1
|
Padilla-García N, Le Veve A, Čermák V, İltaş Ö, Contreras-Garrido A, Legrand S, Aury JM, Horvath R, Lafon Placette C. The Demographic History of Populations and Genomic Imprinting have Shaped the Transposon Patterns in Arabidopsis lyrata. Mol Biol Evol 2025; 42:msaf093. [PMID: 40271996 DOI: 10.1093/molbev/msaf093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/21/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Purifying selection is expected to prevent the accumulation of transposable elements (TEs) within their host, especially when located in and around genes and if affected by epigenetic silencing. However, positive selection may favor the spread of TEs, causing genomic imprinting under parental conflict, as genomic imprinting allows parent-specific influence over resource accumulation to the progeny. Concomitantly, the number and frequency of TE insertions in natural populations are conditioned by demographic events. In this study, we aimed to test how demography and selective forces interact to affect the accumulation of TEs around genes, depending on their epigenetic silencing, with a particular focus on imprinted genes. To this aim, we compared the frequency and distribution of TEs in Arabidopsis lyrata from Europe and North America. Generally, we found that TE insertions showed a lower frequency when they were inserted in or near genes, especially TEs targeted by epigenetic silencing, suggesting purifying selection at work. We also found that many TEs were lost or got fixed in North American populations during the colonization and the postglacial range expansion from refugia of the species in North America, as well as during the transition to selfing, suggesting a potential "TE load." Finally, we found that silenced TEs increased in frequency and even tended to reach fixation when they were linked to imprinted genes. We conclude that in A. lyrata, genomic imprinting has spread in natural populations through demographic events and positive selection acting on silenced TEs, potentially under a parental conflict scenario.
Collapse
Affiliation(s)
- Nélida Padilla-García
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Departamento de Botánica y Fisiología Vegetal, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Audrey Le Veve
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vojtěch Čermák
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ömer İltaş
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Sylvain Legrand
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Robert Horvath
- Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstr. 17, Freiburg, Germany
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Daigle A, Johri P. Hill-Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579142. [PMID: 38370745 PMCID: PMC10871249 DOI: 10.1101/2024.02.06.579142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The accurate estimation of the distribution of fitness effects (DFE) of new mutations is critical for population genetic inference but remains a challenging task. While various methods have been developed for DFE inference using the site frequency spectrum of putatively neutral and selected sites, their applicability in species with diverse life history traits and complex demographic scenarios is not well understood. Selfing is common among eukaryotic species and can lead to decreased effective recombination rates, increasing the effects of selection at linked sites, including interference between selected alleles. We employ forward simulations to investigate the limitations of current DFE estimation approaches in the presence of selfing and other model violations, such as linkage, departures from semidominance, population structure, and uneven sampling. We find that distortions of the site frequency spectrum due to Hill-Robertson interference in highly selfing populations lead to mis-inference of the deleterious DFE of new mutations. Specifically, when inferring the distribution of selection coefficients, there is an overestimation of nearly neutral and strongly deleterious mutations and an underestimation of mildly deleterious mutations when interference between selected alleles is pervasive. In addition, the presence of cryptic population structure with low rates of migration and uneven sampling across subpopulations leads to the false inference of a deleterious DFE skewed towards effectively neutral/mildly deleterious mutations. Finally, the proportion of adaptive substitutions estimated at high rates of selfing is substantially overestimated. Our observations apply broadly to species and genomic regions with little/no recombination and where interference might be pervasive.
Collapse
Affiliation(s)
- Austin Daigle
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
- Integrative Program for Biological & Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
3
|
Le Veve A, Genete M, Lepers-Blassiau C, Ponitzki C, Poux C, Vekemans X, Durand E, Castric V. The genetic architecture of the load linked to dominant and recessive self-incompatibility alleles in Arabidopsis halleri and Arabidopsis lyrata. eLife 2024; 13:RP94972. [PMID: 39222005 PMCID: PMC11368402 DOI: 10.7554/elife.94972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them. We first experimentally measured the phenotypic manifestation of the linked load at three different levels of the dominance hierarchy. We then sequenced and phased polymorphisms in the chromosomal regions linked to 126 distinct copies of S-alleles in two populations of Arabidopsis halleri and three populations of Arabidopsis lyrata. We find that linkage to the S-locus locally distorts phylogenies over about 10-30 kb along the chromosome. The more intense balancing selection on dominant S-alleles results in greater fixation of linked deleterious mutations, while recessive S-alleles accumulate more linked deleterious mutations that are segregating. Hence, the structure rather than the overall magnitude of the linked genetic load differs between dominant and recessive S-alleles. Our results have consequences for the long-term evolution of new S-alleles, the evolution of dominance modifiers between them, and raise the question of why the non-recombining regions of some sex and mating type chromosomes expand over evolutionary times while others, such as the S-locus of the Brassicaceae, remain restricted to small chromosomal regions.
Collapse
Affiliation(s)
| | | | | | | | - Céline Poux
- Univ. Lille, CNRS, UMR 8198 – Evo-Eco-PaleoLilleFrance
| | | | | | | |
Collapse
|
4
|
Beringer M, Choudhury RR, Mandáková T, Grünig S, Poretti M, Leitch IJ, Lysak MA, Parisod C. Biased Retention of Environment-Responsive Genes Following Genome Fractionation. Mol Biol Evol 2024; 41:msae155. [PMID: 39073781 PMCID: PMC11306978 DOI: 10.1093/molbev/msae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
The molecular underpinnings and consequences of cycles of whole-genome duplication (WGD) and subsequent gene loss through subgenome fractionation remain largely elusive. Endogenous drivers, such as transposable elements (TEs), have been postulated to shape genome-wide dominance and biased fractionation, leading to a conserved least-fractionated (LF) subgenome and a degenerated most-fractionated (MF) subgenome. In contrast, the role of exogenous factors, such as those induced by environmental stresses, has been overlooked. In this study, a chromosome-scale assembly of the alpine buckler mustard (Biscutella laevigata; Brassicaceae) that underwent a WGD event about 11 million years ago is coupled with transcriptional responses to heat, cold, drought, and herbivory to assess how gene expression is associated with differential gene retention across the MF and LF subgenomes. Counteracting the impact of TEs in reducing the expression and retention of nearby genes across the MF subgenome, dosage balance is highlighted as a main endogenous promoter of the retention of duplicated gene products under purifying selection. Consistent with the "turn a hobby into a job" model, about one-third of environment-responsive duplicates exhibit novel expression patterns, with one copy typically remaining conditionally expressed, whereas the other copy has evolved constitutive expression, highlighting exogenous factors as a major driver of gene retention. Showing uneven patterns of fractionation, with regions remaining unbiased, but with others showing high bias and significant enrichment in environment-responsive genes, this mesopolyploid genome presents evolutionary signatures consistent with an interplay of endogenous and exogenous factors having driven gene content following WGD-fractionation cycles.
Collapse
Affiliation(s)
- Marc Beringer
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Rimjhim Roy Choudhury
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Terezie Mandáková
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Sandra Grünig
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Manuel Poretti
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | | | - Martin A Lysak
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Christian Parisod
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| |
Collapse
|
5
|
Booker WW, Gerhardt HC, Lemmon AR, Ptacek MB, Hassinger ATB, Schul J, Lemmon EM. The Complex History of Genome Duplication and Hybridization in North American Gray Treefrogs. Mol Biol Evol 2022; 39:msab316. [PMID: 34791374 PMCID: PMC8826561 DOI: 10.1093/molbev/msab316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Polyploid speciation has played an important role in evolutionary history across the tree of life, yet there remain large gaps in our understanding of how polyploid species form and persist. Although systematic studies have been conducted in numerous polyploid complexes, recent advances in sequencing technology have demonstrated that conclusions from data-limited studies may be spurious and misleading. The North American gray treefrog complex, consisting of the diploid Hyla chrysoscelis and the tetraploid H. versicolor, has long been used as a model system in a variety of biological fields, yet all taxonomic studies to date were conducted with only a few loci from nuclear and mitochondrial genomes. Here, we utilized anchored hybrid enrichment and high-throughput sequencing to capture hundreds of loci along with whole mitochondrial genomes to investigate the evolutionary history of this complex. We used several phylogenetic and population genetic methods, including coalescent simulations and testing of polyploid speciation models with approximate Bayesian computation, to determine that H. versicolor was most likely formed via autopolyploidization from a now extinct lineage of H. chrysoscelis. We also uncovered evidence of significant hybridization between diploids and tetraploids where they co-occur, and show that historical hybridization between these groups led to the re-formation of distinct polyploid lineages following the initial whole-genome duplication event. Our study indicates that a wide variety of methods and explicit model testing of polyploid histories can greatly facilitate efforts to uncover the evolutionary history of polyploid complexes.
Collapse
Affiliation(s)
- William W Booker
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - H Carl Gerhardt
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, FL, USA
| | - Margaret B Ptacek
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Alyssa T B Hassinger
- Department of Evolution, Ecology, and Organismal Biology, Ohio State University, Columbus, OH, USA
| | - Johannes Schul
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | | |
Collapse
|
6
|
Wolf E, Gaquerel E, Scharmann M, Yant L, Koch MA. Evolutionary footprints of a cold relic in a rapidly warming world. eLife 2021; 10:e71572. [PMID: 34930524 PMCID: PMC8741218 DOI: 10.7554/elife.71572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
With accelerating global warming, understanding the evolutionary dynamics of plant adaptation to environmental change is increasingly urgent. Here, we reveal the enigmatic history of the genus Cochlearia (Brassicaceae), a Pleistocene relic that originated from a drought-adapted Mediterranean sister genus during the Miocene. Cochlearia rapidly diversified and adapted to circum-Arctic regions and other cold-characterized habitat types during the Pleistocene. This sudden change in ecological preferences was accompanied by a highly complex, reticulate polyploid evolution, which was apparently triggered by the impact of repeated Pleistocene glaciation cycles. Our results illustrate that two early diversified Arctic-alpine diploid gene pools contributed differently to the evolution of this young polyploid genus now captured in a cold-adapted niche. Metabolomics revealed central carbon metabolism responses to cold in diverse species and ecotypes, likely due to continuous connections to cold habitats that may have facilitated widespread adaptation to alpine and subalpine habitats, and which we speculate were coopted from existing drought adaptations. Given the growing scientific interest in the adaptive evolution of temperature-related traits, our results provide much-needed taxonomic and phylogenomic resolution of a model system as well as first insights into the origins of its adaptation to cold.
