1
|
Putra MA, Sandora N, Soetisna TW, Kusuma TR, Fitria NA, Karimah B, Noviana D, Gunanti, Busro PW, Supomo, Alwi I. Cocultured amniotic stem cells and cardiomyocytes in a 3-D acellular heart patch reduce the infarct size and left ventricle remodeling: promote angiogenesis in a porcine acute myocardial infarction model. J Cardiothorac Surg 2025; 20:229. [PMID: 40340905 PMCID: PMC12063456 DOI: 10.1186/s13019-025-03453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 04/06/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) induces significant myocardial damage, ultimately leading to heart failure as the surrounding healthy myocardial tissue undergoes progressive deterioration due to excessive mechanical stress. METHODS This study aimed to investigate myocardial regeneration in a porcine model of AMI using an acellular amniotic membrane with fibrin-termed an amnion bilayer (AB) or heart patch-as a cellular delivery system using porcine amniotic stem cells (pASCs) and autologous porcine cardiomyocytes (pCardios). Fifteen pigs (aged 2-4 months, weighing 50-60 kg) were randomly assigned to three experimental groups (n = 5): control group (AMI induction only), pASC group (pASC transplantation only), and coculture group (pASC and pCardio transplantation). AMI was induced via posterior left ventricular artery ligation and confirmed through standard biomarkers. After eight weeks, histological and molecular analyses were conducted to assess myocardial regeneration. RESULTS Improvement in regional wall motion abnormality (RWMA) was observed in 60% of the coculture group, 25% of the pASC group, and none in the control group. Histological analysis of the control group revealed extensive fibrosis with pronounced lipomatosis, particularly at the infarct center. In contrast, pASC and coculture groups exhibited minimal fibrotic scarring at both the infarct center and border regions. Immunofluorescence analysis demonstrated positive α-actinin expression in both the pASC and coculture groups, with the coculture group displaying sarcomeric structures-an organization absent in control group. RNA expression levels of key cardiomyogenic markers, including cardiac troponin T (cTnT), myosin heavy chain (MHC), and Nkx2.5, were significantly elevated in the treatment groups compared to the controls, with the coculture group exhibiting the highest MHC expression. The expression of c-Kit was also increased in both treatment groups relative to the control. Conversely, apoptotic markers p21 and Caspase-9 were highest in the control group, while coculture group exhibited the lowest p53 expression. CONCLUSION Epicardial transplantation of an acellular amniotic heart patch cocultured with cardiomyocytes and pASCs demonstrated superior cardiomyogenesis after eight weeks compared to pASC transplantation alone or control conditions. The coculture system was found to enhance the cardiac regeneration process, as evidenced by improved RWMA, distinct sarcomeric organization, reduced fibrotic scarring, and lower apoptotic gene expression.
Collapse
Affiliation(s)
- Muhammad Arza Putra
- Division of Thoracic, Cardiac and Vascular Surgery, Department of Surgery, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia.
| | - Normalina Sandora
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia.
| | - Tri Wisesa Soetisna
- Division of Adult Cardiac Surgery, Harapan Kita National Cardiovascular Center, Jakarta, 11420, Indonesia
| | - Tyas Rahmah Kusuma
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Nur Amalina Fitria
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Benati Karimah
- Indonesian Medical Education and Research Institute, Universitas Indonesia, Jakarta, 10430, Indonesia
| | - Deni Noviana
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680, Indonesia
| | - Gunanti
- Division of Surgery and Radiology, School of Veterinary Medicine and Biomedical Sciences, IPB University, Bogor, 16680, Indonesia
| | - Pribadi Wiranda Busro
- Division of Pediatric and Congenital Cardiac Surgery, Harapan Kita National Cardiovascular Center, Jakarta, 11420, Indonesia
| | - Supomo
- Division of Cardiothoracic Surgery, Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, 55284, Indonesia
| | - Idrus Alwi
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
| |
Collapse
|
2
|
Xiao H, Li M, Zhong Y, Patel A, Xu R, Zhang C, Athy TW, Fang S, Xu T, Du S. Hsf1 is essential for proteotoxic stress response in smyd1b-deficient embryos and fish survival under heat shock. FASEB J 2025; 39:e70283. [PMID: 39760245 PMCID: PMC11740226 DOI: 10.1096/fj.202401875r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Molecular chaperones play critical roles in post-translational maintenance in protein homeostasis. Previous studies have shown that loss of Smyd1b function results in defective myofibril organization and dramatic upregulation of heat shock protein gene (hsp) expression in muscle cells of zebrafish embryos. To investigate the molecular mechanisms and functional importance of this stress response, we characterized changes of gene expression in smyd1b knockdown and knockout embryos using RNA-seq. The results showed that the top upregulated genes encode mostly cytosolic heat shock proteins. Co-IP assay revealed that the upregulated cytosolic Hsp70s associate with myosin chaperone UNC45b which is critical for myosin protein folding and sarcomere assembly. Strikingly, several hsp70 genes also display muscle-specific upregulation in response to heat shock-induced stress in zebrafish embryos. To investigate the regulation of hsp gene upregulation and its functional significance in muscle cells, we generated heat shock factor 1 (hsf-/-) knockout zebrafish mutants and analyzed hsp gene expression and muscle phenotype in the smyd1b-/-single and hsf1-/-;smyd1b-/- double-mutant embryos. The results showed that knockout of hsf1 blocked the hsp gene upregulation and worsened the muscle defects in smyd1b-/- mutant embryos. Moreover, we demonstrated that Hsf1 is essential for fish survival under heat shock (HS) conditions. Together, these studies uncover a correlation between Smyd1b deficiency and the Hsf1-activated heat shock response (HSR) in regulating muscle protein homeostasis and myofibril assembly and demonstrate that the Hsf1-mediated hsp gene upregulation is vital for the survival of zebrafish larvae under thermal stress conditions.
Collapse
Affiliation(s)
- Huanhuan Xiao
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Mofei Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
- Tianjin Normal University, Tianjin, China
| | - Yongwang Zhong
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Avani Patel
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Rui Xu
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, United States
| | - Thomas W. Athy
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| | - Shengyun Fang
- Center for Biomedical Engineering, Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Tianjun Xu
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
3
|
Caño-Carrillo S, Garcia-Padilla C, Aranega AE, Lozano-Velasco E, Franco D. Mef2c- and Nkx2-5-Divergent Transcriptional Regulation of Chick WT1_76127 and Mouse Gm14014 lncRNAs and Their Implication in Epicardial Cell Migration. Int J Mol Sci 2024; 25:12904. [PMID: 39684625 DOI: 10.3390/ijms252312904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiac development is a complex developmental process. The early cardiac straight tube is composed of an external myocardial layer and an internal endocardial lining. Soon after rightward looping, the embryonic heart becomes externally covered by a new epithelial lining, the embryonic epicardium. A subset of these embryonic epicardial cells migrate and colonize the embryonic myocardium, contributing to the formation of distinct cell types. In recent years, our understanding of the molecular mechanisms that govern proepicardium and embryonic epicardium formation has greatly increased. We have recently witnessed the discovery of a novel layer of complexity governing gene regulation with the discovery of non-coding RNAs. Our laboratory recently identified three distinct lncRNAs, adjacent to the Wt1, Bmp4 and Fgf8 chicken gene loci, with enhanced expression in the proepicardium that are distinctly regulated by Bmp, Fgf and thymosin β4, providing support for their plausible implication in epicardial formation. The expression of lncRNAs was analyzed in different chicken and mouse tissues as well as their subcellular distribution in chicken proepicardial, epicardial, ventricle explants and in different murine cardiac cell types. lncRNA transcriptional regulation was analyzed by using siRNAs and expression vectors of different transcription factors in chicken and mouse models, whereas antisense oligonucleotides were used to inhibit Gm14014 expression. Furthermore, RT-qPCR, immunocytochemistry, RNA pulldown, Western blot, viability and cell migration assays were conducted to investigate the biological functions of Wt1_76127 and Gm14014. We demonstrated that Wt1_76127 in chicken and its putative conserved homologue Gm14014 in mice are widely distributed in different embryonic and adult tissues and distinctly regulated by cardiac-enriched transcription factors, particularly Mef2c and Nkx2.5. Furthermore, silencing assays demonstrated that mouse Gm14014, but not chicken Wt1_76127, is essential for epicardial, but not endocardial or myocardial, cell migration. Such processes are governed by partnering with Myl9, promoting cytoskeletal remodeling. Our data show that Gm14014 plays a pivotal role in epicardial cell migration essential for heart regeneration under these experimental conditions.
Collapse
Affiliation(s)
- Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
| | - Amelia E Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain
- Fundación Medina, 18016 Granada, Spain
| |
Collapse
|
4
|
Greenberg L, Tom Stump W, Lin Z, Bredemeyer AL, Blackwell T, Han X, Greenberg AE, Garcia BA, Lavine KJ, Greenberg MJ. Harnessing molecular mechanism for precision medicine in dilated cardiomyopathy caused by a mutation in troponin T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588306. [PMID: 38645235 PMCID: PMC11030379 DOI: 10.1101/2024.04.05.588306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Familial dilated cardiomyopathy (DCM) is frequently caused by autosomal dominant point mutations in genes involved in diverse cellular processes, including sarcomeric contraction. While patient studies have defined the genetic landscape of DCM, genetics are not currently used in patient care, and patients receive similar treatments regardless of the underlying mutation. It has been suggested that a precision medicine approach based on the molecular mechanism of the underlying mutation could improve outcomes; however, realizing this approach has been challenging due to difficulties linking genotype and phenotype and then leveraging this information to identify therapeutic approaches. Here, we used multiscale experimental and computational approaches to test whether knowledge of molecular mechanism could be harnessed to connect genotype, phenotype, and drug response for a DCM mutation in troponin T, deletion of K210. Previously, we showed that at the molecular scale, the mutation reduces thin filament activation. Here, we used computational modeling of this molecular defect to predict that the mutant will reduce cellular and tissue contractility, and we validated this prediction in human cardiomyocytes and engineered heart tissues. We then used our knowledge of molecular mechanism to computationally model the effects of a small molecule that can activate the thin filament. We demonstrate experimentally that the modeling correctly predicts that the small molecule can partially rescue systolic dysfunction at the expense of diastolic function. Taken together, our results demonstrate how molecular mechanism can be harnessed to connect genotype and phenotype and inspire strategies to optimize mechanism-based therapeutics for DCM.
Collapse
Affiliation(s)
- Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - W. Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrea L. Bredemeyer
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas Blackwell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xian Han
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Akiva E. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kory J. Lavine
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
5
|
Li J, Xuan H, Kuang X, Li Y, Lian H, Yu N. Cas13b-mediated RNA targeted therapy alleviates genetic dilated cardiomyopathy in mice. Cell Biosci 2024; 14:4. [PMID: 38178244 PMCID: PMC10768345 DOI: 10.1186/s13578-023-01143-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/09/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Recent advances in gene editing technology have opened up new avenues for in vivo gene therapy, which holds great promise as a potential treatment method for dilated cardiomyopathy (DCM). The CRISPR-Cas13 system has been shown to be an effective tool for knocking down RNA expression in mammalian cells. PspCas13b, a type VI-B effector that can be packed into adeno-associated viruses and improve RNA knockdown efficiency, is a potential treatment for diseases characterized by abnormal gene expression. RESULTS Using PspCas13b, we were able to efficiently and specifically knockdown the mutant transcripts in the AC16 cell line carrying the heterozygous human TNNT2R141W (hTNNT2R141W) mutation. We used adeno-associated virus vector serotype 9 to deliver PspCas13b with specific single guide RNA into the hTNNT2R141W transgenic DCM mouse model, effectively knocking down hTNNT2R141W transcript expression. PspCas13b-mediated knockdown significantly increased myofilament sensitivity to Ca2+, improved cardiac function, and reduced myocardial fibrosis in hTNNT2R141W DCM mice. CONCLUSIONS These findings suggest that targeting genes through Cas13b is a promising approach for in vivo gene therapy for genetic diseases caused by aberrant gene expression. Our study provides further evidence of Cas13b's application in genetic disease therapy and paves the way for future applicability of genetic therapies for cardiomyopathy.
