: 10.1158/1541-7786.mcr-09-0187] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To identify potential biomarkers of therapy response, we have previously done a large-scale gain-of-function genetic screen to identify genes whose expression confers resistance to histone deacetylase inhibitors (HDACI). This genetic screen identified two genes with a role in retinoic acid signaling, suggesting that HDACIs target retinoic acid signaling as part of their anticancer effect. We study here a third gene identified in this genetic screen, UNC45A, and assess its role in retinoic acid signaling and responses to HDACIs using cell-based proliferation and differentiation assays and transcriptional reporter gene assays. The vertebrate Unc45 genes are known for their roles in muscle development and the assembly and cochaperoning of the muscle motor protein myosin. Here, we report that human UNC45A (GCUNC45) can render transformed cells resistant to treatment with HDACIs. We show that UNC45A also inhibits signaling through the retinoic acid receptor alpha. Expression of UNC45A inhibits retinoic acid-induced proliferation arrest and differentiation of human neuroblastoma cells and inhibits the induction of endogenous retinoic acid receptor target genes. These data establish an unexpected role for UNC45A in causing resistance to both HDACI drugs and retinoic acid. Moreover, our data lend further support to the notion that HDACIs exert their anticancer effect, at least in part, through an effect on retinoic acid signaling.
Collapse
Affiliation(s)
- Mirjam T Epping
- Netherlands Cancer Institute, Division of Molecular Carcinogenesis, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
36
|
Bourdeaut F, Janoueix-Lerosey I, Lucchesi C, Paris R, Ribeiro A, de Pontual L, Amiel J, Lyonnet S, Pierron G, Michon J, Peuchmaur M, Delattre O. Cholinergic switch associated with morphological differentiation in neuroblastoma. J Pathol 2009; 219:463-72. [DOI: 10.1002/path.2614] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Huang S, Laoukili J, Epping MT, Koster J, Hölzel M, Westerman BA, Nijkamp W, Hata A, Asgharzadeh S, Seeger RC, Versteeg R, Beijersbergen RL, Bernards R. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 2009; 15:328-40. [PMID: 19345331 PMCID: PMC2693316 DOI: 10.1016/j.ccr.2009.02.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 01/20/2009] [Accepted: 02/25/2009] [Indexed: 02/03/2023]
Abstract
Retinoids play key roles in differentiation, growth arrest, and apoptosis and are increasingly being used in the clinic for the treatment of a variety of cancers, including neuroblastoma. Here, using a large-scale RNA interference-based genetic screen, we identify ZNF423 (also known as Ebfaz, OAZ, or Zfp423) as a component critically required for retinoic acid (RA)-induced differentiation. ZNF423 associates with the RARalpha/RXRalpha nuclear receptor complex and is essential for transactivation in response to retinoids. Downregulation of ZNF423 expression by RNA interference in neuroblastoma cells results in a growth advantage and resistance to RA-induced differentiation, whereas overexpression of ZNF423 leads to growth inhibition and enhanced differentiation. Finally, we show that low ZNF423 expression is associated with poor disease outcome in neuroblastoma patients.
