1
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2025; 31:2416847. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Maxwell CB, Stylianou P, Marshall H, Hall AJ, Quinn PA, Ng LL, Jones DJ, Bradding P, Roach KM. TGFβ1 generates a pro-fibrotic proteome in human lung parenchyma that is sensitive to pharmacological intervention. Eur J Pharmacol 2025; 997:177461. [PMID: 40049575 DOI: 10.1016/j.ejphar.2025.177461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Novel treatments for idiopathic pulmonary fibrosis (IPF) are needed urgently. A better understanding of the molecular pathways activated by TGFβ1 in human lung tissue may facilitate the development of more effective anti-fibrotic medications. This study utilized proteomic analysis to test the hypothesis that TGFβ1 induces pro-fibrotic effects on human lung parenchyma proteome, and to evaluate the viability of this model for testing novel therapeutic targets. METHODS Non-fibrotic human lung parenchymal tissue from 11 patients was cultured for 7 days in serum-free (SF) media supplemented with TGFβ1 (10 ng/mL) or vehicle control, and the putative antifibrotic KCa3.1 ion channel blocker senicapoc or vehicle control. The tissue was homogenised, digested for bottom-up proteomics, and analysed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Principal component analysis, differential expression analysis, pathway analysis, and drug repurposing analysis were performed. RESULTS TGFβ1 stimulation for 7 days induced a strong fibrotic protein response relevant to IPF pathology. A total of 2391 proteins were quantified, 306 upregulated and 285 downregulated (FDR-adjusted p-value<0.05). Of these, 118 were upregulated and 28 downregulated at log2(FC) > 0.58. These changes were attenuated by senicapoc (100 nM). Drug repurposing analysis identified 265 drugs predicted to inhibit the effects of TGFβ1 in this model. These included clotrimazole, a KCa3.1 blocker, and nintedanib, a drug licenced for the treatment of IPF, providing validation of this approach. CONCLUSION A pro-fibrotic proteome is induced in human lung parenchyma exposed to TGFβ1, sensitive to pharmacological intervention. This approach has the potential to enhance therapeutic drug screening for IPF treatment.
Collapse
Affiliation(s)
- Colleen B Maxwell
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular BRC, Glenfield Hospital, University of Leicester, Leicester, UK; Leicester van Geest MultiOMICS Facility, Hodgkin Building, University of Leicester, Leicester, UK.
| | - Panayiota Stylianou
- Department of Respiratory Sciences, Leicester Respiratory NIHR BRC, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Hilary Marshall
- Department of Respiratory Sciences, Leicester Respiratory NIHR BRC, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Alfie J Hall
- Department of Respiratory Sciences, Leicester Respiratory NIHR BRC, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Paulene A Quinn
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular BRC, Glenfield Hospital, University of Leicester, Leicester, UK; Leicester van Geest MultiOMICS Facility, Hodgkin Building, University of Leicester, Leicester, UK
| | - Leong L Ng
- Department of Cardiovascular Sciences and NIHR Leicester Cardiovascular BRC, Glenfield Hospital, University of Leicester, Leicester, UK; Leicester van Geest MultiOMICS Facility, Hodgkin Building, University of Leicester, Leicester, UK
| | - Donald Jl Jones
- Leicester van Geest MultiOMICS Facility, Hodgkin Building, University of Leicester, Leicester, UK; Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Peter Bradding
- Department of Respiratory Sciences, Leicester Respiratory NIHR BRC, Glenfield Hospital, University of Leicester, Leicester, UK
| | - Katy M Roach
- Department of Respiratory Sciences, Leicester Respiratory NIHR BRC, Glenfield Hospital, University of Leicester, Leicester, UK
| |
Collapse
|
3
|
Hu DJK, Cai XT, Simons J, Yun J, Elstrott J, Jasper H. Non-canonical Wnt signaling promotes epithelial fluidization in the repairing airway. Nat Commun 2025; 16:4124. [PMID: 40319020 PMCID: PMC12049509 DOI: 10.1038/s41467-025-59320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 04/17/2025] [Indexed: 05/07/2025] Open
Abstract
Concerted migration of basal stem cells (BCs) in the airway, also known as epithelial fluidization, has been implicated in epithelial repair after injury. How BC migration is regulated, and how it influences the success of epithelial repair, remains unclear. Here we have identified non-canonical Wnt signaling through Ptk7, Fzd7, and YAP as a critical regulator of BC migration in the mouse trachea. Using live imaging and genetic studies in the mouse, we find that Ptk7 is required for the concerted movement of BCs after injury, and that this requirement extends to BC proliferation and subsequent restoration of epithelial homeostasis after injury. We demonstrate that Ptk7 exerts this function in conjunction with Wnt5a and Fzd7, and through YAP activation in BCs. Our data provide mechanistic insight into the regulation of epithelial repair in the airway.
Collapse
Affiliation(s)
- Daniel Jun-Kit Hu
- Regenerative Medicine, Genentech Inc., South San Francisco, CA, USA.
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA.
| | - Xiaoyu Tracy Cai
- Regenerative Medicine, Genentech Inc., South San Francisco, CA, USA
- Department of Medicine, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA
| | - Jesse Simons
- Regenerative Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Jina Yun
- Regenerative Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Justin Elstrott
- Translational Imaging, Genentech Inc., South San Francisco, CA, USA
| | - Heinrich Jasper
- Regenerative Medicine, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
4
|
Ghanemi A, Yoshioka M, St-Amand J. A Single Intraperitoneal Secreted Protein Acidic and Rich in Cysteine Injection in Mice Is Towards an Exercise-like Phenotype. BIOLOGY 2025; 14:398. [PMID: 40282263 PMCID: PMC12025124 DOI: 10.3390/biology14040398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a protein widely expressed in various tissues. The metabolic and functional exploration of SPARC indicated it as a mediator of the exercise-induced effects. Furthermore, SPARC overexpression mimics exercise effects (including anti-aging phenotype), whereas its knockout both reduces the exercise-induced phenotype and increases aging. Each of these previous studies has been carried out for weeks and, therefore, indicates chronic effects of SPARC. To complete the puzzle, there is a need to explore the acute effects of SPARC. Thus, this study reports results of selected molecular and metabolic explorations of mice following a single injection of SPARC. Following both a validation of the Western blot as a detection method of SPARC in the serum and the optimization of the post-injection sacrifice time, mice (male and female) were injected with either SPARC or saline and sacrificed after 4 h. Body weight, selected tissues weights, and glycemia were measured. Muscle (tibialis anterior)-that was also harvested after the sacrifice and frozen-was used to measure the expression of selected proteins related to metabolism, protein hemostasis, and muscle development. Briefly, the results indicate a protein expression pattern towards improved glucose metabolism, oxidative phosphorylation, mitochondrial biogenesis, extracellular matrix remodeling, myogenesis, and protein synthesis. On the other hand, the expression of other proteins is towards decreased muscle protein degradation. There were no significant effects of SPARC injection on glycemia. These findings represent an important step towards developing a pharmacology based on injecting SPARC to achieve therapeutic effects that basically mimic exercise benefits, including anti-aging, metabolic enhancement, and muscle development. This is of particular importance for individuals who are unable to perform the required physical activity due to physical disabilities, aging, or hospitalization.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Faculty of Pharmacy, Laval University, Quebec, QC G1V 0A6, Canada
- Université Laval’s Research Centre: The Tissue Engineering Laboratory (LOEX), Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
| | - Jonny St-Amand
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (A.G.); (M.Y.)
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
5
|
Arlen MT, Patterson SJ, Page MK, Liu R, Caruana V, Wilson ET, Laporte SA, Goniewicz ML, Harris CS, Eidelman DH, Baglole CJ. Cannabis vaping elicits transcriptomic and metabolomic changes involved in inflammatory, oxidative stress, and cancer pathways in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L478-L496. [PMID: 39823205 DOI: 10.1152/ajplung.00131.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/27/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025] Open
Abstract
The increasing shift from cannabis smoking to cannabis vaping is largely driven by the perception that vaping to form an aerosol represents a safer alternative to smoking and is a form of consumption appealing to youth. Herein, we compared the chemical composition and receptor-mediated activity of cannabis smoke extract (CaSE) to cannabis vaping extract (CaVE) along with the biological response in human bronchial epithelial cells. Chemical analysis using HPLC and GC/MS revealed that cannabis vaping aerosol contained fewer toxicants than smoke; CaSE and CaVE contained teratogens, carcinogens, and respiratory toxicants. A bioluminescence resonance energy transfer (BRET)-based biosensor detected the receptor-mediated activity of the extracts, primarily driven by Δ9-tetrahydrocannabinol (Δ9-THC) concentration. RNA-sequencing showed both CaSE and CaVE induced similar transcriptional responses, significantly upregulating genes within pathways related to inflammation, cancer, and cellular stress. This was paralleled by downregulation of pathways related to lipid synthesis and metabolism from both CaSE and CaVE. Targeted metabolomics revealed significant changes in metabolites involved in lipid and membrane metabolism, energy production, nucleotide/DNA/RNA pathways, and oxidative stress response, suggesting potential impairment of lung epithelial cell repair and function. In addition, the upregulation of 5-hydroxymethylcytosine (5hmC) indicates epigenetic changes potentially contributing to inflammation, oxidative stress, and an increased risk of cancer. These findings challenge the notion that cannabis vaping is risk-free, highlighting an urgent need for comprehensive research into its respiratory health effects. This comparison of cannabis consumption methods offers insights that could inform public health policies and raise consumer awareness regarding the potential risks of inhaling cannabis aerosol.NEW & NOTEWORTHY Cannabis use is increasing worldwide amid broad acceptance and legalization. The prevalence of traditional smoking is diminishing in favor of vaping dry flower. This is the first study to provide initial evidence that cannabis aerosol contains carcinogenic, teratogenic, and respiratory toxicants that induce transcriptional responses in epithelial cells analogous to those from cannabis smoke, suggesting potential adverse pulmonary effects.
Collapse
Affiliation(s)
- Maddison T Arlen
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Stephanie J Patterson
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Michelle K Page
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States
| | - Rui Liu
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Vincenza Caruana
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Emily T Wilson
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Stéphane A Laporte
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States
| | - Cory S Harris
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Pathology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Chilosi M, Ravaglia C, Doglioni C, Piciucchi S, Stefanizzi L, Poletti V. The pathogenesis of idiopathic pulmonary fibrosis: from "folies à deux" to "Culprit cell Trio". Pathologica 2025; 117:3-9. [PMID: 40205925 PMCID: PMC11983081 DOI: 10.32074/1591-951x-1123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 04/11/2025] Open
Affiliation(s)
- Marco Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Claudia Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
| | - Claudio Doglioni
- Department of Pathology, San Raffaele Scientific Institute. Milan, Italy
| | | | - Lavinia Stefanizzi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - Venerino Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
- DIMEC, Bologna University, Forlì Campus, Forlì I
- Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Xiao X, Huang G, Yu X, Tan Y. Advances in Selenium and Related Compounds Inhibiting Multi-Organ Fibrosis. Drug Des Devel Ther 2025; 19:251-265. [PMID: 39830783 PMCID: PMC11742456 DOI: 10.2147/dddt.s488226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Selenium (Se), a critically essential trace element, plays a crucial role in diverse physiological processes within the human body, such as oxidative stress response, inflammation regulation, apoptosis, and lipid metabolism. Organ fibrosis, a pathological condition caused by various factors, has become a significant global health issue. Numerous studies have demonstrated the substantial impact of Se on fibrotic diseases. This review delves into the latest research advancements in Se and Se-related biological agents for alleviating fibrosis in the heart, liver, lungs, and kidneys, detailing their mechanisms of action within fibrotic pathways. Additionally, the article summa-rizes some of the anti-fibrotic drugs currently in clinical trials for the aforementioned organ fibroses.