Collapse
Affiliation(s)
- Jiacheng Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital), Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - He Xuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xin Kuang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yahuan Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hong Lian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Nie Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Molecular genetic mechanisms of dilated cardiomyopathy. Curr Opin Genet Dev 2022; 76:101959. [PMID: 35870234 DOI: 10.1016/j.gde.2022.101959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/20/2022]
Abstract
Heart failure (HF) is a rapidly growing cardiovascular condition with a prevalence of ~40 million individuals worldwide [1]. While HF can be caused by acquired conditions such as myocardial infarctions and viruses [2], the genetic basis for HF is rapidly emerging particularly for dilated cardiomyopathy (DCM) that is the most prevalent HF type. In this review, insights from the rapid expansion in next-generation sequencing technologies applied in the HF clinic are merged with recent functional genomics studies to provide a contemporary view of DCM molecular genetics.
Collapse
|
7
|
Abstract
Heart disease is the leading cause of death worldwide. Despite decades of research, most heart pathologies have limited treatments, and often the only curative approach is heart transplantation. Thus, there is an urgent need to develop new therapeutic approaches for treating cardiac diseases. Animal models that reproduce the human pathophysiology are essential to uncovering the biology of diseases and discovering therapies. Traditionally, mammals have been used as models of cardiac disease, but the cost of generating and maintaining new models is exorbitant, and the studies have very low throughput. In the last decade, the zebrafish has emerged as a tractable model for cardiac diseases, owing to several characteristics that made this animal popular among developmental biologists. Zebrafish fertilization and development are external; embryos can be obtained in high numbers, are cheap and easy to maintain, and can be manipulated to create new genetic models. Moreover, zebrafish exhibit an exceptional ability to regenerate their heart after injury. This review summarizes 25 years of research using the zebrafish to study the heart, from the classical forward screenings to the contemporary methods to model mutations found in patients with cardiac disease. We discuss the advantages and limitations of this model organism and introduce the experimental approaches exploited in zebrafish, including forward and reverse genetics and chemical screenings. Last, we review the models used to induce cardiac injury and essential ideas derived from studying natural regeneration. Studies using zebrafish have the potential to accelerate the discovery of new strategies to treat cardiac diseases.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown, MA
| |
Collapse
|
8
|
Abstract
Purpose of Review The advent of induced pluripotent stem cells (iPSC) has paved the way for new in vitro models of human cardiomyopathy. Herein, we will review existing models of disease as well as strengths and limitations of the system. Recent Findings Preclinical studies have now demonstrated that iPSCs generated from patients with both acquired or heritable genetic diseases retain properties of the disease in vitro and can be used as a model to study novel therapeutics. iPSCs can be differentiated in vitro into the cardiomyocyte lineage into cells resembling adult ventricular myocytes that retain properties of cardiovascular disease from their respective donor. iPSC pluripotency allows for them to be frozen, stored, and continually used to generate iPSC-derived myocytes for future experiments without need for invasive procedures or repeat myocyte isolations to obtain animal or human cardiac tissues. Summary While not without their limitations, iPSC models offer new ways for studying patient-specific cardiomyopathies. iPSCs offer a high-throughput avenue for drug development, modeling of disease pathophysiology in vitro, and enabling experimental repair strategies without need for invasive procedures to obtain cardiac tissues.
Collapse
|
9
|
Murganti F, Derks W, Baniol M, Simonova I, Trus P, Neumann K, Khattak S, Guan K, Bergmann O. FUCCI-Based Live Imaging Platform Reveals Cell Cycle Dynamics and Identifies Pro-proliferative Compounds in Human iPSC-Derived Cardiomyocytes. Front Cardiovasc Med 2022; 9:840147. [PMID: 35548410 PMCID: PMC9081338 DOI: 10.3389/fcvm.2022.840147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 01/23/2023] Open
Abstract
One of the major goals in cardiac regeneration research is to replace lost ventricular tissue with new cardiomyocytes. However, cardiomyocyte proliferation drops to low levels in neonatal hearts and is no longer efficient in compensating for the loss of functional myocardium in heart disease. We generated a human induced pluripotent stem cell (iPSC)-derived cardiomyocyte-specific cell cycle indicator system (TNNT2-FUCCI) to characterize regular and aberrant cardiomyocyte cycle dynamics. We visualized cell cycle progression in TNNT2-FUCCI and found G2 cycle arrest in endoreplicating cardiomyocytes. Moreover, we devised a live-cell compound screening platform to identify pro-proliferative drug candidates. We found that the alpha-adrenergic receptor agonist clonidine induced cardiomyocyte proliferation in vitro and increased cardiomyocyte cell cycle entry in neonatal mice. In conclusion, the TNNT2-FUCCI system is a versatile tool to characterize cardiomyocyte cell cycle dynamics and identify pro-proliferative candidates with regenerative potential in the mammalian heart.
Collapse
Affiliation(s)
| | - Wouter Derks
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Marion Baniol
- Karolinska Institute, Cell and Molecular Biology (CMB), Stockholm, Sweden
| | - Irina Simonova
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Palina Trus
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Katrin Neumann
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Shahryar Khattak
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
- Royal College of Surgeons Ireland (RCSI) in Bahrain, Adliya, Bahrain
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, TU Dresden, Dresden, Germany
| | - Olaf Bergmann
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
- Karolinska Institute, Cell and Molecular Biology (CMB), Stockholm, Sweden
- *Correspondence: Olaf Bergmann
| |
Collapse
|
10
|
Staehr C, Rohde PD, Krarup NT, Ringgaard S, Laustsen C, Johnsen J, Nielsen R, Beck HC, Morth JP, Lykke‐Hartmann K, Jespersen NR, Abramochkin D, Nyegaard M, Bøtker HE, Aalkjaer C, Matchkov V. Migraine-Associated Mutation in the Na,K-ATPase Leads to Disturbances in Cardiac Metabolism and Reduced Cardiac Function. J Am Heart Assoc 2022; 11:e021814. [PMID: 35289188 PMCID: PMC9075430 DOI: 10.1161/jaha.121.021814] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
Background Mutations in ATP1A2 gene encoding the Na,K-ATPase α2 isoform are associated with familial hemiplegic migraine type 2. Migraine with aura is a known risk factor for heart disease. The Na,K-ATPase is important for cardiac function, but its role for heart disease remains unknown. We hypothesized that ATP1A2 is a susceptibility gene for heart disease and aimed to assess the underlying disease mechanism. Methods and Results Mice heterozygous for the familial hemiplegic migraine type 2-associated G301R mutation in the Atp1a2 gene (α2+/G301R mice) and matching wild-type controls were compared. Reduced expression of the Na,K-ATPase α2 isoform and increased expression of the α1 isoform were observed in hearts from α2+/G301R mice (Western blot). Left ventricular dilation and reduced ejection fraction were shown in hearts from 8-month-old α2+/G301R mice (cardiac magnetic resonance imaging), and this was associated with reduced nocturnal blood pressure (radiotelemetry). Cardiac function and blood pressure of 3-month-old α2+/G301R mice were similar to wild-type mice. Amplified Na,K-ATPase-dependent Src kinase/Ras/Erk1/2 (p44/42 mitogen-activated protein kinase) signaling was observed in hearts from 8-month-old α2+/G301R mice, and this was associated with mitochondrial uncoupling (respirometry), increased oxidative stress (malondialdehyde measurements), and a heart failure-associated metabolic shift (hyperpolarized magnetic resonance). Mitochondrial membrane potential (5,5´,6,6´-tetrachloro-1,1´,3,3´-tetraethylbenzimidazolocarbocyanine iodide dye assay) and mitochondrial ultrastructure (transmission electron microscopy) were similar between the groups. Proteomics of heart tissue further suggested amplified Src/Ras/Erk1/2 signaling and increased oxidative stress and provided the molecular basis for systolic dysfunction in 8-month-old α2+/G301R mice. Conclusions Our findings suggest that ATP1A2 mutation leads to disturbed cardiac metabolism and reduced cardiac function mediated via Na,K-ATPase-dependent reactive oxygen species signaling through the Src/Ras/Erk1/2 pathway.
Collapse
Affiliation(s)
| | - Palle Duun Rohde
- Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | | | - Steffen Ringgaard
- MR Research CentreDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Jacob Johnsen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Rikke Nielsen
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
| | - Hans Christian Beck
- Department for Clinical Biochemistry and PharmacologyOdense University HospitalOdenseDenmark
| | - Jens Preben Morth
- Department of Biotechnology and BiomedicineTechnical University of DenmarkKgs. LyngbyDenmark
| | - Karin Lykke‐Hartmann
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Clinical GeneticsAarhus University HospitalAarhusDenmark
| | | | - Denis Abramochkin
- Department of Human and Animal PhysiologyBiological FacultyLomonosov Moscow State UniversityMoscowRussia
| | - Mette Nyegaard
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
- Department of Health Science and TechnologyAalborg UniversityAalborgDenmark
| | | | - Christian Aalkjaer
- Department of Biomedicine, HealthAarhus UniversityAarhusDenmark
- Department of Biomedical SciencesCopenhagen UniversityCopenhagenDenmark
| | | |
Collapse
|
11
|
Elorbany R, Popp JM, Rhodes K, Strober BJ, Barr K, Qi G, Gilad Y, Battle A. Single-cell sequencing reveals lineage-specific dynamic genetic regulation of gene expression during human cardiomyocyte differentiation. PLoS Genet 2022; 18:e1009666. [PMID: 35061661 PMCID: PMC8809621 DOI: 10.1371/journal.pgen.1009666] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 02/02/2022] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Dynamic and temporally specific gene regulatory changes may underlie unexplained genetic associations with complex disease. During a dynamic process such as cellular differentiation, the overall cell type composition of a tissue (or an in vitro culture) and the gene regulatory profile of each cell can both experience significant changes over time. To identify these dynamic effects in high resolution, we collected single-cell RNA-sequencing data over a differentiation time course from induced pluripotent stem cells to cardiomyocytes, sampled at 7 unique time points in 19 human cell lines. We employed a flexible approach to map dynamic eQTLs whose effects vary significantly over the course of bifurcating differentiation trajectories, including many whose effects are specific to one of these two lineages. Our study design allowed us to distinguish true dynamic eQTLs affecting a specific cell lineage from expression changes driven by potentially non-genetic differences between cell lines such as cell composition. Additionally, we used the cell type profiles learned from single-cell data to deconvolve and re-analyze data from matched bulk RNA-seq samples. Using this approach, we were able to identify a large number of novel dynamic eQTLs in single cell data while also attributing dynamic effects in bulk to a particular lineage. Overall, we found that using single cell data to uncover dynamic eQTLs can provide new insight into the gene regulatory changes that occur among heterogeneous cell types during cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Reem Elorbany
- Interdisciplinary Scientist Training Program, University of Chicago, Chicago, Illinois, United States of America
| | - Joshua M. Popp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Katherine Rhodes
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Benjamin J. Strober
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kenneth Barr
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Guanghao Qi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
12
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
13
|
Greenberg MJ, Tardiff JC. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. J Gen Physiol 2021; 153:e202012662. [PMID: 33512404 PMCID: PMC7852459 DOI: 10.1085/jgp.202012662] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
14
|
McNamara JW, Schuckman M, Becker RC, Sadayappan S. A Novel Homozygous Intronic Variant in TNNT2 Associates With Feline Cardiomyopathy. Front Physiol 2020. [PMID: 33304277 DOI: 10.3389/fphys.2020.608473.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Hypertrophic cardiomyopathy (HCM) is a genetic disease of the heart and the most common cause of sudden cardiac death in the young. HCM is considered a disease of the sarcomere owing to the large number of mutations in genes encoding sarcomeric proteins. The riddle lies in discovering how these mutations lead to disease. As a result, treatments to prevent and/or treat HCM are limited to invasive surgical myectomies or ablations. The A31P variant of cardiac myosin binding protein-C, encoded by MYBPC3, was found to be more prevalent in a cohort of Maine Coon cats with HCM. However, other mutations in MYBPC3 and MYH7 have also been associated with HCM in cats of other breeds. In this study, we expand the spectrum of genes associated with HCM in cats. Results Next Generation Whole Genome sequencing was performed using DNA isolated from peripheral blood of a Maine Coon with cardiomyopathy that tested negative for the MYBPC3 A31P variant. Through risk stratification of variants, we identified a novel, homozygous intronic variant in cardiac troponin T (TNNT2). In silico analysis of the variant suggested that it may affect normal splicing of exon 3 of TNNT2. Both parents tested heterozygous for the mutation, but were unaffected by the disease. Echocardiography analyses revealed that the proband had shown early onset congestive heart failure, which is managed with a treatment regime including ACE and aldosterone inhibitors. Conclusion In summary, we are the first to demonstrate the association between TNNT2 mutations and HCM in felines, suggesting that this gene should be included in the testing panel of genes when performing genetic testing for HCM in cats.
