1
|
Wei Z, Boateng NKK, Schmitt LR, Cline H, Fernandes Fonseca MT, Newberry A, Taylor A, Adelmeijer J, Poole LG, Stravitz RT, Lee WM, Lisman T, Hansen KC, Luyendyk JP. Integrated cross-linking by TG2 and FXIII generates hepatoprotective fibrin(ogen) deposits in injured liver. Blood 2025; 145:2507-2517. [PMID: 40009455 DOI: 10.1182/blood.2024026938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
ABSTRACT The transglutaminase coagulation factor XIII (FXIII) is critical for the stability and function of intravascular fibrin clots. Prorepair extravascular fibrin(ogen) deposits are potentially subject to cross-linking by FXIII and other transglutaminases not typically resident in plasma. However, the impact of these alternative modifiers on fibrin(ogen) structure and function is not known. We tested the hypothesis that tissue transglutaminase (TG2) modifies FXIII-directed fibrin(ogen) cross-linking in vitro and within injured tissue. Global proteomic analysis after experimental acetaminophen (APAP)-induced acute liver injury revealed that intrahepatic fibrin(ogen) deposition was associated with hepatic TG2 levels that exceeded that of FXIII. Mass spectrometry-based cross-link mapping of in vitro fibrin matrices uncovered, to our knowledge, the first evidence of synergistic fibrin(ogen) α-α cross-linking catalyzed by both transglutaminases. Fibrin(ogen) cross-linking was increased in livers from patients with APAP-induced acute liver failure. APAP-challenged TG2-/- mice displayed an altered pattern of FXIII-dependent fibrin(ogen)-γ and fibrin(ogen)-α chain cross-linking aligned with the impact of TG2 on fibrin cross-linking in vitro. This shift in fibrin(ogen) cross-linking exacerbated pathologies including hepatic necrosis and sinusoidal congestion. The results, to our knowledge, are the first to indicate that TG2 impacts FXIII-directed fibrin(ogen) cross-linking, both in vitro and in vivo. The results suggest that TG2 functions to dynamically alter the structure of extravascular fibrin(ogen) to mitigate liver damage, a novel mechanism likely applicable across types of tissue injury.
Collapse
Affiliation(s)
- Zimu Wei
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| | - Nana Kwame Kwabi Boateng
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| | - Lauren R Schmitt
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO
| | - Holly Cline
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| | | | - Ariana Newberry
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| | - Alicia Taylor
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| | - Jelle Adelmeijer
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lauren G Poole
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| | - R Todd Stravitz
- Section of Hepatology, Virginia Commonwealth University, Richmond, VA
| | - William M Lee
- Digestive and Liver Diseases Division, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ton Lisman
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO
| | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI
| |
Collapse
|
2
|
Rangan RS, Petty RM, Acharya S, Emmitte KA, do Valle RS, Lam C, Essajee SI, Mayhew W, Young O, Brooks CD, Forster MJ, Tovar-Vidales T, Clark AF. Phenethylaminylation: Preliminary In Vitro Evidence for the Covalent Transamidation of Psychedelic Phenethylamines to Glial Proteins using 3,5-Dimethoxy-4-(2-Propynyloxy)-Phenethylamine as a Model Compound. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638188. [PMID: 40027829 PMCID: PMC11870397 DOI: 10.1101/2025.02.13.638188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Psychedelics are well known for their ability to produce profoundly altered states of consciousness. But, more importantly, the effects of psychedelics can influence neurobehavioral changes that last well after these acute subjective effects end. This phenomenon is currently being leveraged in the development of psychedelic-assisted psychotherapies for the treatment of multiple neuropsychiatric disorders. The cellular and molecular mechanisms by which single doses of psychedelics are able to mediate long-term cognitive changes are an active area of research. We hypothesize that psychedelics contribute to long term changes in cellular state by covalently modifying proteins. This post-translational modification by psychedelics is possible through the transglutaminase-mediated transamidation of their amine termini to glutamine carboxamide residues. Here, we synthesize and utilize a propargylated analogue of mescaline - the classic serotonergic psychedelic phenethylamine found in cacti species - to identify putative protein targets of psychedelic modifications through the use of click-chemistry in a primary human astrocyte cell culture model. Our preliminary findings indicate that a diverse array of glial proteins may be substrates for transglutaminase 2-mediated monoaminylation by our model phenethylamine ("phenethylaminylation"). Based on these points, we speculatively highlight new directions for the study of this putative noncanonical psychedelic activity.
Collapse
Affiliation(s)
- Rajiv S. Rangan
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - R. Max Petty
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Suchismita Acharya
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rafael S. do Valle
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Chandra Lam
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Salman I. Essajee
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - William Mayhew
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Olivia Young
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Calvin D. Brooks
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Michael J. Forster
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tara Tovar-Vidales
- Center for Anatomical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Abbot F. Clark
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience; University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Jain S, Lamba BY, Dubey SK. Recent advancements in the sensors for food analysis to detect gluten: A mini-review [2019-2023]. Food Chem 2024; 449:139204. [PMID: 38613992 DOI: 10.1016/j.foodchem.2024.139204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
People with celiac disease or gluten sensitivity may experience an immune reaction to the protein called gluten, which is present in wheat, barley, and rye. A strict gluten-free diet is the sole cure for these ailments. There are chances of food fraud about the claim of being gluten-free food items. As a result, there is a rising need for trustworthy and precise ways to identify gluten. There are many methods to detect gluten in food samples viz., enzyme-linked immunosorbent assay 1 Surface plasmon resonance (SPR), Electrochemical sensors, Fluorescence-based sensors, etc. The use of sensors is one of the most promising methods for gluten detection. For detecting gluten, a variety of sensors, including optical, electrochemical, and biosensors, have been developed with different limits of detection and sensitivity. The present review reports the recent advancements (2019-2023) in the development of sensors for gluten detection in food. We may conclude that sensitivity and limit of detection are not related to the type of sensor used (aptamer or antibody-based), however, there are advancements, with the year, on the simplicity of the material used like paper-based sensors and paradigm shift to reagent free sensors by the spectral analysis. Also, recent work shows the potential of IoT-based studies for gluten detection.
Collapse
Affiliation(s)
- Sapna Jain
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India.
| | - Bhawna Yadav Lamba
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India
| | - Sanjeev Kumar Dubey
- Applied Science Cluster (Chemistry), School of Advanced Engineering, UPES, Dehradun 248007, India
| |
Collapse
|
4
|
Abadie V, Han AS, Jabri B, Sollid LM. New Insights on Genes, Gluten, and Immunopathogenesis of Celiac Disease. Gastroenterology 2024; 167:4-22. [PMID: 38670280 PMCID: PMC11283582 DOI: 10.1053/j.gastro.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024]
Abstract
Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois.
| | - Arnold S Han
- Columbia Center for Translational Immunology, Columbia University, New York, New York; Department of Microbiology and Immunology, Columbia University, New York, New York; Department of Medicine, Digestive and Liver Diseases, Columbia University, New York, New York
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, Illinois; Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, Illinois; Committee on Immunology, University of Chicago, Chicago, Illinois; Department of Pathology, University of Chicago, Chicago, Illinois; Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
5
|
Huang L, Bon H, Maamra M, Holmes T, Atkinson J, Cain K, Kennedy J, Kettleborough C, Matthews D, Twomey B, Ni J, Song Z, Watson PF, Johnson TS. The effect of TG2-inhibitory monoclonal antibody zampilimab on tissue fibrosis in human in vitro and primate in vivo models of chronic kidney disease. PLoS One 2024; 19:e0298864. [PMID: 38753630 PMCID: PMC11098434 DOI: 10.1371/journal.pone.0298864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/01/2024] [Indexed: 05/18/2024] Open
Abstract
Fibrotic remodeling is the primary driver of functional loss in chronic kidney disease, with no specific anti-fibrotic agent available for clinical use. Transglutaminase 2 (TG2), a wound response enzyme that irreversibly crosslinks extracellular matrix proteins causing dysregulation of extracellular matrix turnover, is a well-characterized anti-fibrotic target in the kidney. We describe the humanization and characterization of two anti-TG2 monoclonal antibodies (zampilimab [hDC1/UCB7858] and BB7) that inhibit crosslinking by TG2 in human in vitro and rabbit/cynomolgus monkey in vivo models of chronic kidney disease. Determination of zampilimab half-maximal inhibitory concentration (IC50) against recombinant human TG2 was undertaken using the KxD assay and determination of dissociation constant (Kd) by surface plasmon resonance. Efficacy in vitro was established using a primary human renal epithelial cell model of tubulointerstitial fibrosis, to assess mature deposited extracellular matrix proteins. Proof of concept in vivo used a cynomolgus monkey unilateral ureteral obstruction model of chronic kidney disease. Zampilimab inhibited TG2 crosslinking transamidation activity with an IC50 of 0.25 nM and Kd of <50 pM. In cell culture, zampilimab inhibited extracellular TG2 activity (IC50 119 nM) and dramatically reduced transforming growth factor-β1-driven accumulation of multiple extracellular matrix proteins including collagens I, III, IV, V, and fibronectin. Intravenous administration of BB7 in rabbits resulted in a 68% reduction in fibrotic index at Day 25 post-unilateral ureteral obstruction. Weekly intravenous administration of zampilimab in cynomolgus monkeys with unilateral ureteral obstruction reduced fibrosis at 4 weeks by >50%, with no safety signals. Our data support the clinical investigation of zampilimab for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Linghong Huang
- Immunology Therapeutic Area, UCB Pharma, Slough, United Kingdom
- UCB Pharma, Slough, United Kingdom
| | - Helene Bon
- Immunology Therapeutic Area, UCB Pharma, Slough, United Kingdom
| | - Mabrouka Maamra
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Toby Holmes
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - John Atkinson
- Immunology Therapeutic Area, UCB Pharma, Slough, United Kingdom
| | - Katharine Cain
- Immunology Therapeutic Area, UCB Pharma, Slough, United Kingdom
- UCB Pharma, Slough, United Kingdom
| | - Jeff Kennedy
- Immunology Therapeutic Area, UCB Pharma, Slough, United Kingdom
| | | | - David Matthews
- Drug Discovery Biology, LifeArc, Stevenage, United Kingdom
- Immunology and Ophthalmology, Mogrify Ltd, Cambridge, United Kingdom
| | - Breda Twomey
- Immunology Therapeutic Area, UCB Pharma, Slough, United Kingdom
| | - Jia Ni
- Research and Development, Prisys Biotechnologies, Shanghai, China
| | - Zhizhan Song
- Research and Development, Prisys Biotechnologies, Shanghai, China
| | - Philip F. Watson
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Timothy S. Johnson
- Immunology Therapeutic Area, UCB Pharma, Slough, United Kingdom
- UCB Pharma, Slough, United Kingdom
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
6
|
Lindeman I, Høydahl LS, Christophersen A, Risnes LF, Jahnsen J, Lundin KEA, Sollid LM, Iversen R. Generation of circulating autoreactive pre-plasma cells fueled by naive B cells in celiac disease. Cell Rep 2024; 43:114045. [PMID: 38578826 DOI: 10.1016/j.celrep.2024.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.
