1
|
Delescluse J, Simonnet MM, Ziegler AB, Piffaretti K, Alves G, Grosjean Y, Manière G. A LAT1-Like Amino Acid Transporter Regulates Neuronal Activity in the Drosophila Mushroom Bodies. Cells 2024; 13:1340. [PMID: 39195231 PMCID: PMC11352668 DOI: 10.3390/cells13161340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
The proper functioning of neural circuits that integrate sensory signals is essential for individual adaptation to an ever-changing environment. Many molecules can modulate neuronal activity, including neurotransmitters, receptors, and even amino acids. Here, we ask whether amino acid transporters expressed by neurons can influence neuronal activity. We found that minidiscs (mnd), which encodes a light chain of a heterodimeric amino acid transporter, is expressed in different cell types of the adult Drosophila brain: in mushroom body neurons (MBs) and in glial cells. Using live calcium imaging, we found that MND expressed in α/β MB neurons is essential for sensitivity to the L-amino acids: Leu, Ile, Asp, Glu, Lys, Thr, and Arg. We found that the Target Of Rapamycin (TOR) pathway but not the Glutamate Dehydrogenase (GDH) pathway is involved in the Leucine-dependent response of α/β MB neurons. This study strongly supports the key role of MND in regulating MB activity in response to amino acids.
Collapse
Affiliation(s)
- Julie Delescluse
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Mégane M. Simonnet
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Anna B. Ziegler
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
- Institute for Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Kévin Piffaretti
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Georges Alves
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Yael Grosjean
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| | - Gérard Manière
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, F-21000 Dijon, France
| |
Collapse
|
2
|
Ramya R, Venkatesh CR, Shyamala BV. olf413 an octopamine biogenesis pathway gene is required for axon growth and pathfinding during embryonic nervous system development in Drosophila melanogaster. BMC Res Notes 2024; 17:46. [PMID: 38326892 PMCID: PMC10848397 DOI: 10.1186/s13104-024-06700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024] Open
Abstract
OBJECTIVE Neurotransmitters have been extensively studied as neural communication molecules. Genetic associations discovered, and indirect intervention studies in Humans and mammals have led to a general proposition that neurotransmitters have a role in structuring of neuronal network during development. olf413 is a Drosophila gene annotated as coding for dopamine beta-monooxygenase enzyme with a predicted function in octopaminergic pathway. The biological function of this gene is very little worked out. In this study we investigate the requirement of olf413 gene function for octopamine biogenesis and developmental patterning of embryonic nervous system. RESULT In our study we have used the newly characterized neuronal specific allele olf413SG1.1, and the gene disruption strain olf413MI02014 to dissect out the function of olf413. olf413 has an enhancer activity as depicted by reporter GFP expression, in the embryonic ventral nerve cord, peripheral nervous system and the somatic muscle bundles. Homozygous loss of function mutants show reduced levels of octopamine, and this finding supports the proposed function of the gene in octopamine biogenesis. Further, loss of function of olf413 causes embryonic lethality. FasII staining of these embryos reveal a range of phenotypes in the central and peripheral motor nerves, featuring axonal growth, pathfinding, branching and misrouting defects. Our findings are important as they implicate a key functional requirement of this gene in precise axonal patterning events, a novel developmental role imparted for an octopamine biosynthesis pathway gene in structuring of embryonic nervous system.
Collapse
Affiliation(s)
- Ravindrakumar Ramya
- Developmental Genetics Laboratory, Department of Studies in Zoology, University of Mysore, Mysuru, 570006, India
| | | | | |
Collapse
|
3
|
Kunar R, Roy JK. The mRNA decapping protein 2 (DCP2) is a major regulator of developmental events in Drosophila-insights from expression paradigms. Cell Tissue Res 2021; 386:261-280. [PMID: 34536141 DOI: 10.1007/s00441-021-03503-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The Drosophila genome codes for two decapping proteins, DCP1 and DCP2, out of which DCP2 is the active decapping enzyme. The present endeavour explores the endogenous promoter firing, transcript and protein expression of DCP2 in Drosophila wherein, besides a ubiquitous expression across development, we identify an active expression paradigm during dorsal closure and a plausible moonlighting expression in the Corazonin neurons of the larval brain. We also demonstrate that the ablation of DCP2 leads to embryonic lethality and defects in vital morphogenetic processes whereas a knockdown of DCP2 in the Corazonin neurons reduces the sensitivity to ethanol in adults, thereby ascribing novel regulatory roles to DCP2. Our findings unravel novel putative roles for DCP2 and identify it as a candidate for studies on the regulated interplay of essential molecules during early development in Drosophila, nay the living world.
Collapse
Affiliation(s)
- Rohit Kunar
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India
| | - Jagat Kumar Roy
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
4
|
Pang Y, He L, Song Y, Song X, Lv J, Cheng Y, Yang X. Identification and Integrated Analysis of MicroRNA and mRNA Expression Profiles During Agonistic Behavior in Chinese Mitten Crab ( Eriocheir sinensis) Using a Deep Sequencing Approach. Front Genet 2020; 11:321. [PMID: 32391050 PMCID: PMC7191074 DOI: 10.3389/fgene.2020.00321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022] Open
Abstract
As a commercially important species, the Chinese mitten crab (Eriocheir sinensis) has been cultured for a long time in China. Agonistic behavior often causes limb disability and requires much energy, which is harmful to the growth and survival of crabs. In this paper, we divided crabs into a control group (control, no treatment) and an experimental group (fight, agonistic behavior after 1 h) and then collected the thoracic ganglia (TG) to extract RNA. Subsequently, we first used a deep sequencing approach to examine the transcripts of microRNAs (miRNAs) and messenger RNAs (mRNAs) in E. sinensis displaying agonistic behavior. According to the results, we found 29 significant differentially expressed miRNAs (DEMs) and 116 significant differentially expressed unigenes (DEGs). The DEMs esi-miR-199a-5p, esi-let-7d, esi-miR-200a, and esi-miR-200b might participate in the regulation of agonistic behavior by mediating neuroregulation and energy metabolism. Focusing on the transcripts of the mRNAs, the renin–angiotensin system (RAS) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway might be involved in the regulation of agonistic behavior through glucose metabolism as this pathway was significantly enriched with DEGs. Besides, an integrated analysis of the miRNA and mRNA profiles revealed that the retinoid X receptor (RXR) was also involved in visual signal transduction, which was important for agonistic behavior. In addition, four vital agonistic behavior-related metabolic pathways, including the cAMP signaling, MAPK, protein digestion and absorption, and fatty acid metabolism pathways, were significantly enriched with the predicted target unigenes. In conclusion, the findings of this study might provide important insight enhancing our understanding of the underlying molecular mechanisms of agonistic behavior in E. sinensis.