Collapse
Affiliation(s)
- James W McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Maggie Schuckman
- Department of Cardiology, MedVet Cincinnati, Fairfax, OH, United States
| | - Richard C Becker
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
15
|
McNamara JW, Schuckman M, Becker RC, Sadayappan S. A Novel Homozygous Intronic Variant in TNNT2 Associates With Feline Cardiomyopathy. Front Physiol 2020; 11:608473. [PMID: 33304277 PMCID: PMC7701303 DOI: 10.3389/fphys.2020.608473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 10/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a genetic disease of the heart and the most common cause of sudden cardiac death in the young. HCM is considered a disease of the sarcomere owing to the large number of mutations in genes encoding sarcomeric proteins. The riddle lies in discovering how these mutations lead to disease. As a result, treatments to prevent and/or treat HCM are limited to invasive surgical myectomies or ablations. The A31P variant of cardiac myosin binding protein-C, encoded by MYBPC3, was found to be more prevalent in a cohort of Maine Coon cats with HCM. However, other mutations in MYBPC3 and MYH7 have also been associated with HCM in cats of other breeds. In this study, we expand the spectrum of genes associated with HCM in cats. RESULTS Next Generation Whole Genome sequencing was performed using DNA isolated from peripheral blood of a Maine Coon with cardiomyopathy that tested negative for the MYBPC3 A31P variant. Through risk stratification of variants, we identified a novel, homozygous intronic variant in cardiac troponin T (TNNT2). In silico analysis of the variant suggested that it may affect normal splicing of exon 3 of TNNT2. Both parents tested heterozygous for the mutation, but were unaffected by the disease. Echocardiography analyses revealed that the proband had shown early onset congestive heart failure, which is managed with a treatment regime including ACE and aldosterone inhibitors. CONCLUSION In summary, we are the first to demonstrate the association between TNNT2 mutations and HCM in felines, suggesting that this gene should be included in the testing panel of genes when performing genetic testing for HCM in cats.
Collapse
Affiliation(s)
- James W. McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Maggie Schuckman
- Department of Cardiology, MedVet Cincinnati, Fairfax, OH, United States
| | - Richard C. Becker
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
16
|
Pettinato AM, Ladha FA, Mellert DJ, Legere N, Cohn R, Romano R, Thakar K, Chen YS, Hinson JT. Development of a Cardiac Sarcomere Functional Genomics Platform to Enable Scalable Interrogation of Human TNNT2 Variants. Circulation 2020; 142:2262-2275. [PMID: 33025817 DOI: 10.1161/circulationaha.120.047999] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Pathogenic TNNT2 variants are a cause of hypertrophic and dilated cardiomyopathies, which promote heart failure by incompletely understood mechanisms. The precise functional significance for 87% of TNNT2 variants remains undetermined, in part, because of a lack of functional genomics studies. The knowledge of which and how TNNT2 variants cause hypertrophic and dilated cardiomyopathies could improve heart failure risk determination, treatment efficacy, and therapeutic discovery, and provide new insights into cardiomyopathy pathogenesis, as well. METHODS We created a toolkit of human induced pluripotent stem cell models and functional assays using CRISPR/Cas9 to study TNNT2 variant pathogenicity and pathophysiology. Using human induced pluripotent stem cell-derived cardiomyocytes in cardiac microtissue and single-cell assays, we functionally interrogated 51 TNNT2 variants, including 30 pathogenic/likely pathogenic variants and 21 variants of uncertain significance. We used RNA sequencing to determine the transcriptomic consequences of pathogenic TNNT2 variants and adapted CRISPR/Cas9 to engineer a transcriptional reporter assay to assist prediction of TNNT2 variant pathogenicity. We also studied variant-specific pathophysiology using a thin filament-directed calcium reporter to monitor changes in myofilament calcium affinity. RESULTS Hypertrophic cardiomyopathy-associated TNNT2 variants caused increased cardiac microtissue contraction, whereas dilated cardiomyopathy-associated variants decreased contraction. TNNT2 variant-dependent changes in sarcomere contractile function induced graded regulation of 101 gene transcripts, including MAPK (mitogen-activated protein kinase) signaling targets, HOPX, and NPPB. We distinguished pathogenic TNNT2 variants from wildtype controls using a sarcomere functional reporter engineered by inserting tdTomato into the endogenous NPPB locus. On the basis of a combination of NPPB reporter activity and cardiac microtissue contraction, our study provides experimental support for the reclassification of 2 pathogenic/likely pathogenic variants and 2 variants of uncertain significance. CONCLUSIONS Our study found that hypertrophic cardiomyopathy-associated TNNT2 variants increased cardiac microtissue contraction, whereas dilated cardiomyopathy-associated variants decreased contraction, both of which paralleled changes in myofilament calcium affinity. Transcriptomic changes, including NPPB levels, directly correlated with sarcomere function and can be used to predict TNNT2 variant pathogenicity.
Collapse
Affiliation(s)
| | - Feria A Ladha
- University of Connecticut Health Center (A.M.P., F.A.L., R.R., J.T.H.)
| | - David J Mellert
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Rachel Cohn
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Robert Romano
- University of Connecticut Health Center (A.M.P., F.A.L., R.R., J.T.H.)
| | - Ketan Thakar
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - Yu-Sheng Chen
- The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.)
| | - J Travis Hinson
- University of Connecticut Health Center (A.M.P., F.A.L., R.R., J.T.H.).,The Jackson Laboratory for Genomic Medicine (D.J.M., N.L., R.C., K.T., Y.-S.C., J.T.H.).,Calhoun Cardiology Center, UConn Health (J.T.H.), Farmington
| |
Collapse
|
17
|
Alimadadi A, Munroe PB, Joe B, Cheng X. Meta-Analysis of Dilated Cardiomyopathy Using Cardiac RNA-Seq Transcriptomic Datasets. Genes (Basel) 2020; 11:genes11010060. [PMID: 31948008 PMCID: PMC7017089 DOI: 10.3390/genes11010060] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 12/21/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. Several studies have used RNA-sequencing (RNA-seq) to profile differentially expressed genes (DEGs) associated with DCM. In this study, we aimed to profile gene expression signatures and identify novel genes associated with DCM through a quantitative meta-analysis of three publicly available RNA-seq studies using human left ventricle tissues from 41 DCM cases and 21 control samples. Our meta-analysis identified 789 DEGs including 581 downregulated and 208 upregulated genes. Several DCM-related genes previously reported, including MYH6, CKM, NKX2-5 and ATP2A2, were among the top 50 DEGs. Our meta-analysis also identified 39 new DEGs that were not detected using those individual RNA-seq datasets. Some of those genes, including PTH1R, ADAM15 and S100A4, confirmed previous reports of associations with cardiovascular functions. Using DEGs from this meta-analysis, the Ingenuity Pathway Analysis (IPA) identified five activated toxicity pathways, including failure of heart as the most significant pathway. Among the upstream regulators, SMARCA4 was downregulated and prioritized by IPA as the top affected upstream regulator for several DCM-related genes. To our knowledge, this study is the first to perform a transcriptomic meta-analysis for clinical DCM using RNA-seq datasets. Overall, our meta-analysis successfully identified a core set of genes associated with DCM.
Collapse
Affiliation(s)
- Ahmad Alimadadi
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.); (B.J.)
- Bioinformatics Program, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
- National Institute of Health Research Barts Cardiovascular Biomedical Research Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Bina Joe
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.); (B.J.)
- Bioinformatics Program, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xi Cheng
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (A.A.); (B.J.)
- Correspondence: ; Tel.: +1-419-383-4076
| |
Collapse
|
18
|
Clippinger SR, Cloonan PE, Greenberg L, Ernst M, Stump WT, Greenberg MJ. Disrupted mechanobiology links the molecular and cellular phenotypes in familial dilated cardiomyopathy. Proc Natl Acad Sci U S A 2019; 116:17831-17840. [PMID: 31427533 PMCID: PMC6731759 DOI: 10.1073/pnas.1910962116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Familial dilated cardiomyopathy (DCM) is a leading cause of sudden cardiac death and a major indicator for heart transplant. The disease is frequently caused by mutations of sarcomeric proteins; however, it is not well understood how these molecular mutations lead to alterations in cellular organization and contractility. To address this critical gap in our knowledge, we studied the molecular and cellular consequences of a DCM mutation in troponin-T, ΔK210. We determined the molecular mechanism of ΔK210 and used computational modeling to predict that the mutation should reduce the force per sarcomere. In mutant cardiomyocytes, we found that ΔK210 not only reduces contractility but also causes cellular hypertrophy and impairs cardiomyocytes' ability to adapt to changes in substrate stiffness (e.g., heart tissue fibrosis that occurs with aging and disease). These results help link the molecular and cellular phenotypes and implicate alterations in mechanosensing as an important factor in the development of DCM.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Melanie Ernst
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
19
|
Bailey KE, MacGowan GA, Tual-Chalot S, Phillips L, Mohun TJ, Henderson DJ, Arthur HM, Bamforth SD, Phillips HM. Disruption of embryonic ROCK signaling reproduces the sarcomeric phenotype of hypertrophic cardiomyopathy. JCI Insight 2019; 5:125172. [PMID: 30835717 PMCID: PMC6538384 DOI: 10.1172/jci.insight.125172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Sarcomeric disarray is a hallmark of gene mutations in patients with hypertrophic cardiomyopathy (HCM). However, it is unknown when detrimental sarcomeric changes first occur and whether they originate in the developing embryonic heart. Furthermore, Rho kinase (ROCK) is a serine/threonine protein kinase that is critical for regulating the function of several sarcomeric proteins, and therefore, our aim was to determine whether disruption of ROCK signaling during the earliest stages of heart development would disrupt the integrity of sarcomeres, altering heart development and function. Using a mouse model in which the function of ROCK is specifically disrupted in embryonic cardiomyocytes, we demonstrate a progressive cardiomyopathy that first appeared as sarcomeric disarray during cardiogenesis. This led to abnormalities in the structure of the embryonic ventricular wall and compensatory cardiomyocyte hypertrophy during fetal development. This sarcomeric disruption and hypertrophy persisted throughout adult life, triggering left ventricular concentric hypertrophy with systolic dysfunction, and reactivation of fetal gene expression and cardiac fibrosis, all typical features of HCM. Taken together, our findings establish a mechanism for the developmental origin of the sarcomeric phenotype of HCM and suggest that variants in the ROCK genes or disruption of ROCK signaling could, in part, contribute to its pathogenesis. Disruption of ROCK activity in embryonic cardiomyocytes revealed a developmental origin for hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Kate E Bailey
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Guy A MacGowan
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon Tual-Chalot
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Lauren Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Deborah J Henderson
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M Arthur
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Simon D Bamforth
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Helen M Phillips
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
20
|
Cai C, Sang C, Du J, Jia H, Tu J, Wan Q, Bao B, Xie S, Huang Y, Li A, Li J, Yang K, Wang S, Lu Q. Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of the myocardial wnt signaling pathway. FASEB J 2018; 33:696-710. [PMID: 30044923 DOI: 10.1096/fj.201800481rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The proper development of atrioventricular (AV) valves is critical for heart morphogenesis and for the formation of the cardiac conduction system. Defects in AV valve development are the most common type of congenital heart defect. Cardiac troponin I ( ctnni), a structural and regulatory protein involved in cardiac muscle contraction, is a subunit of the troponin complex, but the functions and molecular mechanisms of ctnni during early heart development remain unclear. We created a knockout zebrafish model in which troponin I type 1b ( tnni1b) ( Tnni-HC, heart and craniofacial) was deleted using the clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat-associated protein system. In the homozygous mutant, the embryos showed severe pericardial edema, malformation of the heart tube, reduction of heart rate without contraction and with almost no blood flow, heart cavity congestion, and lack of an endocardial ring or valve leaflet, resulting in 88.8 ± 6.0% lethality at 7 d postfertilization. Deletion of tnni1b caused the abnormal expression of several markers involved in AV valve development, including bmp4, cspg2, has2, notch1b, spp1, and Alcam. Myocardial re-expression of tnni1b in mutants partially rescued the pericardial edema phenotype and AV canal (AVC) developmental defects. We further showed that tnni1b knockout in zebrafish and ctnni knockdown in rat h9c2 myocardial cells inhibited cardiac wnt signaling and that myocardial reactivation of wnt signaling partially rescued the abnormal expression of AVC markers caused by the tnni1b deletion. Taken together, our data suggest that tnni1b plays a vital role in zebrafish AV valve development by regulating the myocardial wnt signaling pathway.-Cai, C., Sang, C., Du, J., Jia, H., Tu, J., Wan, Q., Bao, B., Xie, S., Huang, Y., Li, A., Li, J., Yang, K., Wang, S., Lu, Q. Knockout of tnni1b in zebrafish causes defects in atrioventricular valve development via the inhibition of myocardial wnt signaling pathway.
