1
|
Zhong W, Hu L, Zhao Y, Li Z, Zhuo Y, Jiang X, Li J, Zhao X, Che L, Feng B, Lin Y, Xu S, Fang Z, Wu D. Effects of Dietary Choline Levels During Pregnancy on Reproductive Performance, Plasma Metabolome and Gut Microbiota of Sows. Front Vet Sci 2022; 8:771228. [PMID: 35141305 PMCID: PMC8818960 DOI: 10.3389/fvets.2021.771228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/15/2021] [Indexed: 12/05/2022] Open
Abstract
This study investigated the effects of dietary choline levels during gestation on reproductive performance of sows. In addition, the plasma metabolome and gut microbiota of sows was studied. A total of 260 multiparous sows were allocated to five dietary treatment groups with increasing choline concentrations (1,050, 1,450, 1,850, 2,250, and 2,650 mg/kg) in a randomized complete block design. The sows were fed experimental diets from breeding until farrowing and a common lactating diet during lactation. The results showed that the backfat (BF) gain of sows during gestation, individual birth weight for total piglets born, piglets born alive, average piglet weight at weaning increased linearly (P < 0.05), whereas the within-litter birth weight variation coefficient (CV) of piglets born alive and suckling piglet mortality decreased linearly (P < 0.05) as dietary choline level increased. A quadratic effect of dietary choline level was observed for the average daily feed intake (ADFI) of sows during lactation (P < 0.05). ADFI was maximized when the dietary choline concentration reached 1,910 mg/kg. Plasma H2O2 concentration at day 30 of gestation in the 1,050 mg/kg group was greater than that in the 1,850 and 2,650 mg/kg groups (P < 0.05). Plasma metabolomics identified 46 metabolites among the three groups. Specifically, plasma concentrations of trimethylamine-N-oxide (TMAO), dopamine, and L-proline increased while 1-methylhistidine concentration decreased as dietary choline levels increased. In addition, bacterial observed species and richness (Chao 1 and ACE) at day 110 of gestation decreased as dietary choline levels increased (P < 0.05). For the gut microbiota composition, the enhanced dietary choline level decreased the abundance of phylum Proteobacteria (P < 0.05) and increased the abundance of phylum Actinobacteria (P < 0.05) at day 30 of gestation. Compared with the 1,050 mg/kg group, the abundance of genus Terrisporobacter was less in the 1,850 mg/kg group, and genera Bacillus and Cellulomonas were greater in the 2,650 mg/kg group. In summary, increasing dietary choline levels improved the birth weight, uniformity of neonatal piglets and litter performance during lactation. This may be associated with better antioxidant capability, metabolic status, and gut microbiota of sows during gestation.
Collapse
Affiliation(s)
- Wei Zhong
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, China
| | - Yang Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhen Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xilun Zhao
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Hosmer J, Nasreen M, Dhouib R, Essilfie AT, Schirra HJ, Henningham A, Fantino E, Sly P, McEwan AG, Kappler U. Access to highly specialized growth substrates and production of epithelial immunomodulatory metabolites determine survival of Haemophilus influenzae in human airway epithelial cells. PLoS Pathog 2022; 18:e1010209. [PMID: 35085362 PMCID: PMC8794153 DOI: 10.1371/journal.ppat.1010209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
Haemophilus influenzae (Hi) infections are associated with recurring acute exacerbations of chronic respiratory diseases in children and adults including otitis media, pneumonia, chronic obstructive pulmonary disease and asthma. Here, we show that persistence and recurrence of Hi infections are closely linked to Hi metabolic properties, where preferred growth substrates are aligned to the metabolome of human airway epithelial surfaces and include lactate, pentoses, and nucleosides, but not glucose that is typically used for studies of Hi growth in vitro. Enzymatic and physiological investigations revealed that utilization of lactate, the preferred Hi carbon source, required the LldD L-lactate dehydrogenase (conservation: 98.8% of strains), but not the two redox-balancing D-lactate dehydrogenases Dld and LdhA. Utilization of preferred substrates was directly linked to Hi infection and persistence. When unable to utilize L-lactate or forced to rely on salvaged guanine, Hi showed reduced extra- and intra-cellular persistence in a murine model of lung infection and in primary normal human nasal epithelia, with up to 3000-fold attenuation observed in competitive infections. In contrast, D-lactate dehydrogenase mutants only showed a very slight reduction compared to the wild-type strain. Interestingly, acetate, the major Hi metabolic end-product, had anti-inflammatory effects on cultured human tissue cells in the presence of live but not heat-killed Hi, suggesting that metabolic endproducts also influence HI-host interactions. Our work provides significant new insights into the critical role of metabolism for Hi persistence in contact with host cells and reveals for the first time the immunomodulatory potential of Hi metabolites.