Collapse
Affiliation(s)
- Ida Lindeman
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Lene S Høydahl
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Asbjørn Christophersen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Louise F Risnes
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Rasmus Iversen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
7
|
Guerrero-Barberà G, Burday N, Costell M. Shaping Oncogenic Microenvironments: Contribution of Fibronectin. Front Cell Dev Biol 2024; 12:1363004. [PMID: 38660622 PMCID: PMC11039881 DOI: 10.3389/fcell.2024.1363004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The extracellular matrix (ECM) is a complex network of proteins and glycans, dynamically remodeled and specifically tailored to the structure/function of each organ. The malignant transformation of cancer cells is determined by both cell intrinsic properties, such as mutations, and extrinsic variables, such as the mixture of surrounding cells in the tumor microenvironment and the biophysics of the ECM. During cancer progression, the ECM undergoes extensive remodeling, characterized by disruption of the basal lamina, vascular endothelial cell invasion, and development of fibrosis in and around the tumor cells resulting in increased tissue stiffness. This enhanced rigidity leads to aberrant mechanotransduction and further malignant transformation potentiating the de-differentiation, proliferation and invasion of tumor cells. Interestingly, this fibrotic microenvironment is primarily secreted and assembled by non-cancerous cells. Among them, the cancer-associated fibroblasts (CAFs) play a central role. CAFs massively produce fibronectin together with type I collagen. This review delves into the primary interactions and signaling pathways through which fibronectin can support tumorigenesis and metastasis, aiming to provide critical molecular insights for better therapy response prediction.
Collapse
Affiliation(s)
| | | | - Mercedes Costell
- Departament of Biochemistry and Molecular Biology, Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
8
|
Lloyd SM, He Y. Exploring Extracellular Matrix Crosslinking as a Therapeutic Approach to Fibrosis. Cells 2024; 13:438. [PMID: 38474402 PMCID: PMC10931134 DOI: 10.3390/cells13050438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The extracellular matrix (ECM) provides structural support for tissues and regulatory signals for resident cells. ECM requires a careful balance between protein accumulation and degradation for homeostasis. Disruption of this balance can lead to pathological processes such as fibrosis in organs across the body. Post-translational crosslinking modifications to ECM proteins such as collagens alter ECM structure and function. Dysregulation of crosslinking enzymes as well as changes in crosslinking composition are prevalent in fibrosis. Because of the crucial roles these ECM crosslinking pathways play in disease, the enzymes that govern crosslinking events are being explored as therapeutic targets for fibrosis. Here, we review in depth the molecular mechanisms underlying ECM crosslinking, how ECM crosslinking contributes to fibrosis, and the therapeutic strategies being explored to target ECM crosslinking in fibrosis to restore normal tissue structure and function.
Collapse
Affiliation(s)
| | - Yupeng He
- AbbVie Inc., 1 North Waukegan Rd., North Chicago, IL 60064, USA;
| |
Collapse
|
9
|
Liu J, Mouradian MM. Pathogenetic Contributions and Therapeutic Implications of Transglutaminase 2 in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2364. [PMID: 38397040 PMCID: PMC10888553 DOI: 10.3390/ijms25042364] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Neurodegenerative diseases encompass a heterogeneous group of disorders that afflict millions of people worldwide. Characteristic protein aggregates are histopathological hallmark features of these disorders, including Amyloid β (Aβ)-containing plaques and tau-containing neurofibrillary tangles in Alzheimer's disease, α-Synuclein (α-Syn)-containing Lewy bodies and Lewy neurites in Parkinson's disease and dementia with Lewy bodies, and mutant huntingtin (mHTT) in nuclear inclusions in Huntington's disease. These various aggregates are found in specific brain regions that are impacted by neurodegeneration and associated with clinical manifestations. Transglutaminase (TG2) (also known as tissue transglutaminase) is the most ubiquitously expressed member of the transglutaminase family with protein crosslinking activity. To date, Aβ, tau, α-Syn, and mHTT have been determined to be substrates of TG2, leading to their aggregation and implicating the involvement of TG2 in several pathophysiological events in neurodegenerative disorders. In this review, we summarize the biochemistry and physiologic functions of TG2 and describe recent advances in the pathogenetic role of TG2 in these diseases. We also review TG2 inhibitors tested in clinical trials and discuss recent TG2-targeting approaches, which offer new perspectives for the design of future highly potent and selective drugs with improved brain delivery as a disease-modifying treatment for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - M. Maral Mouradian
- RWJMS Institute for Neurological Therapeutics and Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA;
| |
Collapse
|
10
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
11
|
Selcuk K, Leitner A, Braun L, Le Blanc F, Pacak P, Pot S, Vogel V. Transglutaminase 2 has higher affinity for relaxed than for stretched fibronectin fibers. Matrix Biol 2024; 125:113-132. [PMID: 38135164 DOI: 10.1016/j.matbio.2023.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Transglutaminase 2 (TG2) plays a vital role in stabilizing extracellular matrix (ECM) proteins through enzymatic crosslinking during tissue growth, repair, and inflammation. TG2 also binds non-covalently to fibronectin (FN), an essential component of the ECM, facilitating cell adhesion, migration, proliferation, and survival. However, the interaction between TG2 and fibrillar FN remains poorly understood, as most studies have focused on soluble or surface-adsorbed FN or FN fragments, which differ in their conformations from insoluble FN fibers. Using a well-established in vitro FN fiber stretch assay, we discovered that the binding of a crosslinking enzyme to ECM fibers is mechano-regulated. TG2 binding to FN is tuned by the mechanical tension of FN fibers, whereby TG2 predominantly co-localizes to low-tension FN fibers, while fiber stretching reduces their affinity for TG2. This mechano-regulated binding relies on the proximity between the N-terminal β-sandwich and C-terminal β-barrels of TG2. Crosslinking mass spectrometry (XL-MS) revealed a novel TG2-FN synergy site within TG2's C-terminal β-barrels that interacts with FN regions located outside of the canonical gelatin binding domain, specifically FNI2 and FNIII14-15. Combining XL-MS distance restraints with molecular docking revealed the mechano-regulated binding mechanism between TG2 and modules FNI7-9 by which mechanical forces regulate TG2-FN interactions. This highlights a previously unrecognized role of TG2 as a tension sensor for FN fibers. This novel interaction mechanism has significant implications in physiology and mechanobiology, including how forces regulate cell adhesion, spreading, migration, phenotype modulation, depending on the tensional state of ECM fibers. Data are available via ProteomeXchange with identifier PXD043976.
Collapse
Affiliation(s)
- Kateryna Selcuk
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Gloriastrasse 37-39 GLC G11, CH-8092 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Lukas Braun
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Gloriastrasse 37-39 GLC G11, CH-8092 Zurich, Switzerland
| | - Fanny Le Blanc
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, CH-8093 Zurich, Switzerland
| | - Paulina Pacak
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Gloriastrasse 37-39 GLC G11, CH-8092 Zurich, Switzerland
| | - Simon Pot
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Gloriastrasse 37-39 GLC G11, CH-8092 Zurich, Switzerland
| | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, Laboratory of Applied Mechanobiology, ETH Zurich, Gloriastrasse 37-39 GLC G11, CH-8092 Zurich, Switzerland.
| |
Collapse
|
12
|
Mamun MAA, Maruyama JI. Fungal transglutaminase domain-containing proteins are involved in hyphal protection at the septal pore against wounding. Mol Biol Cell 2023; 34:ar127. [PMID: 37756125 PMCID: PMC10848947 DOI: 10.1091/mbc.e23-01-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
Transglutaminase (TG) is a ubiquitous enzyme that crosslinks substrates. In humans, TG participates in blood clotting and wound healing. However, the functions related to the cellular protection of microbial TG are unknown. In filamentous fungi, we previously identified SppB, which contains the transglutaminase core (TGc) domain and functions in hyphal protection at the septal pore upon wounding. Here, we further analyzed the cytokinesis-related protein Cyk3 and peptide N-glycanase Png1, as both contain the TGc domain. All three proteins exhibited functional importance in wound-related hyphal protection at the septal pore. Upon wounding, SppB and AoPng1 accumulated at the septal pore, whereas AoCyk3 and AoPng1 normally localized around the septal pore. The putative Cys-His-Asp catalytic triad of SppB is conserved with the human TGc domain-containing kyphoscoliosis peptidase. Catalytic triad disruptive mutants of SppB and AoCyk3 exhibited septal pore plugging defects. Similar to other TGs, SppB underwent wound-induced truncation of the N-terminal region. Notably, TG activity was detected in vivo at the septal pore of wounded hyphae using a fluorescent-labeled substrate; however, the activity was inhibited by the TG inhibitor cystamine. Our study suggests a conserved role for TGc domain-containing proteins in wound-related protection in fungi, similar to that in humans.
Collapse
Affiliation(s)
- Md. Abdulla Al Mamun
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
13
|
Gates EWJ, Calvert ND, Cundy NJ, Brugnoli F, Navals P, Kirby A, Bianchi N, Adhikary G, Shuhendler AJ, Eckert RL, Keillor JW. Cell-Impermeable Inhibitors Confirm That Intracellular Human Transglutaminase 2 Is Responsible for the Transglutaminase-Associated Cancer Phenotype. Int J Mol Sci 2023; 24:12546. [PMID: 37628729 PMCID: PMC10454375 DOI: 10.3390/ijms241612546] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Transglutaminase 2 (TG2) is a multifunctional enzyme primarily responsible for crosslinking proteins. Ubiquitously expressed in humans, TG2 can act either as a transamidase by crosslinking two substrates through formation of an Nε(ɣ-glutaminyl)lysine bond or as an intracellular G-protein. These discrete roles are tightly regulated by both allosteric and environmental stimuli and are associated with dramatic changes in the conformation of the enzyme. The pleiotropic nature of TG2 and multi-faceted activities have resulted in TG2 being implicated in numerous disease pathologies including celiac disease, fibrosis, and cancer. Targeted TG2 therapies have not been selective for subcellular localization, such that currently no tools exist to selectively target extracellular over intracellular TG2. Herein, we have designed novel TG2-selective inhibitors that are not only highly potent and irreversible, but also cell impermeable, targeting only extracellular TG2. We have also further derivatized the scaffold to develop probes that are intrinsically fluorescent or bear an alkyne handle, which target both intra- and extracellular TG2, in order to facilitate cellular labelling and pull-down assays. The fluorescent probes were internalized and imaged in cellulo, and provide the first implicit experimental evidence that by comparison with their cell-impermeable analogues, it is specifically intracellular TG2, and presumably its G-protein activity, that contributes to transglutaminase-associated cancer progression.
Collapse
Affiliation(s)
- Eric W. J. Gates
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Nicholas D. Calvert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Nicholas J. Cundy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44021 Ferrara, Italy; (F.B.); (N.B.)
| | - Pauline Navals
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Alexia Kirby
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, 44021 Ferrara, Italy; (F.B.); (N.B.)
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.A.); (R.L.E.)
| | - Adam J. Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (G.A.); (R.L.E.)