Collapse
Affiliation(s)
- Chen Cai
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Caijun Sang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Du
- School Hospital, Huazhong University of Science and Technology, Wuhan, China; and
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayi Tu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Wan
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Binghao Bao
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shanglun Xie
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ao Li
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayu Li
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Yang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, China
| | - Song Wang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, China
| | - Qunwei Lu
- Key Laboratory of Molecular Biophysics, Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Micro RNAs are involved in activation of epicardium during zebrafish heart regeneration. Cell Death Discov 2018; 4:41. [PMID: 29560280 PMCID: PMC5849881 DOI: 10.1038/s41420-018-0041-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/21/2018] [Accepted: 02/05/2018] [Indexed: 12/26/2022] Open
Abstract
Zebrafish could be an interesting translational model to understand and improve the post-infarction trial and possible regeneration in humans. The adult zebrafish is able to regenerate efficiently after resecting nearly 20% of the ventricular apex. This process requires the concert activation of the epicardium and endocardium, as well as trans-differentiation of pre-existing cardiomyocytes that together replace the lost tissue. The molecular mechanisms involved in this activation process are not completely clarified. In this work, in order to investigate if the downregulation of these miRNAs (miRs) are linked with the activation of epicardium, the expressions of miR-133a, b and miR-1 during regeneration were analysed. qPCR analyses in whole-heart, or from distinct dissected epicardial cells comparing to regenerative clot (containing cardiomyocytes, fibroblasts and endocardial cells) by a laser-micro-dissector, have indicated that already at 24 h there is a downregulation of miRs: (1) miR-133a and miR-1 in the epicardium and (2) miR-133b and miR-1 in the regenerative clot. All the miRs remain downregulated until 7 days post-surgery. With the aim to visualize the activations of heart component in combination with miRs, we developed immunohistochemistry using antibodies directed against common markers in mammals as well as zebrafish: Wilms tumour 1 (WT1), a marker of epicardium; heat-shock protein 70 (HSP70), a chaperon activated during regeneration; and the Cardiac Troponin T (cTnT), a marker of differentiated cardiomyocytes. All these markers are directly or indirectly linked to the investigated miRs. WT1 and HSP70 strongly marked the regeneration site just at 2–3 days postventricular resection. In coherence, cTnT intensively marked the regenerative portion from 7 days onwards. miRs-1 and -133 (a,b) have been strongly involved in the activation of epicardium and regenerative clot during the regeneration process in zebrafish. This study can be a useful translational model to understand the early epicardial activation in which miRs-133a and miR-1 seem to play a central role as observed in the human heart.
Collapse
|
22
|
Zhuang Y, Gong YJ, Zhong BF, Zhou Y, Gong L. Bioinformatics method identifies potential biomarkers of dilated cardiomyopathy in a human induced pluripotent stem cell-derived cardiomyocyte model. Exp Ther Med 2017; 14:2771-2778. [PMID: 28912841 DOI: 10.3892/etm.2017.4850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/10/2017] [Indexed: 12/23/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the most common type of cardiomyopathy that account for the majority of heart failure cases. The present study aimed to reveal the underlying molecular mechanisms of DCM and provide potential biomarkers for detection of this condition. The public dataset of GSE35108 was downloaded, and 4 normal induced pluripotent stem cell (iPSC)-derived cardiomyocytes (N samples) and 4 DCM iPSC-derived cardiomyocytes (DCM samples) were utilized. Raw data were preprocessed, followed by identification of differentially expressed genes (DEGs) between N and DCM samples. Crucial functions and pathway enrichment analysis of DEGs were investigated, and protein-protein interaction (PPI) network analysis was conducted. Furthermore, a module network was extracted from the PPI network, followed by enrichment analysis. A set of 363 DEGs were identified, including 253 upregulated and 110 downregulated genes. Several biological processes (BPs), such as blood vessel development and vasculature development (FLT1 and MMP2), cell adhesion (CDH1, ITGB6, COL6A3, COL6A1 and LAMC2) and extracellular matrix (ECM)-receptor interaction pathway (CDH1, ITGB6, COL6A3, COL6A1 and LAMC2), were significantly enriched by these DEGs. Among them, MMP2, CDH1 and FLT1 were hub nodes in the PPI network, while COL6A3, COL6A1, LAMC2 and ITGB6 were highlighted in module 3 network. In addition, PENK and APLNR were two crucial nodes in module 2, which were linked to each other. In conclusion, several potential biomarkers for DCM were identified, such as MMP2, FLT1, CDH1, ITGB6, COL6A3, COL6A1, LAMC2, PENK and APLNR. These genes may serve significant roles in DCM via involvement of various BPs, such as blood vessel and vasculature development and cell adhesion, and the ECM-receptor interaction pathway.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Cardiovascular Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yu-Jia Gong
- Stomatology Faculty, School of Medicine, Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Bei-Fen Zhong
- Department of Urology, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yi Zhou
- Department of Cardiovascular Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Li Gong
- Department of Cardiothoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
23
|
England J, Loughna S, Rutland CS. Multiple Species Comparison of Cardiac Troponin T and Dystrophin: Unravelling the DNA behind Dilated Cardiomyopathy. J Cardiovasc Dev Dis 2017; 4:E8. [PMID: 29367539 PMCID: PMC5715711 DOI: 10.3390/jcdd4030008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022] Open
Abstract
Animals have frequently been used as models for human disorders and mutations. Following advances in genetic testing and treatment options, and the decreasing cost of these technologies in the clinic, mutations in both companion and commercial animals are now being investigated. A recent review highlighted the genes associated with both human and non-human dilated cardiomyopathy. Cardiac troponin T and dystrophin were observed to be associated with both human and turkey (troponin T) and canine (dystrophin) dilated cardiomyopathies. This review gives an overview of the work carried out in cardiac troponin T and dystrophin to date in both human and animal dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jennifer England
- School of Life Sciences, Medical School, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Siobhan Loughna
- School of Life Sciences, Medical School, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK.
| |
Collapse
|
24
|
Araco M, Merlo M, Carr-White G, Sinagra G. Genetic bases of dilated cardiomyopathy. J Cardiovasc Med (Hagerstown) 2017; 18:123-130. [PMID: 27661610 DOI: 10.2459/jcm.0000000000000432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiomyopathies represent a wide and heterogeneous group of diseases wherein a genetic cause has been consistently identified.Dilated cardiomyopathy (DCM) is characterized by ventricular dilation and progressive systolic dysfunction, and it is the most common form of cardiomyopathy.Causative genetic mutations have been identified in more than 40 genes encoding proteins belonging to different cellular structures and pathways.A great diversity of pathways has been implied in the pathogenesis of DCM, depending on the affected genes and on the dislodged intracellular structures or mechanisms.This review describes the major genes and focus on the pathophysiologic mechanisms of DCM, with a special consideration of the most recent discoveries in the field.
Collapse
Affiliation(s)
- Marco Araco
- aDepartment of Cardiology, Guys and St Thomas NHS Trust, London, United Kingdom bDivision of Cardiology, Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | | | | | | |
Collapse
|
25
|
Bollen IAE, Schuldt M, Harakalova M, Vink A, Asselbergs FW, Pinto JR, Krüger M, Kuster DWD, van der Velden J. Genotype-specific pathogenic effects in human dilated cardiomyopathy. J Physiol 2017; 595:4677-4693. [PMID: 28436080 PMCID: PMC5509872 DOI: 10.1113/jp274145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/18/2017] [Indexed: 01/09/2023] Open
Abstract
KEY POINTS Mutations in genes encoding cardiac troponin I (TNNI3) and cardiac troponin T (TNNT2) caused altered troponin protein stoichiometry in patients with dilated cardiomyopathy. TNNI3p.98trunc resulted in haploinsufficiency, increased Ca2+ -sensitivity and reduced length-dependent activation. TNNT2p.K217del caused increased passive tension. A mutation in the gene encoding Lamin A/C (LMNAp.R331Q ) led to reduced maximal force development through secondary disease remodelling in patients suffering from dilated cardiomyopathy. Our study shows that different gene mutations induce dilated cardiomyopathy via diverse cellular pathways. ABSTRACT Dilated cardiomyopathy (DCM) can be caused by mutations in sarcomeric and non-sarcomeric genes. In this study we defined the pathogenic effects of three DCM-causing mutations: the sarcomeric mutations in genes encoding cardiac troponin I (TNNI3p.98truncation ) and cardiac troponin T (TNNT2p.K217deletion ; also known as the p.K210del) and the non-sarcomeric gene mutation encoding lamin A/C (LMNAp.R331Q ). We assessed sarcomeric protein expression and phosphorylation and contractile behaviour in single membrane-permeabilized cardiomyocytes in human left ventricular heart tissue. Exchange with recombinant troponin complex was used to establish the direct pathogenic effects of the mutations in TNNI3 and TNNT2. The TNNI3p.98trunc and TNNT2p.K217del mutation showed reduced expression of troponin I to 39% and 51%, troponin T to 64% and 53%, and troponin C to 73% and 97% of controls, respectively, and altered stoichiometry between the three cardiac troponin subunits. The TNNI3p.98trunc showed pure haploinsufficiency, increased Ca2+ -sensitivity and impaired length-dependent activation. The TNNT2p.K217del mutation showed a significant increase in passive tension that was not due to changes in titin isoform composition or phosphorylation. Exchange with wild-type troponin complex corrected troponin protein levels to 83% of controls in the TNNI3p.98trunc sample. Moreover, upon exchange all functional deficits in the TNNI3p.98trunc and TNNT2p.K217del samples were normalized to control values confirming the pathogenic effects of the troponin mutations. The LMNAp.R331Q mutation resulted in reduced maximal force development due to disease remodelling. Our study shows that different gene mutations induce DCM via diverse cellular pathways.