Collapse
Affiliation(s)
- Xixi Xiao
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Hubei Minzu University, Enshi, 445000, People’s Republic of China
| | - Guoquan Huang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, 445000, People’s Republic of China
| | - Xinqiao Yu
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
| | - Yong Tan
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, People’s Republic of China
- Hubei Provincial Key Laboratory of Selenium Resources and Bioapplications, Enshi, 445000, People’s Republic of China
| |
Collapse
|
8
|
Quan J, Xie D, Li Z, Yu X, Liang Z, Chen Y, Wu L, Huang D, Lin L, Fan L. Luteolin alleviates airway remodeling in asthma by inhibiting the epithelial-mesenchymal transition via β-catenin regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156090. [PMID: 39393303 DOI: 10.1016/j.phymed.2024.156090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Asthma is a prevalent long-term inflammatory condition that causes airway inflammation and remodeling. Increasing evidence indicates that epithelial-mesenchymal transition (EMT) holds a prominent implication in airway reconstruction in patients with asthma. Flavonoids obtained from Chinese Materia Medica (CMM), such as Luteolin (Lut), exhibit various beneficial effects in various asthma models. Lut has been shown to mitigate various asthma symptoms, including airway inflammation, hyperresponsiveness, bronchoconstriction, excessive mucus production, pulmonary autophagy, and neutrophilic asthma. However, whether flavonoids can suppress EMT-associated airway remodeling in asthma and the fundamental mechanisms involved remain unclear, with no studies specifically addressing Lut in this context. PURPOSE To evaluate the inhibition of airway remodeling in asthma by Lut and its potential mechanisms, while examining the significance of β-catenin in this process through cellular and animal studies. METHODS A BEAS-2B cell model stimulated by lipopolysaccharide (LPS) was established in vitro. Wound closure and Transwell assays were utilized to assess the cellular migratory ability. EMT- and fibrosis-related markers in LPS-stimulated cells were evaluated using RT-qPCR and western blotting. The status of the β-catenin/E-cadherin and β-catenin destruction complexes was evaluated using western blotting, immunofluorescence (IF) staining, and co-immunoprecipitation (Co-IP) analysis. The regulatory function of Lut in β-catenin-dependent EMT was further validated by β-catenin overexpression with adenovirus transduction and siRNA-mediated knockdown of β-catenin. Moreover, the counts of different types of bronchoalveolar lavage fluid (BALF) inflammatory cells from mice with asthma induced by ovalbumin (OVA) were evaluated in vivo using Congo red staining. Hematoxylin and eosin (H&E), Masson's trichrome, and periodic acid-Schiff (PAS) staining were used to evaluate collagen deposition, mucus production, and inflammation in murine lung tissues. Western blotting and immunohistochemistry (IHC) assays were used to assess EMT- and fibrosis-related markers in the lung tissues in vivo. RESULT Six naturally derived flavonoids, including Lut, attenuated cell migration and prevented EMT in LPS-treated BEAS-2B cells. Moreover, Lut suppressed TGF-β1, MMP-9, fibronectin (FN), and α-smooth muscle actin (α-SMA) levels in LPS-stimulated BEAS-2B cells. Additionally, Lut downregulated the levels of β-catenin by modulating the β-catenin/E-cadherin and β-catenin destruction complexes, highlighting the pivotal role of β-catenin in EMT inhibition by Lut in LPS-stimulated BEAS-2B cells. Furthermore, Lut suppressed airway inflammation and attenuated EMT-associated airway remodeling through β-catenin blockade in OVA-induced asthmatic mice. The bronchial wall thickness notably reduced from 37.24 ± 4.00 μm in the asthmatic model group to 30.06 ± 4.40 μm in the Lut low-dose group and 24.69 ± 2.87 μm in the Lut high-dose group. CONCLUSION According to our current understanding, this research is the first to reveal that Lut diminishes airway remodeling in asthma by inhibiting EMT via β-catenin regulation, thereby filling a research gap concerning Lut and flavonoids. These results provide a theoretical basis for treating asthma with anti-asthmatic CMM, as well as a candidate and complementary therapeutic approach to treat asthma.
Collapse
Affiliation(s)
- Jingyu Quan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Dan Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Zihong Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Xuhua Yu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ziyao Liang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lei Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Donghui Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, China.
| | - Lin Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| | - Long Fan
- State Key Laboratory of Traditional Chinese Medicine Syndrome/Department of Respiratory Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China.
| |
Collapse
|
9
|
Kadam AH, Schnitzer JE. Highly Calibrated Relationship Between Bleomycin Concentrations and Facets of the Active Phase Fibrosis in Classical Mouse Bleomycin Model. Int J Mol Sci 2024; 25:12300. [PMID: 39596365 PMCID: PMC11595013 DOI: 10.3390/ijms252212300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The mouse bleomycin model is useful in pre-clinical IPF research to understand pathophysiological mechanisms and pharmacological interventions. In the present study, we systematically investigated the effects of bleomycin at a 60-fold dose range on experimental features of lung fibrosis in the mouse bleomycin model. We analyzed the effect of intratracheal (i.t.) dosing of 0.05-3 U/kg bleomycin on disease phenotypes, including weight loss, morbidity and mortality, pulmonary inflammation, lung collagen content, various BALF biomarkers, and histology in a 14-day mouse model when the animals are in the active phase of fibrosis. In mice, challenge with 1-2 U/kg bleomycin doses induced significant and saturated responses on fibrotic endpoints, confirmed by collagen content, BALF biomarker levels, and marked weight loss compared to the normal control (NC). We observed 100% mortality in 3 U/kg of bleomycin-treated mice. In contrast, 0.05-0.5 U/kg bleomycin doses induced a dose-dependent fibrotic phenotype. The mice challenged with doses of 0.25-0.5 U/kg bleomycin showed optimum body weight loss, a significant increase in pulmonary inflammation, and the fibrotic phenotype compared to NC. Furthermore, we showed 0.25-0.5 U/kg bleomycin increases expression levels of (pro-) fibrotic cytokines, which are the mediators involved in the activation of myofibroblast during fibrogenesis (TGF-β1, IL-13, IL-6, WISP-1, VEGF), angiogenesis (VEGF), matrix remodeling (TIMP-1), and non-invasive lung function biomarker (CRP) compared to NC. A modified Ashcroft scale quantified that the fibrotic changes in the lungs were significantly higher in the lung of mice dosed at 0.25-0.5 U/kg > 0.1 U/kg bleomycin and non-significant in mice lung dosed at 0.05 U/kg bleomycin compared to NC. We demonstrated that the changes due to 0.25-0.5 U/kg i.t. bleomycin on protein biomarkers are enough to drive robust and detectable fibrotic pathology without mortality. The 0.1 U/kg has a moderate phenotype, and 0.05 U/kg had no detectable phenotype. The Goodness of Fit (r2) and Pearson correlation coefficient (r) analyses revealed a positive linear association between change evaluated in all experimental features of fibrosis and bleomycin concentrations (0.05-0.5 U/kg). Here, we provide an examination of a highly calibrated relationship between 60-fold bleomycin concentrations and a set of in vivo readouts that covers various facets of experimental fibrosis. Our study shows that there is a dose-dependent effect of bleomycin on the features of experimental fibrosis at <1 U/kg, whereas saturated responses are achieved at >1 U/kg. Our careful experimental observations, accuracy, and comprehensive data set provided meaningful insights into the effect of bleomycin dose(s) on the fibrotic phenotype, which is valuable in preclinical drug development and lung fibrosis research. In addition, we have presented a set of reproducible frameworks of endpoints that can be used for reliable assessment of the fibrotic phenotype, and in vivo therapeutic intervention(s) with improved accuracy.
Collapse
Affiliation(s)
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), 505 Coast Blvd. South, La Jolla, CA 92037, USA;
| |
Collapse
|
10
|
Li X, Liu Y, Tang Y, Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol 2024; 15:1474688. [PMID: 39386212 PMCID: PMC11461261 DOI: 10.3389/fimmu.2024.1474688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-β (TGF-β) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.
Collapse
Affiliation(s)
- Xiujun Li
- Health Science Center, Chifeng University, Chifeng, China
| | - Yuyan Liu
- Rehabilitation Medicine College, Shandong Second Medical University, Jinan, China
| | - Yongjun Tang
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Library, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
11
|
Min J, Jiaqi H, Lihua L, Qianqian C, Shujuan W, Xiang L, Liang L, Liang R, Yiwu Z, Qian L. Proteomics of severe SARS-COV-2 infection and paraquat poisoning in human lung tissue samples: comparison of microbial infected and toxic pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1446305. [PMID: 39301288 PMCID: PMC11410708 DOI: 10.3389/fcimb.2024.1446305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
Introduction Pulmonary fibrosis (PF) encompasses a spectrum of lung conditions characterized by the abnormal accumulation of scar tissue in the lungs, leading to impaired respiratory function. Various conditions can result in severe PF, among which viral infections have emerged as significant triggers. In addition to viral infections, exposure to toxic substances such as paraquat represents another significant risk factor for PF. Therefore, this study aimed to explore the dissimilarities and similarities between PF triggered by viral infections and chemical toxicants, using the mechanism of PF in IPF as a reference. Methods Data-independent acquisition proteomics technology was employed to identify COVID-19 and paraquat-induced PF from the autopsy of lung tissue samples obtained from individuals who died due to PF. Bioinformatics was employed for differential protein analysis, and selected indicators were validated on pathological sections. Results Our results showed that the differential proteins associated with the two causes of PF were enriched in similar lung fibrosis-related signaling pathways, such as the Wnt signaling pathway. However, differences were observed in proteins such as CACYBP, we verified the consistency of the results with proteomics using the IHC approach. Conclusion This study illuminates distinct protein-level differences by investigating pulmonary fibrosis pathways in severe COVID-19 and paraquat poisoning. Although both conditions activate lung-protective and repair pathways, COVID-19 shows limited phosphorylation-independent ubiquitination of β-catenin compared to paraquat toxicity. These findings shed light on potential therapeutic targets for PF induced via diverse factors.
Collapse
Affiliation(s)
- Jiang Min
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hou Jiaqi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lihua
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chai Qianqian
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wang Shujuan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Xiang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Liang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ren Liang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Yiwu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Qian
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Bączek K, Piotrowski WJ. Lung fibrosis in sarcoidosis. Is there a place for antifibrotics? Front Pharmacol 2024; 15:1445923. [PMID: 39281278 PMCID: PMC11392764 DOI: 10.3389/fphar.2024.1445923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Sarcoidosis, an enigmatic disease with unknown etiology, is characterized by inflammation and the potential involvement of various organs, predominantly the lungs and intrathoracic lymph nodes. Non-caseating granulomas can resolve spontaneously in approximately 60% of cases within 2-3 years. However, sarcoidosis-related mortality has increased. Lung fibrosis, affecting up to 20% of sarcoidosis patients, stands out as a primary cause of mortality. Traditionally, fibrosis is viewed because of prolonged inflammation, necessitating anti-inflammatory treatment with systemic steroids, immunosuppressants, and anti-TNF agents to manage the disease. The recent introduction of antifibrotic drugs such as nintedanib and pirfenidone offers new avenues for treating fibrotic sarcoidosis. Nintedanib, effective in idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-related interstitial lung disease (SSc-ILD), has shown promise in patients with various progressive fibrosing interstitial lung diseases (PF-ILD), including those with sarcoidosis. Pirfenidone, also effective in IPF, has demonstrated potential in managing fibrotic sarcoidosis, though results have been inconclusive due to limited participant numbers in studies. This review explores the theoretical and empirical evidence supporting the use of antifibrotics in sarcoidosis, weighing the benefits and drawbacks. While antifibrotics offer a potential therapeutic approach, further randomized controlled trials are essential to determine their efficacy in fibrotic sarcoidosis. Addressing fibrosis as a continuum of chronic inflammation, the role of antifibrotics in managing sarcoidosis remains an area requiring more in-depth research to improve patient outcomes and advance treatment paradigms.