Collapse
Affiliation(s)
- Sidong Huang
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Jamila Laoukili
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Mirjam T. Epping
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Jan Koster
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Michael Hölzel
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Bart A. Westerman
- Division of Molecular Genetics, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Wouter Nijkamp
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - Akiko Hata
- Molecular Cardiology Research Institute, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Shahab Asgharzadeh
- Department of Pediatrics, Division of Hematology-Oncology, Childrens Hospital Los Angeles and Saban Research Institute, University of Southern California, Los Angeles, CA 90027, USA
| | - Robert C. Seeger
- Department of Pediatrics, Division of Hematology-Oncology, Childrens Hospital Los Angeles and Saban Research Institute, University of Southern California, Los Angeles, CA 90027, USA
| | - Rogier Versteeg
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | - Roderick L. Beijersbergen
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| | - René Bernards
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands, telephone: +31 20 512 1952, fax: +31 20 512 1954
| |
Collapse
|
38
|
Lucini C, Maruccio L, Facello B, Cocchia N, Tortora G, Castaldo L. Cellular localization of GDNF and its GFRalpha1/RET receptor complex in the developing pancreas of cat. J Anat 2009; 213:565-72. [PMID: 19014364 DOI: 10.1111/j.1469-7580.2008.00976.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) acts through RET receptor tyrosine kinase and its co-receptor GFRalpha1. In an effort to better understand the possible biological contribution of the GDNF and GFRalpha1/RET complex in pancreatic development, in this study we report the cellular localization of these proteins in the pancreas of domestic cat embryos and fetuses by immunocytochemical methods. In early embryos, GDNF, GFRalpha and RET immunoreactivity (IR) was localized in closely intermingled cells. GDNF and RET immunoreactive cells displayed chromogranin (an endocrine marker) and PGP 9.5 (a neuronal marker) IR, respectively. GFRalpha IR was present in both a few GDNF/chromogranin and RET/PGP 9.5 immunoreactive cells. In elderly fetuses, GDNF and GFRalpha IR were co-localized in glucagon cells and RET IR was detected in few neurons and never co-localized with GFRalpha or GDNF IR. In early embryos, the presence of GDNF IR in chromogranin immunoreactive cells and GFRalpha1/RET complex IR in PGP9.5 immunoreactive cells seems to suggest a paracrine action of GDNF contained in endocrine cell precursors on neuronal cell precursors expressing its receptor complex. The presence in different cell populations of RET and its co-receptor GFRalpha1 IR could be due to independent signaling of GRFalpha1. Thus, the co-presence of GDNF and GFRalpha1 in chromogranin and glucagon cells could lead to the hypothesis that GDNF can act in an autocrinal manner. In fetuses, RET IR was detected only in intrapancreatic ganglia. Because of the lack of GFRalpha1 IR in pancreatic innervation, RET receptor could be activated by other GFR alphas and ligands of GDNF family. In conclusion, these findings suggest that in differently aged embryos and fetuses the GDNF signal is differently mediated by RET and GFRalpha1.
Collapse
Affiliation(s)
- C Lucini
- Department of Biological Structures, Functions and Technology, University of Naples 'Federico II', Naples, Italy.
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is a secreted protein, best known for its role in the development of the central and peripheral nervous systems and the survival of adult dopaminergic neurons. More recently, accumulating evidence suggests that GDNF plays a unique role in negatively regulating the actions of drugs of abuse. In this article, we review these data and highlight the possibility that the GDNF pathway may be a promising target for the treatment of addiction.
Collapse
|
40
|
Vento MT, Iuorio M, Netti PA, Ducongè F, Tavitian B, Franciscis V, Cerchia L. Distribution and bioactivity of the Ret-specific D4 aptamer in three-dimensional collagen gel cultures. Mol Cancer Ther 2008; 7:3381-8. [PMID: 18852141 DOI: 10.1158/1535-7163.mct-08-0580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The success of tyrosine kinase inhibitors in cancer therapy prompted intensive research efforts addressed to the development of new specific diagnostics and therapeutics. Targeting large transmembrane molecules, including receptor tyrosine kinases, is a major pharmacologic challenge. The D4 RNA-aptamer, isolated applying the Systematic Evolution of Ligand by Exponential Enrichment procedure on living cells, has been proven a specific inhibitor of the human receptor tyrosine kinase Ret. In our attempts to generate new powerful probes for in vivo applications, in the present study, we addressed the ability of D4 to preserve its biological activity in cells embedded in three-dimensional collagen gels. These matrices provide a microenvironment mimicking the cell organization as seen in vivo, thus representing a suitable tool to approach the use of the aptamer in vivo. By taking advantage of transformed fibroblasts expressing Ret as a model system, we showed that the cells maintain normal phenotype and growth patterns when cultured in three-dimensional matrices and that the D4 aptamer preserves its ability to inhibit Ret on the surface of the cells embedded in collagen. Because the biological activity of RNA aptamers is largely dictated by their folded structure, the results indicate that a folded conformation of D4 responsible of its inhibiting function is preserved in the three-dimensional constructs, thus supporting its use in tumors in vivo.
Collapse
Affiliation(s)
- Maria Teresa Vento
- Interdisciplinary Research Centre on Biomedical Materials and Department of Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|