Collapse
Affiliation(s)
- Eva Wolf
- Centre for Organismal Studies, University of HeidelbergHeidelbergGermany
| | - Emmanuel Gaquerel
- Centre for Organismal Studies, University of HeidelbergHeidelbergGermany
| | - Mathias Scharmann
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Levi Yant
- Future Food Beacon and School of Life Sciences, the University of NottinghamNottinghamUnited Kingdom
| | - Marcus A Koch
- Centre for Organismal Studies, University of HeidelbergHeidelbergGermany
| |
Collapse
|
7
|
Ruiz-Ruano FJ, Navarro-Domínguez B, Camacho JPM, Garrido-Ramos MA. Transposable element landscapes illuminate past evolutionary events in the endangered fern Vandenboschia speciosa. Genome 2021; 65:95-103. [PMID: 34555288 DOI: 10.1139/gen-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vandenboschia speciosa is an endangered tetraploid fern species with a large genome (10.5 Gb). Its geographical distribution is characterized by disjoined tertiary flora refuges, with relict populations that survived past climate crises. Here, we analyzed the transposable elements (TEs) and found that they comprise approximately 76% of the V. speciosa genome, thus being the most abundant type of DNA sequence in this gigantic genome. The V. speciosa genome is composed of 51% and 5.6% of Class I and Class II elements, respectively. LTR retrotransposons were the most abundant TEs in this species (at least 42% of the genome), followed by non-LTR retrotransposons, which constituted at least 8.7% of the genome of this species. We introduce an additional analysis to identify the nature of non-annotated elements (19% of the genome). A BLAST search of the non-annotated contigs against the V. speciosa TE database allowed for the identification of almost half of them, which were most likely diverged sequence variants of the annotated TEs. In general, the TE composition in V. speciosa resembles the TE composition in seed plants. In addition, repeat landscapes revealed three episodes of amplification for all TEs, most likely due to demographic changes associated with past climate crises.
Collapse
Affiliation(s)
- Francisco J Ruiz-Ruano
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Department of Organismal Biology, Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Beatriz Navarro-Domínguez
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Juan Pedro M Camacho
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | | |
Collapse
|
8
|
İltaş Ö, Svitok M, Cornille A, Schmickl R, Lafon Placette C. Early evolution of reproductive isolation: A case of weak inbreeder/strong outbreeder leads to an intraspecific hybridization barrier in Arabidopsis lyrata. Evolution 2021; 75:1466-1476. [PMID: 33900634 DOI: 10.1111/evo.14240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/08/2021] [Accepted: 04/10/2021] [Indexed: 12/18/2022]
Abstract
Reproductive strategies play a major role in plant speciation. Notably, transitions from outcrossing to selfing may lead to relaxed sexual selection and parental conflict. Shifts in mating systems can affect maternal and paternal interests, and thus parent-specific influence on endosperm development, leading to reproductive isolation: if selfing and outcrossing species hybridize, the resulting seeds may not be viable due to endosperm failure. Nevertheless, it remains unclear how the switch in mating systems can impact reproductive isolation between recently diverged lineages, that is, during the process of speciation. We investigated this question using Arabidopsis lyrata, which recently transitioned to selfing (10,000 years ago) in certain North American populations, where European populations remain outcrossing. We performed reciprocal crosses between selfers and outcrossers, and measured seed viability and endosperm development. We show that parental genomes in the hybrid seed negatively interact, as predicted by parental conflict. This leads to extensive hybrid seed lethality associated with endosperm cellularization disturbance. Our results suggest that this is primarily driven by divergent evolution of the paternal genome between selfers and outcrossers. In addition, we observed other hybrid seed defects, suggesting that sex-specific interests are not the only processes contributing to postzygotic reproductive isolation.
Collapse
Affiliation(s)
- Ömer İltaş
- Department of Botany, Faculty of Science, Charles University, Prague, CZ-128 01, Czech Republic
| | - Marek Svitok
- Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, Zvolen, SK-960 01, Slovakia.,Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, CZ-370 05, Czech Republic
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, 91190, France
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Prague, CZ-128 01, Czech Republic.,Institute of Botany, The Czech Academy of Sciences, Průhonice, CZ-252 43, Czech Republic
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, Prague, CZ-128 01, Czech Republic
| |
Collapse
|
9
|
Takou M, Hämälä T, Koch EM, Steige KA, Dittberner H, Yant L, Genete M, Sunyaev S, Castric V, Vekemans X, Savolainen O, de Meaux J. Maintenance of Adaptive Dynamics and No Detectable Load in a Range-Edge Outcrossing Plant Population. Mol Biol Evol 2021; 38:1820-1836. [PMID: 33480994 PMCID: PMC8097302 DOI: 10.1093/molbev/msaa322] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During range expansion, edge populations are expected to face increased genetic drift, which in turn can alter and potentially compromise adaptive dynamics, preventing the removal of deleterious mutations and slowing down adaptation. Here, we contrast populations of the European subspecies Arabidopsis lyrata ssp. petraea, which expanded its Northern range after the last glaciation. We document a sharp decline in effective population size in the range-edge population and observe that nonsynonymous variants segregate at higher frequencies. We detect a 4.9% excess of derived nonsynonymous variants per individual in the range-edge population, suggesting an increase of the genomic burden of deleterious mutations. Inference of the fitness effects of mutations and modeling of allele frequencies under the explicit demographic history of each population predicts a depletion of rare deleterious variants in the range-edge population, but an enrichment for fixed ones, consistent with the bottleneck effect. However, the demographic history of the range-edge population predicts a small net decrease in per-individual fitness. Consistent with this prediction, the range-edge population is not impaired in its growth and survival measured in a common garden experiment. We further observe that the allelic diversity at the self-incompatibility locus, which ensures strict outcrossing and evolves under negative frequency-dependent selection, has remained unchanged. Genomic footprints indicative of selective sweeps are broader in the Northern population but not less frequent. We conclude that the outcrossing species A. lyrata ssp. petraea shows a strong resilience to the effect of range expansion.
Collapse
Affiliation(s)
- Margarita Takou
- Institute of Botany, University of Cologne, Cologne, Germany
| | - Tuomas Hämälä
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Evan M Koch
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kim A Steige
- Institute of Botany, University of Cologne, Cologne, Germany
| | | | - Levi Yant
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Mathieu Genete
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Shamil Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Vincent Castric
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Xavier Vekemans
- CNRS, UMR 8198 – Evo-Eco-Paleo, University of Lille, Lille, France
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | |
Collapse
|
10
|
Lucek K, Willi Y. Drivers of linkage disequilibrium across a species' geographic range. PLoS Genet 2021; 17:e1009477. [PMID: 33770075 PMCID: PMC8026057 DOI: 10.1371/journal.pgen.1009477] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/07/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
While linkage disequilibrium (LD) is an important parameter in genetics and evolutionary biology, the drivers of LD remain elusive. Using whole-genome sequences from across a species’ range, we assessed the impact of demographic history and mating system on LD. Both range expansion and a shift from outcrossing to selfing in North American Arabidopsis lyrata were associated with increased average genome-wide LD. Our results indicate that range expansion increases short-distance LD at the farthest range edges by about the same amount as a shift to selfing. However, the extent over which LD in genic regions unfolds was shorter for range expansion compared to selfing. Linkage among putatively neutral variants and between neutral and deleterious variants increased to a similar degree with range expansion, providing support that genome-wide LD was positively associated with mutational load. As a consequence, LD combined with mutational load may decelerate range expansions and set range limits. Finally, a small number of genes were identified as LD outliers, suggesting that they experience selection by either of the two demographic processes. These included genes involved in flowering and photoperiod for range expansion, and the self-incompatibility locus for mating system. Nearby genomic variants are often co-inherited because of limited recombination. The extent of non-random association of alleles at different loci is called linkage disequilibrium (LD) and is commonly used in genomic analyses, for example to detect regions under selection or to determine effective population size. Here we reversed testing and addressed how demographic history may affect LD within a species. Using genomic data from more than a thousand individuals of North American Arabidopsis lyrata from across the entire species’ range, we quantified the effect of postglacial range expansion and a shift in mating system from outcrossing to selfing on LD. We show that both factors lead to increased LD, and that the maximal effect of range expansion is comparable with a shift in mating system to selfing. Heightened LD involves deleterious mutations, and therefore, LD can also serve as an indicator of mutation accumulation. Furthermore, we provide evidence that some genes experienced stronger increases in LD possibly due to selection associated with the two demographic changes. Our results provide a novel and broad view on the evolutionary factors shaping LD that may also apply to the very many species that underwent postglacial range expansion.
Collapse
Affiliation(s)
- Kay Lucek
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- * E-mail:
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Imprints of selection in peripheral and ecologically marginal central-eastern European Scots pine populations. Gene 2021; 779:145509. [PMID: 33600955 DOI: 10.1016/j.gene.2021.145509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/04/2020] [Accepted: 02/05/2021] [Indexed: 11/21/2022]
Abstract
Knowledge of the molecular mechanisms underlying the stress response in plants is essential to understand evolutionary processes that result in long-term persistence of populations. Populations inhabiting marginal ecological conditions at the distribution range periphery may have preserved imprints of natural selection that have shaped functional genetic variation of the species. Our aim was to evaluate the extent of selection processes in the extremely fragmented, peripheral and isolated populations of Scots pine in central-eastern Europe. Autochthonous populations of the Carpathian Mts. and the Pannonian Basin were sampled and drought stress-related candidate genes were re-sequenced. Neutrality tests and outlier detection approaches were applied to infer the effect and direction of selection. Populations retained high genetic diversity by preserving a high number of alleles and haplotypes, many of them being population specific. Neutrality tests and outlier detection highlighted nucleotide positions that are under divergent selection and may be involved in local adaptation. The detected genetic pattern confirms that natural selection has played an important role in shaping modern-day genetic variation in marginal Scots pine populations, allowing for the long-term persistence of populations. Selection detected at functional regions possibly acts to maintain diversity and counteract the effect of genetic erosion.