Collapse
Affiliation(s)
- Ilse A E Bollen
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Maike Schuldt
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division of Heart and Lungs, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division of Heart and Lungs, University of Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, the Netherlands.,Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Jose R Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Martina Krüger
- Institute of Cardiovascular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
26
|
Dewan S, McCabe KJ, Regnier M, McCulloch AD. Insights and Challenges of Multi-Scale Modeling of Sarcomere Mechanics in cTn and Tm DCM Mutants-Genotype to Cellular Phenotype. Front Physiol 2017; 8:151. [PMID: 28352236 PMCID: PMC5348544 DOI: 10.3389/fphys.2017.00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/24/2017] [Indexed: 01/18/2023] Open
Abstract
Dilated Cardiomyopathy (DCM) is a leading cause of sudden cardiac death characterized by impaired pump function and dilatation of cardiac ventricles. In this review we discuss various in silico approaches to elucidating the mechanisms of genetic mutations leading to DCM. The approaches covered in this review focus on bridging the spatial and temporal gaps that exist between molecular and cellular processes. Mutations in sarcomeric regulatory thin filament proteins such as the troponin complex (cTn) and Tropomyosin (Tm) have been associated with DCM. Despite the experimentally-observed myofilament measures of contractility in the case of these mutations, the mechanisms by which the underlying molecular changes and protein interactions scale up to organ failure by these mutations remains elusive. The review highlights multi-scale modeling approaches and their applicability to study the effects of sarcomeric gene mutations in-silico. We discuss some of the insights that can be gained from computational models of cardiac biomechanics when scaling from molecular states to cellular level.
Collapse
Affiliation(s)
- Sukriti Dewan
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kimberly J McCabe
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| | - Michael Regnier
- Departments of Bioengineering and Medicine, University of Washington Seattle, WA, USA
| | - Andrew D McCulloch
- Departments of Bioengineering and Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Ramratnam M, Salama G, Sharma RK, Wang DWR, Smith SH, Banerjee SK, Huang XN, Gifford LM, Pruce ML, Gabris BE, Saba S, Shroff SG, Ahmad F. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS One 2016; 11:e0167681. [PMID: 27936050 PMCID: PMC5147943 DOI: 10.1371/journal.pone.0167681] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/18/2016] [Indexed: 02/06/2023] Open
Abstract
Most studies of the mechanisms leading to hereditary dilated cardiomyopathy (DCM) have been performed in reconstituted in vitro systems. Genetically engineered murine models offer the opportunity to dissect these mechanisms in vivo. We generated a gene-targeted knock-in murine model of the autosomal dominant Arg141Trp (R141W) mutation in Tnnt2, which was first described in a human family with DCM. Mice heterozygous for the mutation (Tnnt2R141W/+) recapitulated the human phenotype, developing left ventricular dilation and reduced contractility. There was a gene dosage effect, so that the phenotype in Tnnt2R141W/+mice was attenuated by transgenic overexpression of wildtype Tnnt2 mRNA transcript. Male mice exhibited poorer survival than females. Biomechanical studies on skinned fibers from Tnnt2R141W/+ hearts showed a significant decrease in pCa50 (-log[Ca2+] required for generation of 50% of maximal force) relative to wildtype hearts, indicating Ca2+ desensitization. Optical mapping studies of Langendorff-perfused Tnnt2R141W/+ hearts showed marked increases in diastolic and peak systolic intracellular Ca2+ ([Ca2+]i), and prolonged systolic rise and diastolic fall of [Ca2+]i. Perfused Tnnt2R141W/+ hearts had slower intrinsic rates in sinus rhythm and reduced peak heart rates in response to isoproterenol. Tnnt2R141W/+ hearts exhibited a reduction in phosphorylated phospholamban relative to wildtype mice. However, crossing Tnnt2R141W/+ mice with phospholamban knockout (Pln-/-) mice, which exhibit increased Ca2+ transients and contractility, had no effect on the DCM phenotype. We conclude that the Tnnt2 R141W mutation causes a Ca2+ desensitization and mice adapt by increasing Ca2+-transient amplitudes, which impairs Ca2+ handling dynamics, metabolism and responses to β-adrenergic activation.
Collapse
Affiliation(s)
- Mohun Ramratnam
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI, United States of America
- Cardiology Section, Medical Service, William. S. Middleton Memorial Veterans Hospital, Madison, WI, United States of America
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Guy Salama
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ravi K. Sharma
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - David Wen Rui Wang
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Stephen H. Smith
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sanjay K. Banerjee
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Xueyin N. Huang
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Lindsey M. Gifford
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States of America
| | - Michele L. Pruce
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Bethann E. Gabris
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Samir Saba
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Sanjeev G. Shroff
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Ferhaan Ahmad
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
28
|
England J, Pang KL, Parnall M, Haig MI, Loughna S. Cardiac troponin T is necessary for normal development in the embryonic chick heart. J Anat 2016; 229:436-49. [PMID: 27194630 PMCID: PMC4974548 DOI: 10.1111/joa.12486] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 12/30/2022] Open
Abstract
The heart is the first functioning organ to develop during embryogenesis. The formation of the heart is a tightly regulated and complex process, and alterations to its development can result in congenital heart defects. Mutations in sarcomeric proteins, such as alpha myosin heavy chain and cardiac alpha actin, have now been associated with congenital heart defects in humans, often with atrial septal defects. However, cardiac troponin T (cTNT encoded by gene TNNT2) has not. Using gene‐specific antisense oligonucleotides, we have investigated the role of cTNT in chick cardiogenesis. TNNT2 is expressed throughout heart development and in the postnatal heart. TNNT2‐morpholino treatment resulted in abnormal atrial septal growth and a reduction in the number of trabeculae in the developing primitive ventricular chamber. External analysis revealed the development of diverticula from the ventricular myocardial wall which showed no evidence of fibrosis and still retained a myocardial phenotype. Sarcomeric assembly appeared normal in these treated hearts. In humans, congenital ventricular diverticulum is a rare condition, which has not yet been genetically associated. However, abnormal haemodynamics is known to cause structural defects in the heart. Further, structural defects, including atrial septal defects and congenital diverticula, have previously been associated with conduction anomalies. Therefore, to provide mechanistic insights into the effect that cTNT knockdown has on the developing heart, quantitative PCR was performed to determine the expression of the shear stress responsive gene NOS3 and the conduction gene TBX3. Both genes were differentially expressed compared to controls. Therefore, a reduction in cTNT in the developing heart results in abnormal atrial septal formation and aberrant ventricular morphogenesis. We hypothesize that alterations to the haemodynamics, indicated by differential NOS3 expression, causes these abnormalities in growth in cTNT knockdown hearts. In addition, the muscular diverticula reported here suggest a novel role for mutations of structural sarcomeric proteins in the pathogenesis of congenital cardiac diverticula. From these studies, we suggest TNNT2 is a gene worthy of screening for those with a congenital heart defect, particularly atrial septal defects and ventricular diverticula.
Collapse
Affiliation(s)
- Jennifer England
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Kar Lai Pang
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Matthew Parnall
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Maria Isabel Haig
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| | - Siobhan Loughna
- School of Life Sciences, Medical School, University of Nottingham, Nottingham, UK
| |
Collapse
|
29
|
Yan J, Sultana N, Zhang L, Park DS, Shekhar A, Hu J, Bu L, Cai CL. Generation of a tamoxifen inducible Tnnt2MerCreMer knock-in mouse model for cardiac studies. Genesis 2015; 53:377-86. [PMID: 26010701 DOI: 10.1002/dvg.22861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 01/31/2023]
Abstract
Tnnt2, encoding thin-filament sarcomeric protein cardiac troponin T, plays critical roles in heart development and function in mammals. To develop an inducible genetic deletion strategy in myocardial cells, we generated a new Tnnt2:MerCreMer (Tnnt2(MerCreMer/+)) knock-in mouse. Rosa26 reporter lines were used to examine the specificity and efficiency of the inducible Cre recombinase. We found that Cre was specifically and robustly expressed in the cardiomyocytes at embryonic and adult stages following tamoxifen induction. The knock-in allele on Tnnt2 locus does not impact cardiac function. These results suggest that this new Tnnt2(MerCreMer/+) mouse could be applied towards the temporal genetic deletion of genes of interests in cardiomyocytes with Cre-LoxP technology. The Tnnt2(MerCreMer/+) mouse model also provides a useful tool to trace myocardial lineage during development and repair after cardiac injury.
Collapse
Affiliation(s)
- Jianyun Yan
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and the Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Nishat Sultana
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and the Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and the Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - David S Park
- Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, New York, New York
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, New York, New York
| | - Jun Hu
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and the Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| | - Lei Bu
- Leon H. Charney Division of Cardiology, New York University School of Medicine, 522 First Avenue, New York, New York
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, The Black Family Stem Cell Institute, and the Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York
| |
Collapse
|
30
|
Zadegan FG, Ghaedi K, Kalantar SM, Peymani M, Hashemi MS, Baharvand H, Nasr-Esfahani MH. Cardiac differentiation of mouse embryonic stem cells is influenced by a PPAR γ/PGC-1α-FNDC5 pathway during the stage of cardiac precursor cell formation. Eur J Cell Biol 2015; 94:257-66. [PMID: 25936576 DOI: 10.1016/j.ejcb.2015.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/18/2015] [Accepted: 04/01/2015] [Indexed: 01/26/2023] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ co-activator 1α (PGC-1α) up-regulation induces FNDC5 expression in muscle and consequently causes browning of white adipose tissue (WAT). In addition to skeletal muscle, FNDC5 is mainly expressed in heart and brain tissues. Here, we demonstrate that FNDC5 expression increased during the process of cardiac differentiation of mouse embryonic stem cells (mESCs) similar to PGC-1α and PPARα. To testify the correlation between PGC-1α and FNDC5 in cardiac cell differentiation of mESCs, we utilized specific PPARγ agonist and antagonist in two stages of cardiac differentiation, during and post-cardiac precursor cells (CPCs) formation. Our results indicated that a reduction in PGC-1α expression, via treatment with GW9662 during CPCs formation stage, down-regulated FNDC5 transcript levels as well as mitochondrial markers which negatively influenced on the whole process of cardiac differentiation efficiency. On the other hand, increase PGC-1α expression during CPCs formation stage via rosiglitazone treatment increase FNDC5 and mitochondrial markers transcript levels which enhanced cardiac differentiation efficiency. Importantly, such alteration in PGC-1α expression at post-CPCs formation stage did not affect overall cardiac differentiation rate as expression of FNDC5 and mitochondrial markers were not significantly changed. We concluded that PPARγ agonist and antagonist induced up and down-regulation of PGC-1α and subsequently modulated the process of CPCs formation through an alteration in FNDC5 and mitochondrial markers expression.