Collapse
Affiliation(s)
- Yangyang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Long He
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yameng Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaozhe Song
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiahuan Lv
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yongxu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaozhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Singh AK, Abdullahi A, Soller M, David A, Brogna S. Visualisation of ribosomes in Drosophila axons using Ribo-BiFC. Biol Open 2020; 8:bio047233. [PMID: 31822474 PMCID: PMC6955225 DOI: 10.1242/bio.047233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
The distribution of assembled, and potentially translating, ribosomes within cells can be visualised in Drosophila by using Bimolecular Fluorescence Complementation (BiFC) to monitor the interaction between tagged pairs of 40S and 60S ribosomal proteins (RPs) that are close neighbours across inter-subunit junctions in the assembled 80S ribosome. Here we describe transgenes expressing two novel RP pairs tagged with Venus-based BiFC fragments that considerably increase the sensitivity of this technique we termed Ribo-BiFC. This improved method should provide a convenient way of monitoring the local distribution of ribosomes in most Drosophila cells and we suggest that it could be implemented in other organisms. We visualised 80S ribosomes in different neurons, particularly photoreceptors in the larva, pupa and adult brain. Assembled ribosomes are most abundant in the various neuronal cell bodies, but they are also present along the full length of axons. They are concentrated in growth cones of developing photoreceptors and are apparent at the terminals of mature larval photoreceptors targeting the larval optical neuropil. Surprisingly, there is relatively less puromycin incorporation in the distal portion of axons in the larval optic stalk, suggesting that some of the ribosomes that have initiated translation may not be engaged in elongation in growing axons.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anand K Singh
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Akilu Abdullahi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Matthias Soller
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alexandre David
- Oncology Department, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094 Montpellier cedex 5, France
| | - Saverio Brogna
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
6
|
Diesner M, Neupert S. Quantification of Biogenic Amines from Individual GFP-Labeled Drosophila Cells by MALDI-TOF Mass Spectrometry. Anal Chem 2018; 90:8035-8043. [DOI: 10.1021/acs.analchem.8b00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Max Diesner
- University of Cologne, Department of Biology, Institute for Zoology, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | - Susanne Neupert
- University of Cologne, Department of Biology, Institute for Zoology, Zülpicher Strasse 47b, 50674 Cologne, Germany
| |
Collapse
|
7
|
Clark MQ, Zarin AA, Carreira-Rosario A, Doe CQ. Neural circuits driving larval locomotion in Drosophila. Neural Dev 2018; 13:6. [PMID: 29673388 PMCID: PMC5907184 DOI: 10.1186/s13064-018-0103-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/05/2018] [Indexed: 11/10/2022] Open
Abstract
More than 30 years of studies into Drosophila melanogaster neurogenesis have revealed fundamental insights into our understanding of axon guidance mechanisms, neural differentiation, and early cell fate decisions. What is less understood is how a group of neurons from disparate anterior-posterior axial positions, lineages and developmental periods of neurogenesis coalesce to form a functional circuit. Using neurogenetic techniques developed in Drosophila it is now possible to study the neural substrates of behavior at single cell resolution. New mapping tools described in this review, allow researchers to chart neural connectivity to better understand how an anatomically simple organism performs complex behaviors.
Collapse
Affiliation(s)
- Matthew Q Clark
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasedena, CA, 91125, USA
| | - Aref Arzan Zarin
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA
| | | | - Chris Q Doe
- Institute of Neuroscience, Institute of Molecular Biology, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
8
|
Stocker B, Bochow C, Damrau C, Mathejczyk T, Wolfenberg H, Colomb J, Weber C, Ramesh N, Duch C, Biserova NM, Sigrist S, Pflüger HJ. Structural and Molecular Properties of Insect Type II Motor Axon Terminals. Front Syst Neurosci 2018; 12:5. [PMID: 29615874 PMCID: PMC5867341 DOI: 10.3389/fnsys.2018.00005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/26/2018] [Indexed: 11/25/2022] Open
Abstract
A comparison between the axon terminals of octopaminergic efferent dorsal or ventral unpaired median neurons in either desert locusts (Schistocerca gregaria) or fruit flies (Drosophila melanogaster) across skeletal muscles reveals many similarities. In both species the octopaminergic axon forms beaded fibers where the boutons or varicosities form type II terminals in contrast to the neuromuscular junction (NMJ) or type I terminals. These type II terminals are immunopositive for both tyramine and octopamine and, in contrast to the type I terminals, which possess clear synaptic vesicles, only contain dense core vesicles. These dense core vesicles contain octopamine as shown by immunogold methods. With respect to the cytomatrix and active zone peptides the type II terminals exhibit active zone-like accumulations of the scaffold protein Bruchpilot (BRP) only sparsely in contrast to the many accumulations of BRP identifying active zones of NMJ type I terminals. In the fruit fly larva marked dynamic changes of octopaminergic fibers have been reported after short starvation which not only affects the formation of new branches (“synaptopods”) but also affects the type I terminals or NMJs via octopamine-signaling (Koon et al., 2011). Our starvation experiments of Drosophila-larvae revealed a time-dependency of the formation of additional branches. Whereas after 2 h of starvation we find a decrease in “synaptopods”, the increase is significant after 6 h of starvation. In addition, we provide evidence that the release of octopamine from dendritic and/or axonal type II terminals uses a similar synaptic machinery to glutamate release from type I terminals of excitatory motor neurons. Indeed, blocking this canonical synaptic release machinery via RNAi induced downregulation of BRP in neurons with type II terminals leads to flight performance deficits similar to those observed for octopamine mutants or flies lacking this class of neurons (Brembs et al., 2007).