Collapse
|
12
|
Fraïsse C, Popovic I, Mazoyer C, Spataro B, Delmotte S, Romiguier J, Loire É, Simon A, Galtier N, Duret L, Bierne N, Vekemans X, Roux C. DILS: Demographic inferences with linked selection by using ABC. Mol Ecol Resour 2021; 21:2629-2644. [PMID: 33448666 DOI: 10.1111/1755-0998.13323] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023]
Abstract
We present DILS, a deployable statistical analysis platform for conducting demographic inferences with linked selection from population genomic data using an Approximate Bayesian Computation framework. DILS takes as input single-population or two-population data sets (multilocus fasta sequences) and performs three types of analyses in a hierarchical manner, identifying: (a) the best demographic model to study the importance of gene flow and population size change on the genetic patterns of polymorphism and divergence, (b) the best genomic model to determine whether the effective size Ne and migration rate N, m are heterogeneously distributed along the genome (implying linked selection) and (c) loci in genomic regions most associated with barriers to gene flow. Also available via a Web interface, an objective of DILS is to facilitate collaborative research in speciation genomics. Here, we show the performance and limitations of DILS by using simulations and finally apply the method to published data on a divergence continuum composed by 28 pairs of Mytilus mussel populations/species.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Institute of Science and Technology Austria, Klosterneuœburg, Austria.,Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| | - Iva Popovic
- School of Biological Sciences, University of Queensland, St Lucia, Qld, Australia
| | | | - Bruno Spataro
- Laboratoire de Biologie et Biométrie Évolutive CNRS UMR 5558, Université Claude Bernard, Lyon, France
| | - Stéphane Delmotte
- Laboratoire de Biologie et Biométrie Évolutive CNRS UMR 5558, Université Claude Bernard, Lyon, France
| | | | - Étienne Loire
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR, ASTRE, Montpellier, France
| | - Alexis Simon
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nicolas Galtier
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Laurent Duret
- Laboratoire de Biologie et Biométrie Évolutive CNRS UMR 5558, Université Claude Bernard, Lyon, France
| | - Nicolas Bierne
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | | | - Camille Roux
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, Lille, France
| |
Collapse
|
13
|
Leroy T, Rougemont Q, Dupouey JL, Bodénès C, Lalanne C, Belser C, Labadie K, Le Provost G, Aury JM, Kremer A, Plomion C. Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers. THE NEW PHYTOLOGIST 2020; 226:1183-1197. [PMID: 31264219 PMCID: PMC7166129 DOI: 10.1111/nph.16039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/23/2019] [Indexed: 05/10/2023]
Abstract
Oaks are dominant forest tree species widely distributed across the Northern Hemisphere, where they constitute natural resources of economic, ecological, social and historical value. Hybridisation and adaptive introgression have long been thought to be major drivers of their ecological success. Therefore, the maintenance of species barriers remains a key question, given the extent of interspecific gene flow. In this study, we made use of the tremendous genetic variation among four European white oak species (31 million single nucleotide polymorphisms (SNPs)) to infer the evolutionary history of these species, study patterns of genetic differentiation and identify reproductive barriers. We first analysed the ecological and historical relationships among these species and inferred a long-term strict isolation followed by a recent and extensive postglacial contact using approximate Bayesian computation. Assuming this demographic scenario, we then performed backward simulations to generate the expected distributions of differentiation under neutrality to scan their genomes for reproductive barriers. We finally identified important intrinsic and ecological functions driving the reproductive isolation. We discussed the importance of identifying the genetic basis for the ecological preferences between these oak species and its implications for the renewal of European forests under global warming.
Collapse
Affiliation(s)
| | - Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Québec, Canada
| | - Jean-Luc Dupouey
- INRA Université de Lorraine UMR 1137 ‘Ecologie et Ecophysiologie Forestières’, route d’Amance, 54280 Champenoux, France
| | | | | | - Caroline Belser
- CEA - Institut de Biologie François Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Karine Labadie
- CEA - Institut de Biologie François Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | - Jean-Marc Aury
- CEA - Institut de Biologie François Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Antoine Kremer
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- Corresponding author: Antoine Kremer, INRA, UMR1202 BIOGECO, F-33610 Cestas, France, Phone number: +33(0)5 57 12 28 32,
| | | |
Collapse
|
14
|
Popovic I, Matias AMA, Bierne N, Riginos C. Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evol Appl 2020; 13:515-532. [PMID: 32431733 PMCID: PMC7045716 DOI: 10.1111/eva.12857] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023] Open
Abstract
Introduced species can impose profound impacts on the evolution of receiving communities with which they interact. If native and introduced taxa remain reproductively semi-isolated, human-mediated secondary contact may promote genetic exchange across newly created hybrid zones, potentially impacting native genetic diversity and invasive species spread. Here, we investigate the contributions of recent divergence histories and ongoing (post-introduction) gene flow between the invasive marine mussel, Mytilus galloprovincialis, and a morphologically indistinguishable and taxonomically contentious native Australian taxon, Mytilus planulatus. Using transcriptome-wide markers, we demonstrate that two contemporary M. galloprovincialis introductions into south-eastern Australia originate from genetically divergent lineages from its native range in the Mediterranean Sea and Atlantic Europe, where both introductions have led to repeated instances of admixture between introduced and endemic populations. Through increased genome-wide resolution of species relationships, combined with demographic modelling, we validate that mussels sampled in Tasmania are representative of the endemic Australian taxon (M. planulatus), but share strong genetic affinities to M. galloprovincialis. Demographic inferences indicate late-Pleistocene divergence times and historical gene flow between the Tasmanian endemic lineage and northern M. galloprovincialis, suggesting that native and introduced taxa have experienced a period of historical isolation of at least 100,000 years. Our results demonstrate that many genomic loci and sufficient sampling of closely related lineages in both sympatric (e.g. Australian populations) and allopatric (e.g. northern hemisphere Mytilus taxa) ranges are necessary to accurately (a) interpret patterns of intraspecific differentiation and to (b) distinguish contemporary invasive introgression from signatures left by recent divergence histories in high dispersal marine species. More broadly, our study fills a significant gap in systematic knowledge of native Australian biodiversity and sheds light on the intrinsic challenges for invasive species research when native and introduced species boundaries are not well defined.
Collapse
Affiliation(s)
- Iva Popovic
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| | | | - Nicolas Bierne
- Institut des Sciences de l’EvolutionUMR 5554CNRS‐IRD‐EPHE‐UMUniversité de MontpellierMontpellierFrance
| | - Cynthia Riginos
- School of Biological SciencesUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
15
|
Li Y, van Kleunen M, Stift M. Sibling competition does not magnify inbreeding depression in North American Arabidopsis lyrata. Heredity (Edinb) 2019; 123:723-732. [PMID: 31541202 PMCID: PMC6834581 DOI: 10.1038/s41437-019-0268-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/08/2022] Open
Abstract
About half of all angiosperms have some form of molecular self-incompatibility to promote outcrossing. If self-incompatibility breaks down, inbreeding depression (δ) is the main barrier to the evolution of self-fertilisation (selfing). If inbreeding depression is lower than 50% (δ < 0.5), the inherent transmission advantage of selfers should theoretically drive the evolution of selfing. However, this does not always happen in practice. For example, despite frequent breakdowns of self-incompatibility in North American Arabidopsis lyrata, selfing has only evolved in few populations. This is surprising given that previous inbreeding-depression estimates were well below the 0.5 threshold. Here, we test whether this could be due to underestimation of true inbreeding depression in competition-free environments. Specifically, we tested whether direct competition between crossed and selfed siblings magnified inbreeding-depression estimates in A. lyrata. We found that this was neither the case for belowground nor for aboveground biomass. For reproductive traits, there was hardly any significant inbreeding depression regardless of competition. Combined with previous findings that drought stress and inducing defence also did not magnify inbreeding depression, our results suggest that the relatively low estimates of inbreeding depression for biomass are indeed realistic estimates of the true inbreeding depression in North American A. lyrata.
Collapse
Affiliation(s)
- Yan Li
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany.
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, 318000, Taizhou, China
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, D-78457, Konstanz, Germany
| |
Collapse
|
16
|
Buckley J, Daly R, Cobbold CA, Burgess K, Mable BK. Changing environments and genetic variation: natural variation in inbreeding does not compromise short-term physiological responses. Proc Biol Sci 2019; 286:20192109. [PMID: 31744436 DOI: 10.1098/rspb.2019.2109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Selfing plant lineages are surprisingly widespread and successful in a broad range of environments, despite showing reduced genetic diversity, which is predicted to reduce their long-term evolutionary potential. However, appropriate short-term plastic responses to new environmental conditions might not require high levels of standing genetic variation. In this study, we tested whether mating system variation among populations, and associated changes in genetic variability, affected short-term responses to environmental challenges. We compared relative fitness and metabolome profiles of naturally outbreeding (genetically diverse) and inbreeding (genetically depauperate) populations of a perennial plant, Arabidopsis lyrata, under constant growth chamber conditions and an outdoor common garden environment outside its native range. We found no effect of inbreeding on survival, flowering phenology or short-term physiological responses. Specifically, naturally occurring inbreeding had no significant effects on the plasticity of metabolome profiles, using either multivariate approaches or analysis of variation in individual metabolites, with inbreeding populations showing similar physiological responses to outbreeding populations over time in both growing environments. We conclude that low genetic diversity in naturally inbred populations may not always compromise fitness or short-term physiological capacity to respond to environmental change, which could help to explain the global success of selfing mating strategies.
Collapse
Affiliation(s)
- James Buckley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rónán Daly
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Karl Burgess
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
17
|
Marburger S, Monnahan P, Seear PJ, Martin SH, Koch J, Paajanen P, Bohutínská M, Higgins JD, Schmickl R, Yant L. Interspecific introgression mediates adaptation to whole genome duplication. Nat Commun 2019; 10:5218. [PMID: 31740675 PMCID: PMC6861236 DOI: 10.1038/s41467-019-13159-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/24/2019] [Indexed: 01/19/2023] Open
Abstract
Adaptive gene flow is a consequential phenomenon across all kingdoms. Although recognition is increasing, there is no study showing that bidirectional gene flow mediates adaptation at loci that manage core processes. We previously discovered concerted molecular changes among interacting members of the meiotic machinery controlling crossover number upon adaptation to whole-genome duplication (WGD) in Arabidopsis arenosa. Here we conduct a population genomic study to test the hypothesis that adaptation to WGD has been mediated by adaptive gene flow between A. arenosa and A. lyrata. We find that A. lyrata underwent WGD more recently than A. arenosa, suggesting that pre-adapted alleles have rescued nascent A. lyrata, but we also detect gene flow in the opposite direction at functionally interacting loci under the most extreme levels of selection. These data indicate that bidirectional gene flow allowed for survival after WGD, and that the merger of these species is greater than the sum of their parts. Whole genome duplication (WGD) presents new challenges to the establishment of optimal allelic combinations and to the meiotic machinery. Here, the authors show that adaptive gene flow from Arabidopsis arenosa could rescue the nascent A. lyrata from extinction following WGD.