Collapse
Affiliation(s)
- Faezeh Ghazvini Zadegan
- Department of Medical Genetic, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences Treatment and Health Services of Yazd, Yazd, Iran; Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Department of Biology, School of Sciences, University of Isfahan, Isfahan, Iran.
| | - Seyed Mehdi Kalantar
- Department of Medical Genetic, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences Treatment and Health Services of Yazd, Yazd, Iran
| | - Maryam Peymani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Motahare-Sadat Hashemi
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
31
|
Ng KM, Law CY, Tse HF. Clinical Potentials of Cardiomyocytes Derived from Patient-Specific Induced Pluripotent Stem Cells. J Clin Med 2014; 3:1105-23. [PMID: 26237594 PMCID: PMC4470173 DOI: 10.3390/jcm3041105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/15/2014] [Accepted: 09/17/2014] [Indexed: 01/09/2023] Open
Abstract
The lack of appropriate human cardiomyocyte-based experimental platform has largely hindered the study of cardiac diseases and the development of therapeutic strategies. To date, somatic cells isolated from human subjects can be reprogramed into induced pluripotent stem cells (iPSCs) and subsequently differentiated into functional cardiomyocytes. This powerful reprogramming technology provides a novel in vitro human cell-based platform for the study of human hereditary cardiac disorders. The clinical potential of using iPSCs derived from patients with inherited cardiac disorders for therapeutic studies have been increasingly highlighted. In this review, the standard procedures for generating patient-specific iPSCs and the latest commonly used cardiac differentiation protocols will be outlined. Furthermore, the progress and limitations of current applications of iPSCs and iPSCs-derived cardiomyocytes in cell replacement therapy, disease modeling, drug-testing and toxicology studies will be discussed in detail.
Collapse
Affiliation(s)
- Kwong-Man Ng
- Cardiology Division, Department of Medicine, Rm. 1928, Block K, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China.
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.
| | - Cheuk-Yiu Law
- Cardiology Division, Department of Medicine, Rm. 1928, Block K, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China.
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Rm. 1928, Block K, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China.
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China.
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China.
- Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
32
|
Ramratnam M, Sharma RK, D'Auria S, Lee SJ, Wang D, Huang XYN, Ahmad F. Transgenic knockdown of cardiac sodium/glucose cotransporter 1 (SGLT1) attenuates PRKAG2 cardiomyopathy, whereas transgenic overexpression of cardiac SGLT1 causes pathologic hypertrophy and dysfunction in mice. J Am Heart Assoc 2014; 3:jah3629. [PMID: 25092788 PMCID: PMC4310371 DOI: 10.1161/jaha.114.000899] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The expression of a novel cardiac glucose transporter, SGLT1, is increased in glycogen storage cardiomyopathy secondary to mutations in PRKAG2. We sought to determine the role of SGLT1 in the pathogenesis of PRKAG2 cardiomyopathy and its role in cardiac structure and function. Methods and Results Transgenic mice with cardiomyocyte‐specific overexpression of human T400N mutant PRKAG2 cDNA (TGT400N) and transgenic mice with cardiomyocyte‐specific RNA interference knockdown of SGLT1 (TGSGLT1‐DOWN) were crossed to produce double‐transgenic mice (TGT400N/TGSGLT1‐DOWN). Tet‐off transgenic mice conditionally overexpressing cardiac SGLT1 in the absence of doxycycline were also constructed (TGSGLT‐ON). Relative to TGT400N mice, TGT400N/TGSGLT1‐DOWN mice exhibited decreases in cardiac SGLT1 expression (63% decrease, P<0.05), heart/body weight ratio, markers of cardiac hypertrophy, and cardiac glycogen content. TGT400N/TGSGLT1‐DOWN mice had less left ventricular dilation at age 12 weeks compared to TGT400N mice. Relative to wildtype (WT) mice, TGSGLT1‐ON mice exhibited increases in heart/body weight ratio, glycogen content, and markers of cardiac hypertrophy at ages 10 and 20 weeks. TGSGLT1‐ON mice had increased myocyte size and interstitial fibrosis, and progressive left ventricular dysfunction. When SGLT1 was suppressed after 10 weeks of overexpression (TGSGLT1‐ON/OFF), there was a reduction in cardiac hypertrophy and improvement in left ventricular failure. Conclusions Cardiac knockdown of SGLT1 in a murine model of PRKAG2 cardiomyopathy attenuates the disease phenotype, implicating SGLT1 in the pathogenesis. Overexpression of SGLT1 causes pathologic cardiac hypertrophy and left ventricular failure that is reversible. This is the first report of cardiomyocyte‐specific transgenic knockdown of a target gene.
Collapse
Affiliation(s)
- Mohun Ramratnam
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI (M.R.) UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA (M.R., R.K.S., S.A., S.J.L., D.W., X.Y.N.H., F.A.)
| | - Ravi K Sharma
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA (M.R., R.K.S., S.A., S.J.L., D.W., X.Y.N.H., F.A.)
| | - Stephen D'Auria
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA (M.R., R.K.S., S.A., S.J.L., D.W., X.Y.N.H., F.A.)
| | - So Jung Lee
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA (M.R., R.K.S., S.A., S.J.L., D.W., X.Y.N.H., F.A.)
| | - David Wang
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA (M.R., R.K.S., S.A., S.J.L., D.W., X.Y.N.H., F.A.)
| | - Xue Yin N Huang
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA (M.R., R.K.S., S.A., S.J.L., D.W., X.Y.N.H., F.A.)
| | - Ferhaan Ahmad
- UPMC Heart and Vascular Institute and Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA (M.R., R.K.S., S.A., S.J.L., D.W., X.Y.N.H., F.A.) Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA (F.A.) Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA (F.A.)
| |
Collapse
|
33
|
Helms AS, Davis FM, Coleman D, Bartolone SN, Glazier AA, Pagani F, Yob JM, Sadayappan S, Pedersen E, Lyons R, Westfall MV, Jones R, Russell MW, Day SM. Sarcomere mutation-specific expression patterns in human hypertrophic cardiomyopathy. ACTA ACUST UNITED AC 2014; 7:434-43. [PMID: 25031304 DOI: 10.1161/circgenetics.113.000448] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Heterozygous mutations in sarcomere genes in hypertrophic cardiomyopathy (HCM) are proposed to exert their effect through gain of function for missense mutations or loss of function for truncating mutations. However, allelic expression from individual mutations has not been sufficiently characterized to support this exclusive distinction in human HCM. METHODS AND RESULTS Sarcomere transcript and protein levels were analyzed in septal myectomy and transplant specimens from 46 genotyped HCM patients with or without sarcomere gene mutations and 10 control hearts. For truncating mutations in MYBPC3, the average ratio of mutant:wild-type transcripts was ≈1:5, in contrast to ≈1:1 for all sarcomere missense mutations, confirming that nonsense transcripts are uniquely unstable. However, total MYBPC3 mRNA was significantly increased by 9-fold in HCM samples with MYBPC3 mutations compared with control hearts and with HCM samples without sarcomere gene mutations. Full-length MYBPC3 protein content was not different between MYBPC3 mutant HCM and control samples, and no truncated proteins were detected. By absolute quantification of abundance with multiple reaction monitoring, stoichiometric ratios of mutant sarcomere proteins relative to wild type were strikingly variable in a mutation-specific manner, with the fraction of mutant protein ranging from 30% to 84%. CONCLUSIONS These results challenge the concept that haploinsufficiency is a unifying mechanism for HCM caused by MYBPC3 truncating mutations. The range of allelic imbalance for several missense sarcomere mutations suggests that certain mutant proteins may be more or less stable or incorporate more or less efficiently into the sarcomere than wild-type proteins. These mutation-specific properties may distinctly influence disease phenotypes.
Collapse
Affiliation(s)
- Adam S Helms
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Frank M Davis
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - David Coleman
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Sarah N Bartolone
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Amelia A Glazier
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Francis Pagani
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Jaime M Yob
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Sakthivel Sadayappan
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Ellen Pedersen
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Robert Lyons
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Margaret V Westfall
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Richard Jones
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Mark W Russell
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.)
| | - Sharlene M Day
- From the Departments of Internal Medicine (A.S.H., F.D., D.C., S.B., J.M.Y., S.M.D.), Molecular and Integrative Physiology (A.A.G., M.V.W.), Cardiac Surgery (F.P., M.V.W.), Sequencing Core (E.P., R.L.), and Pediatrics (M.W.R.), University of Michigan, Ann Arbor; Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S.S.); and MS Bioworks, Ann Arbor, MI (R.J.).
| |
Collapse
|
34
|
Abstract
A notable advantage of zebrafish as a model organism is the ease of gene knockdown using morpholino antisense oligonucleotide (MO). However, zebrafish morphants injected with MO for a target protein often show heterogeneous phenotypes, despite controlling the injection volume of the MO solution in all embryos. We developed a method for estimating the quantity of MO injected into each living morphant, based on the co-injection of a control MO labeled with the fluorophore lissamine. By applying this method for knockdown of cardiac troponin T (tnnt2a) in zebrafish, we could efficiently select the partial tnnt2a-depleted zebrafish with a decreased heart rate and impairment of cardiac contraction. To investigate cardiac impairment of the tnnt2a morphant, we performed fluorescent cardiac imaging using Bodipy-ceramide. Cardiac image analysis showed moderate reduction of tnnt2a impaired diastolic distensibility and decreased contraction and relaxation velocities. To the best of our knowledge, this is the first report to analyze the role of tnnt2a in cardiac function in tnnt2a-depleted living animals. Our combinatorial approach can be applied for analyzing the molecular function of any protein associated with human cardiac diseases.
Collapse
|
35
|
Viswanathan MC, Kaushik G, Engler AJ, Lehman W, Cammarato A. A Drosophila melanogaster model of diastolic dysfunction and cardiomyopathy based on impaired troponin-T function. Circ Res 2013; 114:e6-17. [PMID: 24221941 DOI: 10.1161/circresaha.114.302028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Regulation of striated muscle contraction is achieved by Ca2+ -dependent steric modulation of myosin cross-bridge cycling on actin by the thin filament troponin-tropomyosin complex. Alterations in the complex can induce contractile dysregulation and disease. For example, mutations between or near residues 112 to 136 of cardiac troponin-T, the crucial TnT1 (N-terminal domain of troponin-T)-tropomyosin-binding region, cause cardiomyopathy. The Drosophila upheld(101) Glu/Lys amino acid substitution lies C-terminally adjacent to this phylogenetically conserved sequence. OBJECTIVE Using a highly integrative approach, we sought to determine the molecular trigger of upheld(101) myofibrillar degeneration, to evaluate contractile performance in the mutant cardiomyocytes, and to examine the effects of the mutation on the entire Drosophila heart to elucidate regulatory roles for conserved TnT1 regions and provide possible mechanistic insight into cardiac dysfunction. METHODS AND RESULTS Live video imaging of Drosophila cardiac tubes revealed that the troponin-T mutation prolongs systole and restricts diastolic dimensions of the heart, because of increased numbers of actively cycling myosin cross-bridges. Elevated resting myocardial stiffness, consistent with upheld(101) diastolic dysfunction, was confirmed by an atomic force microscopy-based nanoindentation approach. Direct visualization of mutant thin filaments via electron microscopy and 3-dimensional reconstruction resolved destabilized tropomyosin positioning and aberrantly exposed myosin-binding sites under low Ca2+ conditions. CONCLUSIONS As a result of troponin-tropomyosin dysinhibition, upheld(101) hearts exhibited cardiac dysfunction and remodeling comparable to that observed during human restrictive cardiomyopathy. Thus, reversal of charged residues about the conserved tropomyosin-binding region of TnT1 may perturb critical intermolecular associations required for proper steric regulation, which likely elicits myopathy in our Drosophila model.