Collapse
Affiliation(s)
- Bettina Stocker
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Christina Bochow
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Christine Damrau
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Thomas Mathejczyk
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Heike Wolfenberg
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Julien Colomb
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Claudia Weber
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Niraja Ramesh
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | - Carsten Duch
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Natalia M Biserova
- Institute of Biology, Neurobiology, Freie Universität Berlin, Berlin, Germany
| | - Stephan Sigrist
- Institute of Biology, Genetics, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
Jantrapirom S, Lo Piccolo L, Yoshida H, Yamaguchi M. A new Drosophila model of Ubiquilin knockdown shows the effect of impaired proteostasis on locomotive and learning abilities. Exp Cell Res 2017; 362:461-471. [PMID: 29247619 DOI: 10.1016/j.yexcr.2017.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 12/12/2022]
Abstract
Ubiquilin (UBQLN) plays a crucial role in cellular proteostasis through its involvement in the ubiquitin proteasome system and autophagy. Mutations in the UBQLN2 gene have been implicated in amyotrophic lateral sclerosis (ALS) and ALS with frontotemporal lobar dementia (ALS/FTLD). Previous studies reported a key role for UBQLN in Alzheimer's disease (AD); however, the mechanistic involvement of UBQLN in other neurodegenerative diseases remains unclear. The genome of Drosophila contains a single UBQLN homolog (dUbqn) that shows high similarity to UBQLN1 and UBQLN2; therefore, the fly is a useful model for characterizing the role of UBQLN in vivo in neurological disorders affecting locomotion and learning abilities. We herein performed a phenotypic and molecular characterization of diverse dUbqn RNAi lines. We found that the depletion of dUbqn induced the accumulation of polyubiquitinated proteins and caused morphological defects in various tissues. Our results showed that structural defects in larval neuromuscular junctions, abdominal neuromeres, and mushroom bodies correlated with limited abilities in locomotion, learning, and memory. These results contribute to our understanding of the impact of impaired proteostasis in neurodegenerative diseases and provide a useful Drosophila model for the development of promising therapies for ALS and FTLD.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Applied Biology Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Luca Lo Piccolo
- Department of Applied Biology Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
10
|
Tsukioka D, Izumi S, Adachi T. Cloning and expression analysis of a novel tissue-specific dopa decarboxylase mRNA splicing variant in Bombyx mori. Biosci Biotechnol Biochem 2017; 81:555-557. [DOI: 10.1080/09168451.2016.1258987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Dopa decarboxylase (DDC) protein is involved in the synthesis of dopamine and serotonin. Here, we show that in the silkworm Bombyx mori, a novel DDC splicing variant is selectively expressed in the brain and subesophageal ganglia. In Drosophila melanogaster, a neuron-specific isoform of DDC is known to be alternatively spliced in a similar manner.
Collapse
Affiliation(s)
- Dai Tsukioka
- Faculty of Science, Department of Biological Sciences, Kanagawa University, Hiratsuka, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Susumu Izumi
- Faculty of Science, Department of Biological Sciences, Kanagawa University, Hiratsuka, Japan
| | - Takeshi Adachi
- Faculty of Science, Department of Biological Sciences, Kanagawa University, Hiratsuka, Japan
| |
Collapse
|
11
|
Cheng W, Ka YW, Chang CC. Dopamine beta-hydroxylase participate in the immunoendocrine responses of hypothermal stressed white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2016; 59:166-178. [PMID: 27793743 DOI: 10.1016/j.fsi.2016.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/09/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Dopamine beta-hydroxylase (DBH) plays a critical role in catecholamine (CA) synthesis of neuroendocrine regulatory network, and is suggested to be involved in the immunoendocrine responses of invertebrate against bacterial challenge. DBH has been identified in white shrimp, Litopenaeus vannamei, and further investigation on its potential function was conducted after hypothermal stress, pharmaceutical inhibition and gene silencing in the present study. Cloned DBH L. vannamei (LvDBH), belonging to the Copper type II, ascorbate-dependent monooxygenases, was characterized by a DOMON domain, a Cu2_monooxygen domain and three glycosylation sites, and its expression was abundant in thoracic ganglia and haemocytes determined by quantitative real-time PCR. The effects of hypothermal stress showed that LvDBH expression in thoracic ganglia, haemocytes and hepatopancreas as well as the DBH contents in haemocytes and dopamine (DA) and norepinephrine (NE) levels in haemolymph are obviously up-regulated. L. vannamei receiving disulfiram for 30-120 min revealed the inhibition of DBH and NE contents in haemocytes and haemolymph respectively, but high level of DA in haemolymph was noticed. Besides, a significant decrease of LvDBH expression in thoracic ganglia, haemocytes and hepatopancreas were also observed. Subsequently, LvDBH expression was successfully silenced in thoracic ganglia, haemocytes and hepatopancreas of shrimp that received LvDBH-dsRNA for 3 days, and meanwhile, a decrease of DBH contents in haemocytes accompanied by decreased levels of NE and DA in haemolymph were also observed. These results indicate that LvDBH possesses the functional domains responsible for CAs synthesis, and therefore, inhibiting DBH contents in haemocytes by disulfiram and by LvDBH-dsRNA resulted in the impaired synthesis of NE from DA in haemolymph. These also suggest that the increased release of DA and NE in haemolymph for potential modulation of physiological or immunological responses is the consequence of the upregulated LvDBH expression and DBH contents in L. vannamei exposed to hypothermal stress.