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (E.W.J.G.); (N.D.C.); (N.J.C.); (P.N.); (A.K.); (A.J.S.)
| |
Collapse
|
14
|
Isola J, Mäki M, Hils M, Pasternack R, Viiri K, Dotsenko V, Montonen T, Zimmermann T, Mohrbacher R, Greinwald R, Schuppan D. The Oral Transglutaminase 2 Inhibitor ZED1227 Accumulates in the Villous Enterocytes in Celiac Disease Patients during Gluten Challenge and Drug Treatment. Int J Mol Sci 2023; 24:10815. [PMID: 37445994 DOI: 10.3390/ijms241310815] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
The enzyme transglutaminase 2 (TG2) plays a key role in celiac disease (CeD) pathogenesis. Active TG2 is located mainly extracellularly in the lamina propria but also in the villous enterocytes of the duodenum. The TG2 inhibitor ZED1227 is a promising drug candidate for treating CeD and is designed to block the TG2-catalyzed deamidation and crosslinking of gliadin peptides. Our aim was to study the accumulation of ZED1227 after oral administration of the drug. We studied duodenal biopsies derived from a phase 2a clinical drug trial using an antibody that detects ZED1227 when bound to the catalytic center of TG2. Human epithelial organoids were studied in vitro for the effect of ZED1227 on the activity of TG2 using the 5-biotin-pentylamine assay. The ZED1227-TG2 complex was found mainly in the villous enterocytes in post-treatment biopsies. The signal of ZED1227-TG2 was strongest in the luminal epithelial brush border, while the intensity of the signal in the lamina propria was only ~20% of that in the villous enterocytes. No signal specific to ZED1227 could be detected in pretreatment biopsies or in biopsies from patients randomized to the placebo treatment arm. ZED1227-TG2 staining co-localized with total TG2 and native and deamidated gliadin peptides on the enterocyte luminal surface. Inhibition of TG2 activity by ZED1227 was demonstrated in epithelial organoids. Our findings suggest that active TG2 is present at the luminal side of the villous epithelium and that inhibition of TG2 activity by ZED1227 occurs already there before gliadin peptides enter the lamina propria.
Collapse
Affiliation(s)
- Jorma Isola
- Jilab Inc., 33520 Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Markku Mäki
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Martin Hils
- Zedira GmbH, Roesslerstrasse 83, 64293 Darmstadt, Germany
| | | | - Keijo Viiri
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Valeriia Dotsenko
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Toni Montonen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | | | | | | | - Detlef Schuppan
- Institute of Translational Immunology and Celiac Center, Medical Center, Johannes-Gutenberg University, 55099 Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Barathi VA, Ho CEH, Tong L. Molecular Basis of Transglutaminase-2 and Muscarinic Cholinergic Receptors in Experimental Myopia: A Target for Myopia Treatment. Biomolecules 2023; 13:1045. [PMID: 37509081 PMCID: PMC10377462 DOI: 10.3390/biom13071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Myopia, a prevalent refractive error disorder worldwide, is characterized by the elongation of the eye, leading to visual abnormalities. Understanding the genetic factors involved in myopia is crucial for developing therapeutic and preventive measures. Unfortunately, only a limited number of genes with well-defined functionality have been associated with myopia. In this study, we found that the homozygous TGM2-deleted gene in mice protected against the development of myopia by slowing down the elongation of the eye. The effectiveness of gene knockdown was confirmed by achieving a 60 percent reduction in TGM-2 transcript levels through the use of TGM-2-specific small interfering RNA (siRNA) in human scleral fibroblasts (SFs). Furthermore, treating normal mouse SFs with various transglutaminase inhibitors led to the down-regulation of TGM-2 expression, with the most significant reduction observed with specific TGM-2 inhibitors. Additionally, the study found that the pharmacological blockade of muscarinic receptors also slowed the progression of myopia in mice, and this effect was accompanied by a decrease in TGM-2 enzyme expression. Specifically, mice with homozygous mAChR5, mAChR1, and/or mAChR4 and knockout mice exhibited higher levels of TGM-2 mRNA compared to mice with homozygous mAChR2 and three knockout mice (fold changes of 5.8, 2.9, 2.4, -2.2, and -4.7, respectively; p < 0.05). These findings strongly suggest that both TGM-2 and muscarinic receptors play central roles in the development of myopia, and blocking these factors could potentially be useful in interfering with the progression of this condition. In conclusion, targeting TGM-2 may have a beneficial effect regarding myopia, and this may also be at least partially be the mechanism of anti-muscarinic drugs in myopia. Further studies should investigate the interaction between TGM-2 and muscarinic receptors, as well as the changes in other extracellular matrix genes associated with growth during the development of myopia.
Collapse
Affiliation(s)
- Veluchamy Amutha Barathi
- Translational Preclinical Model Platform, Singapore Eye Research Institute, 20 College Road, Singapore 169856, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, National University Hospital System, 10 Medical Dr, Singapore 117597, Singapore
- Eye-Academic Clinical Program, DUKE-National University of Singapore Gr Medical School, 8 College Road, Singapore 169857, Singapore
| | - Candice E H Ho
- Translational Preclinical Model Platform, Singapore Eye Research Institute, 20 College Road, Singapore 169856, Singapore
| | - Louis Tong
- Eye-Academic Clinical Program, DUKE-National University of Singapore Gr Medical School, 8 College Road, Singapore 169857, Singapore
- Corneal and External Eye Disease, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751, Singapore
- Ocular Surface Research Group, Singapore Eye Research Institute, 20 College Road, Singapore 169856, Singapore
| |
Collapse
|
16
|
Manai F, Zanoletti L, Arfini D, Micco SGD, Gjyzeli A, Comincini S, Amadio M. Dimethyl Fumarate and Intestine: From Main Suspect to Potential Ally against Gut Disorders. Int J Mol Sci 2023; 24:9912. [PMID: 37373057 DOI: 10.3390/ijms24129912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Dimethyl fumarate (DMF) is a well-characterized molecule that exhibits immuno-modulatory, anti-inflammatory, and antioxidant properties and that is currently approved for the treatment of psoriasis and multiple sclerosis. Due to its Nrf2-dependent and independent mechanisms of action, DMF has a therapeutic potential much broader than expected. In this comprehensive review, we discuss the state-of-the-art and future perspectives regarding the potential repurposing of DMF in the context of chronic inflammatory diseases of the intestine, such as inflammatory bowel disorders (i.e., Crohn's disease and ulcerative colitis) and celiac disease. DMF's mechanisms of action, as well as an exhaustive analysis of the in vitro/in vivo evidence of its beneficial effects on the intestine and the gut microbiota, together with observational studies on multiple sclerosis patients, are here reported. Based on the collected evidence, we highlight the new potential applications of this molecule in the context of inflammatory and immune-mediated intestinal diseases.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Lisa Zanoletti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
- Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Davide Arfini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Simone Giorgio De Micco
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Arolda Gjyzeli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Sergio Comincini
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
17
|
Abstract
Among human leukocyte antigen (HLA)-associated disorders, celiac disease has an immunopathogenesis that is particularly well understood. The condition is characterized by hypersensitivity to cereal gluten proteins, and the disease lesion is localized in the gut. Still, the diagnosis can be made by detection of highly disease-specific autoantibodies to transglutaminase 2 in the blood. We now have mechanistic insights into how the disease-predisposing HLA-DQ molecules, via presentation of posttranslationally modified gluten peptides, are connected to the generation of these autoantibodies. This review presents our current understanding of the immunobiology of this common disorder that is positioned in the border zone between food hypersensitivity and autoimmunity.
Collapse
Affiliation(s)
- Rasmus Iversen
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- KG Jebsen Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; .,Department of Immunology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| |
Collapse
|
18
|
Loppinet E, Besser HA, Sewa AS, Yang FC, Jabri B, Khosla C. LRP-1 links post-translational modifications to efficient presentation of celiac disease-specific T cell antigens. Cell Chem Biol 2023; 30:55-68.e10. [PMID: 36608691 PMCID: PMC9868102 DOI: 10.1016/j.chembiol.2022.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023]
Abstract
Celiac disease (CeD) is an autoimmune disorder in which gluten-derived antigens trigger inflammation. Antigenic peptides must undergo site-specific deamidation to be presentable to CD4+ T cells in an HLA-DQ2 or -DQ8 restricted manner. While the biochemical basis for this post-translational modification is understood, its localization in the patient's intestine remains unknown. Here, we describe a mechanism by which gluten peptides undergo deamidation and concentration in the lysosomes of antigen-presenting cells, explaining how the concentration of gluten peptides necessary to elicit an inflammatory response in CeD patients is achieved. A ternary complex forms between a gluten peptide, transglutaminase-2 (TG2), and ubiquitous plasma protein α2-macroglobulin, and is endocytosed by LRP-1. The covalent TG2-peptide adduct undergoes endolysosomal decoupling, yielding the expected deamidated epitope. Our findings invoke a pathogenic role for dendritic cells and/or macrophages in CeD and implicate TG2 in the lysosomal clearance of unwanted self and foreign extracellular proteins.
Collapse
Affiliation(s)
- Elise Loppinet
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Harrison A Besser
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Agnele Sylvia Sewa
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fu-Chen Yang
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Müller CD, Ruiz-Gómez G, Cazzonelli S, Möller S, Wodtke R, Löser R, Freyse J, Dürig JN, Rademann J, Hempel U, Pisabarro MT, Vogel S. Sulfated glycosaminoglycans inhibit transglutaminase 2 by stabilizing its closed conformation. Sci Rep 2022; 12:13326. [PMID: 35922533 PMCID: PMC9349199 DOI: 10.1038/s41598-022-17113-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Transglutaminases (TGs) catalyze the covalent crosslinking of proteins via isopeptide bonds. The most prominent isoform, TG2, is associated with physiological processes such as extracellular matrix (ECM) stabilization and plays a crucial role in the pathogenesis of e.g. fibrotic diseases, cancer and celiac disease. Therefore, TG2 represents a pharmacological target of increasing relevance. The glycosaminoglycans (GAG) heparin (HE) and heparan sulfate (HS) constitute high-affinity interaction partners of TG2 in the ECM. Chemically modified GAG are promising molecules for pharmacological applications as their composition and chemical functionalization may be used to tackle the function of ECM molecular systems, which has been recently described for hyaluronan (HA) and chondroitin sulfate (CS). Herein, we investigate the recognition of GAG derivatives by TG2 using an enzyme-crosslinking activity assay in combination with in silico molecular modeling and docking techniques. The study reveals that GAG represent potent inhibitors of TG2 crosslinking activity and offers atom-detailed mechanistic insights.