Collapse
Affiliation(s)
- Meera Cozhimuttam Viswanathan
- From the Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (M.C.V., A.C.); Department of Bioengineering, University of California, San Diego, La Jolla, CA (G.K., A.J.E.); and Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA (W.L.)
| | | | | | | | | |
Collapse
|
36
|
Chowdhury D, Tangutur AD, Khatua TN, Saxena P, Banerjee SK, Bhadra MP. A proteomic view of isoproterenol induced cardiac hypertrophy: prohibitin identified as a potential biomarker in rats. J Transl Med 2013; 11:130. [PMID: 23706090 PMCID: PMC3667141 DOI: 10.1186/1479-5876-11-130] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/01/2013] [Indexed: 01/15/2023] Open
Abstract
Background The present study aimed at using a proteomics based approach to: a) analyze and contrast the proteome of the healthy and isoproterenol induced hypertrophied hearts and b) identify potential biomarkers for diagnosis of cardiac hypertrophy. Methods Male Sprague Dawley (SD) rats were administered isoproterenol (ISO, 5 mg/kg, sc, once daily) for 14 days to induce cardiac hypertrophy. There was a significant (p<0.05) increase (~ 55%) in the heart weight to tail length ratio after 14 days of treatment and cardiac hypertrophy was evidenced by significant increase of β-MHC and ANP, two indicative markers of cardiac hypertrophy, in the treated heart compared to that of control. Following confirmation of hypertrophy, 2DE of the tissue samples was done followed by MS/MS analysis of the protein spots to obtain a proteomic view for identification of novel biomarkers. Results Several important proteins were identified by proteomics analysis. They belong to the major functional categories such as cholesterol and protein metabolism, muscle contraction and development, transport, TCAcycle, ATP-biosynthesis, chaperone, signal transduction, DNA synthesis and ubiquitinisation. Careful examination of these protein spots by image analysis led to the successful identification of 7 differentially expressed proteins in the diseased sample. Further extension of this work for validation of differential expression of these proteins was also achieved by RTPCR and western blotting. Conclusions Our results demonstrate characteristic protein expression profile in control and hypertrophy condition in SD rats and also expand the existing knowledge on differentially expressed proteins in hypertrophy. The study signifies the importance of reduced expression of a novel protein such as Prohibitin (PHB) which may be associated with the cardiomyocytes growth and cardiac hypertrophy. However, further work is necessary to confirm the role of PHB in human heart and its potential role in diagnostic and therapeutic intervention in the clinic.
Collapse
Affiliation(s)
- Debabrata Chowdhury
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500607, India
| | | | | | | | | | | |
Collapse
|
37
|
Sun N, Yazawa M, Liu J, Han L, Sanchez-Freire V, Abilez OJ, Navarrete EG, Hu S, Wang L, Lee A, Pavlovic A, Lin S, Chen R, Hajjar RJ, Snyder MP, Dolmetsch RE, Butte MJ, Ashley EA, Longaker MT, Robbins RC, Wu JC. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy. Sci Transl Med 2012; 4:130ra47. [PMID: 22517884 DOI: 10.1126/scitranslmed.3003552] [Citation(s) in RCA: 534] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure, dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy in patients. DCM is the most common diagnosis leading to heart transplantation and places a significant burden on healthcare worldwide. The advent of induced pluripotent stem cells (iPSCs) offers an exceptional opportunity for creating disease-specific cellular models, investigating underlying mechanisms, and optimizing therapy. Here, we generated cardiomyocytes from iPSCs derived from patients in a DCM family carrying a point mutation (R173W) in the gene encoding sarcomeric protein cardiac troponin T. Compared to control healthy individuals in the same family cohort, cardiomyocytes derived from iPSCs from DCM patients exhibited altered regulation of calcium ion (Ca(2+)), decreased contractility, and abnormal distribution of sarcomeric α-actinin. When stimulated with a β-adrenergic agonist, DCM iPSC-derived cardiomyocytes showed characteristics of cellular stress such as reduced beating rates, compromised contraction, and a greater number of cells with abnormal sarcomeric α-actinin distribution. Treatment with β-adrenergic blockers or overexpression of sarcoplasmic reticulum Ca(2+) adenosine triphosphatase (Serca2a) improved the function of iPSC-derived cardiomyocytes from DCM patients. Thus, iPSC-derived cardiomyocytes from DCM patients recapitulate to some extent the morphological and functional phenotypes of DCM and may serve as a useful platform for exploring disease mechanisms and for drug screening.
Collapse
Affiliation(s)
- Ning Sun
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sadayappan S, de Tombe PP. Cardiac myosin binding protein-C: redefining its structure and function. Biophys Rev 2012; 4:93-106. [PMID: 22707987 PMCID: PMC3374655 DOI: 10.1007/s12551-012-0067-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/13/2012] [Indexed: 01/10/2023] Open
Abstract
Mutations of cardiac myosin binding protein-C (cMyBP-C) are inherited by an estimated 60 million people worldwide, and the protein is the target of several kinases. Recent evidence further suggests that cMyBP-C mutations alter Ca(2+) transients, leading to electrophysiological dysfunction. Thus, while the importance of studying this cardiac sarcomere protein is clear, preliminary data in the literature have raised many questions. Therefore, in this article, we propose to review the structure and function of cMyBP-C with particular respect to the role(s) in cardiac contractility and whether its release into the circulatory system is a potential biomarker of myocardial infarction. We also discuss future directions and experimental designs that may lead to expanding the role(s) of cMyBP-C in the heart. In conclusion, we suggest that cMyBP-C is a regulatory protein that could offer a broad clinical utility in maintaining normal cardiac function.
Collapse
Affiliation(s)
- Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Ave., Maywood, IL 60153 USA
| | - Pieter P. de Tombe
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, 2160 South First Ave., Maywood, IL 60153 USA
| |
Collapse
|
39
|
Becker JR, Deo RC, Werdich AA, Panàkovà D, Coy S, MacRae CA. Human cardiomyopathy mutations induce myocyte hyperplasia and activate hypertrophic pathways during cardiogenesis in zebrafish. Dis Model Mech 2011; 4:400-10. [PMID: 21245263 PMCID: PMC3097461 DOI: 10.1242/dmm.006148] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/11/2010] [Indexed: 12/11/2022] Open
Abstract
To assess the effects during cardiac development of mutations that cause human cardiomyopathy, we modeled a sarcomeric gene mutation in the embryonic zebrafish. We designed morpholino antisense oligonucleotides targeting the exon 13 splice donor site in the zebrafish cardiac troponin T (tnnt2) gene, in order to precisely recapitulate a human TNNT2 mutation that causes hypertrophic cardiomyopathy (HCM). HCM is a disease characterized by myocardial hypertrophy, myocyte and myofibrillar disarray, as well as an increased risk of sudden death. Similar to humans with HCM, the morphant zebrafish embryos displayed sarcomere disarray and there was a robust induction of myocardial hypertrophic pathways. Microarray analysis uncovered a number of shared transcriptional responses between this zebrafish model and a well-characterized mouse model of HCM. However, in contrast to adult hearts, these embryonic hearts developed cardiomyocyte hyperplasia in response to this genetic perturbation. The re-creation of a human disease-causing TNNT2 splice variant demonstrates that sarcomeric mutations can alter cardiomyocyte biology at the earliest stages of heart development with distinct effects from those observed in adult hearts despite shared transcriptional responses.
Collapse
MESH Headings
- Alternative Splicing/drug effects
- Alternative Splicing/genetics
- Amino Acid Sequence
- Animals
- Calcium/metabolism
- Cardiomyopathy, Hypertrophic/complications
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/physiopathology
- Embryo, Nonmammalian/drug effects
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/pathology
- Gene Expression Regulation, Developmental/drug effects
- Heart/drug effects
- Heart/embryology
- Heart/physiopathology
- Heart Ventricles/drug effects
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Humans
- Hyperplasia/complications
- Hyperplasia/pathology
- Mice
- Molecular Sequence Data
- Mutation/genetics
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Oligonucleotides, Antisense/pharmacology
- Organogenesis/drug effects
- Sarcomeres/drug effects
- Sarcomeres/pathology
- Transcription, Genetic/drug effects
- Troponin T/chemistry
- Troponin T/genetics
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins/chemistry
- Zebrafish Proteins/genetics
Collapse
Affiliation(s)
- Jason R Becker
- Harvard Medical School, Division of Cardiology, Massachusetts General Hospital, Boston, MA 02129, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Mechanotransduction: the role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch 2011; 462:89-104. [PMID: 21499986 DOI: 10.1007/s00424-011-0951-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 02/27/2011] [Indexed: 12/16/2022]
Abstract
Mechanotransduction refers to the conversion of mechanical forces into biochemical or electrical signals that initiate structural and functional remodeling in cells and tissues. The heart is a kinetic organ whose form changes considerably during development and disease, requiring cardiac myocytes to be mechanically durable and capable of fusing a variety of environmental signals on different time scales. During physiological growth, myocytes adaptively remodel to mechanical loads. Pathological stimuli can induce maladaptive remodeling. In both of these conditions, the cytoskeleton plays a pivotal role in both sensing mechanical stress and mediating structural remodeling and functional responses within the myocyte.
Collapse
|
41
|
Pinto JR, Yang SW, Hitz MP, Parvatiyar MS, Jones MA, Liang J, Kokta V, Talajic M, Tremblay N, Jaeggi M, Andelfinger G, Potter JD. Fetal cardiac troponin isoforms rescue the increased Ca2+ sensitivity produced by a novel double deletion in cardiac troponin T linked to restrictive cardiomyopathy: a clinical, genetic, and functional approach. J Biol Chem 2011; 286:20901-12. [PMID: 21502316 DOI: 10.1074/jbc.m111.234336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel double deletion in cardiac troponin T (cTnT) of two highly conserved amino acids (Asn-100 and Glu-101) was found in a restrictive cardiomyopathic (RCM) pediatric patient. Clinical evaluation revealed the presence of left atrial enlargement and marked left ventricle diastolic dysfunction. The explanted heart examined by electron microscopy revealed myofibrillar disarray and mild fibrosis. Pedigree analysis established that this mutation arose de novo. The patient tested negative for six other sarcomeric genes. The single and double recombinant cTnT mutants were generated, and their functional consequences were analyzed in porcine skinned cardiac muscle. In the adult Tn environment (cTnT3 + cardiac troponin I), the single cTnT3-ΔN100 and cTnT3-ΔE101 mutations had opposing effects on the Ca(2+) sensitivity of force development compared with WT, whereas the double deletion cTnT3-ΔN100/ΔE101 increased the Ca(2+) sensitivity + 0.19 pCa units. In addition, cTnT3-ΔN100/ΔE101 decreased the cooperativity of force development, suggesting alterations in intrafilament protein-protein interactions. In the fetal Tn environment, (cTnT1 + slow skeletal troponin I), the single (cTnT1-ΔN110) and double (cTnT1-ΔN110/ΔE111) deletions did not change the Ca(2+) sensitivity compared with control. To recreate the patient's heterozygous genotype, we performed a reconstituted ATPase activity assay. Thin filaments containing 50:50 cTnT3-ΔN100/ΔE101:cTnT3-WT also increased the myofilament Ca(2+) sensitivity compared with WT. Co-sedimentation of thin filament proteins indicated that no significant changes occurred in the binding of Tn containing the RCM cTnT mutation to actin-Tm. This report reveals the protective role of Tn fetal isoforms as they rescue the increased Ca(2+) sensitivity produced by a cTnT-RCM mutation and may account for the lack of lethality during gestation.
Collapse
Affiliation(s)
- Jose Renato Pinto
- University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ferrante MI, Kiff RM, Goulding DA, Stemple DL. Troponin T is essential for sarcomere assembly in zebrafish skeletal muscle. J Cell Sci 2011; 124:565-77. [PMID: 21245197 DOI: 10.1242/jcs.071274] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In striated muscle, the basic contractile unit is the sarcomere, which comprises myosin-rich thick filaments intercalated with thin filaments made of actin, tropomyosin and troponin. Troponin is required to regulate Ca(2+)-dependent contraction, and mutant forms of troponins are associated with muscle diseases. We have disrupted several genes simultaneously in zebrafish embryos and have followed the progression of muscle degeneration in the absence of troponin. Complete loss of troponin T activity leads to loss of sarcomere structure, in part owing to the destructive nature of deregulated actin-myosin activity. When troponin T and myosin activity are simultaneously disrupted, immature sarcomeres are rescued. However, tropomyosin fails to localise to sarcomeres, and intercalating thin filaments are missing from electron microscopic cross-sections, indicating that loss of troponin T affects thin filament composition. If troponin activity is only partially disrupted, myofibrils are formed but eventually disintegrate owing to deregulated actin-myosin activity. We conclude that the troponin complex has at least two distinct activities: regulation of actin-myosin activity and, independently, a role in the proper assembly of thin filaments. Our results also indicate that sarcomere assembly can occur in the absence of normal thin filaments.