Collapse
Affiliation(s)
- Karol Bączek
- Department of Pneumology, Medical University of Łódź, Łódź, Poland
| | | |
Collapse
|
13
|
Sampsonas F, Bosgana P, Bravou V, Tzouvelekis A, Dimitrakopoulos FI, Kokkotou E. Interstitial Lung Diseases and Non-Small Cell Lung Cancer: Particularities in Pathogenesis and Expression of Driver Mutations. Genes (Basel) 2024; 15:934. [PMID: 39062713 PMCID: PMC11276289 DOI: 10.3390/genes15070934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Interstitial lung diseases are a varied group of diseases associated with chronic inflammation and fibrosis. With the emerging and current treatment options, survival rates have vastly improved. Having in mind that the most common type is idiopathic pulmonary fibrosis and that a significant proportion of these patients will develop lung cancer as the disease progresses, prompt diagnosis and personalized treatment of these patients are fundamental. SCOPE AND METHODS The scope of this review is to identify and characterize molecular and pathogenetic pathways that can interconnect Interstitial Lung Diseases and lung cancer, especially driver mutations in patients with NSCLC, and to highlight new and emerging treatment options in that view. RESULTS Common pathogenetic pathways have been identified in sites of chronic inflammation in patients with interstitial lung diseases and lung cancer. Of note, the expression of driver mutations in EGFR, BRAF, and KRAS G12C in patients with NSCLC with concurrent interstitial lung disease is vastly different compared to those patients with NSCLC without Interstitial Lung Disease. CONCLUSIONS NSCLC in patients with Interstitial Lung Disease is a challenging diagnostic and clinical entity, and a personalized medicine approach is fundamental to improving survival and quality of life. Newer anti-fibrotic medications have improved survival in IPF/ILD patients; thus, the incidence of lung cancer is going to vastly increase in the next 5-10 years.
Collapse
Affiliation(s)
- Fotios Sampsonas
- Department of Respiratory Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | - Pinelopi Bosgana
- Department of Pathology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Vasiliki Bravou
- Department of Anatomy, Embryology and Histology, Medical School, University of Patras, 26504 Patras, Greece;
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, Medical School, University of Patras, 26504 Patras, Greece;
| | | | - Eleni Kokkotou
- Oncology Unit, The Third Department of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| |
Collapse
|
14
|
Cohen ML, Brumwell AN, Ho TC, Garakani K, Montas G, Leong D, Ding VW, Golden JA, Trinh BN, Jablons DM, Matthay MA, Jones KD, Wolters PJ, Wei Y, Chapman HA, Le Saux CJ. A fibroblast-dependent TGF-β1/sFRP2 noncanonical Wnt signaling axis promotes epithelial metaplasia in idiopathic pulmonary fibrosis. J Clin Invest 2024; 134:e174598. [PMID: 38980870 PMCID: PMC11405054 DOI: 10.1172/jci174598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
Reciprocal interactions between alveolar fibroblasts and epithelial cells are crucial for lung homeostasis, injury repair, and fibrogenesis, but underlying mechanisms remain unclear. To investigate, we administered the fibroblast-selective TGF-β1 signaling inhibitor epigallocatechin gallate (EGCG) to interstitial lung disease (ILD) patients undergoing diagnostic lung biopsy and conducted single-cell RNA-Seq on spare tissue. Biopsies from untreated patients showed higher fibroblast TGF-β1 signaling compared with nondisease donor or end-stage ILD tissues. In vivo, EGCG downregulated TGF-β1 signaling and several proinflammatory and stress pathways in biopsy samples. Notably, EGCG reduced fibroblast secreted frizzled-related protein 2 (sFRP2), an unrecognized TGF-β1 fibroblast target gene induced near type II alveolar epithelial cells (AEC2s) in situ. Using AEC2-fibroblast coculture organoids and precision-cut lung slices (PCLSs) from nondiseased donors, we found TGF-β1 signaling promotes a spread AEC2 KRT17+ basaloid state, whereupon sFRP2 then activates a mature cytokeratin 5+ (Krt5+) basal cell program. Wnt-receptor Frizzled 5 (Fzd5) expression and downstream calcineurin signaling were required for sFRP2-induced nuclear NFATc3 accumulation and KRT5 expression. These findings highlight stage-specific TGF-β1 signaling in ILD and the therapeutic potential of EGCG in reducing idiopathic pulmonary fibrosis-related (IPF-related) transcriptional changes and identify TGF-β1/noncanonical Wnt pathway crosstalk via sFRP2 as a mechanism for dysfunctional epithelial signaling in IPF/ILD.
Collapse
Affiliation(s)
- Max L. Cohen
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | - Alexis N. Brumwell
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | - Tsung Che Ho
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | - Kiana Garakani
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | - Genevieve Montas
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | - Darren Leong
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | | | - Jeffrey A. Golden
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | - Binh N. Trinh
- Department of Surgery, Division of Cardiothoracic Surgery, and
| | | | - Michael A. Matthay
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | - Kirk D. Jones
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Paul J. Wolters
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | - Ying Wei
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | - Harold A. Chapman
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| | - Claude Jourdan Le Saux
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine
| |
Collapse
|
15
|
Cheng WC, Chen PY, Zhang X, Chang YK, Tan KT, Lin TCC. 5,7,3',4'-Tetramethoxyflavone suppresses TGF-β1-induced activation of murine fibroblasts in vitro and ameliorates bleomycin-induced pulmonary fibrosis in mice. Immunopharmacol Immunotoxicol 2024:1-13. [PMID: 38951964 DOI: 10.1080/08923973.2024.2371150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/14/2024] [Indexed: 07/03/2024]
Abstract
OBJECTIVE This study aimed to investigate the use of 5,7,3',4'-tetramethoxyflavone (TMF) to treat pulmonary fibrosis (PF), a chronic and fatal lung disease. In vitro and in vivo models were used to examine the impact of TMF on PF. METHODS NIH-3T3 (Mouse Embryonic Fibroblast) were exposed to transforming growth factor‑β1 (TGF-β1) and treated with or without TMF. Cell growth was assessed using the MTT method, and cell migration was evaluated with the scratch wound assay. Protein and messenger ribonucleic acid (mRNA) levels of extracellular matrix (ECM) genes were analyzed by western blotting and quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively. Downstream molecules affected by TGF-β1 were examined by western blotting. In vivo, mice with bleomycin-induced PF were treated with TMF, and lung tissues were analyzed with staining techniques. RESULTS The in vitro results showed that TMF had no significant impact on cell growth or migration. However, it effectively inhibited myofibroblast activation and ECM production induced by TGF-β1 in NIH-3T3 cells. This inhibition was achieved by suppressing various signaling pathways, including Smad, mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase/AKT (PI3K/AKT), and WNT/β-catenin. The in vivo experiments demonstrated the therapeutic potential of TMF in reducing PF induced by bleomycin in mice, and there was no significant liver or kidney toxicity observed. CONCLUSION These findings suggest that TMF has the potential to effectively inhibit myofibroblast activation and could be a promising treatment for PF. TMF achieves this inhibitory effect by targeting TGF-β1/Smad and non-Smad pathways.
Collapse
Affiliation(s)
- Wen-Chien Cheng
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Pei Ying Chen
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
| | - Xiang Zhang
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
- Department of Postbaccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kok-Tong Tan
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
- College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tim C C Lin
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
16
|
Zhou Y, Ling T, Shi W. Current state of signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2024; 25:245. [PMID: 38886743 PMCID: PMC11184855 DOI: 10.1186/s12931-024-02878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) represents a chronic and progressive pulmonary disorder distinguished by a notable mortality rate. Despite the elusive nature of the pathogenic mechanisms, several signaling pathways have been elucidated for their pivotal roles in the progression of this ailment. This manuscript aims to comprehensively review the existing literature on the signaling pathways linked to the pathogenesis of IPF, both within national and international contexts. The objective is to enhance the comprehension of the pathogenic mechanisms underlying IPF and offer a scholarly foundation for the advancement of more efficacious therapeutic strategies, thereby fostering research and clinical practices within this domain.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Tingting Ling
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Weihong Shi
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China.
| |
Collapse
|
17
|
Park H, Lee CH. The Impact of Pulmonary Disorders on Neurological Health (Lung-Brain Axis). Immune Netw 2024; 24:e20. [PMID: 38974208 PMCID: PMC11224666 DOI: 10.4110/in.2024.24.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024] Open
Abstract
The brain and lungs, vital organs in the body, play essential roles in maintaining overall well-being and survival. These organs interact through complex and sophisticated bi-directional pathways known as the 'lung-brain axis', facilitated by their close proximity and neural connections. Numerous studies have underscored the mediation of the lung-brain axis by inflammatory responses and hypoxia-induced damage, which are pivotal to the progression of both pulmonary and neurological diseases. This review aims to delve into how pulmonary diseases, including acute/chronic airway diseases and pulmonary conditions, can instigate neurological disorders such as stroke, Alzheimer's disease, and Parkinson's disease. Additionally, we highlight the emerging research on the lung microbiome which, drawing parallels between the gut and lungs in terms of microbiome contents, may play a significant role in modulating brain health. Ultimately, this review paves the way for exciting avenues of future research and therapeutics in addressing respiratory and neurological diseases.
Collapse
Affiliation(s)
- Hongryeol Park
- Department of Tissue Morphogenesis, Max-Planck Institute for Molecular Biomedicine, Muenster 48149, Germany
| | - Chan Hee Lee
- Department of Biomedical Science, Hallym University, Chuncheon 24252, Korea
- Program of Material Science for Medicine and Pharmaceutics, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
18
|
D'Agnano V, Mariniello DF, Pagliaro R, Far MS, Schiattarella A, Scialò F, Stella G, Matera MG, Cazzola M, Bianco A, Perrotta F. Sirtuins and Cellular Senescence in Patients with Idiopathic Pulmonary Fibrosis and Systemic Autoimmune Disorders. Drugs 2024; 84:491-501. [PMID: 38630364 PMCID: PMC11189987 DOI: 10.1007/s40265-024-02021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 06/22/2024]
Abstract
The sirtuin family is a heterogeneous group of proteins that play a critical role in many cellular activities. Several degenerative diseases have recently been linked to aberrant sirtuin expression and activity because of the involvement of sirtuins in maintaining cell longevity and their putative antiaging function. Idiopathic pulmonary fibrosis and progressive pulmonary fibrosis associated with systemic autoimmune disorders are severe diseases characterized by premature and accelerated exhaustion and failure of alveolar type II cells combined with aberrant activation of fibroblast proliferative pathways leading to dramatic destruction of lung architecture. The mechanisms underlying alveolar type II cell exhaustion in these disorders are not fully understood. In this review, we have focused on the role of sirtuins in the pathogenesis of idiopathic and secondary pulmonary fibrosis and their potential as biomarkers in the diagnosis and management of fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Vito D'Agnano
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Raffaella Pagliaro
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Mehrdad Savabi Far
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Angela Schiattarella
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Filippo Scialò
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Giulia Stella
- Unit of Respiratory System Diseases, Department of Medical Sciences and Infectious Diseases, Foundation IRCCS Polyclinic San Matteo, Pavia, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania 'L. Vanvitelli', Naples, Italy
- U.O.C. Clinica Pneumologica L. Vanvitelli, A.O. dei Colli, Monaldi Hospital, Naples, Italy
| |
Collapse
|
19
|
Patel M, Post Y, Hill N, Sura A, Ye J, Fisher T, Suen N, Zhang M, Cheng L, Pribluda A, Chen H, Yeh WC, Li Y, Baribault H, Fletcher RB. A WNT mimetic with broad spectrum FZD-specificity decreases fibrosis and improves function in a pulmonary damage model. Respir Res 2024; 25:153. [PMID: 38566174 PMCID: PMC10985870 DOI: 10.1186/s12931-024-02786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Wnt/β-catenin signaling is critical for lung development and AT2 stem cell maintenance in adults, but excessive pathway activation has been associated with pulmonary fibrosis, both in animal models and human diseases such as idiopathic pulmonary fibrosis (IPF). IPF is a detrimental interstitial lung disease, and although two approved drugs limit functional decline, transplantation is the only treatment that extends survival, highlighting the need for regenerative therapies. METHODS Using our antibody-based platform of Wnt/β-catenin modulators, we investigated the ability of a pathway antagonist and pathway activators to reduce pulmonary fibrosis in the acute bleomycin model, and we tested the ability of a WNT mimetic to affect alveolar organoid cultures. RESULTS A WNT mimetic agonist with broad FZD-binding specificity (FZD1,2,5,7,8) potently expanded alveolar organoids. Upon therapeutic dosing, a broad FZD-binding specific Wnt mimetic decreased pulmonary inflammation and fibrosis and increased lung function in the bleomycin model, and it impacted multiple lung cell types in vivo. CONCLUSIONS Our results highlight the unexpected capacity of a WNT mimetic to effect tissue repair after lung damage and support the continued development of Wnt/β-catenin pathway modulation for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Mehaben Patel
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Yorick Post
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Natalie Hill
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Asmiti Sura
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Jay Ye
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Trevor Fisher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Nicholas Suen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Mengrui Zhang
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Leona Cheng
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Ariel Pribluda
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Hui Chen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Wen-Chen Yeh
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Yang Li
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Hélène Baribault
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Russell B Fletcher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA.