Collapse
Affiliation(s)
- Sarah Marburger
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Patrick Monnahan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Paul J Seear
- Department of Genetics and Genome Biology, University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, UK
| | - Simon H Martin
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Jordan Koch
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Pirita Paajanen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Magdalena Bohutínská
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic.,The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, Adrian Building, University Road, Leicester, LE1 7RH, UK
| | - Roswitha Schmickl
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic. .,The Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic.
| | - Levi Yant
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK. .,Future Food Beacon of Excellence and the School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
18
|
Rougemont Q, Bernatchez L. The demographic history of Atlantic salmon (Salmo salar) across its distribution range reconstructed from approximate Bayesian computations. Evolution 2019; 72:1261-1277. [PMID: 29644624 DOI: 10.1111/evo.13486] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 12/18/2022]
Abstract
Understanding the dual roles of demographic and selective processes in the buildup of population divergence is one of the most challenging tasks in evolutionary biology. Here, we investigated the demographic history of Atlantic salmon across the entire species range using 2035 anadromous individuals from North America and Eurasia. By combining results from admixture graphs, geo-genetic maps, and an Approximate Bayesian Computation (ABC) framework, we validated previous hypotheses pertaining to secondary contact between European and Northern American populations, but also identified secondary contacts in European populations from different glacial refugia. We further identified the major sources of admixture from the southern range of North America into more northern populations along with a strong signal of secondary gene flow between genetic regional groups. We hypothesize that these patterns reflect the spatial redistribution of ancestral variation across the entire North American range. Results also support a role for linked selection and differential introgression that likely played an underappreciated role in shaping the genomic landscape of species in the Northern hemisphere. We conclude that studies between partially isolated populations should systematically include heterogeneity in selective and introgressive effects among loci to perform more rigorous demographic inferences of the divergence process.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6 Québec, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6 Québec, Canada
| |
Collapse
|
19
|
Mattila TM, Laenen B, Horvath R, Hämälä T, Savolainen O, Slotte T. Impact of demography on linked selection in two outcrossing Brassicaceae species. Ecol Evol 2019; 9:9532-9545. [PMID: 31534673 PMCID: PMC6745670 DOI: 10.1002/ece3.5463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Genetic diversity is shaped by mutation, genetic drift, gene flow, recombination, and selection. The dynamics and interactions of these forces shape genetic diversity across different parts of the genome, between populations and species. Here, we have studied the effects of linked selection on nucleotide diversity in outcrossing populations of two Brassicaceae species, Arabidopsis lyrata and Capsella grandiflora, with contrasting demographic history. In agreement with previous estimates, we found evidence for a modest population size expansion thousands of generations ago, as well as efficient purifying selection in C. grandiflora. In contrast, the A. lyrata population exhibited evidence for very recent strong population size decline and weaker efficacy of purifying selection. Using multiple regression analyses with recombination rate and other genomic covariates as explanatory variables, we can explain 47% of the variance in neutral diversity in the C. grandiflora population, while in the A. lyrata population, only 11% of the variance was explained by the model. Recombination rate had a significant positive effect on neutral diversity in both species, suggesting that selection at linked sites has an effect on patterns of neutral variation. In line with this finding, we also found reduced neutral diversity in the vicinity of genes in the C. grandiflora population. However, in A. lyrata no such reduction in diversity was evident, a finding that is consistent with expectations of the impact of a recent bottleneck on patterns of neutral diversity near genes. This study thus empirically demonstrates how differences in demographic history modulate the impact of selection at linked sites in natural populations.
Collapse
Affiliation(s)
- Tiina M. Mattila
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Present address:
Department of Organismal BiologyUppsala UniversityUppsalaSweden
| | - Benjamin Laenen
- Science for Life Laboratory, Department of Ecology, Environment, and Plant SciencesStockholm UniversityStockholmSweden
| | - Robert Horvath
- Science for Life Laboratory, Department of Ecology, Environment, and Plant SciencesStockholm UniversityStockholmSweden
| | - Tuomas Hämälä
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Present address:
Department of Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMNUSA
| | - Outi Savolainen
- Department of Ecology and GeneticsUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
| | - Tanja Slotte
- Science for Life Laboratory, Department of Ecology, Environment, and Plant SciencesStockholm UniversityStockholmSweden
| |
Collapse
|
20
|
Burrell AM, Goddard JHR, Greer PJ, Williams RJ, Pepper AE. Sporadic Genetic Connectivity among Small Insular Populations of the Rare Geoendemic Plant Caulanthus amplexicaulis var. barbarae (Santa Barbara Jewelflower). J Hered 2019; 110:587-600. [PMID: 31062855 DOI: 10.1093/jhered/esz029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
Globally, a small number of plants have adapted to terrestrial outcroppings of serpentine geology, which are characterized by soils with low levels of essential mineral nutrients (N, P, K, Ca, Mo) and toxic levels of heavy metals (Ni, Cr, Co). Paradoxically, many of these plants are restricted to this harsh environment. Caulanthus ampexlicaulis var. barbarae (Brassicaceae) is a rare annual plant that is strictly endemic to a small set of isolated serpentine outcrops in the coastal mountains of central California. The goals of the work presented here were to 1) determine the patterns of genetic connectivity among all known populations of C. ampexlicaulis var. barbarae, and 2) estimate contemporary effective population sizes (Ne), to inform ongoing genomic analyses of the evolutionary history of this taxon, and to provide a foundation upon which to model its future evolutionary potential and long-term viability in a changing environment. Eleven populations of this taxon were sampled, and population-genetic parameters were estimated using 11 nuclear microsatellite markers. Contemporary effective population sizes were estimated using multiple methods and found to be strikingly small (typically Ne < 10). Further, our data showed that a substantial component of genetic connectivity of this taxon is not at equilibrium, and instead showed sporadic gene flow. Several lines of evidence indicate that gene flow between isolated populations is maintained through long-distance seed dispersal (e.g., >1 km), possibly via zoochory.
Collapse
Affiliation(s)
- A Millie Burrell
- Department of Biology, Texas A&M University, College Station, TX
| | | | | | - Ryan J Williams
- Department of Biology, Texas A&M University, College Station, TX
| | - Alan E Pepper
- Department of Biology, Texas A&M University, College Station, TX
| |
Collapse
|
21
|
Bouzid M, He F, Schmitz G, Häusler RE, Weber APM, Mettler-Altmann T, De Meaux J. Arabidopsis species deploy distinct strategies to cope with drought stress. ANNALS OF BOTANY 2019; 124:27-40. [PMID: 30668651 PMCID: PMC6676377 DOI: 10.1093/aob/mcy237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 12/17/2018] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Water limitation is an important determinant of the distribution, abundance and diversity of plant species. Yet, little is known about how the response to limiting water supply changes among closely related plant species with distinct ecological preferences. Comparison of the model annual species Arabidopsis thaliana with its close perennial relatives A. lyrata and A. halleri, can help disentangle the molecular and physiological changes contributing to tolerance and avoidance mechanisms, because these species must maintain tolerance and avoidance mechanisms to increase long-term survival, but they are exposed to different levels of water stress and competition in their natural habitat. METHODS A dry-down experiment was conducted to mimic a period of missing precipitation. The covariation of a progressive decrease in soil water content (SWC) with various physiological and morphological plant traits across a set of representative genotypes in A. thaliana, A. lyrata and A. halleri was quantified. Transcriptome changes to soil dry-down were further monitored. KEY RESULTS The analysis of trait covariation demonstrates that the three species differ in the strategies they deploy to respond to drought stress. Arabidopsis thaliana showed a drought avoidance reaction but failed to survive wilting. Arabidopsis lyrata efficiently combined avoidance and tolerance mechanisms. In contrast, A. halleri showed some degree of tolerance to wilting but it did not seem to protect itself from the stress imposed by drought. Transcriptome data collected just before plant wilting and after recovery corroborated the phenotypic analysis, with A. lyrata and A. halleri showing a stronger activation of recovery- and stress-related genes, respectively. CONCLUSIONS The response of the three Arabidopsis species to soil dry-down reveals that they have evolved distinct strategies to face drought stress. These strategic differences are in agreement with the distinct ecological priorities of the stress-tolerant A. lyrata, the competitive A. halleri and the ruderal A. thaliana.
Collapse
Affiliation(s)
- M Bouzid
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - F He
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - G Schmitz
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - R E Häusler
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| | - A P M Weber
- Institut of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - T Mettler-Altmann
- Institut of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - J De Meaux
- Institute of Botany, Biozentrum, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180243. [PMID: 31154972 PMCID: PMC6560266 DOI: 10.1098/rstb.2018.0243] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which co-occur at two calamine metalliferous (M) sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from eight populations on M and non-metalliferous (NM) soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical single nucleotide polymorphisms in several A. halleri genes at two independently colonized M sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine M soils involves convergent evolution, which will probably be more pervasive across sites purposely chosen for maximal similarity in soil composition. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Veronica Preite
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Christian Sailer
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Lara Syllwasschy
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Sian Bray
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Hassan Ahmadi
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Levi Yant
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
23
|
Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180243. [PMID: 31154972 DOI: 10.5061/dryad.jg30j4v] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which co-occur at two calamine metalliferous (M) sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from eight populations on M and non-metalliferous (NM) soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical single nucleotide polymorphisms in several A. halleri genes at two independently colonized M sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine M soils involves convergent evolution, which will probably be more pervasive across sites purposely chosen for maximal similarity in soil composition. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Veronica Preite
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Christian Sailer
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
| | - Lara Syllwasschy
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Sian Bray
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
| | - Hassan Ahmadi
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Ute Krämer
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Levi Yant
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
- 3 School of Life Sciences, University of Nottingham , Nottingham NG7 2RD , UK
| |
Collapse
|
24
|
Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, Yant L. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 31154972 DOI: 10.1101/459362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
It is a plausible hypothesis that parallel adaptation events to the same environmental challenge should result in genetic changes of similar or identical effects, depending on the underlying fitness landscapes. However, systematic testing of this is scarce. Here we examine this hypothesis in two closely related plant species, Arabidopsis halleri and Arabidopsis arenosa, which co-occur at two calamine metalliferous (M) sites harbouring toxic levels of the heavy metals zinc and cadmium. We conduct individual genome resequencing alongside soil elemental analysis for 64 plants from eight populations on M and non-metalliferous (NM) soils, and identify genomic footprints of selection and local adaptation. Selective sweep and environmental association analyses indicate a modest degree of gene as well as functional network convergence, whereby the proximal molecular factors mediating this convergence mostly differ between site pairs and species. Notably, we observe repeated selection on identical single nucleotide polymorphisms in several A. halleri genes at two independently colonized M sites. Our data suggest that species-specific metal handling and other biological features could explain a low degree of convergence between species. The parallel establishment of plant populations on calamine M soils involves convergent evolution, which will probably be more pervasive across sites purposely chosen for maximal similarity in soil composition. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Veronica Preite
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Christian Sailer
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
| | - Lara Syllwasschy
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Sian Bray
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
| | - Hassan Ahmadi
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Ute Krämer
- 1 Molecular Genetics and Physiology of Plants, Faculty of Biology and Biotechnology, Ruhr University Bochum , 44801 Bochum , Germany
| | - Levi Yant
- 2 Cell and Developmental Biology, John Innes Centre , Norwich NR4 7UH , UK
- 3 School of Life Sciences, University of Nottingham , Nottingham NG7 2RD , UK
| |
Collapse
|
25
|
Rougemont Q, Carrier A, Le Luyer J, Ferchaud A, Farrell JM, Hatin D, Brodeur P, Bernatchez L. Combining population genomics and forward simulations to investigate stocking impacts: A case study of Muskellunge ( Esox masquinongy) from the St. Lawrence River basin. Evol Appl 2019; 12:902-922. [PMID: 31080504 PMCID: PMC6503833 DOI: 10.1111/eva.12765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023] Open
Abstract
Understanding the genetic and evolutionary impacts of stocking on wild fish populations has long been of interest as negative consequences such as reduced fitness and loss of genetic diversity are commonly reported outcomes. In an attempt to sustain a fishery, managers implemented nearly five decades of extensive stocking of over a million Muskellunge (Esox masquinongy), a native species in the Lower St. Lawrence River (Québec, Canada). We investigated the effect of this stocking on population genetic structure and allelic diversity in the St. Lawrence River in addition to tributaries and several stocked inland lakes. Using genotype by sequencing, we genotyped 643 individuals representing 22 locations and combined this information with forward simulations to investigate the genetic consequences of long-term stocking. Individuals native to the St. Lawrence watershed were genetically differentiated from stocking sources and tributaries, and inland lakes were naturally differentiated from the main river. Empirical data and simulations within the St. Lawrence River revealed weak stocking effects on admixture patterns. Our data suggest that the genetic structure associated with stocked fish was diluted into its relatively large effective population size. This interpretation is also consistent with a hypothesis that selection against introgression was in operation and relatively efficient within the large St. Lawrence River system. In contrast, smaller populations from adjacent tributaries and lakes displayed greater stocking-related admixture that resulted in comparatively higher heterozygosity than the St. Lawrence. Finally, individuals from inland lakes that were established by stocking maintained a close affinity with their source populations. This study illustrated a benefit of combining extensive genomic data with forward simulations for improved inference regarding population-level genetic effects of long-term stocking, and its relevance for fishery management decision making.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Anne Carrier
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - Jeremy Le Luyer
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
- IFREMER, Unité Ressources Marines en Polynésie, Centre Océanologique du PacifiqueTaravao, TahitiFrench Polynesia
| | - Anne‐Laure Ferchaud
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| | - John M. Farrell
- Department of Environmental and Forest Biology, College of Environmental Science and ForestryState University of New YorkSyracuseNew York
| | - Daniel Hatin
- Ministère des Forêts, de la Faune et des Parcs, Direction de la Gestion de la FauneEstrie‐Montréal‐Montérégie‐LavalLongueuilQuébecCanada
| | - Philippe Brodeur
- Ministère des Forêts, de la Faune et des ParcsDirection de la gestion de la faune de la Mauricie et du Centre‐du‐QuébecTrois‐RivièresQuebecCanada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuébecCanada
| |
Collapse
|
26
|
Bourgeois Y, Boissinot S. On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements. Genes (Basel) 2019; 10:genes10060419. [PMID: 31151307 PMCID: PMC6627506 DOI: 10.3390/genes10060419] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023] Open
Abstract
Transposable elements (TEs) play an important role in shaping genomic organization and structure, and may cause dramatic changes in phenotypes. Despite the genetic load they may impose on their host and their importance in microevolutionary processes such as adaptation and speciation, the number of population genetics studies focused on TEs has been rather limited so far compared to single nucleotide polymorphisms (SNPs). Here, we review the current knowledge about the dynamics of transposable elements at recent evolutionary time scales, and discuss the mechanisms that condition their abundance and frequency. We first discuss non-adaptive mechanisms such as purifying selection and the variable rates of transposition and elimination, and then focus on positive and balancing selection, to finally conclude on the potential role of TEs in causing genomic incompatibilities and eventually speciation. We also suggest possible ways to better model TEs dynamics in a population genomics context by incorporating recent advances in TEs into the rich information provided by SNPs about the demography, selection, and intrinsic properties of genomes.