Collapse
Affiliation(s)
- Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Rabeb Dhouib
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | | | | | - Anna Henningham
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Emmanuelle Fantino
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Peter Sly
- Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
3
|
Sim XY, Ibrahim B, Gam LH. Urinary metabolites of type 2 diabetes rats fed with palm oil-enriched high fat diet. Heliyon 2021; 7:e08075. [PMID: 34632142 PMCID: PMC8487023 DOI: 10.1016/j.heliyon.2021.e08075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022] Open
Abstract
High fat diet (HFD) is one of the risk factors of obesity and diabetes. Recommended diet regimen for diabetes is difficult to abide by especially for HFD as it adds flavour to the taste buds. In this study, palm oil-enriched HFD and normal diet were fed to nicotinamide-induced type 2 diabetes rats, respectively for six weeks. Additionally, metformin, a common drug used to treat diabetes was given to rats under treatment groups. We evaluated the change of urinary metabolites of diabetes rats fed with palm oil-enriched HFD, and also after metformin treatment. Rats were divided into six-groups with different feeding diets, disease condition and with or without metformin treatment. Rats' urine were collected at the end of six weeks feeding program and subjected to 1H-NMR and multivariate data analysis to evaluate their metabolite profiles. At the early phase of diabetes, metabolites changes in diabetic rats were associated with the disease itself. Our data showed that continuous consumption of HFD altered various metabolic pathways of diabetic rats and caused detrimental effects to the rats. On the other hand, metformin treatment combined with normal diet lessened the physiological impacts caused by diabetes condition.
Collapse
Affiliation(s)
- Xuan-Yi Sim
- USM-RIKEN International Centre of Aging Science, USM, 11800 Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Baharudin Ibrahim
- Faculty of Pharmacy, Universiti of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Lay-Harn Gam
- USM-RIKEN International Centre of Aging Science, USM, 11800 Minden, Penang, Malaysia
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
4
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|
5
|
Hasanpour M, Iranshahy M, Iranshahi M. The application of metabolomics in investigating anti-diabetic activity of medicinal plants. Biomed Pharmacother 2020; 128:110263. [DOI: 10.1016/j.biopha.2020.110263] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022] Open
|
6
|
Takahashi S, Saegusa J, Onishi A, Morinobu A. Biomarkers identified by serum metabolomic analysis to predict biologic treatment response in rheumatoid arthritis patients. Rheumatology (Oxford) 2020; 58:2153-2161. [PMID: 31143951 DOI: 10.1093/rheumatology/kez199] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Biologic treatment has recently revolutionized the management of RA. Despite this success, ∼30-40% of the patients undergoing biologic treatment respond insufficiently. The aim of this study was to identify several specific reliable metabolites for predicting the response of RA patients to TNF-α inhibitors (TNFi) and abatacept (ABT), using capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS). METHODS We collected serum from RA patients with moderate or high disease activity prior to biologic treatment, and obtained the serum metabolomic profiles of these samples using CE-TOFMS. The patients' response was determined 12 weeks after starting biologic treatment, according to the EULAR response criteria. We compared the metabolites between the response and non-response patient groups and analysed their discriminative ability. RESULTS Among 43 total patients, 14 of 26 patients in the TNFi group and 6 of 17 patients in the ABT group responded to the biologic treatment. Of the metabolites separated by CE-TOFMS, 196 were identified as known substances. Using an orthogonal partial least-squares discriminant analysis, we identified five metabolites as potential predictors of TNFi responders and three as predictors of ABT responders. Receiver operating characteristic analyses for multiple biomarkers revealed an area under the curve (AUC) of 0.941, with a sensitivity of 85.7% and specificity of 100% for TNFi, and an AUC of 0.985, with a sensitivity of 100% and specificity of 90.9% for ABT. CONCLUSION By metabolomic analysis, we identified serum biomarkers that have a high ability to predict the response of RA patients to TNFi or ABT treatment.