Collapse
Affiliation(s)
- Winton Cheng
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Ya-Wen Ka
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC
| | - Chin-Chyuan Chang
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan, ROC.
| |
Collapse
|
12
|
Neuromodulators signal through astrocytes to alter neural circuit activity and behaviour. Nature 2016; 539:428-432. [PMID: 27828941 PMCID: PMC5161596 DOI: 10.1038/nature20145] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 10/07/2016] [Indexed: 01/14/2023]
Abstract
Astrocytes associate with synapses throughout the brain and express receptors for neurotransmitters that can elevate intracellular calcium (Ca2+) 1-3. Astrocyte Ca2+ signaling has been proposed to modulate neural circuit activity 4, but pathways regulating these events are poorly defined and in vivo evidence linking changes in astrocyte Ca2+ to alterations in neurotransmission or behaviors is limited. Here we show Drosophila astrocytes exhibit activity-regulated Ca2+ signaling events in vivo. Tyramine (Tyr) and octopamine (Oct) released from Tdc2+ neurons signal directly to astrocytes to stimulate Ca2+ increases through the octopamine-tyramine receptor (Oct-TyrR) and the TRP channel Waterwitch (Wtrw), and astrocytes in turn modulate downstream dopaminergic (DA) neurons. Tyr or Oct application to live preparations silenced dopaminergic (DA) neurons and this inhibition required astrocytic Oct-TyrR and Wtrw. Increasing astrocyte Ca2+ signaling was sufficient to silence DA neuron activity, which was mediated by astrocyte endocytic function and adenosine receptors. Selective disruption of Oct-TyrR or Wtrw expression in astrocytes blocked astrocyte Ca2+ signaling and profoundly altered olfactory-driven chemotaxis behavior and touch-induced startle responses. Our work identifies Oct-TyrR and Wtrw as key components of the astrocyte Ca2+ signaling machinery, provides direct evidence that Oct- and Tyr-based neuromodulation can be mediated by astrocytes, and demonstrates that astrocytes are essential for multiple sensory-driven behaviors.
Collapse
|
13
|
Pyakurel P, Privman Champaloux E, Venton BJ. Fast-Scan Cyclic Voltammetry (FSCV) Detection of Endogenous Octopamine in Drosophila melanogaster Ventral Nerve Cord. ACS Chem Neurosci 2016; 7:1112-9. [PMID: 27326831 DOI: 10.1021/acschemneuro.6b00070] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Octopamine is an endogenous biogenic amine neurotransmitter, neurohormone, and neuromodulator in invertebrates and has functional analogy with norepinephrine in vertebrates. Fast-scan cyclic voltammetry (FSCV) can detect rapid changes in neurotransmitters, but FSCV has not been optimized for octopamine detection in situ. The goal of this study was to characterize octopamine release in the ventral nerve cord of Drosophila larvae for the first time. A FSCV waveform was optimized so that the potential for octopamine oxidation would not be near the switching potential where interferences can occur. Endogenous octopamine release was stimulated by genetically inserting either the ATP sensitive channel, P2X2, or the red-light sensitive channelrhodopsin, CsChrimson, into cells expressing tyrosine decarboxylase (TDC), an octopamine synthesis enzyme. To ensure that release is due to octopamine and not the precursor tyramine, the octopamine synthesis inhibitor disulfiram was applied, and the signal decreased by 80%. Stimulated release was vesicular, and a 2 s continuous light stimulation of CsChrimson evoked 0.22 ± 0.03 μM of octopamine release in the larval ventral nerve cord. Repeated stimulations were stable with 2 or 5 min interstimulation times. With pulsed stimulations, the release was dependent on the frequency of applied light pulse. An octopamine transporter has not been identified, and blockers of the dopamine transporter and serotonin transporter had no significant effect on the clearance time of octopamine, suggesting that they do not take up octopamine. This study shows that octopamine can be monitored in Drosophila, facilitating future studies of how octopamine release functions in the insect brain.
Collapse
Affiliation(s)
- Poojan Pyakurel
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - Eve Privman Champaloux
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904, United States
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, PO Box 400319, Charlottesville, Virginia 22904, United States
| |
Collapse
|
14
|
Ray M, Lakhotia SC. The commonly used eye-specific sev-GAL4 and GMR-GAL4 drivers in Drosophila melanogaster are expressed in tissues other than eyes also. J Genet 2016; 94:407-16. [PMID: 26440079 DOI: 10.1007/s12041-015-0535-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The binary GAL4-UAS system of conditional gene expression is widely used by Drosophila geneticists to target expression of the desired transgene in tissue of interest. In many studies, a preferred target tissue is the Drosophila eye, for which the sev-GAL4 and GMR-GAL4 drivers are most widely used since they are believed to be expressed exclusively in the developing eye cells. However, several reports have noted lethality following expression of certain transgenes under these GAL4 drivers notwithstanding the fact that eye is not essential for survival of the fly. Therefore, to explore the possibility that these drivers may also be active in tissues other than eye, we examined the expression of UAS-GFP reporter driven by the sev-GAL4 or GMR-GAL4 drivers. We found that both these drivers are indeed expressed in additional tissues, including a common set of specific neuronal cells in larval and pupal ventral and cerebral ganglia. Neither sev nor glass gene has so far been reported to be expressed in these neuronal cells. Expression pattern of sev-GAL4 driver parallels that of the endogenous Sevenless protein. In addition to cells in which sev-GAL4 is expressed, the GMR-GAL4 is expressed in several other larval cell types also. Further, two different GMR-GAL4 lines also show some specific differences in their expression domains outside the eye discs. These findings emphasize the need for a careful confirmation of the expression domains of a GAL4 driver being used in a given study, rather than relying only on the empirically claimed expression domains.