| |
Collapse
|
20
|
Li D, Yang W, Pang J, Yu G. Differential DNA methylation landscape of miRNAs genes in mice liver fibrosis. Mol Biol Rep 2024; 51:475. [PMID: 38553662 DOI: 10.1007/s11033-024-09416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Patients with chronic liver disease were found nearly all to have liver fibrosis, which is characterized by excess accumulation of extracellular matrix (ECM) proteins. While ECM accumulation can prevent liver infection and injury, it can destroy normal liver function and architecture. miRNA's own regulation was involved in DNA methylation change. The purpose of this study is to detect DNA methylation landscape of miRNAs genes in mice liver fibrosis tissues. METHODS Male mice (10-12 weeks) were injected CCl4 from abdominal cavity to induced liver fibrosis. 850 K BeadChips were used to examine DNA methylation change in whole genome. The methylation change of 16 CpG dinucleotides located in promoter regions of 4 miRNA genes were detected by bisulfite sequencing polymerase chain reaction (BSP) to verify chip data accuracy, and these 4 miRNA genes' expressions were detected by RT-qPCR methods. RESULTS There are 769 differential methylation sites (DMS) in total between fibrotic liver tissue and normal mice liver tissue, which were related with 148 different miRNA genes. Chips array data were confirmed by bisulfite sequencing polymerase chain reaction (R = 0.953; P < 0.01). GO analysis of the target genes of 2 miRNA revealed that protein binding, cytoplasm and chromatin binding activity were commonly enriched; KEGG pathway enrichment analysis displayed that TGF-beta signaling pathway was commonly enriched. CONCLUSION The DNA of 148 miRNA genes was found to have methylation change in liver fibrosis tissue. These discoveries in miRNA genes are beneficial to future miRNA function research in liver fibrosis.
Collapse
Affiliation(s)
- Deming Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Wentong Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Jiaojiao Pang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), College of Life Science, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
21
|
Kadam AH, Schnitzer JE. Insights into Disease Progression of Translational Preclinical Rat Model of Interstitial Pulmonary Fibrosis through Endpoint Analysis. Cells 2024; 13:515. [PMID: 38534359 PMCID: PMC10969066 DOI: 10.3390/cells13060515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease characterized by the relentless deposition of extracellular matrix (ECM), causing lung distortions and dysfunction. Animal models of human IPF can provide great insight into the mechanistic pathways underlying disease progression and a means for evaluating novel therapeutic approaches. In this study, we describe the effect of bleomycin concentration on disease progression in the classical rat bleomycin model. In a dose-response study (1.5, 2, 2.5 U/kg i.t), we characterized lung fibrosis at day 14 after bleomycin challenge using endpoints including clinical signs, inflammatory cell infiltration, collagen content, and bronchoalveolar lavage fluid-soluble profibrotic mediators. Furthermore, we investigated fibrotic disease progression after 2 U/kg i.t. bleomycin administration at days 3, 7, and 14 by quantifying the expression of clinically relevant signaling molecules and pathways, epithelial mesenchymal transition (EMT) biomarkers, ECM components, and histopathology of the lung. A single bleomycin challenge resulted in a progressive fibrotic response in rat lung tissue over 14 days based on lung collagen content, histopathological changes, and modified Ashcroft score. The early fibrogenesis phase (days 3 to 7) is associated with an increase in profibrotic mediators including TGFβ1, IL6, TNFα, IL1β, CINC1, WISP1, VEGF, and TIMP1. In the mid and late fibrotic stages, the TGFβ/Smad and PDGF/AKT signaling pathways are involved, and clinically relevant proteins targeting galectin-3, LPA1, transglutaminase-2, and lysyl oxidase 2 are upregulated on days 7 and 14. Between days 7 and 14, the expressions of vimentin and α-SMA proteins increase, which is a sign of EMT activation. We confirmed ECM formation by increased expressions of procollagen-1Aα, procollagen-3Aα, fibronectin, and CTGF in the lung on days 7 and 14. Our data provide insights on a complex network of several soluble mediators, clinically relevant signaling pathways, and target proteins that contribute to drive the progressive fibrotic phenotype from the early to late phase (active) in the rat bleomycin model. The framework of endpoints of our study highlights the translational value for pharmacological interventions and mechanistic studies using this model.
Collapse
Affiliation(s)
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), 505 Coast Blvd. South, La Jolla, CA 92037, USA;
| |
Collapse
|
22
|
Chan WH, Huang SM, Chiu YL. Pulmonary Effects of Traumatic Brain Injury in Mice: A Gene Set Enrichment Analysis. Int J Mol Sci 2024; 25:3018. [PMID: 38474264 DOI: 10.3390/ijms25053018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Acute lung injury occurs in 20-25% of cases following traumatic brain injury (TBI). We investigated changes in lung transcriptome expression post-TBI using animal models and bioinformatics. Employing unilateral controlled cortical impact for TBI, we conducted microarray analysis after lung acquisition, followed by gene set enrichment analysis of differentially expressed genes. Our findings indicate significant upregulation of inflammation-related genes and downregulation of nervous system genes. There was enhanced infiltration of adaptive immune cells, evidenced by positive enrichment in Lung-Th1, CD4, and CD8 T cells. Analysis using the Tabula Sapiens database revealed enrichment in lung-adventitial cells, pericytes, myofibroblasts, and fibroblasts, indicating potential effects on lung vasculature and fibrosis. Gene set enrichment analysis linked TBI to lung diseases, notably idiopathic pulmonary hypertension. A Venn diagram overlap analysis identified a common set of 20 genes, with FOSL2 showing the most significant fold change. Additionally, we observed a significant increase in ADRA1A→IL6 production post-TBI using the L1000 library. Our study highlights the impact of brain trauma on lung injury, revealing crucial gene expression changes related to immune cell infiltration, cytokine production, and potential alterations in lung vasculature and fibrosis, along with a specific spectrum of disease influence.
Collapse
Affiliation(s)
- Wei-Hung Chan
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114201, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114201, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City 114201, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City 114201, Taiwan
| |
Collapse
|
23
|
Wozniak PS, Makhoul L, Botros MM. Bronchopulmonary dysplasia in adults: Exploring pathogenesis and phenotype. Pediatr Pulmonol 2024; 59:540-551. [PMID: 38050796 DOI: 10.1002/ppul.26795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
This review highlights both the longstanding impact of bronchopulmonary dysplasia (BPD) on the health of adult survivors of prematurity and the pressing need for prospective, longitudinal studies of this population. Conservatively, there are an estimated 1,000,000 survivors of BPD in the United States alone. Unfortunately, most of the available literature regarding outcomes of lung disease due to prematurity naturally focuses on pediatric patients in early or middle childhood, and the relative amount of literature on adult survivors is scant. As the number of adult survivors of BPD continues to increase, it is essential that both adult and pediatric pulmonologists have a comprehensive understanding of the pathophysiology and underlying disease process, including the molecular signaling pathways and pro-inflammatory modulators that contribute to the pathogenesis of BPD. We summarize the most common presenting symptoms for adults with BPD and identify the critical challenges adult pulmonologists face in managing the care of survivors of prematurity. Specifically, these challenges include the wide variability of the clinical presentation of adult patients, comorbid cardiopulmonary complications, and the paucity of longitudinal data available on these patients. Adult survivors of BPD have even required lung transplantation, indicating the high burden of morbidity that can result from premature birth and subsequent lung injury. In addition, we analyze the disparate symptoms and management approach to adults with "old" BPD versus "new" BPD. The aim of this review is to assist pulmonologists in understanding the underlying pathophysiology of BPD and to improve clinical recognition of this increasingly common pulmonary disease.
Collapse
Affiliation(s)
- Phillip S Wozniak
- Department of Internal Medicine, Kansas City, Missouri, USA
- Department of Pediatrics, Children's Mercy Hospital, Kansas City, Missouri, USA
- University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Lara Makhoul
- University of Missouri Kansas City School of Medicine, Kansas City, Missouri, USA
| | - Mena M Botros
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
24
|
Jussila A, Zhang B, Kirti S, Atit R. Tissue fibrosis associated depletion of lipid-filled cells. Exp Dermatol 2024; 33:e15054. [PMID: 38519432 PMCID: PMC10977660 DOI: 10.1111/exd.15054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
Fibrosis is primarily described as the deposition of excessive extracellular matrix, but in many tissues it also involves a loss of lipid or lipid-filled cells. Lipid-filled cells are critical to tissue function and integrity in many tissues including the skin and lungs. Thus, loss or depletion of lipid-filled cells during fibrogenesis, has implications for tissue function. In some contexts, lipid-filled cells can impact ECM composition and stability, highlighting their importance in fibrotic transformation. Recent papers in fibrosis address this newly recognized fibrotic lipodystrophy phenomenon. Even in disparate tissues, common mechanisms are emerging to explain fibrotic lipodystrophy. These findings have implications for fibrosis in tissues composed of fibroblast and lipid-filled cell populations such as skin, lung, and liver. In this review, we will discuss the roles of lipid-containing cells, their reduction/loss during fibrotic transformation, and the mechanisms of that loss in the skin and lungs.
Collapse
Affiliation(s)
- Anna Jussila
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brian Zhang
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sakin Kirti
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Radhika Atit
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Dermatology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Tran HT, Wan MLY, Ambite I, Cavalera M, Grossi M, Háček J, Esmaeili P, Carneiro ANBM, Chaudhuri A, Ahmadi S, Svanborg C. BAMLET administration via drinking water inhibits intestinal tumor development and promotes long-term health. Sci Rep 2024; 14:3838. [PMID: 38360830 PMCID: PMC10869698 DOI: 10.1038/s41598-024-54040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
Though new targeted therapies for colorectal cancer, which progresses from local intestinal tumors to metastatic disease, are being developed, tumor specificity remains an important problem, and side effects a major concern. Here, we show that the protein-fatty acid complex BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) can act as a peroral treatment for colorectal cancer. ApcMin/+ mice, which carry mutations relevant to hereditary and sporadic human colorectal cancer, that received BAMLET in the drinking water showed long-term protection against tumor development and decreased expression of tumor growth-, migration-, metastasis- and angiogenesis-related genes. BAMLET treatment via drinking water inhibited the Wnt/β-catenin and PD-1 signaling pathways and prolonged survival without evidence of toxicity. Systemic disease in the lungs, livers, spleens, and kidneys, which accompanied tumor progression, was inhibited by BAMLET treatment. The metabolic response to BAMLET included carbohydrate and lipid metabolism, which were inhibited in tumor prone ApcMin/+ mice and weakly regulated in C57BL/6 mice, suggesting potential health benefits of peroral BAMLET administration in addition to the potent antitumor effects. Together, these findings suggest that BAMLET administration in the drinking water maintains antitumor pressure by removing emergent cancer cells and reprogramming gene expression in intestinal and extra-intestinal tissues.