Collapse
Affiliation(s)
- Soshi Takahashi
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe,Japan.,Centre for Rheumatic Disease, Shinko Hospital, Kobe,Japan
| | - Jun Saegusa
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe,Japan
| | - Akira Onishi
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe,Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Kobe University Graduate School of Medicine, Kobe,Japan
| |
Collapse
|
7
|
Muda NM, Nasreen M, Dhouib R, Hosmer J, Hill J, Mahawar M, Schirra HJ, McEwan AG, Kappler U. Metabolic analyses reveal common adaptations in two invasive Haemophilus influenzae strains. Pathog Dis 2020; 77:5420469. [PMID: 30915434 DOI: 10.1093/femspd/ftz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/19/2019] [Indexed: 01/22/2023] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) is a major pathogen in upper and lower respiratory tract infections in humans, and is increasingly also associated with invasive disease. We have examined two unrelated NTHi invasive disease isolates, R2866 and C188, in order to identify metabolic and physiological properties that distinguish them from respiratory tract disease isolates such as Hi2019. While the general use of the Hi metabolic network was similar across all three strains, the two invasive isolates secreted increased amounts of succinate, which can have anti-inflammatory properties. In addition, they showed a common shift in their carbon source utilization patterns, with strongly enhanced metabolism of nucleoside substrates, glucose and sialic acid. The latter two are major compounds present in blood and cerebrospinal fluid (CSF). Interestingly, C188 and R2866 also shared a reduced ability to invade or survive intracellularly in 16HBE14 bronchial epithelial cells relative to Hi2019 (4-fold (4 h), 25-fold (24 h) reduction). Altered metabolic properties, such as the ones observed here, could arise from genomic adaptations that NTHi undergo during infection. Together these data indicate that shifts in substrate preferences in otherwise conserved metabolic pathways may underlie strain niche specificity and thus have the potential to alter the outcomes of host-NTHi interactions.
Collapse
Affiliation(s)
- Noor Marian Muda
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Marufa Nasreen
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Rabeb Dhouib
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Julian Hill
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Manish Mahawar
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia.,Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Horst Joachim Schirra
- Centre for Advanced Imaging, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, Centre for Metals in Biology, The University of Queensland, St. Lucia QLD 4072, Australia
| |
Collapse
|
8
|
Chhabra Y, Nelson CN, Plescher M, Barclay JL, Smith AG, Andrikopoulos S, Mangiafico S, Waxman DJ, Brooks AJ, Waters MJ. Loss of growth hormone-mediated signal transducer and activator of transcription 5 (STAT5) signaling in mice results in insulin sensitivity with obesity. FASEB J 2019; 33:6412-6430. [PMID: 30779881 PMCID: PMC6463913 DOI: 10.1096/fj.201802328r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Growth hormone (GH) has an important function as an insulin antagonist with elevated insulin sensitivity evident in humans and mice lacking a functional GH receptor (GHR). We sought the molecular basis for this sensitivity by utilizing a panel of mice possessing specific deletions of GHR signaling pathways. Metabolic clamps and glucose homeostasis tests were undertaken in these obese adult C57BL/6 male mice, which indicated impaired hepatic gluconeogenesis. Insulin sensitivity and glucose disappearance rate were enhanced in muscle and adipose of mice lacking the ability to activate the signal transducer and activator of transcription (STAT)5 via the GHR (Ghr-391-/-) as for GHR-null (GHR-/-) mice. These changes were associated with a striking inhibition of hepatic glucose output associated with altered glycogen metabolism and elevated hepatic glycogen content during unfed state. The enhanced hepatic insulin sensitivity was associated with increased insulin receptor β and insulin receptor substrate 1 activation along with activated downstream protein kinase B signaling cascades. Although phosphoenolpyruvate carboxykinase (Pck)-1 expression was unchanged, its inhibitory acetylation was elevated because of decreased sirtuin-2 expression, thereby promoting loss of PCK1. Loss of STAT5 signaling to defined chromatin immunoprecipitation targets would further increase lipogenesis, supporting hepatosteatosis while lowering glucose output. Finally, up-regulation of IL-15 expression in muscle, with increased secretion of adiponectin and fibroblast growth factor 1 from adipose tissue, is expected to promote insulin sensitivity.-Chhabra, Y., Nelson, C. N., Plescher, M., Barclay, J. L., Smith, A. G., Andrikopoulos, S., Mangiafico, S., Waxman, D. J., Brooks, A. J., Waters, M. J. Loss of growth hormone-mediated signal transducer and activator of transcription 5 (STAT5) signaling in mice results in insulin sensitivity with obesity.