Collapse
Affiliation(s)
- Yann Bourgeois
- New York University Abu Dhabi, P.O. 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| | - Stéphane Boissinot
- New York University Abu Dhabi, P.O. 129188, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
27
|
Oakley CG, Lundemo S, Ågren J, Schemske DW. Heterosis is common and inbreeding depression absent in natural populations of
Arabidopsis thaliana. J Evol Biol 2019; 32:592-603. [DOI: 10.1111/jeb.13441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/23/2019] [Accepted: 03/11/2019] [Indexed: 01/09/2023]
Affiliation(s)
| | - Sverre Lundemo
- Plant Ecology and Evolution Department of Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Jon Ågren
- Plant Ecology and Evolution Department of Ecology and Genetics Evolutionary Biology Centre Uppsala University Uppsala Sweden
| | - Douglas W. Schemske
- Department of Plant Biology W. K. Kellogg Biological Station Michigan State University East Lansing Michigan
| |
Collapse
|
28
|
Willi Y, Fracassetti M, Zoller S, Van Buskirk J. Accumulation of Mutational Load at the Edges of a Species Range. Mol Biol Evol 2019; 35:781-791. [PMID: 29346601 DOI: 10.1093/molbev/msy003] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Why species have geographically restricted distributions is an unresolved question in ecology and evolutionary biology. Here, we test a new explanation that mutation accumulation due to small population size or a history of range expansion can contribute to restricting distributions by reducing population growth rate at the edge. We examined genomic diversity and mutational load across the entire geographic range of the North American plant Arabidopsis lyrata, including old, isolated populations predominantly at the southern edge and regions of postglacial range expansion at the northern and southern edges. Genomic diversity in intergenic regions declined toward distribution edges and signatures of mutational load in exon regions increased. Genomic signatures of mutational load were highly linked to phenotypically expressed load, measured as reduced performance of individual plants and lower estimated rate of population growth. The geographic pattern of load and the connection between load and population growth demonstrate that mutation accumulation reduces fitness at the edge and helps restrict species' distributions.
Collapse
Affiliation(s)
- Yvonne Willi
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Marco Fracassetti
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.,Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Stefan Zoller
- Genetic Diversity Centre, ETH Zürich, Zürich, Switzerland
| | - Josh Van Buskirk
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
Signor SA, New FN, Nuzhdin S. A Large Panel of Drosophila simulans Reveals an Abundance of Common Variants. Genome Biol Evol 2018; 10:189-206. [PMID: 29228179 PMCID: PMC5767965 DOI: 10.1093/gbe/evx262] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 01/03/2023] Open
Abstract
The rapidly expanding availability of large NGS data sets provides an opportunity to investigate population genetics at an unprecedented scale. Drosophila simulans is the sister species of the model organism Drosophila melanogaster, and is often presumed to share similar demographic history. However, previous population genetic and ecological work suggests very different signatures of selection and demography. Here, we sequence a new panel of 170 inbred genotypes of a North American population of D. simulans, a valuable complement to the DGRP and other D. melanogaster panels. We find some unexpected signatures of demography, in the form of excess intermediate frequency polymorphisms. Simulations suggest that this is possibly due to a recent population contraction and selection. We examine the outliers in the D. simulans genome determined by a haplotype test to attempt to parse the contribution of demography and selection to the patterns observed in this population. Untangling the relative contribution of demography and selection to genomic patterns of variation is challenging, however, it is clear that although D. melanogaster was thought to share demographic history with D. simulans different forces are at work in shaping genomic variation in this population of D. simulans.
Collapse
Affiliation(s)
- Sarah A Signor
- Department of Molecular and Computational Biology, University of Southern California
| | - Felicia N New
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine
| | - Sergey Nuzhdin
- Department of Molecular and Computational Biology, University of Southern California
| |
Collapse
|
30
|
Wos G, Willi Y. Genetic differentiation in life history traits and thermal stress performance across a heterogeneous dune landscape in Arabidopsis lyrata. ANNALS OF BOTANY 2018; 122:473-484. [PMID: 29846507 PMCID: PMC6110339 DOI: 10.1093/aob/mcy090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Background and Aims Over very short spatial scales, the habitat of a species can differ in multiple abiotic and biotic factors. These factors may impose natural selection on several traits and can cause genetic differentiation within a population. We studied multivariate genetic differentiation in a plant species of a sand dune landscape by linking environmental variation with differences in genotypic trait values and gene expression levels to find traits and candidate genes of microgeographical adaptation. Methods Maternal seed families of Arabidopsis lyrata were collected in Saugatuck Dunes State Park, Michigan, USA, and environmental parameters were recorded at each collection site. Offspring plants were raised in climate chambers and exposed to one of three temperature treatments: regular occurrence of frost, heat, or constant control conditions. Several traits were assessed: plant growth, time to flowering, and frost and heat resistance. Key Results The strongest trait-environment association was between a fast switch to sexual reproduction and weaker growth under frost, and growing in the open, away from trees. The second strongest association was between the trait combination of small plant size and early flowering under control conditions combined with large size under frost, and the combination of environmental conditions of growing close to trees, at low vegetation cover, on dune bottoms. Gene expression analysis by RNA-seq revealed candidate genes involved in multivariate trait differentiation. Conclusions The results support the hypothesis that in natural populations, many environmental factors impose selection, and that they affect multiple traits, with the relative direction of trait change being complex. The results highlight that heterogeneity in the selection environment over small spatial scales is a main driver of the maintenance of adaptive genetic variation within populations.
Collapse
Affiliation(s)
- Guillaume Wos
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Department of Botany, Charles University, Prague, Czech Republic
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
31
|
Fraïsse C, Roux C, Gagnaire PA, Romiguier J, Faivre N, Welch JJ, Bierne N. The divergence history of European blue mussel species reconstructed from Approximate Bayesian Computation: the effects of sequencing techniques and sampling strategies. PeerJ 2018; 6:e5198. [PMID: 30083438 PMCID: PMC6071616 DOI: 10.7717/peerj.5198] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/19/2018] [Indexed: 01/25/2023] Open
Abstract
Genome-scale diversity data are increasingly available in a variety of biological systems, and can be used to reconstruct the past evolutionary history of species divergence. However, extracting the full demographic information from these data is not trivial, and requires inferential methods that account for the diversity of coalescent histories throughout the genome. Here, we evaluate the potential and limitations of one such approach. We reexamine a well-known system of mussel sister species, using the joint site frequency spectrum (jSFS) of synonymous mutations computed either from exome capture or RNA-seq, in an Approximate Bayesian Computation (ABC) framework. We first assess the best sampling strategy (number of: individuals, loci, and bins in the jSFS), and show that model selection is robust to variation in the number of individuals and loci. In contrast, different binning choices when summarizing the jSFS, strongly affect the results: including classes of low and high frequency shared polymorphisms can more effectively reveal recent migration events. We then take advantage of the flexibility of ABC to compare more realistic models of speciation, including variation in migration rates through time (i.e., periodic connectivity) and across genes (i.e., genome-wide heterogeneity in migration rates). We show that these models were consistently selected as the most probable, suggesting that mussels have experienced a complex history of gene flow during divergence and that the species boundary is semi-permeable. Our work provides a comprehensive evaluation of ABC demographic inference in mussels based on the coding jSFS, and supplies guidelines for employing different sequencing techniques and sampling strategies. We emphasize, perhaps surprisingly, that inferences are less limited by the volume of data, than by the way in which they are analyzed.