Collapse
Affiliation(s)
- Maria I Ferrante
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | | | | | | |
Collapse
|
43
|
Banerjee SK, Wang DW, Alzamora R, Huang XN, Pastor-Soler NM, Hallows KR, McGaffin KR, Ahmad F. SGLT1, a novel cardiac glucose transporter, mediates increased glucose uptake in PRKAG2 cardiomyopathy. J Mol Cell Cardiol 2010; 49:683-92. [PMID: 20600102 PMCID: PMC2932762 DOI: 10.1016/j.yjmcc.2010.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/09/2010] [Indexed: 01/04/2023]
Abstract
Human mutations in the gene PRKAG2 encoding the gamma2 subunit of AMP-activated protein kinase (AMPK) cause a glycogen storage cardiomyopathy. Transgenic mice (TG(T400N)) with the human T400N mutation exhibit inappropriate activation of AMPK and consequent glycogen storage in the heart. Although increased glucose uptake and activation of glycogen synthesis have been documented in PRKAG2 cardiomyopathy, the mechanism of increased glucose uptake has been uncertain. Wildtype (WT), TG(T400N), and TG(alpha2DN) (carrying a dominant negative, kinase dead alpha2 catalytic subunit of AMPK) mice were studied at ages 2-8 weeks. Cardiac mRNA expression of sodium-dependent glucose transporter 1 (SGLT1), but not facilitated-diffusion glucose transporter 1 (GLUT1) or GLUT4, was increased approximately 5- to 7-fold in TG(T400N) mice relative to WT. SGLT1 protein was similarly increased at the cardiac myocyte sarcolemma in TG(T400N) mice. Phlorizin, a specific SGLT1 inhibitor, attenuated cardiac glucose uptake in TG(T400N) mice by approximately 40%, but not in WT mice. Chronic phlorizin treatment reduced cardiac glycogen content by approximately 25% in TG(T400N) mice. AICAR, an AMPK activator, increased cardiac SGLT1 mRNA expression approximately 3-fold in WT mice. Relative to TG(T400N) mice, double transgenic (TG(T400N)/TG(alpha2DN)) mice had decreased ( approximately 50%) cardiac glucose uptake and decreased (approximately 70%) cardiac SGLT1 expression. TG(T400N) hearts had increased binding activity of the transcription factors HNF-1 and Sp1 to the promoter of the gene encoding SGLT1. Our data suggest that upregulation of cardiac SGLT1 is responsible for increased cardiac glucose uptake in the TG(T400N) mouse. Increased AMPK activity leads to upregulation of SGLT1, which in turn mediates increased cardiac glucose uptake.
Collapse
Affiliation(s)
- Sanjay K. Banerjee
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - David W. Wang
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Rodrigo Alzamora
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Xueyin N. Huang
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
| | - Núria M. Pastor-Soler
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Kenneth R. Hallows
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Ferhaan Ahmad
- Cardiovascular Institute, University of Pittsburgh, Pittsburgh, PA 15213
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
44
|
Luedde M, Ehlermann P, Weichenhan D, Will R, Zeller R, Rupp S, Müller A, Steen H, Ivandic BT, Ulmer HE, Kern M, Katus HA, Frey N. Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc Res 2010; 86:452-60. [DOI: 10.1093/cvr/cvq009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
45
|
Rajkumar R, Konishi K, Richards TJ, Ishizawar DC, Wiechert AC, Kaminski N, Ahmad F. Genomewide RNA expression profiling in lung identifies distinct signatures in idiopathic pulmonary arterial hypertension and secondary pulmonary hypertension. Am J Physiol Heart Circ Physiol 2010; 298:H1235-48. [PMID: 20081107 DOI: 10.1152/ajpheart.00254.2009] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Idiopathic pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by pulmonary arteriolar remodeling. This investigation aimed to identify genes involved specifically in the pathogenesis of PAH and not other forms of pulmonary hypertension (PH). Using genomewide microarray analysis, we generated the largest data set to date of RNA expression profiles from lung tissue specimens from 1) 18 PAH subjects and 2) 8 subjects with PH secondary to idiopathic pulmonary fibrosis (IPF) and 3) 13 normal subjects. A molecular signature of 4,734 genes discriminated among these three cohorts. We identified significant novel biological changes that were likely to contribute to the pathogenesis of PAH, including regulation of actin-based motility, protein ubiquitination, and cAMP, transforming growth factor-beta, MAPK, estrogen receptor, nitric oxide, and PDGF signaling. Bone morphogenic protein receptor type II expression was downregulated, even in subjects without a mutation in this gene. Women with PAH had higher expression levels of estrogen receptor 1 than normal women. Real-time quantitative PCR confirmed differential expression of the following genes in PAH relative to both normal controls and PH secondary to IPF: a disintegrin-like and metalloprotease with thrombospondin type 1 motif 9, cell adhesion molecule with homology to L1CAM, cytochrome b(558) and beta-polypeptide, coagulation factor II receptor-like 3, A-myb myeloblastosis viral oncogene homolog 1, nuclear receptor coactivator 2, purinergic receptor P2Y, platelet factor 4, phospholamban, and tropomodulin 3. This study shows that PAH and PH secondary to IPF are characterized by distinct gene expression signatures, implying distinct pathophysiological mechanisms.
Collapse
Affiliation(s)
- Revathi Rajkumar
- Cardiovascular Institute, Univ. of Pittsburgh, PA 15213-2582, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Banerjee SK, McGaffin KR, Huang XN, Ahmad F. Activation of cardiac hypertrophic signaling pathways in a transgenic mouse with the human PRKAG2 Thr400Asn mutation. Biochim Biophys Acta Mol Basis Dis 2009; 1802:284-91. [PMID: 20005292 DOI: 10.1016/j.bbadis.2009.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/11/2009] [Accepted: 12/03/2009] [Indexed: 12/12/2022]
Abstract
Human mutations in PRKAG2, the gene encoding the gamma2 subunit of AMP activated protein kinase (AMPK), cause a glycogen storage cardiomyopathy. In a transgenic mouse with cardiac specific expression of the Thr400Asn mutation in PRKAG2 (TG(T400N)), we previously reported initial cardiac hypertrophy (ages 2-8 weeks) followed by dilation and failure (ages 12-20 weeks). We sought to elucidate the molecular mechanisms of cardiac hypertrophy. TG(T400N) mice showed significantly increased cardiac mass/body mass ratios up to approximately 3-fold beginning at age 2 weeks. Cardiac expression of ANP and BNP were approximately 2- and approximately 5-fold higher, respectively, in TG(T400N) relative to wildtype (WT) mice at age 2 weeks. NF-kappaB activity and nuclear translocation of the p50 subunit were increased approximately 2- to 3-fold in TG(T400N) hearts relative to WT during the hypertrophic phase. Phosphorylated Akt and p70S6K were elevated approximately 2-fold as early as age 2 weeks. To ascertain whether these changes in TG(T400N) mice were a consequence of increased AMPK activity, we crossbred TG(T400N) with TG(alpha2DN) mice, which express a dominant negative, kinase dead mutant of the AMPK alpha2 catalytic subunit and have low myocardial AMPK activity. Genetic reversal of AMPK overactivity led to a reduction in hypertrophy, nuclear translocation of NF-kappaB, phosphorylated Akt, and p70S6K. We conclude that inappropriate activation of AMPK secondary to the T400N PRKAG2 mutation is associated with the early activation of NF-kappaB and Akt signaling pathway, which mediates cardiac hypertrophy.
Collapse
Affiliation(s)
- Sanjay K Banerjee
- Cardiovascular Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213-2582, USA
| | | | | | | |
Collapse
|
47
|
Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 2009; 48:882-92. [PMID: 19914256 DOI: 10.1016/j.yjmcc.2009.10.031] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/19/2009] [Accepted: 10/30/2009] [Indexed: 12/25/2022]
Abstract
Troponin (Tn) is a critical regulator of muscle contraction in cardiac muscle. Mutations in Tn subunits are associated with hypertrophic, dilated and restrictive cardiomyopathies. Improved diagnosis of cardiomyopathies as well as intensive investigation of new mouse cardiomyopathy models has significantly enhanced this field of research. Recent investigations have showed that the physiological effects of Tn mutations associated with hypertrophic, dilated and restrictive cardiomyopathies are different. Impaired relaxation is a universal finding of most transgenic models of HCM, predicted directly from the significant changes in Ca(2+) sensitivity of force production. Mutations associated with HCM and RCM show increased Ca(2+) sensitivity of force production while mutations associated with DCM demonstrate decreased Ca(2+) sensitivity of force production. This review spotlights recent advances in our understanding on the role of Tn mutations on ATPase activity, maximal force development and heart function as well as the correlation between the locations of these Tn mutations within the thin filament and myofilament function.
Collapse
Affiliation(s)
- Ruth H Willott
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
48
|
Banerjee SK, McGaffin KR, Pastor-Soler NM, Ahmad F. SGLT1 is a novel cardiac glucose transporter that is perturbed in disease states. Cardiovasc Res 2009; 84:111-8. [PMID: 19509029 DOI: 10.1093/cvr/cvp190] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Cardiac myocytes depend on a delicate balance of glucose and free fatty acids as energy sources, a balance that is disrupted in pathological states such as diabetic cardiomyopathy and myocardial ischaemia. There are two families of cellular glucose transporters: the facilitated-diffusion glucose transporters (GLUT); and the sodium-dependent glucose transporters (SGLT). It has long been thought that only the GLUT isoforms, GLUT1 and GLUT4, are responsible for cardiac myocyte glucose uptake. However, we discovered that one SGLT isoform, SGLT1, is also an important glucose transporter in heart. In this study, we aimed to determine the human and murine cardiac expression pattern of SGLT1 in health and disease and to determine its regulation. METHODS AND RESULTS SGLT1 was largely localized to the cardiac myocyte sarcolemma. Changes in SGLT1 expression were observed in disease states in both humans and mouse models. SGLT1 expression was upregulated two- to three-fold in type 2 diabetes mellitus and myocardial ischaemia (P < 0.05). In humans with severe heart failure, functional improvement following implantation of left ventricular assist devices led to a two-fold increase in SGLT1 mRNA (P < 0.05). Acute administration of leptin to wildtype mice increased cardiac SGLT1 expression approximately seven-fold (P < 0.05). Insulin- and leptin-stimulated cardiac glucose uptake was significantly (P < 0.05) inhibited by phlorizin, a specific SGLT1 inhibitor. CONCLUSION Our data suggest that cardiac SGLT1 expression and/or function are regulated by insulin and leptin, and are perturbed in disease. This is the first study to examine the regulation of cardiac SGLT1 expression by insulin and leptin and to determine changes in SGLT1 expression in cardiac disease.
Collapse
Affiliation(s)
- Sanjay K Banerjee
- Cardiovascular Institute, University of Pittsburgh, 200 Lothrop Street, Suite S-558, Pittsburgh, PA 15213-2582, USA
| | | | | | | |
Collapse
|
49
|
Nishii K, Morimoto S, Minakami R, Miyano Y, Hashizume K, Ohta M, Zhan DY, Lu QW, Shibata Y. Targeted disruption of the cardiac troponin T gene causes sarcomere disassembly and defects in heartbeat within the early mouse embryo. Dev Biol 2008; 322:65-73. [DOI: 10.1016/j.ydbio.2008.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 12/17/2022]
|