Collapse
Affiliation(s)
- Mukulika Ray
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221 005, India.
| | | |
Collapse
|
15
|
Dempsey DR, Carpenter AM, Ospina SR, Merkler DJ. Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:1-12. [PMID: 26476413 PMCID: PMC4663176 DOI: 10.1016/j.ibmb.2015.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/04/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D. melanogaster has been used as a model system to evaluate the biosynthesis of fatty acid amides: a family of potent cell signaling lipids. We have previously showed that AANATL2 catalyzes the formation of N-acylarylakylamides, including long-chain N-acylserotonins and N-acyldopamines. Herein, we define the kinetic mechanism for AANATL2 as an ordered sequential mechanism with acetyl-CoA binding first followed by tyramine to generate the ternary complex prior to catalysis. Bell shaped kcat,app - acetyl-CoA and (kcat/Km)app - acetyl-CoA pH-rate profiles identified two apparent pKa,app values of ∼7.4 and ∼8.9 that are critical to catalysis, suggesting the AANATL2-catalyzed formation of N-acetyltyramine occurs through an acid/base chemical mechanism. Site-directed mutagenesis of a conserved glutamate that corresponds to the catalytic base for other D. melanogaster AANATL enzymes did not produce a substantial depression in the kcat,app value nor did it abolish the pKa,app value attributed to the general base in catalysis (pKa ∼7.4). These data suggest that AANATL2 catalyzes the formation of N-acylarylalkylamides using either different catalytic residues or a different chemical mechanism relative to other D. melanogaster AANATL enzymes. In addition, we constructed other site-directed mutants of AANATL2 to help define the role of targeted amino acids in substrate binding and/or enzyme catalysis.
Collapse
Affiliation(s)
- Daniel R Dempsey
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | | | | | - David J Merkler
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
16
|
Rogers SM, Ott SR. Differential activation of serotonergic neurons during short- and long-term gregarization of desert locusts. Proc Biol Sci 2015; 282:20142062. [PMID: 25520357 PMCID: PMC4298206 DOI: 10.1098/rspb.2014.2062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Serotonin is a neurochemical with evolutionarily conserved roles in orchestrating nervous system function and behavioural plasticity. A dramatic example is the rapid transformation of desert locusts from cryptic asocial animals into gregarious crop pests that occurs when drought forces them to accumulate on dwindling resources, triggering a profound alteration of behaviour within just a few hours. The onset of crowding induces a surge in serotonin within their thoracic ganglia that is sufficient and necessary to induce the switch from solitarious to gregarious behaviour. To identify the neurons responsible, we have analysed how acute exposure to three gregarizing stimuli--crowding, touching the hind legs or seeing and smelling other locusts--and prolonged group living affect the expression of serotonin in individual neurons in the thoracic ganglia. Quantitative analysis of cell body immunofluorescence revealed three classes of neurons with distinct expressional responses. All ganglia contained neurons that responded to multiple gregarizing stimuli with increased expression. A second class showed increased expression only in response to intense visual and olfactory stimuli from conspecifics. Prolonged group living affected a third and entirely different set of neurons, revealing a two-tiered role of the serotonergic system as both initiator and substrate of socially induced plasticity. This demonstrates the critical importance of ontogenetic time for understanding the function of serotonin in the reorganization of behaviour.
Collapse
Affiliation(s)
- Stephen M Rogers
- School of Biological Sciences, University of Sydney, A08 Heydon-Laurence Building, New South Wales 2006, Australia
| | - Swidbert R Ott
- Department of Biology, University of Leicester, Adrian Building, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
17
|
Selcho M, Wegener C. Immunofluorescence and Genetic Fluorescent Labeling Techniques in the Drosophila Nervous System. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-1-4939-2313-7_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Shiraishi R, Tamura T, Sone M, Okazawa H. Systematic analysis of fly models with multiple drivers reveals different effects of ataxin-1 and huntingtin in neuron subtype-specific expression. PLoS One 2014; 9:e116567. [PMID: 25551764 PMCID: PMC4281079 DOI: 10.1371/journal.pone.0116567] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 12/11/2014] [Indexed: 11/25/2022] Open
Abstract
The fruit fly, Drosophila melanogaster, is a commonly used model organism for neurodegenerative diseases. Its major advantages include a short lifespan and its susceptibility to manipulation using sophisticated genetic techniques. Here, we report the systematic comparison of fly models of two polyglutamine (polyQ) diseases. We induced expression of the normal and mutant forms of full-length Ataxin-1 and Huntingtin exon 1 in cholinergic, dopaminergic, and motor neurons, and glial cells using cell type-specific drivers. We systematically analyzed their effects based on multiple phenotypes: eclosion rate, lifespan, motor performance, and circadian rhythms of spontaneous activity. This systematic assay system enabled us to quantitatively evaluate and compare the functional disabilities of different genotypes. The results suggest different effects of Ataxin-1 and Huntingtin on specific types of neural cells during development and in adulthood. In addition, we confirmed the therapeutic effects of LiCl and butyrate using representative models. These results support the usefulness of this assay system for screening candidate chemical compounds that modify the pathologies of polyQ diseases.