Collapse
Affiliation(s)
- Hien Thi Tran
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Murphy Lam Yim Wan
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Ines Ambite
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Michele Cavalera
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Mario Grossi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Jaromir Háček
- Department of Pathology and Molecular Medicine, Motol University Hospital, 2nd Faculty of Medicine, Charles University Praha, 150 06, Prague, Czech Republic
| | - Parisa Esmaeili
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - António N B M Carneiro
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Arunima Chaudhuri
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Shahram Ahmadi
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Klinikgatan 28, 221 84, Lund, Sweden.
| |
Collapse
|
26
|
D’Agnano V, Mariniello DF, Ruotolo M, Quarcio G, Moriello A, Conte S, Sorrentino A, Sanduzzi Zamparelli S, Bianco A, Perrotta F. Targeting Progression in Pulmonary Fibrosis: An Overview of Underlying Mechanisms, Molecular Biomarkers, and Therapeutic Intervention. Life (Basel) 2024; 14:229. [PMID: 38398739 PMCID: PMC10890660 DOI: 10.3390/life14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Interstitial lung diseases comprise a heterogenous range of diffuse lung disorders, potentially resulting in pulmonary fibrosis. While idiopathic pulmonary fibrosis has been recognized as the paradigm of a progressive fibrosing interstitial lung disease, other conditions with a progressive fibrosing phenotype characterized by a significant deterioration of the lung function may lead to a burden of significant symptoms, a reduced quality of life, and increased mortality, despite treatment. There is now evidence indicating that some common underlying biological mechanisms can be shared among different chronic fibrosing disorders; therefore, different biomarkers for disease-activity monitoring and prognostic assessment are under evaluation. Thus, understanding the common pathways that induce the progression of pulmonary fibrosis, comprehending the diversity of these diseases, and identifying new molecular markers and potential therapeutic targets remain highly crucial assignments. The purpose of this review is to examine the main pathological mechanisms regulating the progression of fibrosis in interstitial lung diseases and to provide an overview of potential biomarker and therapeutic options for patients with progressive pulmonary fibrosis.
Collapse
Affiliation(s)
- Vito D’Agnano
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Domenica Francesca Mariniello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Michela Ruotolo
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Gianluca Quarcio
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Alessandro Moriello
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Stefano Conte
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Antonio Sorrentino
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | | | - Andrea Bianco
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| | - Fabio Perrotta
- Department of Translational Medical Sciences, University of Campania L. Vanvitelli, 80131 Naples, Italy; (V.D.); (D.F.M.); (M.R.); (G.Q.); (A.M.); (S.C.); (A.S.); (A.B.)
| |
Collapse
|
27
|
Vaziri Y. The genomic landscape of chronic obstructive pulmonary disease: Insights from nutrigenomics. Clin Nutr ESPEN 2024; 59:29-36. [PMID: 38220389 DOI: 10.1016/j.clnesp.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/16/2024]
Abstract
Chronic obstructivе pulmonary disеasе (COPD), a rеspiratory disеasе, is influenced by a combination of gеnеtic and еnvironmеntal factors. Thе fiеld of nutrigеnomics, which studiеs thе intеrplay bеtwееn diеt and gеnеs, provides valuable insights into thе gеnomic landscapе of COPD and its implications for production and managеmеnt. This rеviеw providеs a comprеhеnsivе ovеrviеw of thе gеnеtic aspеcts of COPD and thе rolе of nutrigеnomics in advancing our undеrstanding of thе undеrlying mеchanisms. Through studies of gеnomе-widе associations, researchers have identified gеnеtic factors that contribute to suscеptibility to COPD. Thеsе gеnеs arе associatеd with oxidativе strеss, inflammation, and antioxidant dеfеnsе mеchanisms. Nutrigеnomics rеsеarch is currеntly invеstigating how diеtary componеnts interact with gеnеtic variations to modulatе thе dеvеlopmеnt of COPD. Antioxidants, omеga-3 fatty acids and vitamin D havе dеmonstratеd potеntial bеnеfits in rеducing inflammation, improving lung function, and minimizing еxacеrbations in patients with COPD. Therefore, there are sеvеral challеngеs that must be added to the nutrigеnomic rеsеarch. The challenges include thе nееd for largеr clinical trials, adding hеtеrogеnеity and validating biomarkеrs. In the tеrms of futurе dirеctions, prеcision nutrition, gеnе-basеd thеrapiеs, biomarkеr dеvеlopmеnt, intеgration of multi-omics data, systеms biology analysis, longitudinal studiеs, and public hеalth implications arе important arеas to еxplorе. Pеrsonalizеd nutritional intеrvеntions based on an individual's gеnеtic profilе hold grеat promisе for optimizing COPD managеmеnt. In conclusion, nutrigеnomics provides valuable insights into the gеnomic landscapе of COPD and its intеraction with the disease. This knowlеdgе can guidе thе dеvеlopmеnt of pеrsonalizеd diеtary stratеgiеs and gеnе-basеd thеrapiеs for thе prеvеntion and managеmеnt of COPD. Howеvеr, morе rеsеarch is nееdеd to validatе thеsе findings, dеvеlop еffеctivе intеrvеntions, and implеmеnt thеm еffеctivеly in clinical practicе to improvе thе quality of lifе for pеoplе with COPD.
Collapse
Affiliation(s)
- Yashar Vaziri
- Department of Nutrition and Dietetics, Sarab Branch, Islamic Azad University, Sarab, Iran.
| |
Collapse
|
28
|
Dong Y, He L, Zhu Z, Yang F, Ma Q, Zhang Y, Zhang X, Liu X. The mechanism of gut-lung axis in pulmonary fibrosis. Front Cell Infect Microbiol 2024; 14:1258246. [PMID: 38362497 PMCID: PMC10867257 DOI: 10.3389/fcimb.2024.1258246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Pulmonary fibrosis (PF) is a terminal change of a lung disease that is marked by damage to alveolar epithelial cells, abnormal proliferative transformation of fibroblasts, excessive deposition of extracellular matrix (ECM), and concomitant inflammatory damage. Its characteristics include short median survival, high mortality rate, and limited treatment effectiveness. More in-depth studies on the mechanisms of PF are needed to provide better treatment options. The idea of the gut-lung axis has emerged as a result of comprehensive investigations into the microbiome, metabolome, and immune system. This theory is based on the material basis of microorganisms and their metabolites, while the gut-lung circulatory system and the shared mucosal immune system act as the connectors that facilitate the interplay between the gastrointestinal and respiratory systems. The emergence of a new view of the gut-lung axis is complementary and cross-cutting to the study of the mechanisms involved in PF and provides new ideas for its treatment. This article reviews the mechanisms involved in PF, the gut-lung axis theory, and the correlation between the two. Exploring the gut-lung axis mechanism and treatments related to PF from the perspectives of microorganisms, microbial metabolites, and the immune system. The study of the gut-lung axis and PF is still in its early stages. This review systematically summarizes the mechanisms of PF related to the gut-lung axis, providing ideas for subsequent research and treatment of related mechanisms.
Collapse
Affiliation(s)
- Yawei Dong
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lanlan He
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Zhongbo Zhu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Fan Yang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Quan Ma
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yanmei Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xuhui Zhang
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Respiratory Medicine, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiping Liu
- Key Laboratory of Gansu Provincial Prescription Mining and Innovative Translational Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Gansu Provincial Traditional Chinese Medicine New Product Creation Engineering Laboratory, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
29
|
Bavuso M, Miller N, Sill JM, Dobrian A, Colunga Biancatelli RML. Extracellular vesicles in acute respiratory distress syndrome: Understanding protective and harmful signaling for the development of new therapeutics. Histol Histopathol 2024; 39:131-144. [PMID: 37712224 DOI: 10.14670/hh-18-659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by increased lung permeability, hyper-inflammatory state, and fluid leak into the alveolar spaces. ARDS is a heterogeneous disease, with multiple direct and indirect causes that result in a mortality of up to 40%. Due to the ongoing Covid-19 pandemic, its incidence has increased up to ten-fold. Extracellular vesicles (EVs) are small liposome-like particles that mediate intercellular communication and play a major role in ARDS pathophysiology. Indeed, they participate in endothelial barrier dysfunction and permeability, neutrophil, and macrophage activation, and also in the development of a hypercoagulable state. A more thorough understanding of the variegated and cell-specific functions of EVs may lead to the development of safe and effective therapeutics. In this review, we have collected evidence of EVs role in ARDS, revise the main mechanisms of production and internalization and summarize the current therapeutical approaches that have shown the ability to modulate EV signaling.
Collapse
Affiliation(s)
- Matthew Bavuso
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Noel Miller
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Joshua M Sill
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ruben M L Colunga Biancatelli
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
30
|
Hosseinzadeh A, Pourhanifeh MH, Amiri S, Sheibani M, Irilouzadian R, Reiter RJ, Mehrzadi S. Therapeutic potential of melatonin in targeting molecular pathways of organ fibrosis. Pharmacol Rep 2024; 76:25-50. [PMID: 37995089 DOI: 10.1007/s43440-023-00554-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Fibrosis, the excessive deposition of fibrous connective tissue in an organ in response to injury, is a pathological condition affecting many individuals worldwide. Fibrosis causes the failure of tissue function and is largely irreversible as the disease progresses. Pharmacologic treatment options for organ fibrosis are limited, but studies suggest that antioxidants, particularly melatonin, can aid in preventing and controlling fibrotic damage to the organs. Melatonin, an indole nocturnally released from the pineal gland, is commonly used to regulate circadian and seasonal biological rhythms and is indicated for treating sleep disorders. While it is often effective in treating sleep disorders, melatonin's anti-inflammatory and antioxidant properties also make it a promising molecule for treating other disorders such as organ fibrosis. Melatonin ameliorates the necrotic and apoptotic changes that lead to fibrosis in various organs including the heart, liver, lung, and kidney. Moreover, melatonin reduces the infiltration of inflammatory cells during fibrosis development. This article outlines the protective effects of melatonin against fibrosis, including its safety and potential therapeutic effects. The goal of this article is to provide a summary of data accumulated to date and to encourage further experimentation with melatonin and increase its use as an anti-fibrotic agent in clinical settings.
Collapse
Affiliation(s)
- Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rana Irilouzadian
- Clinical Research Development Unit of Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Lang NJ, Gote-Schniering J, Porras-Gonzalez D, Yang L, De Sadeleer LJ, Jentzsch RC, Shitov VA, Zhou S, Ansari M, Agami A, Mayr CH, Hooshiar Kashani B, Chen Y, Heumos L, Pestoni JC, Molnar ES, Geeraerts E, Anquetil V, Saniere L, Wögrath M, Gerckens M, Lehmann M, Yildirim AÖ, Hatz R, Kneidinger N, Behr J, Wuyts WA, Stoleriu MG, Luecken MD, Theis FJ, Burgstaller G, Schiller HB. Ex vivo tissue perturbations coupled to single-cell RNA-seq reveal multilineage cell circuit dynamics in human lung fibrogenesis. Sci Transl Med 2023; 15:eadh0908. [PMID: 38055803 DOI: 10.1126/scitranslmed.adh0908] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
Pulmonary fibrosis develops as a consequence of failed regeneration after injury. Analyzing mechanisms of regeneration and fibrogenesis directly in human tissue has been hampered by the lack of organotypic models and analytical techniques. In this work, we coupled ex vivo cytokine and drug perturbations of human precision-cut lung slices (hPCLS) with single-cell RNA sequencing and induced a multilineage circuit of fibrogenic cell states in hPCLS. We showed that these cell states were highly similar to the in vivo cell circuit in a multicohort lung cell atlas from patients with pulmonary fibrosis. Using micro-CT-staged patient tissues, we characterized the appearance and interaction of myofibroblasts, an ectopic endothelial cell state, and basaloid epithelial cells in the thickened alveolar septum of early-stage lung fibrosis. Induction of these states in the hPCLS model provided evidence that the basaloid cell state was derived from alveolar type 2 cells, whereas the ectopic endothelial cell state emerged from capillary cell plasticity. Cell-cell communication routes in patients were largely conserved in hPCLS, and antifibrotic drug treatments showed highly cell type-specific effects. Our work provides an experimental framework for perturbational single-cell genomics directly in human lung tissue that enables analysis of tissue homeostasis, regeneration, and pathology. We further demonstrate that hPCLS offer an avenue for scalable, high-resolution drug testing to accelerate antifibrotic drug development and translation.