Collapse
Affiliation(s)
- Christelle Fraïsse
- Institut des Sciences de l’Evolution UMR5554, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Department of Genetics, University of Cambridge, Cambridge, UK
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Camille Roux
- Université de Lille, Unité Evo-Eco-Paléo (EEP), UMR 8198, Villeneuve d’Ascq, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l’Evolution UMR5554, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Jonathan Romiguier
- Institut des Sciences de l’Evolution UMR5554, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Nicolas Faivre
- Institut des Sciences de l’Evolution UMR5554, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - John J. Welch
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Nicolas Bierne
- Institut des Sciences de l’Evolution UMR5554, University Montpellier, CNRS, IRD, EPHE, Montpellier, France
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
32
|
Buckley J, Holub EB, Koch MA, Vergeer P, Mable BK. Restriction associated DNA-genotyping at multiple spatial scales in Arabidopsis lyrata reveals signatures of pathogen-mediated selection. BMC Genomics 2018; 19:496. [PMID: 29945543 PMCID: PMC6020377 DOI: 10.1186/s12864-018-4806-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/18/2018] [Indexed: 11/22/2022] Open
Abstract
Background Genome scans based on outlier analyses have revolutionized detection of genes involved in adaptive processes, but reports of some forms of selection, such as balancing selection, are still limited. It is unclear whether high throughput genotyping approaches for identification of single nucleotide polymorphisms have sufficient power to detect modes of selection expected to result in reduced genetic differentiation among populations. In this study, we used Arabidopsis lyrata to investigate whether signatures of balancing selection can be detected based on genomic smoothing of Restriction Associated DNA sequencing (RAD-seq) data. We compared how different sampling approaches (both within and between subspecies) and different background levels of polymorphism (inbreeding or outcrossing populations) affected the ability to detect genomic regions showing key signatures of balancing selection, specifically elevated polymorphism, reduced differentiation and shifts towards intermediate allele frequencies. We then tested whether candidate genes associated with disease resistance (R-gene analogs) were detected more frequently in these regions compared to other regions of the genome. Results We found that genomic regions showing elevated polymorphism contained a significantly higher density of R-gene analogs predicted to be under pathogen-mediated selection than regions of non-elevated polymorphism, and that many of these also showed evidence for an intermediate site-frequency spectrum based on Tajima’s D. However, we found few genomic regions that showed both elevated polymorphism and reduced FST among populations, despite strong background levels of genetic differentiation among populations. This suggests either insufficient power to detect the reduced population structure predicted for genes under balancing selection using sparsely distributed RAD markers, or that other forms of diversifying selection are more common for the R-gene analogs tested. Conclusions Genome scans based on a small number of individuals sampled from a wide range of populations were sufficient to confirm the relative scarcity of signatures of balancing selection across the genome, but also identified new potential disease resistance candidates within genomic regions showing signatures of balancing selection that would be strong candidates for further sequencing efforts. Electronic supplementary material The online version of this article (10.1186/s12864-018-4806-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Buckley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK. .,Adaptation to a Changing Environment, Institute of Integrative Biology, ETH Zürich, CH-8092, Zürich, Switzerland.
| | - Eric B Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Marcus A Koch
- Centre for Organismal Studies (COS) Heidelberg, Biodiversity and Plant Systematics, Heidelberg University, D69120, Heidelberg, Germany
| | - Philippine Vergeer
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O.Box 47, 6700, AA, Wageningen, The Netherlands
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
33
|
Rougemont Q, Bernatchez L. The demographic history of Atlantic salmon (Salmo salar) across its distribution range reconstructed from approximate Bayesian computations. Evolution 2018; 72:1261-1277. [PMID: 29644624 DOI: 10.1101/142372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/14/2018] [Indexed: 05/18/2023]
Abstract
Understanding the dual roles of demographic and selective processes in the buildup of population divergence is one of the most challenging tasks in evolutionary biology. Here, we investigated the demographic history of Atlantic salmon across the entire species range using 2035 anadromous individuals from North America and Eurasia. By combining results from admixture graphs, geo-genetic maps, and an Approximate Bayesian Computation (ABC) framework, we validated previous hypotheses pertaining to secondary contact between European and Northern American populations, but also identified secondary contacts in European populations from different glacial refugia. We further identified the major sources of admixture from the southern range of North America into more northern populations along with a strong signal of secondary gene flow between genetic regional groups. We hypothesize that these patterns reflect the spatial redistribution of ancestral variation across the entire North American range. Results also support a role for linked selection and differential introgression that likely played an underappreciated role in shaping the genomic landscape of species in the Northern hemisphere. We conclude that studies between partially isolated populations should systematically include heterogeneity in selective and introgressive effects among loci to perform more rigorous demographic inferences of the divergence process.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6 Québec, Canada
| | - Louis Bernatchez
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6 Québec, Canada
| |
Collapse
|
34
|
Hawkins AK, Garza ER, Dietz VA, Hernandez OJ, Hawkins WD, Burrell AM, Pepper AE. Transcriptome Signatures of Selection, Drift, Introgression, and Gene Duplication in the Evolution of an Extremophile Endemic Plant. Genome Biol Evol 2017; 9:3478-3494. [PMID: 29220486 PMCID: PMC5751042 DOI: 10.1093/gbe/evx259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2017] [Indexed: 12/26/2022] Open
Abstract
Plants on serpentine soils provide extreme examples of adaptation to environment, and thus offer excellent models for the study of evolution at the molecular and genomic level. Serpentine outcrops are derived from ultramafic rock and have extremely low levels of essential plant nutrients (e.g., N, P, K, and Ca), as well as toxic levels of heavy metals (e.g., Ni, Cr, and Co) and low moisture availability. These outcrops provide habitat to a number of endemic plant species, including the annual mustard Caulanthus amplexicaulis var. barbarae (Cab) (Brassicaceae). Its sister taxon, C. amplexicaulis var. amplexicaulis (Caa), is intolerant to serpentine soils. Here, we assembled and annotated comprehensive reference transcriptomes of both Caa and Cab for use in protein coding sequence comparisons. A set of 29,443 reciprocal best Blast hit (RBH) orthologs between Caa and Cab was compared with identify coding sequence variants, revealing a high genome-wide dN/dS ratio between the two taxa (mean = 0.346). We show that elevated dN/dS likely results from the composite effects of genetic drift, positive selection, and the relaxation of negative selection. Further, analysis of paralogs within each taxon revealed the signature of a period of elevated gene duplication (∼10 Ma) that is shared with other species of the tribe Thelypodieae, and may have played a role in the striking morphological and ecological diversity of this tribe. In addition, distribution of the synonymous substitution rate, dS, is strongly bimodal, indicating a history of reticulate evolution that may have contributed to serpentine adaptation.
Collapse
|
35
|
Moore JS, Harris LN, Le Luyer J, Sutherland BJ, Rougemont Q, Tallman RF, Fisk AT, Bernatchez L. Genomics and telemetry suggest a role for migration harshness in determining overwintering habitat choice, but not gene flow, in anadromous Arctic Char. Mol Ecol 2017; 26:6784-6800. [DOI: 10.1111/mec.14393] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/25/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Jean-Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Les N. Harris
- Freshwater Institute Fisheries and Oceans Canada; Winnipeg MB Canada
| | - Jérémy Le Luyer
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
- Institut Français de Recherche pour l'Exploitation de la Mer; Taravao Tahiti France
| | - Ben J.G. Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
- Pacific Biological Station, Fisheries and Oceans Canada; Nanaimo BC Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| | - Ross F. Tallman
- Freshwater Institute Fisheries and Oceans Canada; Winnipeg MB Canada
| | - Aaron T. Fisk
- Great Lakes Institute of Environmental Research; University of Windsor; Windsor ON Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS); Université Laval; Québec QC Canada
| |
Collapse
|
36
|
Mattila TM, Tyrmi J, Pyhäjärvi T, Savolainen O. Genome-Wide Analysis of Colonization History and Concomitant Selection in Arabidopsis lyrata. Mol Biol Evol 2017; 34:2665-2677. [PMID: 28957505 DOI: 10.1093/molbev/msx193] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The high climatic variability in the past hundred thousand years has affected the demographic and adaptive processes in many species, especially in boreal and temperate regions undergoing glacial cycles. This has also influenced the patterns of genome-wide nucleotide variation, but the details of these effects are largely unknown. Here we study the patterns of genome-wide variation to infer colonization history and patterns of selection of the perennial herb species Arabidopsis lyrata, in locally adapted populations from different parts of its distribution range (Germany, UK, Norway, Sweden, and USA) representing different environmental conditions. Using site frequency spectra based demographic modeling, we found strong reduction in the effective population size of the species in general within the past 100,000 years, with more pronounced effects in the colonizing populations. We further found that the northwestern European A. lyrata populations (UK and Scandinavian) are more closely related to each other than with the Central European populations, and coalescent based population split modeling suggests that western European and Scandinavian populations became isolated relatively recently after the glacial retreat. We also highlighted loci showing evidence for local selection associated with the Scandinavian colonization. The results presented here give new insights into postglacial Scandinavian colonization history and its genome-wide effects.
Collapse
Affiliation(s)
- Tiina M Mattila
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Jaakko Tyrmi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Tanja Pyhäjärvi
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
37
|
Hohmann N, Koch MA. An Arabidopsis introgression zone studied at high spatio-temporal resolution: interglacial and multiple genetic contact exemplified using whole nuclear and plastid genomes. BMC Genomics 2017; 18:810. [PMID: 29058582 PMCID: PMC5651623 DOI: 10.1186/s12864-017-4220-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
Background Gene flow between species, across ploidal levels, and even between evolutionary lineages is a common phenomenon in the genus Arabidopsis. However, apart from two genetically fully stabilized allotetraploid species that have been investigated in detail, the extent and temporal dynamics of hybridization are not well understood. An introgression zone, with tetraploid A. arenosa introgressing into A. lyrata subsp. petraea in the Eastern Austrian Forealps and subsequent expansion towards pannonical lowlands, was described previously based on morphological observations as well as molecular data using microsatellite and plastid DNA markers. Here we investigate the spatio-temporal context of this suture zone, making use of the potential of next-generation sequencing and whole-genome data. By utilizing a combination of nuclear and plastid genomic data, the extent, direction and temporal dynamics of gene flow are elucidated in detail and Late Pleistocene evolutionary processes are resolved. Results Analysis of nuclear genomic data significantly recognizes the clinal structure of the introgression zone, but also reveals that hybridization and introgression is more common and substantial than previously thought. Also tetraploid A. lyrata and A. arenosa subsp. borbasii from outside the previously defined suture zone show genomic signals of past introgression. A. lyrata is shown to serve usually as the maternal parent in these hybridizations, but one exception is identified from plastome-based phylogenetic reconstruction. Using plastid phylogenomics with secondary time calibration, the origin of A. lyrata and A. arenosa lineages is pre-dating the last three glaciation complexes (approx. 550,000 years ago). Hybridization and introgression followed during the last two glacial-interglacial periods (since approx. 300,000 years ago) with later secondary contact at the northern and southern border of the introgression zone during the Holocene. Conclusions Footprints of adaptive introgression in the Northeastern Forealps are older than expected and predate the Last Glaciation Maximum. This correlates well with high genetic diversity found within areas that served as refuge area multiple times. Our data also provide some first hints that early introgressed and presumably preadapted populations account for successful and rapid postglacial re-colonization and range expansion. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4220-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nora Hohmann
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.,Present address: Department of Environmental Sciences, Botany, University of Basel, Hebelstrasse 1, CH-4056, Basel, Switzerland
| | - Marcus A Koch
- Center for Organismal Studies (COS) Heidelberg/Botanic Garden and Herbarium Heidelberg (HEID), University of Heidelberg, Im Neuenheimer Feld 345, D-69120, Heidelberg, Germany.
| |
Collapse
|
38
|
Carleial S, van Kleunen M, Stift M. Relatively weak inbreeding depression in selfing but also in outcrossing populations of North American Arabidopsis lyrata. J Evol Biol 2017; 30:1994-2004. [PMID: 28833878 DOI: 10.1111/jeb.13169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 01/28/2023]
Abstract
Hermaphroditic plants can potentially self-fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self-progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self-incompatible, with a low frequency of self-compatible plants. However, a few populations have become fixed for self-compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self-incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding-depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self-incompatibility to produce selfed seed might leave residual effects of self-incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata.