Collapse
Affiliation(s)
- Risa Shiraishi
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Takuya Tamura
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Masaki Sone
- Department of Biomolecular Science, Faculty of Science, Toho University, Miyama, Funabashi, Chiba, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integrative Research, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
The redistribution of Drosophila vesicular monoamine transporter mutants from synaptic vesicles to large dense-core vesicles impairs amine-dependent behaviors. J Neurosci 2014; 34:6924-37. [PMID: 24828646 DOI: 10.1523/jneurosci.0694-14.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monoamine neurotransmitters are stored in both synaptic vesicles (SVs), which are required for release at the synapse, and large dense-core vesicles (LDCVs), which mediate extrasynaptic release. The contributions of each type of vesicular release to specific behaviors are not known. To address this issue, we generated mutations in the C-terminal trafficking domain of the Drosophila vesicular monoamine transporter (DVMAT), which is required for the vesicular storage of monoamines in both SVs and LDCVs. Deletion of the terminal 23 aa (DVMAT-Δ3) reduced the rate of endocytosis and localization of DVMAT to SVs, but supported localization to LDCVs. An alanine substitution mutation in a tyrosine-based motif (DVMAT-Y600A) also reduced sorting to SVs and showed an endocytic deficit specific to aminergic nerve terminals. Redistribution of DVMAT-Y600A from SV to LDCV fractions was also enhanced in aminergic neurons. To determine how these changes might affect behavior, we expressed DVMAT-Δ3 and DVMAT-Y600A in a dVMAT null genetic background that lacks endogenous dVMAT activity. When expressed ubiquitously, DVMAT-Δ3 showed a specific deficit in female fertility, whereas DVMAT-Y600A rescued behavior similarly to DVMAT-wt. In contrast, when expressed more specifically in octopaminergic neurons, both DVMAT-Δ3 and DVMAT-Y600A failed to rescue female fertility, and DVMAT-Y600A showed deficits in larval locomotion. DVMAT-Y600A also showed more severe dominant effects than either DVMAT-wt or DVMAT-Δ3. We propose that these behavioral deficits result from the redistribution of DVMAT from SVs to LDCVs. By extension, our data suggest that the balance of amine release from SVs versus that from LDCVs is critical for the function of some aminergic circuits.
Collapse
|
20
|
Selcho M, Pauls D, Huser A, Stocker RF, Thum AS. Characterization of the octopaminergic and tyraminergic neurons in the central brain ofDrosophilalarvae. J Comp Neurol 2014; 522:3485-500. [DOI: 10.1002/cne.23616] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/17/2014] [Accepted: 04/17/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Mareike Selcho
- Department of Biology; University of Fribourg; CH-1700 Fribourg Switzerland
- Neurobiology and Genetics; Theodor-Boveri-Institute; Biocenter, University of Würzburg; D-97074 Würzburg Germany
| | - Dennis Pauls
- Department of Biology; University of Fribourg; CH-1700 Fribourg Switzerland
- Neurobiology and Genetics; Theodor-Boveri-Institute; Biocenter, University of Würzburg; D-97074 Würzburg Germany
| | - Annina Huser
- Department of Biology; University of Fribourg; CH-1700 Fribourg Switzerland
- Department of Biology; University of Konstanz; D-78464 Konstanz Germany
| | | | - Andreas S. Thum
- Department of Biology; University of Fribourg; CH-1700 Fribourg Switzerland
- Department of Biology; University of Konstanz; D-78464 Konstanz Germany
| |
Collapse
|
21
|
Expansion of the gateway multisite recombination cloning toolkit. PLoS One 2013; 8:e77724. [PMID: 24204935 PMCID: PMC3799639 DOI: 10.1371/journal.pone.0077724] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022] Open
Abstract
Precise manipulation of transgene expression in genetic model organisms has led to advances in understanding fundamental mechanisms of development, physiology, and genetic disease. Transgene construction is, however, a precondition of transgene expression, and often limits the rate of experimental progress. Here we report an expansion of the modular Gateway MultiSite recombination-cloning platform for high efficiency transgene assembly. The expansion includes two additional destination vectors and entry clones for the LexA binary transcription system, among others. These new tools enhance the expression levels possible with Gateway MultiSite generated transgenes and make possible the generation of LexA drivers and reporters with Gateway MultiSite cloning. In vivo data from transgenic Drosophila functionally validating each novel component are presented and include neuronal LexA drivers, LexAop2 red and green fluorescent synaptic vesicle reporters, TDC2 and TRH LexA, GAL4, and QF drivers, and LexAop2, UAS, and QUAS channelrhodopsin2 T159C reporters.
Collapse
|
22
|
Selcho M, Pauls D, el Jundi B, Stocker RF, Thum AS. The Role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol 2012; 520:3764-85. [DOI: 10.1002/cne.23152] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Henry GL, Davis FP, Picard S, Eddy SR. Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res 2012; 40:9691-704. [PMID: 22855560 PMCID: PMC3479168 DOI: 10.1093/nar/gks671] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many tools are available to analyse genomes but are often challenging to use in a cell type–specific context. We have developed a method similar to the isolation of nuclei tagged in a specific cell type (INTACT) technique [Deal,R.B. and Henikoff,S. (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell, 18, 1030–1040; Steiner,F.A., Talbert,P.B., Kasinathan,S., Deal,R.B. and Henikoff,S. (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res., doi:10.1101/gr.131748.111], first developed in plants, for use in Drosophila neurons. We profile gene expression and histone modifications in Kenyon cells and octopaminergic neurons in the adult brain. In addition to recovering known gene expression differences, we also observe significant cell type–specific chromatin modifications. In particular, a small subset of differentially expressed genes exhibits a striking anti-correlation between repressive and activating histone modifications. These genes are enriched for transcription factors, recovering those known to regulate mushroom body identity and predicting analogous regulators of octopaminergic neurons. Our results suggest that applying INTACT to specific neuronal populations can illuminate the transcriptional regulatory networks that underlie neuronal cell identity.