Collapse
Affiliation(s)
- Claudia Damaris Müller
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany
| | - Sophie Cazzonelli
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V., Prüssingstraße 27 B, 07745, Jena, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Joanna Freyse
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2/4, 14195, Berlin, Germany
| | - Jan-Niklas Dürig
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2/4, 14195, Berlin, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2/4, 14195, Berlin, Germany
| | - Ute Hempel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307, Dresden, Germany.
| | - Sarah Vogel
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| |
Collapse
|
20
|
Abstract
The design and use of mouse models that reproduce key features of human diseases are critical to advance our understanding of the pathogenesis of autoimmune diseases and to test new therapeutic strategies. Celiac disease is a unique organ-specific autoimmune-like disorder occurring in genetically susceptible individuals carrying HLA-DQ2 or HLA-DQ8 molecules who consume gluten. The key histological characteristic of the disease in humans is the destruction of the lining of the small intestine, a feature that has been difficult to reproduce in immunocompetent animal models. This unit describes the DQ8-Dd -villin-IL-15 transgenic mouse model of CeD, which was engineered based on the knowledge acquired from studying CeD patients' intestinal samples, and which represents the first animal model that develops villous atrophy in an HLA- and gluten-dependent manner without administration of any adjuvant. We provide detailed protocols for inducing and monitoring intestinal tissue damage, evaluating the cytotoxic properties of intraepithelial lymphocytes that mediate enterocyte lysis, and assessing the activation of the enzyme transglutaminase 2, which contributes to the generation of highly immunogenic gluten peptides. Detailed protocols to prepare pepsin-trypsin digested gliadin (PT-gliadin) or chymotrypsin-digested gliadin (CT-gliadin), which allow antibody detection against native or deamidated gluten peptides, are also provided in this unit. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Induction of celiac-like disease in DQ8-Dd -villin-IL-15tg mice Basic Protocol 2: Histological assessment of villous atrophy Support Protocol 1: Morphometric assessment of villous/crypt ratio Support Protocol 2: Evaluation of epithelial cells renewal Support Protocol 3: Evaluation of the density of intraepithelial lymphocytes Basic Protocol 3: Analysis of cytotoxic intraepithelial lymphocytes Basic Protocol 4: Transglutaminase 2 activation and measurement of antibodies against native and deamidated gluten peptides Support Protocol 4: Preparation of CT-gliadin Support Protocol 5: Preparation of PT-gliadin.
Collapse
Affiliation(s)
- Valérie Abadie
- Department of MedicineUniversity of ChicagoChicagoIllinois
- Celiac Disease CenterUniversity of ChicagoChicagoIllinois
- Section of Gastroenterology, Hepatology and NutritionUniversity of ChicagoChicagoIllinois
| | - Chaitan Khosla
- Department of ChemistryStanford UniversityStanfordCalifornia
- Department of Chemical EngineeringStanford UniversityStanfordCalifornia
- Stanford ChEM‐HStanford UniversityStanfordCalifornia
| | - Bana Jabri
- Department of MedicineUniversity of ChicagoChicagoIllinois
- Celiac Disease CenterUniversity of ChicagoChicagoIllinois
- Section of Gastroenterology, Hepatology and NutritionUniversity of ChicagoChicagoIllinois
- Committee on ImmunologyUniversity of ChicagoChicagoIllinois
- Department of PathologyUniversity of ChicagoChicagoIllinois
| |
Collapse
|
21
|
Lockridge O, Schopfer LM. Naturally Occurring Epsilon Gamma Glutamyl Lysine Isopeptide Crosslinks in Human Neuroblastoma SH-SY5Y Cells. ACS OMEGA 2022; 7:21978-21986. [PMID: 35785306 PMCID: PMC9245130 DOI: 10.1021/acsomega.2c02502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 05/05/2023]
Abstract
Zero-length isopeptide crosslinks between the side chains of glutamine and lysine are the product of transglutaminase activity. It is generally accepted that transglutaminase activity is dormant under physiological conditions because the calcium concentration inside cells is too low to activate transglutaminase to an open conformation with access to the catalytic triad. Traditional assays for transglutaminase activity measure incorporation of biotin pentylamine or of radiolabeled putrescine in the presence of added calcium. In this report, we identified naturally occurring isopeptide crosslinked proteins using the following steps: immunopurification of tryptic peptides by binding to anti-isopeptide antibody 81D1C2, separation of immunopurified peptides by liquid chromatography-tandem mass spectrometry, Protein Prospector database searches of mass spectrometry data for isopeptide crosslinked peptides, and manual evaluation of candidate crosslinked peptide pairs. The most labor intense step was manual evaluation. We developed criteria for accepting and rejecting candidate crosslinked peptides and showed examples of MS/MS spectra that confirm or invalidate a possible crosslink. The SH-SY5Y cells that we examined for crosslinked proteins had not been exposed to calcium and had been lysed in the presence of ethylenediaminetetraacetic acid. This precaution allows us to claim that the crosslinks we found inside the cells occurred naturally under physiological conditions. The quantity of crosslinks was very low, and the crosslinked proteins were mostly low abundance proteins. In conclusion, intracellular transglutaminase crosslinking/transamidase activity is very low but detectable. The low level of intracellular crosslinked proteins is consistent with tight regulation of transglutaminase activity.
Collapse
|
22
|
Hauser S, Sommerfeld P, Wodtke J, Hauser C, Schlitterlau P, Pietzsch J, Löser R, Pietsch M, Wodtke R. Application of a Fluorescence Anisotropy-Based Assay to Quantify Transglutaminase 2 Activity in Cell Lysates. Int J Mol Sci 2022; 23:4475. [PMID: 35562866 PMCID: PMC9104438 DOI: 10.3390/ijms23094475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/05/2023] Open
Abstract
Transglutaminase 2 (TGase 2) is a multifunctional protein which is involved in various physiological and pathophysiological processes. The latter also include its participation in the development and progression of malignant neoplasms, which are often accompanied by increased protein synthesis. In addition to the elucidation of the molecular functions of TGase 2 in tumor cells, knowledge of its concentration that is available for targeting by theranostic agents is a valuable information. Herein, we describe the application of a recently developed fluorescence anisotropy (FA)-based assay for the quantitative expression profiling of TGase 2 by means of transamidase-active enzyme in cell lysates. This assay is based on the incorporation of rhodamine B-isonipecotyl-cadaverine (R-I-Cad) into N,N-dimethylated casein (DMC), which results in an increase in the FA signal over time. It was shown that this reaction is not only catalyzed by TGase 2 but also by TGases 1, 3, and 6 and factor XIIIa using recombinant proteins. Therefore, control measurements in the presence of a selective irreversible TGase 2 inhibitor were mandatory to ascertain the specific contribution of TGase 2 to the overall FA rate. To validate the assay regarding the quality of quantification, spike/recovery and linearity of dilution experiments were performed. A total of 25 cancer and 5 noncancer cell lines were characterized with this assay method in terms of their activatable TGase 2 concentration (fmol/µg protein lysate) and the results were compared to protein synthesis data obtained by Western blotting. Moreover, complementary protein quantification methods using a biotinylated irreversible TGase 2 inhibitor as an activity-based probe and a commercially available ELISA were applied to selected cell lines to further validate the results obtained by the FA-based assay. Overall, the present study demonstrates that the FA-based assay using the substrate pair R-I-Cad and DMC represents a facile, homogenous and continuous method for quantifying TGase 2 activity in cell lysates.
Collapse
Affiliation(s)
- Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| | - Paul Sommerfeld
- Institute II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany; (P.S.); (C.H.)
| | - Johanna Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| | - Christoph Hauser
- Institute II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany; (P.S.); (C.H.)
| | - Paul Schlitterlau
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische University Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
- Faculty of Chemistry and Food Chemistry, School of Science, Technische University Dresden, Mommsenstraße 4, 01069 Dresden, Germany
| | - Markus Pietsch
- Institute II of Pharmacology, Center of Pharmacology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Gleueler Straße 24, 50931 Cologne, Germany; (P.S.); (C.H.)
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328 Dresden, Germany; (S.H.); (J.W.); (P.S.); (J.P.); (R.L.)
| |
Collapse
|
23
|
Transglutaminase 3 crosslinks the secreted gel-forming mucus component Mucin-2 and stabilizes the colonic mucus layer. Nat Commun 2022; 13:45. [PMID: 35017479 PMCID: PMC8752817 DOI: 10.1038/s41467-021-27743-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The colonic mucus layer is organized as a two-layered system providing a physical barrier against pathogens and simultaneously harboring the commensal flora. The factors contributing to the organization of this gel network are not well understood. In this study, the impact of transglutaminase activity on this architecture was analyzed. Here, we show that transglutaminase TGM3 is the major transglutaminase-isoform expressed and synthesized in the colon. Furthermore, intrinsic extracellular transglutaminase activity in the secreted mucus was demonstrated in vitro and ex vivo. Absence of this acyl-transferase activity resulted in faster degradation of the major mucus component the MUC2 mucin and changed the biochemical properties of mucus. Finally, TGM3-deficient mice showed an early increased susceptibility to Dextran Sodium Sulfate-induced colitis. Here, we report that natural isopeptide cross-linking by TGM3 is important for mucus homeostasis and protection of the colon from inflammation, reducing the risk of colitis. The colonic mucus layer is an organized system providing a physical barrier against pathogens and simultaneously harbouring the commensal flora. Here the authors report that transglutaminase 3 activity contributes to homeostasis of the colonic mucus layer and the lack of this enzymatic activity leads to increased susceptibility against DSS-induced colitis in mice.
Collapse
|
24
|
Rayavara K, Kurosky A, Hosakote YM. Respiratory syncytial virus infection induces the release of transglutaminase 2 from human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2022; 322:L1-L12. [PMID: 34704843 PMCID: PMC8721898 DOI: 10.1152/ajplung.00013.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Respiratory syncytial virus (RSV) is an important human pathogen that causes severe lower respiratory tract infections in young children, the elderly, and the immunocompromised, yet no effective treatments or vaccines are available. The precise mechanism underlying RSV-induced acute airway disease and associated sequelae are not fully understood; however, early lung inflammatory and immune events are thought to play a major role in the outcome of the disease. Moreover, oxidative stress responses in the airways play a key role in the pathogenesis of RSV. Oxidative stress has been shown to elevate cytosolic calcium (Ca2+) levels, which in turn activate Ca2+-dependent enzymes, including transglutaminase 2 (TG2). Transglutaminase 2 is a multifunctional cross-linking enzyme implicated in various physiological and pathological conditions; however, its involvement in respiratory virus-induced airway inflammation is largely unknown. In this study, we demonstrated that RSV-induced oxidative stress promotes enhanced activation and release of TG2 from human lung epithelial cells as a result of its translocation from the cytoplasm and subsequent release into the extracellular space, which was mediated by Toll-like receptor (TLR)-4 and NF-κB pathways. Antioxidant treatment significantly inhibited RSV-induced TG2 extracellular release and activation via blocking viral replication. Also, treatment of RSV-infected lung epithelial cells with TG2 inhibitor significantly reduced RSV-induced matrix metalloprotease activities. These results suggested that RSV-induced oxidative stress activates innate immune receptors in the airways, such as TLRs, that can activate TG2 via the NF-κB pathway to promote cross-linking of extracellular matrix proteins, resulting in enhanced inflammation.