Collapse
Affiliation(s)
- Niklas J Lang
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Janine Gote-Schniering
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Department of Rheumatology and Immunology, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Lung Precision Medicine Program, Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Diana Porras-Gonzalez
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Lin Yang
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Laurens J De Sadeleer
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium
| | - R Christoph Jentzsch
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Vladimir A Shitov
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany
| | - Shuhong Zhou
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Meshal Ansari
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany
| | - Ahmed Agami
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Christoph H Mayr
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Baharak Hooshiar Kashani
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Yuexin Chen
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Lukas Heumos
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany
| | - Jeanine C Pestoni
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Eszter Sarolta Molnar
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | | | | | | | - Melanie Wögrath
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Michael Gerckens
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute for Lung Research, Philipps-University Marburg, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), 35043 Marburg, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Rudolf Hatz
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich-Gauting, 82131 Gauting, Germany
| | - Nikolaus Kneidinger
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Jürgen Behr
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Department of Medicine V, LMU University Hospital, LMU Munich, Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Wim A Wuyts
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department CHROMETA, KU Leuven, 3000 Leuven, Belgium
| | - Mircea-Gabriel Stoleriu
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Medical Center, Munich-Gauting, 82131 Gauting, Germany
| | - Malte D Luecken
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute of Computational Biology, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Munich, Member of the German Center for Lung Research (DZL), 85764 Munich, Germany
- Department of Mathematics, Technische Universität München, 85748 Garching bei München, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
| | - Herbert B Schiller
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive/Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the German Center for Lung Research (DZL), 81377 Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, 81377 Munich, Germany
| |
Collapse
|
32
|
Liu J, Lv S, Ma W, Yang D, Zhang X. Effect of WISP1 on paraquat-induced EMT. Toxicol In Vitro 2023; 93:105693. [PMID: 37689312 DOI: 10.1016/j.tiv.2023.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Paraquat (PQ) can induce pulmonary fibrosis (PF) by modulating epithelial-mesenchymal transition (EMT) of alveolar epithelial cells, but the molecular mechanism is unknown. In this paper, the role of Wnt-inducible signaling protein-1 (WISP1) in PQ-induced EMT was inspected. METHODS The morphology, apoptosis, and mortality of A549 cells were observed through a microscope. The mRNA and protein levels of WISP1, E-cadherin, and Vimentin were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. RESULTS With the increase of PQ concentration, the morphology of A549 cells was apparently changed, cell apoptosis and mortality were enhanced. Besides, the E-cadherin abundance was reduced (p < 0.01), however, WISP1 and Vimentin contents were boosted after PQ treatment (p < 0.01). With the increase of PQ treatment time, the epithelial index of cells first increased and then decreased. The expression of WISP1 gene increased significantly with the increase of PQ treatment time (p < 0.01). Silence of WISP1 abolished the effect of PQ treatment on E-cadherin and Vimentin levels (p < 0.01). Downregulation of WISP1 curbed morphology change and PQ-induced EMT in A549 cells. CONCLUSION Knockdown of WISP1 inhibited PQ-induced EMT in A549 cells. This conclusion might provide a new therapeutic target for PQ poisoning treatment.
Collapse
Affiliation(s)
- Jingyan Liu
- Department of Emergency, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Shengnan Lv
- Department of Out-patient, Linyi People's Hospital, Linyi 276000, Shandong, China
| | - Wanling Ma
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Dong Yang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Xuchang Zhang
- Department of Geriatrics Emergency, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China.
| |
Collapse
|
33
|
Phillips AT, Boumil EF, Venkatesan A, Tilstra-Smith C, Castro N, Knox BE, Henty-Ridilla JL, Bernstein AM. The formin DAAM1 regulates the deubiquitinase activity of USP10 and integrin homeostasis. Eur J Cell Biol 2023; 102:151347. [PMID: 37562219 PMCID: PMC10839120 DOI: 10.1016/j.ejcb.2023.151347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
The differentiation of fibroblasts into pathological myofibroblasts during wound healing is characterized by increased cell surface expression of αv-integrins. Our previous studies found that the deubiquitinase (DUB) USP10 removes ubiquitin from αv-integrins, leading to cell surface integrin accumulation, subsequent TGFβ1 activation, and pathological myofibroblast differentiation. In this study, a yeast two-hybrid screen revealed a novel binding partner for USP10, the formin, DAAM1. We found that DAAM1 binds to and inhibits USP10's DUB activity through the FH2 domain of DAAM1 independent of its actin functions. The USP10/DAAM1 interaction was also supported by proximity ligation assay (PLA) in primary human corneal fibroblasts. Treatment with TGFβ1 significantly increased USP10 and DAAM1 protein expression, PLA signal, and co-localization to actin stress fibers. DAAM1 siRNA knockdown significantly reduced co-precipitation of USP10 and DAAM1 on purified actin stress fibers, and β1- and β5-integrin ubiquitination. This resulted in increased αv-, β1-, and β5-integrin total protein levels, αv-integrin recycling, and extracellular fibronectin (FN) deposition. Together, our data demonstrate that DAAM1 inhibits USP10's DUB activity on integrins subsequently regulating cell surface αv-integrin localization and FN accumulation.
Collapse
Affiliation(s)
- Andrew T Phillips
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Edward F Boumil
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Arunkumar Venkatesan
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Christine Tilstra-Smith
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Nileyma Castro
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA; New York VA Health Care, Syracuse VA Medical Center, 800 Irving Ave, Syracuse 13210, USA
| | - Barry E Knox
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA; SUNY Upstate Medical University, Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Jessica L Henty-Ridilla
- SUNY Upstate Medical University, Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Audrey M Bernstein
- SUNY Upstate Medical University, Department of Ophthalmology and Visual Sciences, 750 East Adams Street, Syracuse, NY 13210, USA; SUNY Upstate Medical University, Biochemistry and Molecular Biology, 750 East Adams Street, Syracuse, NY 13210, USA; New York VA Health Care, Syracuse VA Medical Center, 800 Irving Ave, Syracuse 13210, USA.
| |
Collapse
|
34
|
Bayati P, Taherian M, Soleimani M, Farajifard H, Mojtabavi N. Induced pluripotent stem cells modulate the Wnt pathway in the bleomycin-induced model of idiopathic pulmonary fibrosis. Stem Cell Res Ther 2023; 14:343. [PMID: 38017561 PMCID: PMC10685538 DOI: 10.1186/s13287-023-03581-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND The Wnt signaling pathway has been implicated in the pathogenesis of fibrotic disorders and malignancies. Hence, we aimed to assess the potential of the induced pluripotent stem cells (IPS) in modulating the expression of the cardinal genes of the Wnt pathway in a mouse model of idiopathic pulmonary fibrosis (IPF). METHODS C57Bl/6 mice were randomly divided into three groups of Control, Bleomycin (BLM), and BLM + IPS; the BLM mice received intratracheal instillation of bleomycin, BLM + IPS mice received tail vein injection of IPS cells 48 h post instillation of the BLM; The Control group received Phosphate-buffered saline instead. After 3 weeks, the mice were sacrificed and Histologic assessments including hydroxy proline assay, Hematoxylin and Eosin, and Masson-trichrome staining were performed. The expression of the genes for Wnt, β-Catenin, Lef, Dkk1, and Bmp4 was assessed utilizing specific primers and SYBR green master mix. RESULTS Histologic assessments revealed that the fibrotic lesions and inflammation were significantly alleviated in the BLM + IPS group. Besides, the gene expression analyses demonstrated the upregulation of Wnt, β-Catenin, and LEF along with the significant downregulation of the Bmp4 and DKK1 in response to bleomycin treatment; subsequently, it was found that the treatment of the IPF mice with IPS cells results in the downregulation of the Wnt, β-Catenin, and Lef, as well as upregulation of the Dkk1, but not the Bmp4 gene (P values < 0.05). CONCLUSION The current study highlights the therapeutic potential of the IPS cells on the IPF mouse model in terms of regulating the aberrant expression of the factors contributing to the Wnt signaling pathway.
Collapse
Affiliation(s)
- Paria Bayati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marjan Taherian
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Farajifard
- Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Yang M, Wu H, Qian H, Li D, Xu H, Chen J, Zhong J, Wu W, Yang H, Chen X, Min X, Chen J. Linggui Zhugan decoction delays ventricular remodeling in rats with chronic heart failure after myocardial infarction through the Wnt/β-catenin signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155026. [PMID: 37619320 DOI: 10.1016/j.phymed.2023.155026] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
CONTEXT Traditional Chinese medicine plays an important role in the prevention and treatment of heart failure (HF). Linggui Zhugan decoction has been approved for clinical treatment of chronic HF. However, the mechanism is still unclear. OBJECTIVE The effect of Linggui Zhugan decoction on the Wnt/β-catenin signaling pathway in rat myocardium was studied to investigate the mechanism by Linggui Zhugan decoction effects ventricular remodeling in rats with heart failure after myocardial infarction. METHOD A rat model of HF after myocardial infarction was prepared by ligating the left anterior descending coronary artery. After 6 weeks of intervention with Linggui Zhugan decoction, the effect of Linggui Zhugan decoction on the cardiac function of chronic HF model rats was observed. Myocardial infarct size was measured by triphenyl tetrazolium chloride (TTC) staining. Enzyme linked immunosorbent assays (ELISAs) were used to measure NT-proBNP and sST-2 concentrations in rat serum. Hematoxylin and eosin (H&E) staining, and Masson's trichrome staining were used to observe the morphology of myocardial tissue; immunohistochemistry was used to detect the protein expression of type I collagen and type III collagen in myocardial tissue; and mRNA expression levels of Wnt3a, GSK-3β, β-catenin, and c-Myc in the infarct marginal zone were detected using PCR. Protein expression of Wnt3a, p-GSK-3β, GSK-3β, and β-catenin in the infarct marginal zone was detected using western blot. RESULTS Compared with the control, Linggui Zhugan decoction reduced the levels of serum ST-2 and NT-proBNP, improved cardiac function, and reduced the deposition of collagen fiber. In addition, Linggui Zhugan decoction inhibited the expression of Wnt3a, p-GSK-3β, and β-catenin in cardiomyocytes. CONCLUSION Linggui Zhugan decoction inhibits the expression of several key proteins in the Wnt/β-catenin signaling pathway, delays cardiomyocyte hypertrophy and fibrosis, and improves cardiac function.
Collapse
Affiliation(s)
- Mingming Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Haiyan Wu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Dongfeng Li
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jishun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenwen Wu
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China
| | - Xinlong Chen
- Yunxi Hospital of Chinese Medicine, Shiyan, Hubei 442600, China.
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), Shiyan, China.
| |
Collapse
|
36
|
DiGiovanni GT, Han W, Sherrill TP, Taylor CJ, Nichols DS, Geis NM, Singha UK, Calvi CL, McCall AS, Dixon MM, Liu Y, Jang JH, Gutor SS, Polosukhin VV, Blackwell TS, Kropski JA, Gokey JJ. Epithelial Yap/Taz are required for functional alveolar regeneration following acute lung injury. JCI Insight 2023; 8:e173374. [PMID: 37676731 PMCID: PMC10629815 DOI: 10.1172/jci.insight.173374] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
A hallmark of idiopathic pulmonary fibrosis (IPF) and other interstitial lung diseases is dysregulated repair of the alveolar epithelium. The Hippo pathway effector transcription factors YAP and TAZ are implicated as essential for type 1 and type 2 alveolar epithelial cell (AT1 and AT2) differentiation in the developing lung, yet aberrant activation of YAP/TAZ is a prominent feature of the dysregulated alveolar epithelium in IPF. In these studies, we sought to define the functional role of YAP/TAZ activity during alveolar regeneration. We demonstrated that Yap and Taz were normally activated in AT2 cells shortly after injury, and deletion of Yap/Taz in AT2 cells led to pathologic alveolar remodeling, failure of AT2-to-AT1 cell differentiation, increased collagen deposition, exaggerated neutrophilic inflammation, and increased mortality following injury induced by a single dose of bleomycin. Loss of Yap/Taz activity prior to an LPS injury prevented AT1 cell regeneration, led to intraalveolar collagen deposition, and resulted in persistent innate inflammation. These findings establish that AT2 cell Yap/Taz activity is essential for functional alveolar epithelial repair and prevention of fibrotic remodeling.