Collapse
Affiliation(s)
- Gilbert L Henry
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | | | | | | |
Collapse
|
24
|
Ramaekers A, Quan XJ, Hassan BA. Genetically Encoded Markers for Drosophila Neuroanatomy. NEUROMETHODS 2012. [DOI: 10.1007/978-1-61779-830-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
25
|
Flames N, Hobert O. Transcriptional Control of the Terminal Fate of Monoaminergic Neurons. Annu Rev Neurosci 2011; 34:153-84. [DOI: 10.1146/annurev-neuro-061010-113824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nuria Flames
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
- Genes & Disease Program, Center for Genomic Regulation (CRG), Barcelona, Spain E-08003;
- Present address: Instituto de Biomedicina de Valencia IBV-CSIC, E-46010 Valencia, Spain
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
| |
Collapse
|
26
|
Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. Proc Natl Acad Sci U S A 2011; 108:9673-8. [PMID: 21606367 DOI: 10.1073/pnas.1106386108] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Extrinsic factors and the interactions of neurons with surrounding tissues are essential for almost every aspect of neuronal development. Here we describe a strategy of gene expression with an independent enhancer-driven cellular marker (GEEM) for studying roles of cell-cell interactions and extrinsic factors in the development of the Drosophila nervous system. Key to this strategy is robust expression of enhancer-driven transgenic markers in specific neurons. To this end, we have created vectors to achieve bright and even labeling of neuronal processes, easy cloning of enhancer elements, and efficient and flexible generation of transgenic animals. We provide examples of enhancer-driven membrane markers for specific neurons in both the peripheral and central nervous systems and their applications in the study of neuronal projections and connections in the Drosophila brain. We further applied GEEM to examine the wrapping of sensory neuron somas by glia during embryonic and larval stages, and neuron-glia interaction during dendrite pruning in live animals, leading to the discovery that glia play critical roles in the severing and degradation of proximal dendrites. The GEEM paradigm should be applicable to the studies of both cell-autonomous and nonautonomous regulations of any cell type.
Collapse
|
27
|
Giang T, Ritze Y, Rauchfuss S, Ogueta M, Scholz H. The serotonin transporter expression in Drosophila melanogaster. J Neurogenet 2011; 25:17-26. [PMID: 21314480 DOI: 10.3109/01677063.2011.553002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The serotonin transporter is an important regulator of serotonergic signaling. In order to analyze where the Drosophila melanogaster ortholog of the mammalian serotonin transporter (dSERT) is expressed in the nervous system, a dSERT antibody serum was used. Ectopic expression studies and loss of function analysis revealed that the dSERT antibody serum specifically recognizes dSERT. It was shown that in the embryonic nervous system dSERT is expressed in a subset of Engrailed-positive neurons. In the larval brain, dSERT is exclusively expressed in serotonergic neurons, all of which express dSERT. dSERT-positive neurons surround almost all brain neuropiles. In the mushroom body of the adult brain, extrinsic serotonergic neurons expressing dSERT engulf the mushroom body lobes. These neurons show regional differences in dSERT and serotonin expression. At the presynaptic terminals, serotonin release is sterically linked to serotonin reuptake. In contrast to this, there are other areas in serotonergic neurons where dSERT expression and/or function are uncoupled from synaptic neurotransmitter recycling and serotonin release. The localization pattern of dSERT can be employed to further understanding and analysis of serotonergic networks.
Collapse
Affiliation(s)
- Thomas Giang
- Department of Animal Physiology, University of Cologne, Köln, Germany
| | | | | | | | | |
Collapse
|
28
|
Oginsky MF, Rodgers EW, Clark MC, Simmons R, Krenz WDC, Baro DJ. D(2) receptors receive paracrine neurotransmission and are consistently targeted to a subset of synaptic structures in an identified neuron of the crustacean stomatogastric nervous system. J Comp Neurol 2010; 518:255-76. [PMID: 19941347 DOI: 10.1002/cne.22225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dopamine (DA) modulates motor systems in phyla as diverse as nematodes and arthropods up through chordates. A comparison of dopaminergic systems across a broad phylogenetic range should reveal shared organizing principles. The pyloric network, located in the stomatogastric ganglion (STG), is an important model for neuromodulation of motor networks. The effects of DA on this network have been well characterized at the circuit and cellular levels in the spiny lobster, Panulirus interruptus. Here we provide the first data about the physical organization of the DA signaling system in the STG and the function of D(2) receptors in pyloric neurons. Previous studies showed that DA altered intrinsic firing properties and synaptic output in the pyloric dilator (PD) neuron, in part by reducing calcium currents and increasing outward potassium currents. We performed single cell reverse transcriptase-polymerase chain reaction (RT-PCR) experiments to show that PD neurons exclusively expressed a type 2 (D(2alphaPan)) DA receptor. This was confirmed by using confocal microscopy in conjunction with immunohistochemistry (IHC) on STG whole-mount preparations containing dye-filled PD neurons. Immunogold electron microscopy showed that surface receptors were concentrated in fine neurites/terminal swellings and vesicle-laden varicosities in the synaptic neuropil. Double-label IHC experiments with tyrosine hydroxylase antiserum suggested that the D(2alphaPan) receptors received volume neurotransmissions. Receptors were further mapped onto three-dimensional models of PD neurons built from Neurolucida tracings of confocal stacks from the IHC experiments. The data showed that D(2alphaPan) receptors were selectively targeted to approximately 40% of synaptic structures in any given PD neuron, and were nonuniformly distributed among neurites.