Collapse
Affiliation(s)
- Kempaiah Rayavara
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| | - Alexander Kurosky
- 2Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas
| | - Yashoda M. Hosakote
- 1Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
25
|
Huang L, Ni J, Duncan T, Song Z, Johnson TS. Development of a unilateral ureteral obstruction model in cynomolgus monkeys. Animal Model Exp Med 2021; 4:359-368. [PMID: 34977487 PMCID: PMC8690991 DOI: 10.1002/ame2.12185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Chronic kidney disease (CKD) has a high global prevalence and large unmet need. Central to developing new CKD therapies are in vivo models in CKD. However, next-generation antibody, protein, and gene therapies are highly specific, meaning some do not cross-react with rodent targets. This complicates preclinical development, as established in vivo rodent models cannot be utilized unless tool therapeutics are also developed. Tool compounds can be difficult to develop and, if available, typically have different epitopes, sequences, and/or altered affinity, making it unclear how efficacious the lead therapeutic may be, or what dosing regimen to investigate. To address this, we aimed to develop a nonhuman primate model of CKD. Methods In vivo rodent unilateral ureteral obstruction (UUO) models kidney fibrosis and is commonly used due to its rapidity, consistency, and ease. We describe translation of this model to the cynomolgus monkey, specifically optimizing the model duration to allow adequate time for assessment of novel therapeutics prior to the fibrotic plateau. Results We demonstrated that disease developed more slowly in cynomolgus monkeys than in rodents post-UUO, with advanced fibrosis developing by 6 weeks. The tubulointerstitial fibrosis in cynomolgus monkeys was more consistent with human obstructive disease than in rodents, having a more aggressive tubular basement expansion and a higher fibroblast infiltration. The fibrosis was also associated with increased transglutaminase activity, consistent with that seen in patients with CKD. Conclusion This cynomolgus monkey UUO model can be used to test potential human-specific therapeutics in kidney fibrosis.
Collapse
Affiliation(s)
| | - Jia Ni
- Research and DevelopmentPrisys BiotechnologiesPudongChina
- Present address:
Haisco Pharmaceutical Group Co., LtdChengduChina
| | | | - Zhizhan Song
- Research and DevelopmentPrisys BiotechnologiesPudongChina
| | - Timothy S. Johnson
- Immunology Therapeutic AreaUCB PharmaSloughUK
- Present address:
Experimental Renal Medicine, Oncology & Human Metabolism, School of MedicineUniversity of SheffieldSheffieldUK
| |
Collapse
|
26
|
Kong W, Lyu C, Liao H, Du Y. Collagen crosslinking: effect on structure, mechanics and fibrosis progression. Biomed Mater 2021; 16. [PMID: 34587604 DOI: 10.1088/1748-605x/ac2b79] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
Biophysical properties of extracellular matrix (ECM), such as matrix stiffness, viscoelasticity and matrix fibrous structure, are emerging as important factors that regulate progression of fibrosis and other chronic diseases. The biophysical properties of the ECM can be rapidly and profoundly regulated by crosslinking reactions in enzymatic or non-enzymatic manners, which further alter the cellular responses and drive disease progression. In-depth understandings of crosslinking reactions will be helpful to reveal the underlying mechanisms of fibrosis progression and put forward new therapeutic targets, whereas related reviews are still devoid. Here, we focus on the main crosslinking mechanisms that commonly exist in a plethora of chronic diseases (e.g. fibrosis, cancer, osteoarthritis) and summarize current understandings including the biochemical reaction, the effect on ECM properties, the influence on cellular behaviors, and related studies in disease model establishment. Potential pharmaceutical interventions targeting the crosslinking process and relevant clinical studies are also introduced. Limitations of pharmaceutical development may be due to the lack of systemic investigations related to the influence on crosslinking mechanism from micro to macro level, which are discussed in the last section. We also propose the unclarified questions regarding crosslinking mechanisms and potential challenges in crosslinking-targeted therapeutics development.
Collapse
Affiliation(s)
- Wenyu Kong
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Cheng Lyu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hongen Liao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
27
|
Pehrsson M, Mortensen JH, Manon-Jensen T, Bay-Jensen AC, Karsdal MA, Davies MJ. Enzymatic cross-linking of collagens in organ fibrosis - resolution and assessment. Expert Rev Mol Diagn 2021; 21:1049-1064. [PMID: 34330194 DOI: 10.1080/14737159.2021.1962711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Enzymatic cross-linking of the collagens within the extracellular matrix (ECM) catalyzed by enzymes such as lysyl oxidase (LOX) and lysyl oxidase like-enzymes 1-4 (LOXL), transglutaminase 2 (TG2), and peroxidasin (PXDN) contribute to fibrosis progression through extensive collagen cross-linking. Studies in recent years have begun elucidating the important role of collagen cross-linking in perpetuating progression of organ fibrosis independently of inflammation through an increasingly stiff and noncompliant ECM. Therefore, collagen cross-linking and the cross-linking enzymes have become new targets in anti-fibrotic therapy as well as targets of novel biomarkers to properly assess resolution of the fibrotic ECM.Areas covered: The enzymatic actions of enzymes catalyzing collagen cross-linking and their relevance in organ fibrosis. Potential biomarkers specifically quantifying proteolytic fragments of collagen cross-linking is discussed based on Pubmed search done in November 2020 as well as the authors knowledge.Expert opinion: Current methods for the assessment of fibrosis involve the use of invasive and/or cumbersome and expensive methods such as tissue biopsies. Thus, an unmet need exists for the development and validation of minimally invasive biomarkers of proteolytic fragments of cross-linked collagens. These biomarkers may aid in the development and proper assessment of fibrosis resolution in coming years.
Collapse
Affiliation(s)
- Martin Pehrsson
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark.,Biomarkers & Research, Nordic Bioscience A/S, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Melkonian AV, Loppinet E, Martin R, Porteus M, Khosla C. An Unusual "OR" Gate for Allosteric Regulation of Mammalian Transglutaminase 2 in the Extracellular Matrix. J Am Chem Soc 2021; 143:10537-10540. [PMID: 34232639 DOI: 10.1021/jacs.1c04616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Transglutaminase 2 (TG2) is a highly expressed mammalian enzyme whose biological function is unclear, although its catalytic activity in the small intestine appears necessary for celiac disease (CeD) pathogenesis. While TG2 activity is reversibly regulated by multiple allosteric mechanisms, their roles under fluctuating physiological conditions are not well understood. Here, we demonstrate that extracellular TG2 activity is competitively controlled by the mutually exclusive binding of a high-affinity Ca2+ ion or the formation of a strained disulfide bond. Binding of Ca2+ at the high-affinity site does not activate TG2 per se, but it protects against oxidative enzyme deactivation while preserving the ability of Ca2+ ions to occupy weaker binding sites capable of allosteric TG2 activation. In contrast, disulfide bond formation competitively occludes the high-affinity Ca2+ site while resulting in complete TG2 inactivation. Because both outcomes are comparably favorable under typical extracellular conditions, subtle changes in the availability of redox catalysts or promoters in the extracellular matrix can dramatically alter steady-state TG2 activity. Thus, TG2 harbors a molecular "OR" gate that determines its catalytic fate upon export from cells.
Collapse
|
29
|
Attarwala HZ, Suri K, Amiji MM. Co-Silencing of Tissue Transglutaminase-2 and Interleukin-15 Genes in a Celiac Disease Mimetic Mouse Model Using a Nanoparticle-in-Microsphere Oral System. Mol Pharm 2021; 18:3099-3107. [PMID: 34228470 DOI: 10.1021/acs.molpharmaceut.1c00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Celiac disease is a chronic inflammatory condition characterized by activation of the immune system in response to deamidation of gluten peptides brought about by tissue transglutaminase-2 (TG2). Overexpression of interleukin-15 (IL-15) in the intestinal epithelium and the lamina propria leads to the dysregulation of the immune system, leading to epithelial damage. The goal of this study was to develop an RNA interference therapeutic strategy for celiac disease using a combination of TG2 and IL-15 gene silencing in the inflamed intestine. TG2 and IL-15 silencing siRNA sequences, along with scrambled control, were encapsulated in a nanoparticle-in-microsphere oral system (NiMOS) and administered in a poly(I:C) mouse model of celiac disease. Single TG2 and IL-15 siRNA therapy and the combination showed effective gene silencing in vivo. Additionally, it was found that IL-15 gene silencing alone and combination in the NiMOS significantly reduced other proinflammatory cytokines. The tissue histopathology data also confirmed a reduction in immune cell infiltration and restoration of the mucosal architecture and barrier function in the intestine upon treatment. Overall, the results of this study show evidence that celiac disease can be potentially treated with an oral microsphere formulation using a combination of TG2 and IL-15 RNA interference therapeutic strategies.
Collapse
Affiliation(s)
- Husain Z Attarwala
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States
| | - Kanika Suri
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts 02115, United States.,Chemical Engineering College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
30
|
Stenberg P, Roth B, Ohlsson B. Zinc as a modulator of transglutaminase activity - Laboratory and pathophysiological aspects. J Transl Autoimmun 2021; 4:100110. [PMID: 34195588 PMCID: PMC8233124 DOI: 10.1016/j.jtauto.2021.100110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/17/2023] Open
Abstract
For a whole century, citrate has been used as an in vitro anticoagulant via chelation of calcium. Later, also EDTA was introduced as an anticoagulant. An often overlooked fact is that zinc is bound to citrate and EDTA with affinities much greater than that for calcium, imposing problems in biomedical research. In vivo, proteins of the S100 family are released from leukocytes and known to bind calcium. Some of them, e.g., calprotectin, also chelate zinc. Thus, at an inflamed site, the ratio between Ca2+ and Zn2+ is changed. This mechanism is of importance for the modulation of the activation of a fascinating family of post-translationally acting calcium-dependent thiol enzymes, the transglutaminases, which are inhibited by zinc. This presentation illustrates the complexity of in vitro studies with zinc. Moreover, it exemplifies the role of Zn2+ in pathophysiological situations such as celiac disease and neurodegeneration. Citrate, EDTA and DTT bind zinc as well as calcium. At inflammation, calprotectin binds Zn2+, which leads to low concentrations of the ion. Zn2+ inhibits the activation of transglutaminases and peptidylarginine deiminases.
Collapse
Affiliation(s)
- Pål Stenberg
- Lund University, Skåne University Hospital Malmö, Clinical Coagulation Research Unit, Malmö, Sweden
| | - Bodil Roth
- Lund University, Skåne University Hospital Malmö, Department of Internal Medicine, Malmö, Sweden
| | - Bodil Ohlsson
- Lund University, Skåne University Hospital Malmö, Department of Internal Medicine, Malmö, Sweden
| |
Collapse
|
31
|
Voisine J, Abadie V. Interplay Between Gluten, HLA, Innate and Adaptive Immunity Orchestrates the Development of Coeliac Disease. Front Immunol 2021; 12:674313. [PMID: 34149709 PMCID: PMC8206552 DOI: 10.3389/fimmu.2021.674313] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/18/2021] [Indexed: 12/26/2022] Open
Abstract
Several environmental, genetic, and immune factors create a "perfect storm" for the development of coeliac disease: the antigen gluten, the strong association of coeliac disease with HLA, the deamidation of gluten peptides by the enzyme transglutaminase 2 (TG2) generating peptides that bind strongly to the predisposing HLA-DQ2 or HLA-DQ8 molecules, and the ensuing unrestrained T cell response. T cell immunity is at the center of the disease contributing to the inflammatory process through the loss of tolerance to gluten and the differentiation of HLA-DQ2 or HLA-DQ8-restricted anti-gluten inflammatory CD4+ T cells secreting pro-inflammatory cytokines and to the killing of intestinal epithelial cells by cytotoxic intraepithelial CD8+ lymphocytes. However, recent studies emphasize that the individual contribution of each of these cell subsets is not sufficient and that interactions between these different populations of T cells and the simultaneous activation of innate and adaptive immune pathways in distinct gut compartments are required to promote disease immunopathology. In this review, we will discuss how tissue destruction in the context of coeliac disease results from the complex interactions between gluten, HLA molecules, TG2, and multiple innate and adaptive immune components.