Collapse
Affiliation(s)
- Gianluca T. DiGiovanni
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Wei Han
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taylor P. Sherrill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chase J. Taylor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David S. Nichols
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Natalie M. Geis
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ujjal K. Singha
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Carla L. Calvi
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - A. Scott McCall
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Molly M. Dixon
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yang Liu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ji-Hoon Jang
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sergey S. Gutor
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Timothy S. Blackwell
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | - Jason J. Gokey
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
37
|
Cohen ML, Brumwell AN, Che Ho T, Montas G, Golden JA, Jones KD, Wolters PJ, Wei Y, Chapman HA, Le Saux CJ. A fibroblast-dependent TGFβ1/sFRP2 noncanonical Wnt signaling axis underlies epithelial metaplasia in idiopathic pulmonary fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551383. [PMID: 37577522 PMCID: PMC10418166 DOI: 10.1101/2023.08.02.551383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Reciprocal interactions between alveolar fibroblasts and epithelial cells are crucial for lung homeostasis, injury repair, and fibrogenesis, but underlying mechanisms remain unclear. To investigate this, we administered the fibroblast-selective TGFβ1 signaling inhibitor, epigallocatechin gallate (EGCG), to Interstitial Lung Disease (ILD) patients undergoing diagnostic lung biopsy and conducted single-cell RNA sequencing on spare tissue. Unexposed biopsy samples showed higher fibroblast TGFβ1 signaling compared to non-disease donor or end-stage ILD tissues. In vivo, EGCG significantly downregulated TGFβ1 signaling and several pro-inflammatory and stress pathways in biopsy samples. Notably, EGCG reduced fibroblast secreted Frizzle-like Receptor Protein 2 (sFRP2), an unrecognized TGFβ1 fibroblast target gene induced near type II alveolar epithelial cells (AEC2s). In human AEC2-fibroblast coculture organoids, sFRP2 was essential for AEC2 trans-differentiation to basal cells. Precision cut lung slices (PCLS) from normal donors demonstrated that TGFβ1 promoted KRT17 expression and AEC2 morphological change, while sFRP2 was necessary for KRT5 expression in AEC2-derived basaloid cells. Wnt-receptor Frizzled 5 (Fzd5) expression and downstream calcineurin-related signaling in AEC2s were required for sFRP2-induced KRT5 expression. These findings highlight stage-specific TGFβ1 signaling in ILD, the therapeutic potential of EGCG in reducing IPF-related transcriptional changes, and identify the TGFβ1-non-canonical Wnt pathway crosstalk via sFRP2 as a novel mechanism for dysfunctional epithelial signaling in Idiopathic Pulmonary Fibrosis/ILD.
Collapse
Affiliation(s)
- Max L. Cohen
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine; University of California San Francisco, San Francisco, California
| | - Alexis N. Brumwell
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine; University of California San Francisco, San Francisco, California
| | - Tsung Che Ho
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine; University of California San Francisco, San Francisco, California
| | - Genevieve Montas
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine; University of California San Francisco, San Francisco, California
| | - Jeffrey A. Golden
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine; University of California San Francisco, San Francisco, California
| | - Kirk D. Jones
- Department of Pathology; University of California San Francisco, San Francisco, California
| | - Paul J. Wolters
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine; University of California San Francisco, San Francisco, California
| | - Ying Wei
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine; University of California San Francisco, San Francisco, California
| | - Harold A. Chapman
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine; University of California San Francisco, San Francisco, California
| | - Claude J. Le Saux
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine; University of California San Francisco, San Francisco, California
| |
Collapse
|
38
|
Spathakis M, Tarapatzi G, Filidou E, Kandilogiannakis L, Karatzas E, Steiropoulos P, Mikroulis D, Spyrou GM, Manolopoulos VG, Kolios G, Arvanitidis K. Niclosamide Attenuates Inflammation-Associated Profibrotic Responses in Human Subepithelial Lung Myofibroblasts. Biomedicines 2023; 11:2032. [PMID: 37509671 PMCID: PMC10377180 DOI: 10.3390/biomedicines11072032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Niclosamide is a commonly used helminthicidic drug for the treatment of human parasitosis by helminths. Recently, efforts have been focusing on repurposing this drug for the treatment of other diseases, such as idiopathic pulmonary fibrosis. Subepithelial lung myofibroblasts (SELMs) isolated from tissue biopsies of patients undergoing surgery for lung cancer were stimulated with TNF-α (50 ng/mL), IL-1α (5 ng/mL), added alone or in combination, and TGF-β1 (5 ng/mL). After treatment with niclosamide at 30 nM and 100 nM concentrations, expression of collagen type I, collagen type III, and fibronectin was studied by total RNA isolation and qRT-PCR and protein collagen secretion with the use of Sircol collagen assay. The migration of SELMs was assessed by a wound-healing assay. Niclosamide had no effect on baseline SELM fibrotic factor expression. When stimulated with TGF-β1, IL-1α, and/or TNF-α, SELM expression of collagen type I, type III, and fibronectin were upregulated, as was the secretion of total collagen in the culture medium. Treatment with niclosamide attenuated the effects of cytokine stimulation leading to a notable decrease in the mRNA expression of collagen type I, type III, and fibronectin in a concentration-dependent manner. SELM collagen secretion was also reduced by niclosamide at 100 nM concentration when examined at the protein level. Migration of both TGF-β1 stimulated and unstimulated SELMs was also inhibited by niclosamide. In this study, we highlight the anti-fibrotic properties of niclosamide on SELMs under stimulation with pro-fibrotic and pro-inflammatory cytokines, thus proposing this compound as a possible new therapeutic agent against lung fibrosis.
Collapse
Affiliation(s)
- Michail Spathakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Gesthimani Tarapatzi
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Eirini Filidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Leonidas Kandilogiannakis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", 16672 Vari, Greece
| | - Paschalis Steiropoulos
- Department of Pneumonology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Dimitrios Mikroulis
- Department of Cardiothoracic Surgery, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - George M Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
| | - Vangelis G Manolopoulos
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Konstantinos Arvanitidis
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| |
Collapse
|
39
|
Hu Q, Saleem K, Pandey J, Charania AN, Zhou Y, He C. Cell Adhesion Molecules in Fibrotic Diseases. Biomedicines 2023; 11:1995. [PMID: 37509634 PMCID: PMC10377070 DOI: 10.3390/biomedicines11071995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Mechanisms underlying the pathogenesis of tissue fibrosis remain incompletely understood. Emerging evidence suggests that cell adhesion molecules (CAMs) are critical in fibrotic progression in many organs, including lung, kidney, skin, and liver. CAMs promote cell-cell and cell-extracellular matrix (ECM) interactions to maintain tissue architecture and normal function in homeostasis. However, dysregulated expression and function of CAMs can lead to chronic inflammation and tissue fibrosis. The major families of CAMs include integrins, cadherins, selectins, and immunoglobulins. Here, we review the role of the CAMs in fibrosis development across various organs with a focus on integrins and cadherins, and discuss their respective roles in the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Qianjiang Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Komal Saleem
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jyotsana Pandey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Arzoo N. Charania
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yong Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
40
|
Nabhan AN, Webster JD, Adams JJ, Blazer L, Everrett C, Eidenschenk C, Arlantico A, Fleming I, Brightbill HD, Wolters PJ, Modrusan Z, Seshagiri S, Angers S, Sidhu SS, Newton K, Arron JR, Dixit VM. Targeted alveolar regeneration with Frizzled-specific agonists. Cell 2023; 186:2995-3012.e15. [PMID: 37321220 DOI: 10.1016/j.cell.2023.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/24/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Wnt ligands oligomerize Frizzled (Fzd) and Lrp5/6 receptors to control the specification and activity of stem cells in many species. How Wnt signaling is selectively activated in different stem cell populations, often within the same organ, is not understood. In lung alveoli, we show that distinct Wnt receptors are expressed by epithelial (Fzd5/6), endothelial (Fzd4), and stromal (Fzd1) cells. Fzd5 is uniquely required for alveolar epithelial stem cell activity, whereas fibroblasts utilize distinct Fzd receptors. Using an expanded repertoire of Fzd-Lrp agonists, we could activate canonical Wnt signaling in alveolar epithelial stem cells via either Fzd5 or, unexpectedly, non-canonical Fzd6. A Fzd5 agonist (Fzd5ag) or Fzd6ag stimulated alveolar epithelial stem cell activity and promoted survival in mice after lung injury, but only Fzd6ag promoted an alveolar fate in airway-derived progenitors. Therefore, we identify a potential strategy for promoting regeneration without exacerbating fibrosis during lung injury.
Collapse
Affiliation(s)
- Ahmad N Nabhan
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joshua D Webster
- Department of Pathology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jarret J Adams
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA
| | - Levi Blazer
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA
| | - Christine Everrett
- Department of Molecular Discovery and Cancer Cell Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Celine Eidenschenk
- Department of Molecular Discovery and Cancer Cell Biology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Isabel Fleming
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Department of Translational Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Paul J Wolters
- Department of Medicine, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | | | - Stephane Angers
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 1A2, Canada; Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sachdev S Sidhu
- AntlerA Therapeutics, 348 Hatch Drive, Foster City, CA 94404, USA; School of Pharmacy, University of Waterloo, Kitchener, ON N2G 1C5, Canada
| | - Kim Newton
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Joseph R Arron
- Department of Immunology, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
41
|
Cocconcelli E, Bernardinello N, Castelli G, Petrarulo S, Bellani S, Saetta M, Spagnolo P, Balestro E. Molecular Mechanism in the Development of Pulmonary Fibrosis in Patients with Sarcoidosis. Int J Mol Sci 2023; 24:10767. [PMID: 37445947 DOI: 10.3390/ijms241310767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Sarcoidosis is a multisystemic disease of unknown etiology characterized by the formation of granulomas in various organs, especially lung and mediastinal hilar lymph nodes. The clinical course and manifestations are unpredictable: spontaneous remission can occur in approximately two thirds of patients; up to 20% of patients have chronic course of the lung disease (called advanced pulmonary sarcoidosis, APS) resulting in progressive loss of lung function, sometimes life-threatening that can lead to respiratory failure and death. The immunopathology mechanism leading from granuloma formation to the fibrosis in APS still remains elusive. Recent studies have provided new insights into the genetic factors and immune components involved in the clinical manifestation of the disease. In this review we aim to summarize the clinical-prognostic characteristics and molecular pathways which are believed to be associated with the development of APS.
Collapse
Affiliation(s)
- Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Simone Petrarulo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Serena Bellani
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Marina Saetta
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padova University Hospital, 35128 Padova, Italy
| |
Collapse
|
42
|
Junjie L, Cheng G, Kangkang L, Yu L, Zhiyao Y, Xudong W, Xianmei Z, Xiaomin L. Citrus alkaline extracts improve LPS-induced pulmonary fibrosis via epithelial mesenchymal transition signals. Chin Med 2023; 18:62. [PMID: 37248506 DOI: 10.1186/s13020-023-00766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a serious life threatening clinical critical illness. ARDS-related pulmonary fibrosis is a common complication of ARDS. The occurrence of early pulmonary fibrosis indicates a higher incidence and mortality of multiple organ failure. LPS-induced ARDS-related pulmonary fibrosis model in mice was established in this study. And we have explored the anti-pulmonary fibrosis effects and molecular mechanisms of the Citrus Alkaline Extracts (CAE) in vivo and in vitro. METHODS Pulmonary fibrosis mouse model and lung epithelial cell injury model were established in this study. H&E, Masson and Sirius Red staining were used to estimate lung tissue damage. Immunohistochemistry and western blotting were used to analyze proteins expression. Protein-protein interaction was observed by Co-Immunoprecipitation. Systemic impact of CAE on signaling pathway was examined by RNA-seq. RESULTS Through H&E, Masson and Sirius Red staining, it was convincingly indicated that therapeutic administration of CAE alleviated lung injury and fibrosis, while pretreated administration of CAE showed weak improvement. In vitro experiments showed that CAE had dual regulation to E-cadherin and N-cadherin, the important indicators of epithelial-mesenchymal transition (EMT). And it was further demonstrated that CAE reversed TGF-β1-induced EMT mainly through Wnt/β-catenin, Stat3/6 and COX2/PGE2 signals. Through RNA-Seq, we discovered important mechanisms by which CAE exerts its therapeutic effect. And network pharmacology analysis demonstrated core potential targets of CAE in EMT. CONCLUSION Thus, this study provides new therapeutic effects of CAE in anti-fibrosis, and offers potential mechanisms for CAE in LPS-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Li Junjie
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Gu Cheng
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, China
| | - Luo Kangkang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Li Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yuan Zhiyao
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Wu Xudong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Zhou Xianmei
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, China.