Collapse
Affiliation(s)
- S Carleial
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - M van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - M Stift
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
39
|
Merceron NR, Leroy T, Chancerel E, Romero-Severson J, Borkowski D, Ducousso A, Monty A, Porté AJ, Kremer A. Back to America: tracking the origin of European introduced populations of Quercus rubra L. Genome 2017; 60:778-790. [PMID: 28750176 PMCID: PMC6526120 DOI: 10.1139/gen-2016-0187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quercus rubra has been introduced in Europe since the end of the 17th century. It is widely distributed today across this continent and considered invasive in some countries. Here, we investigated the distribution of genetic diversity of both native and introduced populations with the aim of tracing the origin of introduced populations. A large sampling of 883 individuals from 73 native and 38 European locations were genotyped at 69 SNPs. In the natural range, we found a continuous geographic gradient of variation with a predominant latitudinal component. We explored the existence of ancestral populations by performing Bayesian clustering analysis and found support for two or three ancestral genetic clusters. Approximate Bayesian Computations analyses based on these two or three clusters support recent extensive secondary contacts between them, suggesting that present-day continuous genetic variation resulted from recent admixture. In the introduced range, one main genetic cluster was not recovered in Europe, suggesting that source populations were preferentially located in the northern part of the natural distribution. However, our results cannot refute the introduction of populations from the southern states that did not survive in Europe.
Collapse
Affiliation(s)
- Nastasia R. Merceron
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- University of Liège, Gembloux Agro-Bio Tech., Biodiversity and Landscape Unit, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | | | | | - Jeanne Romero-Severson
- University of Notre Dame, Department of Biological Sciences, 100 Galvin Life Sciences Center Notre Dame 46556. Indiana, USA
| | - Daniel Borkowski
- University of Notre Dame, Department of Biological Sciences, 100 Galvin Life Sciences Center Notre Dame 46556. Indiana, USA
| | | | - Arnaud Monty
- University of Liège, Gembloux Agro-Bio Tech., Biodiversity and Landscape Unit, 2, Passage des Déportés, B-5030 Gembloux, Belgium
| | | | | |
Collapse
|
40
|
Evidence for Adaptive Introgression of Disease Resistance Genes Among Closely Related Arabidopsis Species. G3-GENES GENOMES GENETICS 2017. [PMID: 28630104 PMCID: PMC5555472 DOI: 10.1534/g3.117.043984] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The generation and maintenance of functional variation in the pathogen defense system of plants is central to the constant evolutionary battle between hosts and parasites. If a species is susceptible to a given pathogen, hybridization and subsequent introgression of a resistance allele from a related species can potentially be an important source of new immunity and is therefore expected to be selected for in a process referred to as adaptive introgression. Here, we survey sequence variation in 10 resistance (R-) genes and compare them with 37 reference genes in natural populations of the two closely related and interfertile species: Arabidopsis lyrata and A. halleri. The R-genes are highly polymorphic in both species and show clear signs of trans-species polymorphisms. We show that A. lyrata and A. halleri have had a history of limited introgression for the reference genes. For the R-genes, the introgression rate has been significantly higher than for the reference genes, resulting in fewer fixed differences between species and a higher sharing of identical haplotypes. We conclude that R-genes likely cross the species boundaries at a higher rate than reference genes and therefore also that some of the increased diversity and trans-specific polymorphisms in R-genes is due to adaptive introgression.
Collapse
|
41
|
Leroy T, Roux C, Villate L, Bodénès C, Romiguier J, Paiva JAP, Dossat C, Aury JM, Plomion C, Kremer A. Extensive recent secondary contacts between four European white oak species. THE NEW PHYTOLOGIST 2017; 214:865-878. [PMID: 28085203 PMCID: PMC5624484 DOI: 10.1111/nph.14413] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/21/2016] [Indexed: 05/04/2023]
Abstract
Historical trajectories of tree species during the late Quaternary have been well reconstructed through genetic and palaeobotanical studies. However, many congeneric tree species are interfertile, and the timing and contribution of introgression to species divergence during their evolutionary history remains largely unknown. We quantified past and current gene flow events between four morphologically divergent oak species (Quercus petraea, Q. robur, Q. pyrenaica, Q. pubescens), by two independent inference methods: diffusion approximation to the joint frequency spectrum (∂a∂i) and approximate Bayesian computation (ABC). For each pair of species, alternative scenarios of speciation allowing gene flow over different timescales were evaluated. Analyses of 3524 single nucleotide polymorphisms (SNPs) randomly distributed in the genome, showed that these species evolved in complete isolation for most of their history, but recently came into secondary contact, probably facilitated by the most recent period of postglacial warming. We demonstrated that: there was sufficient genetic differentiation before secondary contact for the accumulation of barriers to gene flow; and current European white oak genomes are a mosaic of genes that have crossed species boundaries and genes impermeable to gene flow.
Collapse
Affiliation(s)
- Thibault Leroy
- BIOGECO, INRA, Université de Bordeaux, Cestas, 33610, France
| | - Camille Roux
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Laure Villate
- BIOGECO, INRA, Université de Bordeaux, Cestas, 33610, France
| | | | - Jonathan Romiguier
- Department of Ecology and Evolution, University of Lausanne, Lausanne, 1015, Switzerland
| | - Jorge A P Paiva
- Instituto de Biologia Experimental e Tecnológica, iBET, Apartado 12, Oeiras, 2780-901, Portugal
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska street, Poznań, PL-60-479, Poland
| | - Carole Dossat
- Institut de Genomique (IG), Commissariat à l'Energie Atomique (CEA), Genoscope, Evry, 91057, France
| | - Jean-Marc Aury
- Institut de Genomique (IG), Commissariat à l'Energie Atomique (CEA), Genoscope, Evry, 91057, France
| | | | - Antoine Kremer
- BIOGECO, INRA, Université de Bordeaux, Cestas, 33610, France
| |
Collapse
|
42
|
Puzey JR, Willis JH, Kelly JK. Population structure and local selection yield high genomic variation in Mimulus guttatus. Mol Ecol 2017; 26:519-535. [PMID: 27859786 PMCID: PMC5274581 DOI: 10.1111/mec.13922] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 09/30/2016] [Accepted: 11/07/2016] [Indexed: 12/30/2022]
Abstract
Across western North America, Mimulus guttatus exists as many local populations adapted to site-specific environmental challenges. Gene flow between locally adapted populations will affect genetic diversity both within demes and across the larger metapopulation. Here, we analyse 34 whole-genome sequences from the intensively studied Iron Mountain population (IM) in conjunction with sequences from 22 Mimulus individuals sampled from across western North America. Three striking features of these data address hypotheses about migration and selection in a locally adapted population. First, we find very high levels of intrapopulation polymorphism (synonymous π = 0.033). Variation outside of genes is likely even higher but difficult to estimate because excessive divergence reduces the efficiency of read mapping. Second, IM exhibits a significantly positive genomewide average for Tajima's D. This indicates allele frequencies are typically more intermediate than expected from neutrality, opposite the pattern observed in many other species. Third, IM exhibits a distinctive haplotype structure with a genomewide excess of positive associations between rarer alleles at linked loci. This suggests an important effect of gene flow from other Mimulus populations, although a residual effect of population founding might also contribute. The combination of multiple analyses, including a novel tree-based analytic method, illustrates how the balance of local selection, limited dispersal and metapopulation dynamics manifests across the genome. The overall genomic pattern of sequence diversity suggests successful gene flow of divergent immigrant genotypes into IM. However, many loci show patterns indicative of local adaptation, particularly at SNPs associated with chromosomal inversions.
Collapse
Affiliation(s)
- Joshua R. Puzey
- Department of Biology, College of William and Mary, Williamsburg, Virginia, 23187
- Department of Biology, Duke University, Durham, North Carolina, 27708
| | - John H. Willis
- Department of Biology, Duke University, Durham, North Carolina, 27708
| | - John K. Kelly
- Department of Ecology and Evolution, University of Kansas, Lawrence, Kansas, 27708
| |
Collapse
|
43
|
Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLoS Biol 2016; 14:e2000234. [PMID: 28027292 PMCID: PMC5189939 DOI: 10.1371/journal.pbio.2000234] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/21/2016] [Indexed: 12/24/2022] Open
Abstract
Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids—the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation. Isolated populations accumulate genetic differences across their genomes as they diverge, whereas gene flow between populations counteracts divergence and tends to restore genetic homogeneity. Speciation proceeds by the accumulation at specific loci of mutations that reduce the fitness of hybrids, therefore preventing gene flow—the so-called species barriers. Importantly, species barriers are expected to act locally within the genome, leading to the prediction of a mosaic pattern of genetic differentiation between populations at intermediate levels of divergence—the genic view of speciation. At the same time, linked selection also contributes to speed up differentiation in low-recombining and gene-dense regions. We used a modelling approach that accounts for both sources of genomic heterogeneity and explored a wide continuum of genomic divergence made by 61 pairs of species/populations in animals. Our analysis provides a unifying picture of the relationship between molecular divergence and ability to exchange genes. We show that the "grey zone" of speciation—the intermediate state in which species definition is controversial—spans from 0.5% to 2% of molecular divergence, with these thresholds being independent of species life history traits and ecology. Semi-isolated species, between which alleles can be exchanged at some but not all loci, are numerous, with the earliest species barriers being detected at divergences as low as 0.075%. These results have important implications regarding taxonomy, conservation biology, and the management of biodiversity.
Collapse
|
44
|
What causes mating system shifts in plants? Arabidopsis lyrata as a case study. Heredity (Edinb) 2016; 118:52-63. [PMID: 27804968 PMCID: PMC5176122 DOI: 10.1038/hdy.2016.99] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/12/2016] [Accepted: 08/16/2016] [Indexed: 01/24/2023] Open
Abstract
The genetic breakdown of self-incompatibility (SI) and subsequent mating system shifts to inbreeding has intrigued evolutionary geneticists for decades. Most of our knowledge is derived from interspecific comparisons between inbreeding species and their outcrossing relatives, where inferences may be confounded by secondary mutations that arose after the initial loss of SI. Here, we study an intraspecific breakdown of SI and its consequences in North American Arabidopsis lyrata to test whether: (1) particular S-locus haplotypes are associated with the loss of SI and/or the shift to inbreeding; (2) a population bottleneck may have played a role in driving the transition to inbreeding; and (3) the mutation(s) underlying the loss of SI are likely to have occurred at the S-locus. Combining multiple approaches for genotyping, we found that outcrossing populations on average harbour 5 to 9 S-locus receptor kinase (SRK) alleles, but only two, S1 and S19, are shared by most inbreeding populations. Self-compatibility (SC) behaved genetically as a recessive trait, as expected from a loss-of-function mutation. Bulked segregant analysis in SC × SI F2 individuals using deep sequencing confirmed that all SC plants were S1 homozygotes but not all S1 homozygotes were SC. This was also revealed in population surveys, where only a few S1 homozygotes were SC. Together with crossing data, this suggests that there is a recessive factor that causes SC that is physically unlinked to the S-locus. Overall, our results emphasise the value of combining classical genetics with advanced sequencing approaches to resolve long outstanding questions in evolutionary biology.