Collapse
Affiliation(s)
- Jordan Voisine
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Committee on Immunology, The University of Chicago, Chicago, IL, United States
| | - Valérie Abadie
- Department of Medicine, The University of Chicago, Chicago, IL, United States.,Section of Gastroenterology, Nutrition and Hepatology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
32
|
Abstract
INTRODUCTION To test whether parechovirus and anellovirus, frequent enteric viruses, were associated with subsequent celiac disease (CD). We hypothesized that children who later developed CD would have increased frequency of parechovirus infections before transglutaminase 2 (TG2) antibody development. Anellovirus testing was exploratory, as a potential marker of immune status. METHODS Matched case-control design nested within a longitudinal birth cohort (the MIDIA study) of children at genetic risk of CD (carrying the human leukocyte antigen genotype DR4-DQ8/DR3-DQ2, recruited throughout Norway during 2001-2007). We retrospectively tested blood samples taken at age 3, 6, 9, and 12 months, and then annually, to determine when TG2 antibodies developed. Of 220 genetically at-risk children tested, 25 were diagnosed with CD (cases; ESPGHAN 2012 criteria) and matched for follow-up time, birthdate, and county of residence with 2 randomly selected children free from CD (controls) from the cohort. Viruses were quantified in monthly stool samples (collected from 3 through 35 months of age) using real-time polymerase chain reaction methods. RESULTS Parechovirus was detected in 222 of 2,005 stool samples (11.1%) and was more frequent in samples from cases before developing TG2 antibodies (adjusted odds ratio 1.67, 95% confidence interval 1.14-2.45, P = 0.01). The odds ratio was higher when a sample was positive for both parechovirus and enterovirus (adjusted odds ratio 4.73, 95% confidence interval 1.26-17.67, P = 0.02). Anellovirus was detected in 1,540 of 1,829 samples (84.2%), but did not differ significantly between case and control subjects. DISCUSSION Early-life parechovirus infections were associated with development of CD in genetically at-risk children.
Collapse
|
33
|
TGFβ-1 Induced Cross-Linking of the Extracellular Matrix of Primary Human Dermal Fibroblasts. Int J Mol Sci 2021; 22:ijms22030984. [PMID: 33498156 PMCID: PMC7863744 DOI: 10.3390/ijms22030984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Excessive cross-linking is a major factor in the resistance to the remodelling of the extracellular matrix (ECM) during fibrotic progression. The role of TGFβ signalling in impairing ECM remodelling has been demonstrated in various fibrotic models. We hypothesised that increased ECM cross-linking by TGFβ contributes to skin fibrosis in Systemic Sclerosis (SSc). Proteomics was used to identify cross-linking enzymes in the ECM of primary human dermal fibroblasts, and to compare their levels following treatment with TGFβ-1. A significant upregulation and enrichment of lysyl-oxidase-like 1, 2 and 4 and transglutaminase 2 were found. Western blotting confirmed the upregulation of lysyl hydroxylase 2 in the ECM. Increased transglutaminase activity in TGFβ-1 treated ECM was revealed from a cell-based assay. We employed a mass spectrometry-based method to identify alterations in the ECM cross-linking pattern caused by TGFβ-1. Cross-linking sites were identified in collagens I and V, fibrinogen and fibronectin. One cross-linking site in fibrinogen alpha was found only in TGFβ-treated samples. In conclusion, we have mapped novel cross-links between ECM proteins and demonstrated that activation of TGFβ signalling in cultured dermal fibroblasts upregulates multiple cross-linking enzymes in the ECM.
Collapse
|
34
|
Lindstad CB, Qiao SW, Johannesen MK, Fugger L, Sollid LM, du Pré MF. Characterization of T-cell receptor transgenic mice recognizing immunodominant HLA-DQ2.5-restricted gluten epitopes. Eur J Immunol 2020; 51:1002-1005. [PMID: 33368209 DOI: 10.1002/eji.202048859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/02/2020] [Accepted: 11/27/2020] [Indexed: 11/06/2022]
Abstract
We created a TCR transgenic mouse with CD4+ T cells recognizing the immunodominant DQ2.5-glia-ω2 gluten epitope. We show that these cells respond to deamidated gluten feed in vivo and compare them to previously published α2- and γ1-specific mice. These mice may help enlighten key aspects of celiac disease pathogenesis.
Collapse
Affiliation(s)
- Christian B Lindstad
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Marie K Johannesen
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo, Oslo, Norway
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ludvig M Sollid
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - M Fleur du Pré
- K.G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
35
|
Espino L, Núñez C. The HLA complex and coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:47-83. [PMID: 33707057 DOI: 10.1016/bs.ircmb.2020.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Human Leukocyte Antigen (HLA) has a crucial role in the development and pathogenesis of coeliac disease (CD). The genes HLA-DQA1 and HLA-DQB1, both lying in this region and encoding the HLA-DQ heterodimer, are the main genetic predisposing factors to CD. Approximately 90% of CD patients carry the heterodimer HLA-DQ2.5, leaving only a small proportion of patients with lower risk heterodimers (HLA-DQ8, HLA-DQ2.2 or HLA-DQ7.5). These HLA-DQ molecules act as receptors present in the surface of antigen presenting cells and show high affinity for deamidated gluten peptides, which bind and present to CD4+ T cells. This triggers the immunological reaction that evolves into CD. Since specific HLA genetics is present in almost the totality of CD patients, HLA typing has a very high negative predictive value, and it can be used to support diagnosis in specific scenarios. HLA risk has been associated to different CD-related features, such as age at onset, clinical outcomes, antibody levels and grade of histological lesion; but further research is needed. HLA-DQ genotypes have been also suggested to modulate the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Espino
- Laboratorio de investigación en Genética de enfermedades complejas, Hospital Clínicos San Carlos, IdISSC, Madrid, Spain
| | - Concepción Núñez
- Laboratorio de investigación en Genética de enfermedades complejas, Hospital Clínicos San Carlos, IdISSC, Madrid, Spain.
| |
Collapse
|
36
|
Chirdo FG, Auricchio S, Troncone R, Barone MV. The gliadin p31-43 peptide: Inducer of multiple proinflammatory effects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:165-205. [PMID: 33707054 DOI: 10.1016/bs.ircmb.2020.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coeliac disease (CD) is the prototype of an inflammatory chronic disease induced by food. In this context, gliadin p31-43 peptide comes into the spotlight as an important player of the inflammatory/innate immune response to gliadin in CD. The p31-43 peptide is part of the p31-55 peptide from α-gliadins that remains undigested for a long time, and can be present in the small intestine after ingestion of a gluten-containing diet. Different biophysical methods and molecular dynamic simulations have shown that p31-43 spontaneously forms oligomeric nanostructures, whereas experimental approaches using in vitro assays, mouse models, and human duodenal tissues have shown that p31-43 is able to induce different forms of cellular stress by driving multiple inflammatory pathways. Increased proliferative activity of the epithelial cells in the crypts, enterocyte stress, activation of TG2, induction of Ca2+, IL-15, and NFκB signaling, inhibition of CFTR, alteration of vesicular trafficking, and activation of the inflammasome platform are some of the biological effects of p31-43, which, in the presence of appropriate genetic susceptibility and environmental factors, may act together to drive CD.
Collapse
Affiliation(s)
- Fernando Gabriel Chirdo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Estudios Inmunológicos y Fisiopatológicos-IIFP (UNLP-CONICET), La Plata, Argentina.
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy; Department of Translational Medical Science, University Federico II, Naples, Italy
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University Federico II, Naples, Italy; Department of Translational Medical Science, University Federico II, Naples, Italy
| |
Collapse
|
37
|
Zhuang R, Khosla C. Substrates, inhibitors, and probes of mammalian transglutaminase 2. Anal Biochem 2020; 591:113560. [PMID: 31874171 PMCID: PMC6948143 DOI: 10.1016/j.ab.2019.113560] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2) is a ubiquitous but enigmatic mammalian protein to which a number of biological functions have been ascribed but not definitively proven. As a member of the transglutaminase family, TG2 can catalyze deamidation or alternatively transamidation of selected Gln residues in proteins and peptides. It is also known to harbor other enzymatic properties, including protein disulfide isomerase, GTP-dependent signal transduction, and ATP dependent protein kinase activity. Given its multifunctional chemistry, it is unsurprising that a long list of proteins from the mammalian proteome have been identified as substrates and/or binding partners; however, the biological relevance of none of these protein-protein interactions has been clarified as yet. Remarkably, the most definitive insights into the biology of TG2 stem from its pathophysiological role in gluten peptide deamidation in celiac disease. Meanwhile our understanding of TG2 chemistry has been leveraged to engineer a spectrum of inhibitors and other molecular probes of TG2 biology in vivo. This review summarizes our current knowledge of the enzymology and regulation of human TG2 with a focus on its physiological substrates as well as tool molecules whose engineering was inspired by their identities.
Collapse
Affiliation(s)
- Ruize Zhuang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Department of Chemistry, Stanford University, Stanford, CA, USA; Stanford ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Osorio CE, Mejías JH, Rustgi S. Gluten Detection Methods and Their Critical Role in Assuring Safe Diets for Celiac Patients. Nutrients 2019; 11:E2920. [PMID: 31810336 PMCID: PMC6949940 DOI: 10.3390/nu11122920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Celiac disease, wheat sensitivity, and allergy represent three different reactions, which may occur in genetically predisposed individuals on the ingestion of wheat and derived products with various manifestations. Improvements in the disease diagnostics and understanding of disease etiology unveiled that these disorders are widespread around the globe affecting about 7% of the population. The only known treatment so far is a life-long gluten-free diet, which is almost impossible to follow because of the contamination of allegedly "gluten-free" products. Accidental contamination of inherently gluten-free products could take place at any level from field to shelf because of the ubiquity of these proteins/grains. Gluten contamination of allegedly "gluten-free" products is a constant threat to celiac patients and a major health concern. Several detection procedures have been proposed to determine the level of contamination in products for celiac patients. The present article aims to review the advantages and disadvantages of different gluten detection methods, with emphasis on the recent technology that allows identification of the immunogenic-gluten peptides without the use of antibodies. The possibility to detect gluten contamination by different approaches with similar or better detection efficiency in different raw and processed foods will guarantee the safety of the foods for celiac patients.