| | - Lu Xiaomin
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, 210004, China.
| |
Collapse
|
43
|
Shi X, Pan Z, Cai W, Zhang Y, Duo J, Liu R, Cai T. Identification and immunological characterization of cuproptosis-related molecular clusters in idiopathic pulmonary fibrosis disease. Front Immunol 2023; 14:1171445. [PMID: 37266442 PMCID: PMC10230064 DOI: 10.3389/fimmu.2023.1171445] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) has attracted considerable attention worldwide and is challenging to diagnose. Cuproptosis is a new form of cell death that seems to be associated with various diseases. However, whether cuproptosis-related genes (CRGs) play a role in regulating IPF disease is unknown. This study aims to analyze the effect of CRGs on the progression of IPF and identify possible biomarkers. Methods Based on the GSE38958 dataset, we systematically evaluated the differentially expressed CRGs and immune characteristics of IPF disease. We then explored the cuproptosis-related molecular clusters, the related immune cell infiltration, and the biological characteristics analysis. Subsequently, a weighted gene co-expression network analysis (WGCNA) was performed to identify cluster-specific differentially expressed genes. Lastly, the eXtreme Gradient Boosting (XGB) machine-learning model was chosen for the analysis of prediction and external datasets validated the predictive efficiency. Results Nine differentially expressed CRGs were identified between healthy and IPF patients. IPF patients showed higher monocytes and monophages M0 infiltration and lower naive B cells and memory resting T CD4 cells infiltration than healthy individuals. A positive relationship was found between activated dendritic cells and CRGs of LIPT1, LIAS, GLS, and DBT. We also identified cuproptosis subtypes in IPF patients. Go and KEGG pathways analysis demonstrated that cluster-specific differentially expressed genes in Cluster 2 were closely related to monocyte aggregation, ubiquitin ligase complex, and ubiquitin-mediated proteolysis, among others. We also constructed an XGB machine model to diagnose IPF, presenting the best performance with a relatively lower residual and higher area under the curve (AUC= 0.700) and validated by external validation datasets (GSE33566, AUC = 0.700). The analysis of the nomogram model demonstrated that XKR6, MLLT3, CD40LG, and HK3 might be used to diagnose IPF disease. Further analysis revealed that CD40LG was significantly associated with IPF. Conclusion Our study systematically illustrated the complicated relationship between cuproptosis and IPF disease, and constructed an effective model for the diagnosis of IPF disease patients.
Collapse
Affiliation(s)
- Xuefeng Shi
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, China
- Department of Pulmonary and Critial Care medicine, Qinghai provincial people’s hospital, Xining, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zhilei Pan
- Department of Pulmonary and Critial Care medicine, Qinghai provincial people’s hospital, Xining, China
| | - Weixiu Cai
- Department of Pulmonary and Critial Care medicine, Qinghai provincial people’s hospital, Xining, China
| | - Yuhao Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jie Duo
- Department of Pulmonary and Critial Care medicine, Qinghai provincial people’s hospital, Xining, China
| | - Ruitian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ting Cai
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, China
| |
Collapse
|
44
|
Gunatilaka A, Zhang S, Tan WSD, G Stewart A. Anti-fibrotic strategies and pulmonary fibrosis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:179-224. [PMID: 37524487 DOI: 10.1016/bs.apha.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) results from the dysregulated process of injury and repair, which promotes scarring of the lung tissue and deposition of collagen-rich extracellular matrix (ECM) components, that make the lung unphysiologically stiff. IPF presents a serious concern as its pathogenesis remains elusive, and current anti-fibrotic treatments are only effective in slowing rather than halting disease progression. The IPF disease pathogenesis is incompletely defined, complex and incorporates interplay between different fibrogenesis signaling pathways. Preclinical IPF experimental models used to validate drug candidates present significant limitations in modeling IPF pathobiology, with their limited time frame, simplicity and inaccurate representation of the disease and the mechanical influences of IPF. Potentially more accurate mimetic disease models that capture the cell-cell and cell-matrix interaction, such as 3D cultures, organoids and precision-cut lung slices (PCLS), may yield more meaningful clinical predictions for drug candidates. Recent advances in developing anti-fibrotic compounds have positioned drug towards targeting components of the fibrogenesis signaling pathway of IPF or the extracellular microenvironment. The major goals in this area of research focus on finding ways to reverse or halt the disease progression by utilizing more disease-relevant experimental models to improve the qualification of potential drug targets for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Avanka Gunatilaka
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
| | - Stephanie Zhang
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Wan Shun Daniel Tan
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - Alastair G Stewart
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia; ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
45
|
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene 2023; 859:147142. [PMID: 36603696 PMCID: PMC10068350 DOI: 10.1016/j.gene.2022.147142] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US.
| | - Ahmed A Raslan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Jeongmin Hong
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, US
| | - Marco Confalonieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, US
| |
Collapse
|
46
|
Wong HH, Seet SH, Bascom CC, Isfort RJ, Bard F. Tonic repression of Collagen I by the Bradykinin receptor 2 in skin fibroblasts. Matrix Biol 2023; 118:110-128. [PMID: 36924903 DOI: 10.1016/j.matbio.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
Imbalance of collagen I expression results in severe pathologies. Apart from activation by the TGFβ-receptor/Smad pathway, control of collagen I expression remains poorly understood. Here, we used human dermal fibroblasts expressing a mCherry fluorescent protein driven by endogenous COL1A1 promoter to functionally screen the kinome and phosphatome. We identify 8 negative regulators, revealing that collagen is under tonic repression. The cell surface receptor BDKRB2 represses collagen I and other pro-fibrotic genes. Interestingly, it also promotes other basal membrane ECM genes. This function is independent of the natural ligand, bradykinin, and of SMAD2/3 factors, instead requiring constant ERK1/2 repression. TGFβ stimulation induces rapid BDKRB2 transcriptional downregulation. Human fibrotic fibroblasts have reduced BDKRB2 levels and enhancing its expression in keloid fibroblasts represses COL1A1. We propose that tonic signalling by BDKRB2 prevents collagen overproduction in skin fibroblasts.
Collapse
Affiliation(s)
- Hui Hui Wong
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Sze Hwee Seet
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673
| | - Charles C Bascom
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Cincinnati, OH 45040, USA
| | - Robert J Isfort
- The Procter & Gamble Company, 8700 Mason-Montgomery Road, Cincinnati, OH 45040, USA
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673; Centre de Recherche en Cancérologie de Marseille, CRCM, Aix Marseille Université, Inserm, CNRS, Institut Paoli-Calmettes, Equipe Leader Fondation ARC 2021, 13009, Marseille, France..
| |
Collapse
|
47
|
Königshoff M, Eickelberg O. Listen to the WNT; It Talks: WNT7A Drives Epithelial-Mesenchymal Cross-Talk within the Fibrotic Niche in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 68:239-240. [PMID: 36525670 PMCID: PMC9989476 DOI: 10.1165/rcmb.2022-0479ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy and Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Distler JHW, Riemekasten G, Denton CP. The Exciting Future for Scleroderma. Rheum Dis Clin North Am 2023; 49:445-462. [PMID: 37028846 DOI: 10.1016/j.rdc.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Emerging evidence shows that a complex interplay between cells and mediators and extracellular matrix factors may underlie the development and persistence of fibrosis in systemic sclerosis. Similar processes may determine vasculopathy. This article reviews recent progress in understanding how fibrosis becomes profibrotic and how the immune system, vascular, and mesenchymal compartment affect disease development. Early phase trials are informing about pathogenic mechanisms in vivo and reverse translation for observational and randomized trials is allowing hypotheses to be developed and tested. In addition to repurposing already available drugs, these studies are paving the way for the next generation of targeted therapeutics.
Collapse
Affiliation(s)
- Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander University Erlangen-Nuremberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology, University Medical Center Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Christopher P Denton
- Division of Medicine, Department of Inflammation, Centre for Rheumatology, University College London, London, UK.
| |
Collapse
|
49
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine ( SPARC)-Mediated Exercise Effects: Illustrative Molecular Pathways against Various Diseases. Diseases 2023; 11:diseases11010033. [PMID: 36810547 PMCID: PMC9944512 DOI: 10.3390/diseases11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The strong benefits of exercise, in addition to the development of both the therapeutic applications of physical activity and molecular biology tools, means that it has become very important to explore the underlying molecular patterns linking exercise and its induced phenotypic changes. Within this context, secreted protein acidic and rich in cysteine (SPARC) has been characterized as an exercise-induced protein that would mediate and induce some important effects of exercise. Herein, we suggest some underlying pathways to explain such SPARC-induced exercise-like effects. Such mechanistic mapping would not only allow us to understand the molecular processes of exercise and SPARC effects but would also highlight the potential to develop novel molecular therapies. These therapies would be based on mimicking the exercise benefits via either introducing SPARC or pharmacologically targeting the SPARC-related pathways to produce exercise-like effects. This is of a particular importance for those who do not have the ability to perform the required physical activity due to disabilities or diseases. The main objective of this work is to highlight selected potential therapeutic applications deriving from SPARC properties that have been reported in various publications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-(418)-654-2296; Fax: +1-(418)-654-2761
| |
Collapse
|
50
|
Feng R, Wan J, He Y, Gong H, Xu Z, Feng J. Angiotensin-receptor blocker losartan alleviates atrial fibrillation in rats by downregulating frizzled 8 and inhibiting the activation of WNT-5A pathway. Clin Exp Pharmacol Physiol 2023; 50:19-27. [PMID: 36047789 DOI: 10.1111/1440-1681.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Angiotensin-receptor blocker (ARB) is related to AF treatment. This study explored the mechanism of ARB in AF. AF rat models were established by Ach-CaCl2 mixed solution injection. Rats were treated with ARB by gavage and injected with pcDNA3.1-based frizzled homolog 8 (FZD8) overexpression plasmids (oe-FZD8) through the tail vein. The 12-lead electrocardiogram was recorded by biological signal acquisition and processing system and AF duration was recorded, and atrial effective refractory period (AERP) was monitored by electrophysiology. Atrial fibrosis degree, FZD8 messenger RNA and protein levels, collagen I, collagen III, transforming growth factor β1 (TGF-β1), fibronectin, α smooth muscle actin (α-SMA), WBT-5B, and p-JNK1/2 levels, interleukin 1 β (IL-1β) and interleukin 6 (IL-6) levels were detected by Masson staining, reverse transcription quantitative polymerase chain reaction, western blot assay, immunohistochemistry, and enzyme-linked immunosorbent assay. ACh-CaCl2-induced AF rats showed a large area of fused necrosis, abnormal collagen fibre proliferation, high atrial fibrosis degree, and increased atrial fibrosis area in atrial interstitium, elevated collagen I, collagen III, TGF-β1, fibronectin, α-SMA, IL-1β, and IL-6 levels, whereas these trends were averted by ARB treatment. FZD8 was highly expressed in AF rat myocardium. ARB repressed FZD8 expression, prolonged AERP and reduced AF incidence. FZD8 overexpression annulled the effects of ARB on improving AF rat myocardial fibrosis. ARB inactivated the WNT-5A pathway by suppressing FZD8. ARB inactivated the WNT-5A pathway by silencing FZD8, therefore, alleviating AF rat atrial fibrosis.
Collapse
Affiliation(s)
- Ronghua Feng
- Department of Cardiovascular Medicine, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Jinjie Wan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Yongsheng He
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, China
| | - Hui Gong
- Department of Cardiovascular Medicine, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Zeqin Xu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang City, Jiangxi Province, China
| | - Jiugeng Feng
- Department of Postgraduate, Medical College of Nanchang University, Nanchang City, Jiangxi Province, China
| |
Collapse
|