Collapse
Affiliation(s)
- Max F Oginsky
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | | | | | |
Collapse
|
29
|
Stoltenberg SF, Nag P. Description and validation of a dynamical systems model of presynaptic serotonin function: genetic variation, brain activation and impulsivity. Behav Genet 2010; 40:262-79. [PMID: 20111992 DOI: 10.1007/s10519-010-9335-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 01/09/2010] [Indexed: 10/19/2022]
Abstract
Despite more than a decade of empirical work on the role of genetic polymorphisms in the serotonin system on behavior, the details across levels of analysis are not well understood. We describe a mathematical model of the genetic control of presynaptic serotonergic function that is based on control theory, implemented using systems of differential equations, and focused on better characterizing pathways from genes to behavior. We present the results of model validation tests that include the comparison of simulation outcomes with empirical data on genetic effects on brain response to affective stimuli and on impulsivity. Patterns of simulated neural firing were consistent with recent findings of additive effects of serotonin transporter and tryptophan hydroxylase-2 polymorphisms on brain activation. In addition, simulated levels of cerebral spinal fluid 5-hydroxyindoleacetic acid (CSF 5-HIAA) were negatively correlated with Barratt Impulsiveness Scale (Version 11) Total scores in college students (r = -.22, p = .002, N = 187), which is consistent with the well-established negative correlation between CSF 5-HIAA and impulsivity. The results of the validation tests suggest that the model captures important aspects of the genetic control of presynaptic serotonergic function and behavior via brain activation. The proposed model can be: (1) extended to include other system components, neurotransmitter systems, behaviors and environmental influences; (2) used to generate testable hypotheses.
Collapse
Affiliation(s)
- Scott F Stoltenberg
- Department of Psychology, University of Nebraska-Lincoln, 238 Burnett Hall, Lincoln, NE, 68588-0308, USA.
| | | |
Collapse
|
30
|
Rodriguez Moncalvo VG, Campos AR. Role of serotonergic neurons in the Drosophila larval response to light. BMC Neurosci 2009; 10:66. [PMID: 19549295 PMCID: PMC2711092 DOI: 10.1186/1471-2202-10-66] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 06/23/2009] [Indexed: 11/24/2022] Open
Abstract
Background Drosophila larval locomotion consists of forward peristalsis interrupted by episodes of pausing, turning and exploratory behavior (head swinging). This behavior can be regulated by visual input as seen by light-induced increase in pausing, head swinging and direction change as well as reduction of linear speed that characterizes the larval photophobic response. During 3rd instar stage, Drosophila larvae gradually cease to be repelled by light and are photoneutral by the time they wander in search for a place to undergo metamorphosis. Thus, Drosophila larval photobehavior can be used to study control of locomotion. Results We used targeted neuronal silencing to assess the role of candidate neurons in the regulation of larval photobehavior. Inactivation of DOPA decarboxylase (Ddc) neurons increases the response to light throughout larval development, including during the later stages of the 3rd instar characterized by photoneutral response. Increased response to light is characterized by increase in light-induced direction change and associated pause, and reduction of linear movement. Amongst Ddc neurons, suppression of the activity of corazonergic and serotonergic but not dopaminergic neurons increases the photophobic response observed during 3rd instar stage. Silencing of serotonergic neurons does not disrupt larval locomotion or the response to mechanical stimuli. Reduced serotonin (5-hydroxytryptamine, 5-HT) signaling within serotonergic neurons recapitulates the results obtained with targeted neuronal silencing. Ablation of serotonergic cells in the ventral nerve cord (VNC) does not affect the larval response to light. Similarly, disruption of serotonergic projections that contact the photoreceptor termini in the brain hemispheres does not impact the larval response to light. Finally, pan-neural over-expression of 5-HT1ADro receptors, but not of any other 5-HT receptor subtype, causes a significant decrease in the response to light of 3rd instar larvae. Conclusion Our data demonstrate that activity of serotonergic and corazonergic neurons contribute to the control of larval locomotion by light. We conclude that this control is carried out by 5-HT neurons located in the brain hemispheres, but does not appear to occur at the photoreceptor level and may be mediated by 5-HT1ADro receptors. These findings provide new insights into the function of 5-HT neurons in Drosophila larval behavior as well as into the mechanisms underlying regulation of larval response to light.
Collapse
|
31
|
Selcho M, Pauls D, Han KA, Stocker RF, Thum AS. The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS One 2009; 4:e5897. [PMID: 19521527 PMCID: PMC2690826 DOI: 10.1371/journal.pone.0005897] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/07/2009] [Indexed: 11/18/2022] Open
Abstract
Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt) as well as appetitive (odor-sugar) associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive olfactory memory formation respectively, or for the retrieval of these memory traces. Future studies of the dopaminergic system need to take into account such cellular dissociations in function in order to be meaningful.
Collapse
Affiliation(s)
- Mareike Selcho
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dennis Pauls
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kyung-An Han
- Department of Biology and The Huck Institute Neuroscience and Genetics Graduate Program, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | | | - Andreas S. Thum
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
32
|
A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neurosci 2008; 9:90. [PMID: 18803813 PMCID: PMC2569041 DOI: 10.1186/1471-2202-9-90] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 09/19/2008] [Indexed: 01/02/2023] Open
Abstract
Background Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, snpf, encodes the precursor of short neuropeptide F (sNPF). To unravel possible functional diversity we have mapped the distribution of transcript of the snpf gene and its peptide products in the central nervous system (CNS) of Drosophila in relation to other neuronal markers. Results There are several hundreds of neurons in the larval CNS and several thousands in the adult Drosophila brain expressing snpf transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs) of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7). Conclusion It is likely that sNPF has multiple functions as neurohormone as well as local neuromodulator/co-transmitter in various CNS circuits, including olfactory circuits both at the level of the first synapse and at the mushroom body output level. Some of the sNPF immunoreactive axons terminate in close proximity to neurosecretory cells producing ILPs and adipokinetic hormone, indicating that sNPF also might regulate hormone production or release.
Collapse
|