Collapse
Affiliation(s)
- Claudia E. Osorio
- Agriaquaculture Nutritional Genomic Center, CGNA, Las Heras 350, Temuco 4781158, Chile
| | - Jaime H. Mejías
- Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Temuco 4880000, Chile
| | - Sachin Rustgi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC 29506, USA
| |
Collapse
|
39
|
Hauser S, Wodtke R, Tondera C, Wodtke J, Neffe AT, Hampe J, Lendlein A, Löser R, Pietzsch J. Characterization of Tissue Transglutaminase as a Potential Biomarker for Tissue Response toward Biomaterials. ACS Biomater Sci Eng 2019; 5:5979-5989. [PMID: 33405720 DOI: 10.1021/acsbiomaterials.9b01299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tissue transglutaminase (TGase 2) is proposed to be important for biomaterial-tissue interactions due to its presence and versatile functions in the extracellular environment. TGase 2 catalyzes the cross-linking of proteins through its Ca2+-dependent acyltransferase activity. Moreover, it enhances the interactions between fibronectin and integrins, which in turn mediates the adhesion, migration, and motility of the cells. TGase 2 is also a key player in the pathogenesis of fibrosis. In this study, we investigated whether TGase 2 is present at the biomaterial-tissue interface and might serve as an informative biomarker for the visualization of tissue response toward gelatin-based biomaterials. Two differently cross-linked hydrogels were used, which were obtained by the reaction of gelatin with lysine diisocyanate ethyl ester. The overall expression of TGase 2 by endothelial cells, macrophages, and granulocytes was partly influenced by contact to the hydrogels or their degradation products, although no clear correlation was evidenced. In contrast, the secretion of TGase 2 differed remarkably between the different cells, indicating that it might be involved in the cellular reaction toward gelatin-based hydrogels. The hydrogels were implanted subcutaneously in immunocompetent, hairless SKH1-Elite mice. Ex vivo immunohistochemical analysis of tissue sections over 112 days revealed enhanced expression of TGase 2 around the hydrogels, in particular at days 14 and 21 post-implantation. The incorporation of fluorescently labeled cadaverine derivatives for the detection of active TGase 2 was in accordance with the results of the expression analysis. The presence of an irreversible inhibitor of TGase 2 led to attenuated incorporation of the cadaverines, which verified the catalytic action of TGase 2. Our in vitro and ex vivo results verified TGase 2 as a potential biomarker for tissue response toward gelatin-based hydrogels. In vivo, no TGase 2 activity was detectable, which is mainly attributed to the unfavorable physicochemical properties of the cadaverine probe used.
Collapse
Affiliation(s)
- Sandra Hauser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Robert Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Christoph Tondera
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden 01307, Germany
| | - Johanna Wodtke
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany
| | - Axel T Neffe
- Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Teltow 14513, Germany.,Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Teltow 14513, Germany
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Andreas Lendlein
- Helmholtz Virtual Institute on Multifunctional Biomaterials for Medicine, Teltow 14513, Germany.,Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Teltow 14513, Germany.,Institute of Chemistry, University of Potsdam, Potsdam 14469, Germany
| | - Reik Löser
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany.,Faculty of Chemistry and Food Chemistry, School of Sciences, Technische Universität Dresden, Dresden 01307, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden 01328, Germany.,Faculty of Chemistry and Food Chemistry, School of Sciences, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
40
|
Abstract
Transglutaminase 2 (TG2) is a ubiquitous mammalian enzyme that is implicated in a variety of physiological processes and human diseases. Normally, extracellular TG2 is catalytically dormant due to formation of an allosteric disulphide bond between Cys370 and 371 of the enzyme. In this protocol, we describe a method to reduce this disulphide bond in living mice and to monitor the resulting in vivo TG2 activity. Briefly, exogenous thioredoxin-1 protein (TRX) is prepared and administered as a specific, physiologically relevant reductant of the Cys370-371 disulphide along with the small molecule 5-biotinamidopentylamine (5-BP) as a TG2 activity probe. Tissue cryosections are then analyzed by immunohistochemistry to ascertain the extent of 5-BP incorporation, which serves as a record of the redox state of TG2 in vivo. This protocol focuses on the modulation and measurement of TG2 in the small intestine, but we encourage investigators to evaluate it in their organ(s) of interest.
Collapse
Affiliation(s)
- Arek V Melkonian
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | - Nielson Weng
- School of Medicine, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Brad A Palanski
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Stanford ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
41
|
Affiliation(s)
- Laszlo Lorand
- Department of Cell and Molecular BiologyNorthwestern University Feinberg School of Medicine Chicago Illinois USA
| | - Siiri E. Iismaa
- Molecular Cardiology and Biophysics DivisionVictor Chang Cardiac Research Institute Darlinghurst New South Wales Australia
- St Vincent's Clinical SchoolUniversity of New South Wales Kensington New South Wales Australia
| |
Collapse
|
42
|
Biocatalysis by Transglutaminases: A Review of Biotechnological Applications. MICROMACHINES 2018; 9:mi9110562. [PMID: 30715061 PMCID: PMC6265872 DOI: 10.3390/mi9110562] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 02/08/2023]
Abstract
The biocatalytic activity of transglutaminases (TGs) leads to the synthesis of new covalent isopeptide bonds (crosslinks) between peptide-bound glutamine and lysine residues, but also the transamidation of primary amines to glutamine residues, which ultimately can result into protein polymerisation. Operating with a cysteine/histidine/aspartic acid (Cys/His/Asp) catalytic triad, TGs induce the post-translational modification of proteins at both physiological and pathological conditions (e.g., accumulation of matrices in tissue fibrosis). Because of the disparate biotechnological applications, this large family of protein-remodelling enzymes have stimulated an escalation of interest. In the past 50 years, both mammalian and microbial TGs polymerising activity has been exploited in the food industry for the improvement of aliments' quality, texture, and nutritive value, other than to enhance the food appearance and increased marketability. At the same time, the ability of TGs to crosslink extracellular matrix proteins, like collagen, as well as synthetic biopolymers, has led to multiple applications in biomedicine, such as the production of biocompatible scaffolds and hydrogels for tissue engineering and drug delivery, or DNA-protein bio-conjugation and antibody functionalisation. Here, we summarise the most recent advances in the field, focusing on the utilisation of TGs-mediated protein multimerisation in biotechnological and bioengineering applications.
Collapse
|
43
|
Soluri MF, Boccafoschi F, Cotella D, Moro L, Forestieri G, Autiero I, Cavallo L, Oliva R, Griffin M, Wang Z, Santoro C, Sblattero D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells. FASEB J 2018; 33:2327-2342. [PMID: 30285580 DOI: 10.1096/fj.201800054rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interaction between the enzyme transglutaminase 2 (TG2) and fibronectin (FN) is involved in the cell-matrix interactions that regulate cell signaling, adhesion, and migration and play central roles in pathologic conditions, particularly fibrosis and cancer. A precise definition of the exact interaction domains on both proteins could provide a tool to design novel molecules with potential therapeutic applications. Although specific residues involved in the interaction within TG2 have been analyzed, little is known regarding the TG2 binding site on FN. This site has been mapped to a large internal 45-kDa protein fragment coincident with the gelatin binding domain (GBD). With the goal of defining the minimal FN interacting domain for TG2, we produced several expression constructs encoding different portions or modules of the GBD and tested their binding and functional properties. The results demonstrate that the I8 module is necessary and sufficient for TG2-binding in vitro, but does not have functional effects on TG2-expressing cells. Modules I7 and I9 increase the strength of the binding and are required for cell adhesion. A 15-kDa fragment encompassing modules I7-9 behaves as the whole 45-kDa GBD and mediates signaling, adhesion, spreading, and migration of TG2+ cells. This study provides new insights into the mechanism for TG2 binding to FN.-Soluri, M. F., Boccafoschi, F., Cotella, D., Moro, L., Forestieri, G., Autiero, I., Cavallo, L., Oliva, R., Griffin, M., Wang, Z., Santoro, C., Sblattero, D. Mapping the minimum domain of the fibronectin binding site on transglutaminase 2 (TG2) and its importance in mediating signaling, adhesion, and migration in TG2-expressing cells.
Collapse
Affiliation(s)
- Maria Felicia Soluri
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Diego Cotella
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Laura Moro
- Department of Pharmaceutical Sciences, University of Piemonte Orientale (UPO), Novara, Italy
| | - Gabriela Forestieri
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Ida Autiero
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Naples, Italy.,Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Martin Griffin
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom; and
| | - Zhuo Wang
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom; and
| | - Claudio Santoro
- Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, Italy.,Interdisciplinary Research Center on Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | | |
Collapse
|
44
|
Spotlight on the transglutaminase 2 gene: a focus on genomic and transcriptional aspects. Biochem J 2018; 475:1643-1667. [PMID: 29764956 DOI: 10.1042/bcj20170601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 01/16/2023]
Abstract
The type 2 isoenzyme is the most widely expressed transglutaminase in mammals displaying several intra- and extracellular activities depending on its location (protein modification, modulation of gene expression, membrane signalling and stabilization of cellular interactions with the extracellular matrix) in relation to cell death, survival and differentiation. In contrast with the appreciable knowledge about the regulation of the enzymatic activities, much less is known concerning its inducible expression, which is altered in inflammatory and neoplastic diseases. In this context, we first summarize the gene's basic features including single-nucleotide polymorphism characterization, epigenetic DNA methylation and identification of regulatory regions and of transcription factor-binding sites at the gene promoter, which could concur to direct gene expression. Further aspects related to alternative splicing events and to ncRNAs (microRNAs and lncRNAs) are involved in the modulation of its expression. Notably, this important gene displays transcriptional variants relevant for the protein's function with the occurrence of at least seven transcripts which support the synthesis of five isoforms with modified catalytic activities. The different expression of the TG2 (type 2 transglutaminase) variants might be useful for dictating the multiple biological features of the protein and their alterations in pathology, as well as from a therapeutic perspective.
Collapse
|
45
|
Chrobok NL, Bol JGJM, Jongenelen CA, Brevé JJP, El Alaoui S, Wilhelmus MMM, Drukarch B, van Dam AM. Characterization of Transglutaminase 2 activity inhibitors in monocytes in vitro and their effect in a mouse model for multiple sclerosis. PLoS One 2018; 13:e0196433. [PMID: 29689097 PMCID: PMC5918173 DOI: 10.1371/journal.pone.0196433] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023] Open
Abstract
The neurodegenerative disease multiple sclerosis (MS) is pathologically characterized by the massive influx of immune cells into the central nervous system. This contributes to demyelination and axonal damage which causes symptoms such as motor and cognitive dysfunctions. The migration of leukocytes from the blood vessel is orchestrated by a multitude of factors whose determination is essential in reducing cellular influx in MS patients and the experimental autoimmune encephalomyelitis (EAE) animal model. The here studied enzyme tissue Transglutaminase (TG2) is present intracellularly, on the cell surface and extracellularly. There it contributes to cellular adhesion and migration via its transamidation activity and possibly by facilitating cellular interaction with the extracellular matrix. Previous data from our group showed reduced motor symptoms and cellular infiltration after using a pharmacological TG2 transamidation activity inhibitor in a rat EAE model. However, it remained elusive if the cross-linking activity of the enzyme resulted in the observed effects. To follow-up, we now characterized two new small molecule TG2 activity inhibitors, BJJF078 and ERW1041E. Both compounds are potent inhibitor of recombinant human and mouse Transglutaminase enzyme activity, mainly TG2 and the close related enzyme TG1. In addition they did not affect the binding of TG2 to the extracellular matrix substrate fibronectin, a process via which TG2 promotes cellular adhesion and migration. We found, that ERW1041E but not BJJF078 resulted in reduced EAE disease motor-symptoms while neither caused apparent changes in pathology (cellular influx), Transglutaminase activity or expression of inflammation related markers in the spinal cord, compared to vehicle treated controls. Although we cannot exclude issues on bioavailability and in vivo efficacy of the used compounds, we hypothesize that extracellular TG1/TG2 activity is of greater importance than (intra-)cellular activity in mouse EAE pathology.