Collapse
|
45
|
Importance of incomplete lineage sorting and introgression in the origin of shared genetic variation between two closely related pines with overlapping distributions. Heredity (Edinb) 2016; 118:211-220. [PMID: 27649619 PMCID: PMC5315522 DOI: 10.1038/hdy.2016.72] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/24/2016] [Accepted: 06/29/2016] [Indexed: 02/01/2023] Open
Abstract
Genetic variation shared between closely related species may be due to retention of ancestral polymorphisms because of incomplete lineage sorting (ILS) and/or introgression following secondary contact. It is challenging to distinguish ILS and introgression because they generate similar patterns of shared genetic diversity, but this is nonetheless essential for inferring accurately the history of species with overlapping distributions. To address this issue, we sequenced 33 independent intron loci across the genome of two closely related pine species (Pinus massoniana Lamb. and Pinus hwangshanensis Hisa) from Southeast China. Population structure analyses revealed that the species showed slightly more admixture in parapatric populations than in allopatric populations. Levels of interspecific differentiation were lower in parapatry than in allopatry. Approximate Bayesian computation suggested that the most likely speciation scenario explaining this pattern was a long period of isolation followed by a secondary contact. Ecological niche modeling suggested that a gradual range expansion of P. hwangshanensis during the Pleistocene climatic oscillations could have been the cause of the overlap. Our study therefore suggests that secondary introgression, rather than ILS, explains most of the shared nuclear genomic variation between these two species and demonstrates the complementarity of population genetics and ecological niche modeling in understanding gene flow history. Finally, we discuss the importance of contrasting results from markers with different dynamics of migration, namely nuclear, chloroplast and mitochondrial DNA.
Collapse
|
46
|
Puentes A, Granath G, Ågren J. Similarity in G matrix structure among natural populations of Arabidopsis lyrata. Evolution 2016; 70:2370-2386. [PMID: 27501272 DOI: 10.1111/evo.13034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
Abstract
Understanding the stability of the G matrix in natural populations is fundamental for predicting evolutionary trajectories; yet, the extent of its spatial variation and how this impacts responses to selection remain open questions. With a nested paternal half-sib crossing design and plants grown in a field experiment, we examined differences in the genetic architecture of flowering time, floral display, and plant size among four Scandinavian populations of Arabidopsis lyrata. Using a multivariate Bayesian framework, we compared the size, shape, and orientation of G matrices and assessed their potential to facilitate or constrain trait evolution. Flowering time, floral display and rosette size varied among populations and significant additive genetic variation within populations indicated potential to evolve in response to selection. Yet, some characters, including flowering start and number of flowers, may not evolve independently because of genetic correlations. Using a multivariate framework, we found few differences in the genetic architecture of traits among populations. G matrices varied mostly in size rather than shape or orientation. Differences in multivariate responses to selection predicted from differences in G were small, suggesting overall matrix similarity and shared constraints to trait evolution among populations.
Collapse
Affiliation(s)
- Adriana Puentes
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden. .,Department of Ecology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden.
| | - Gustaf Granath
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.,Department of Ecology, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Jon Ågren
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
| |
Collapse
|
47
|
Buckley J, Kilbride E, Cevik V, Vicente JG, Holub EB, Mable BK. R-gene variation across Arabidopsis lyrata subspecies: effects of population structure, selection and mating system. BMC Evol Biol 2016; 16:93. [PMID: 27150007 PMCID: PMC4858910 DOI: 10.1186/s12862-016-0665-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/23/2016] [Indexed: 11/10/2022] Open
Abstract
Background Examining allelic variation of R-genes in closely related perennial species of Arabidopsis thaliana is critical to understanding how population structure and ecology interact with selection to shape the evolution of innate immunity in plants. We finely sampled natural populations of Arabidopsis lyrata from the Great Lakes region of North America (A. l. lyrata) and broadly sampled six European countries (A. l. petraea) to investigate allelic variation of two R-genes (RPM1 and WRR4) and neutral genetic markers (Restriction Associated DNA sequences and microsatellites) in relation to mating system, phylogeographic structure and subspecies divergence. Results Fine-scale sampling of populations revealed strong effects of mating system and population structure on patterns of polymorphism for both neutral loci and R-genes, with no strong evidence for selection. Broad geographic sampling revealed evidence of balancing selection maintaining polymorphism in R-genes, with elevated heterozygosity and diversity compared to neutral expectations and sharing of alleles among diverged subspecies. Codon-based tests detected both positive and purifying selection for both R-genes, as commonly found for animal immune genes. Conclusions Our results highlight that combining fine and broad-scale sampling strategies can reveal the multiple factors influencing polymorphism and divergence at potentially adaptive genes such as R-genes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0665-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James Buckley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK. .,Current address: Center for Adaptation to a Changing Environment, ETH Zurich, Zurich, 8092, Switzerland.
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Volkan Cevik
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, CV359EF, UK.,Current address: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR47UH, UK
| | - Joana G Vicente
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, CV359EF, UK
| | - Eric B Holub
- School of Life Sciences, University of Warwick, Wellesbourne Campus, Wellesbourne, CV359EF, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
48
|
Wu Z, Gu C, Tembrock LR, Sun C. The complete chloroplast genome of Arabidopsis lyrata. MITOCHONDRIAL DNA PART B-RESOURCES 2016; 1:291-292. [PMID: 33644362 PMCID: PMC7871834 DOI: 10.1080/23802359.2016.1166082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report the complete chloroplast DNA (cpDNA) of Arabidopsis lyrata (Brassicaceae), a less studied relative of A. thaliana, by employing next-generation sequencing reads and de novo assembly. The length of the closed circular cpDNA is 154,604 bp with a typical quadripartite structure. The genome is composed of one large single copy and one small single copy regions of 84,209 bp and 17,871 bp, respectively, and separated by a pair of inverted repeats of 26,262 bp in length. The overall GC content is 36.35% and the GC content of the LSC, IRs and SSC regions are 34.12%, 42.30% and 29.38%, separately. The gene content and the number for A. lyrata are the same as other published species in Brassicaceae with 112 annotated known unique genes including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. The complete cpDNA of A. lyrata will provide valuable molecular resources for further phylogenetic and evolutionary analysis in the model Arabidopsis genus.
Collapse
Affiliation(s)
- Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Cuihua Gu
- School of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, PR China
| | - Luke R Tembrock
- School of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou, PR China
| | - Cheng Sun
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
49
|
Mattila TM, Aalto EA, Toivainen T, Niittyvuopio A, Piltonen S, Kuittinen H, Savolainen O. Selection for population-specific adaptation shaped patterns of variation in the photoperiod pathway genes in Arabidopsis lyrata during post-glacial colonization. Mol Ecol 2016; 25:581-97. [PMID: 26600237 DOI: 10.1111/mec.13489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022]
Abstract
Spatially varying selection can lead to population-specific adaptation, which is often recognized at the phenotypic level; however, the genetic evidence is weaker in many groups of organisms. In plants, environmental shifts that occur due to colonization of a novel environment may require adaptive changes in the timing of growth and flowering, which are often governed by location-specific environmental cues such as day length. We studied locally varying selection in 19 flowering time loci in nine populations of the perennial herb Arabidopsis lyrata, which has a wide but patchy distribution in temperate and boreal regions of the northern hemisphere. The populations differ in their recent population demographic and colonization histories and current environmental conditions, especially in the growing season length. We searched for population-specific molecular signatures of directional selection by comparing a set of candidate flowering time loci with a genomic reference set within each population using multiple approaches and contrasted the patterns of different populations. The candidate loci possessed approximately 20% of the diversity of the reference loci. On average the flowering time loci had more rare alleles (a smaller Tajima's D) and an excess of highly differentiated sites relative to the reference, suggesting positive selection. The strongest signal of selection was detected in photoperiodic pathway loci in the colonizing populations of Northwestern Europe, whereas no evidence of positive selection was detected in the Central European populations. These findings emphasized the population-specific nature of selection and suggested that photoperiodic adaptation was important during postglacial colonization of the species.
Collapse
Affiliation(s)
- Tiina M Mattila
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Esa A Aalto
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Tuomas Toivainen
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, 90014, Oulu, Finland
| | - Anne Niittyvuopio
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Susanna Piltonen
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Helmi Kuittinen
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland
| | - Outi Savolainen
- Department of Genetics and Physiology, University of Oulu, 90014, Oulu, Finland.,Biocenter Oulu, University of Oulu, 90014, Oulu, Finland
| |
Collapse
|
50
|
Oakley CG, Spoelhof JP, Schemske DW. Increased heterosis in selfing populations of a perennial forb. AOB PLANTS 2015; 7:plv122. [PMID: 26507567 PMCID: PMC4671326 DOI: 10.1093/aobpla/plv122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
Quantifying the importance of random genetic drift in natural populations is central to understanding the potential limits to natural selection. One approach is to estimate the magnitude of heterosis, the increased fitness of progeny derived from crosses between populations relative to crosses within populations caused by the heterozygous masking of deleterious recessive or nearly recessive alleles that have been fixed by drift within populations. Self-fertilization is expected to reduce the effective population size by half relative to outcrossing, and population bottlenecks may be common during the transition to selfing. Therefore, chance fixation of deleterious alleles due to drift in selfing populations should increase heterosis between populations. Increased homozygosity due to fixation or loss of alleles should also decrease inbreeding depression within populations. Most populations of the perennial herb Arabidopsis lyrata ssp. lyrata are self-incompatible (SI), but several have evolved self-compatibility and are highly selfing. We quantified heterosis and inbreeding depression in two predominantly self-compatible (SC) and seven SI populations in a field common garden experiment within the species' native range and examined the correlation between these metrics to gauge the similarity in their genetic basis. We measured proportion germination in the lab, and survival and fecundity (flower and seed production) for 2 years in the field, and calculated estimates of cumulative fitness. We found 7.2-fold greater heterosis in SC compared with SI populations, despite substantial heterosis in SI populations (56 %). Inbreeding depression was >61 %, and not significantly different between SC and SI populations. There was no correlation between population estimates of heterosis and inbreeding depression, suggesting that they have somewhat different genetic bases. Combined with other sources of information, our results suggest a history of bottlenecks in all of these populations. The bottlenecks in SC populations may have been severe, but their strong inbreeding depression remains enigmatic.
Collapse
Affiliation(s)
- Christopher G Oakley
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA
| | - Jonathan P Spoelhof
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA
| | - Douglas W Schemske
- Department of Plant Biology and W. K. Kellogg Biological Station, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|