Collapse
Affiliation(s)
- Navina L. Chrobok
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - John G. J. M. Bol
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Cornelis A. Jongenelen
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - John J. P. Brevé
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Micha M. M. Wilhelmus
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Benjamin Drukarch
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
46
|
Wodtke R, Hauser C, Ruiz-Gómez G, Jäckel E, Bauer D, Lohse M, Wong A, Pufe J, Ludwig FA, Fischer S, Hauser S, Greif D, Pisabarro MT, Pietzsch J, Pietsch M, Löser R. Nε-Acryloyllysine Piperazides as Irreversible Inhibitors of Transglutaminase 2: Synthesis, Structure–Activity Relationships, and Pharmacokinetic Profiling. J Med Chem 2018; 61:4528-4560. [DOI: 10.1021/acs.jmedchem.8b00286] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Robert Wodtke
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Christoph Hauser
- Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Straße 24, 50931 Köln, Germany
| | - Gloria Ruiz-Gómez
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Elisabeth Jäckel
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
| | - David Bauer
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Martin Lohse
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
| | - Alan Wong
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Johanna Pufe
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Friedrich-Alexander Ludwig
- Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
| | - Steffen Fischer
- Institut für Radiopharmazeutische Krebsforschung, Forschungsstelle Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
| | - Sandra Hauser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Dieter Greif
- Fakultät Natur- und Umweltwissenschaften, Hochschule Zittau/Görlitz, Theodor-Körner-Allee 16, 02763 Zittau, Germany
| | - M. Teresa Pisabarro
- Structural Bioinformatics, BIOTEC, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Jens Pietzsch
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| | - Markus Pietsch
- Zentrum für Pharmakologie, Medizinische Fakultät, Universität zu Köln, Gleueler Straße 24, 50931 Köln, Germany
| | - Reik Löser
- Institut für Radiopharmazeutische Krebsforschung, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Fakultät Chemie und Lebensmittelchemie, Technische Universität Dresden, Mommsenstraße 4, 01062 Dresden, Germany
| |
Collapse
|
47
|
Furini G, Schroeder N, Huang L, Boocock D, Scarpellini A, Coveney C, Tonoli E, Ramaswamy R, Ball G, Verderio C, Johnson TS, Verderio EAM. Proteomic Profiling Reveals the Transglutaminase-2 Externalization Pathway in Kidneys after Unilateral Ureteric Obstruction. J Am Soc Nephrol 2018; 29:880-905. [PMID: 29382685 DOI: 10.1681/asn.2017050479] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/11/2017] [Indexed: 12/21/2022] Open
Abstract
Increased export of transglutaminase-2 (TG2) by tubular epithelial cells (TECs) into the surrounding interstitium modifies the extracellular homeostatic balance, leading to fibrotic membrane expansion. Although silencing of extracellular TG2 ameliorates progressive kidney scarring in animal models of CKD, the pathway through which TG2 is secreted from TECs and contributes to disease progression has not been elucidated. In this study, we developed a global proteomic approach to identify binding partners of TG2 responsible for TG2 externalization in kidneys subjected to unilateral ureteric obstruction (UUO) using TG2 knockout kidneys as negative controls. We report a robust and unbiased analysis of the membrane interactome of TG2 in fibrotic kidneys relative to the entire proteome after UUO, detected by SWATH mass spectrometry. The data have been deposited to the ProteomeXchange with identifier PXD008173. Clusters of exosomal proteins in the TG2 interactome supported the hypothesis that TG2 is secreted by extracellular membrane vesicles during fibrosis progression. In established TEC lines, we found TG2 in vesicles of both endosomal (exosomes) and plasma membrane origin (microvesicles/ectosomes), and TGF-β1 stimulated TG2 secretion. Knockout of syndecan-4 (SDC4) greatly impaired TG2 exosomal secretion. TG2 coprecipitated with SDC4 from exosome lysate but not ectosome lysate. Ex vivo, EGFP-tagged TG2 accumulated in globular elements (blebs) protruding/retracting from the plasma membrane of primary cortical TECs, and SDC4 knockout impaired bleb formation, affecting TG2 release. Through this combined in vivo and in vitro approach, we have dissected the pathway through which TG2 is secreted from TECs in CKD.
Collapse
Affiliation(s)
- Giulia Furini
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Nina Schroeder
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Linghong Huang
- Academic Nephrology Unit, Sheffield Kidney Institute, University of Sheffield, Sheffield, United Kingdom
| | - David Boocock
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom; and
| | - Alessandra Scarpellini
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Clare Coveney
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom; and
| | - Elisa Tonoli
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Raghavendran Ramaswamy
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Graham Ball
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, United Kingdom; and
| | - Claudia Verderio
- National Research Council, Institute of Neuroscience, Milan, Italy
| | - Timothy S Johnson
- Academic Nephrology Unit, Sheffield Kidney Institute, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
48
|
Yi MC, Melkonian AV, Ousey JA, Khosla C. Endoplasmic reticulum-resident protein 57 (ERp57) oxidatively inactivates human transglutaminase 2. J Biol Chem 2018; 293:2640-2649. [PMID: 29305423 DOI: 10.1074/jbc.ra117.001382] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 12/28/2017] [Indexed: 01/31/2023] Open
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed, intracellular as well as extracellular protein with multiple modes of post-translational regulation, including an allosteric disulfide bond between Cys-370-Cys-371 that renders the enzyme inactive in the extracellular matrix. Although recent studies have established that extracellular TG2 is switched "on" by the redox cofactor protein thioredoxin-1 (TRX), it is unclear how TG2 is switched "off." Here, we demonstrate that TG2 oxidation by small-molecule biological oxidants, including glutathione, cystine, and hydrogen peroxide, is unlikely to be the inactivation mechanism. Instead, endoplasmic reticulum (ER)-resident protein 57 (ERp57), a protein in the ER that promotes folding of nascent proteins and is also present in the extracellular environment, has the cellular and biochemical characteristics for inactivating TG2. We found that ERp57 colocalizes with extracellular TG2 in cultured human umbilical vein endothelial cells (HUVECs). ERp57 oxidized TG2 with a rate constant that was 400-2000-fold higher than those of the aforementioned small molecule oxidants. Moreover, its specificity for TG2 was also markedly higher than those of other secreted redox proteins, including protein disulfide isomerase (PDI), ERp72, TRX, and quiescin sulfhydryl oxidase 1 (QSOX1). Lastly, siRNA-mediated ERp57 knockdown in HUVECs increased TG2-catalyzed transamidation in the extracellular environment. We conclude that, to the best of our knowledge, the disulfide bond switch in human TG2 represents the first example of a post-translational redox regulatory mechanism that is reversibly and allosterically modulated by two distinct proteins (ERp57 and TRX).
Collapse
Affiliation(s)
- Michael C Yi
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Arek V Melkonian
- Department of Chemical Engineering, Stanford University, Stanford, California 94305; School of Medicine, Stanford University, Stanford, California 94305
| | - James A Ousey
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305; Department of Chemistry, Stanford University, Stanford, California 94305; Stanford ChEM-H, Stanford University, Stanford, California 94305.
| |
Collapse
|
49
|
Karsdal MA, Nielsen SH, Leeming DJ, Langholm LL, Nielsen MJ, Manon-Jensen T, Siebuhr A, Gudmann NS, Rønnow S, Sand JM, Daniels SJ, Mortensen JH, Schuppan D. The good and the bad collagens of fibrosis - Their role in signaling and organ function. Adv Drug Deliv Rev 2017; 121:43-56. [PMID: 28736303 DOI: 10.1016/j.addr.2017.07.014] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/11/2022]
Abstract
Usually the dense extracellular structure in fibrotic tissues is described as extracellular matrix (ECM) or simply as collagen. However, fibrosis is not just fibrosis, which is already exemplified by the variant morphological characteristics of fibrosis due to viral versus cholestatic, autoimmune or toxic liver injury, with reticular, chicken wire and bridging fibrosis. Importantly, the overall composition of the ECM, especially the relative amounts of the many types of collagens, which represent the most abundant ECM molecules and which centrally modulate cellular functions and physiological processes, changes dramatically during fibrosis progression. We hypothesize that there are good and bad collagens in fibrosis and that a change of location alone may change the function from good to bad. Whereas basement membrane collagen type IV anchors epithelial and other cells in a polarized manner, the interstitial fibroblast collagens type I and III do not provide directional information. In addition, feedback loops from biologically active degradation products of some collagens are examples of the importance of having the right collagen at the right place and at the right time controlling cell function, proliferation, matrix production and fate. Examples are the interstitial collagen type VI and basement membrane collagen type XVIII. Their carboxyterminal propeptides serve as an adipose tissue hormone, endotrophin, and as a regulator of angiogenesis, endostatin, respectively. We provide an overview of the 28 known collagen types and propose that the molecular composition of the ECM in fibrosis needs careful attention to assess its impact on organ function and its potential to progress or reverse. Consequently, to adequately assess fibrosis and to design optimal antifibrotic therapies, we need to dissect the molecular entity of fibrosis for the molecular composition and spatial distribution of collagens and the associated ECM.
Collapse
Affiliation(s)
- M A Karsdal
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark.
| | - S H Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D J Leeming
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - L L Langholm
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - M J Nielsen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - T Manon-Jensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - A Siebuhr
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - N S Gudmann
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S Rønnow
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J M Sand
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - S J Daniels
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - J H Mortensen
- Nordic Bioscience Biomarkers & Research A/S, Herlev, Denmark
| | - D Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Jabri B, Sollid LM. T Cells in Celiac Disease. THE JOURNAL OF IMMUNOLOGY 2017; 198:3005-3014. [PMID: 28373482 DOI: 10.4049/jimmunol.1601693] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022]
Abstract
Celiac disease is a human T cell-mediated autoimmune-like disorder caused by exposure to dietary gluten in genetically predisposed individuals. This review will discuss how CD4 T cell responses directed against an exogenous Ag can cause an autoreactive B cell response and participate in the licensing of intraepithelial lymphocytes to kill intestinal epithelial cells. Furthermore, this review will examine the mechanisms by which intraepithelial cytotoxic T cells mediate tissue destruction in celiac disease.
Collapse
Affiliation(s)
- Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637; .,Department of Pathology, University of Chicago, Chicago, IL 60637.,Department of Pediatrics, University of Chicago, Chicago, IL 60637; and
| | - Ludvig M Sollid
- Department of Immunology, Centre for Immune Regulation, K.G. Jebsen Coeliac Disease Research Centre, University of Oslo and Oslo University Hospital-Rikshospitalet, N-0372 Oslo, Norway
| |
Collapse
|