Collapse
Affiliation(s)
- Yash Chhabra
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Caroline N Nelson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Monika Plescher
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Johanna L Barclay
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.,Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sof Andrikopoulos
- Department of Medicine, The University of Melbourne, Victoria, Australia
| | | | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, USA
| | - Andrew J Brooks
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J Waters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
9
|
Hayashi M, Futawaka K, Matsushita M, Koyama R, Fun Y, Fukuda Y, Nushida A, Nezu S, Tagami T, Moriyama K. GH directly stimulates UCP3 expression. Growth Horm IGF Res 2018; 40:44-54. [PMID: 29398371 DOI: 10.1016/j.ghir.2018.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 12/27/2017] [Accepted: 01/18/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE We evaluated the direct action of GH signaling in energy homeostasis in myocytes. DESIGN We investigated the GH-induced expression of UCP3 in human embryonic kidney 293 cells, human H-EMC-SS chondrosarcoma cells, murine C2C12 skeletal muscle myoblasts, and rat L6 skeletal muscle cells, as well as its direct effect on the GHR/JAK/STAT5 pathway using a combination of a reporter assay, real-time quantitative polymerase chain reaction, and western blotting. RESULTS We demonstrated that the regulation of energy metabolism by GH involves UCP3 via activated STAT5, a signal transducer downstream of GH. UCP3 expression increased with STAT5 in a dose-dependent manner and was higher than that of UCP2. We confirmed the functional STAT5 binding site consensus sequences at -861 and -507 bp in the UCP3 promoter region. CONCLUSION The results suggest that GH stimulates UCP3 directly and that UCP2 and that UCP3 participate in the signal transduction pathway that functions downstream of the GHR/JAK/STAT.
Collapse
Affiliation(s)
- Misa Hayashi
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Kumi Futawaka
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Midori Matsushita
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Rie Koyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Yue Fun
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Yuki Fukuda
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Ayaka Nushida
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Syoko Nezu
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan
| | - Tetsuya Tagami
- Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Kenji Moriyama
- Medicine & Clinical Science, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, Hyogo 663-8179, Japan; Clinical Research Institute for Endocrine and Metabolic Diseases, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan.
| |
Collapse
|
10
|
Yang Y, Zhang H, Yan B, Zhang T, Gao Y, Shi Y, Le G. Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6957-6971. [PMID: 28742334 DOI: 10.1021/acs.jafc.7b02003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aims to investigate the health effects of long-term dietary oxidized tyrosine (O-Tyr) and its main product (dityrosine) administration on mice metabolism. Mice received daily intragastric administration of either O-Tyr (320 μg/kg body weight), dityrosine (Dityr, 320 μg/kg body weight), or saline for consecutive 6 weeks. Urine and plasma samples were analyzed by NMR-based metabolomics strategies. Body weight, clinical chemistry, oxidative damage indexes, and histopathological data were obtained as complementary information. O-Tyr and Dityr exposure changed many systemic metabolic processes, including reduced choline bioavailability, led to fat accumulation in liver, induced hepatic injury, and renal dysfunction, resulted in changes in gut microbiota functions, elevated risk factor for cardiovascular disease, altered amino acid metabolism, induced oxidative stress responses, and inhibited energy metabolism. These findings implied that it is absolutely essential to reduce the generation of oxidation protein products in food system through improving modern food processing methods.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Hui Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Tianyu Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Ying Gao
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| |
Collapse
|
11
|
Söder J, Hagman R, Dicksved J, Lindåse S, Malmlöf K, Agback P, Moazzami A, Höglund K, Wernersson S. The urine metabolome differs between lean and overweight Labrador Retriever dogs during a feed-challenge. PLoS One 2017; 12:e0180086. [PMID: 28662207 PMCID: PMC5491113 DOI: 10.1371/journal.pone.0180086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 06/11/2017] [Indexed: 01/02/2023] Open
Abstract
Obesity in dogs is an increasing problem and better knowledge of the metabolism of overweight dogs is needed. Identification of molecular changes related to overweight may lead to new methods to improve obesity prevention and treatment. The aim of the study was firstly to investigate whether Nuclear Magnetic Resonance (NMR) based metabolomics could be used to differentiate postprandial from fasting urine in dogs, and secondly to investigate whether metabolite profiles differ between lean and overweight dogs in fasting and postprandial urine, respectively. Twenty-eight healthy intact male Labrador Retrievers were included, 12 of which were classified as lean (body condition score (BCS) 4-5 on a 9-point scale) and 16 as overweight (BCS 6-8). After overnight fasting, a voided morning urine sample was collected. Dogs were then fed a high-fat mixed meal and postprandial urine was collected after 3 hours. Metabolic profiles were generated using NMR and 45 metabolites identified from the spectral data were evaluated using multivariate data analysis. The results revealed that fasting and postprandial urine differed in relative metabolite concentration (partial least-squares discriminant analysis (PLS-DA) 1 comp: R2Y = 0.4, Q2Y = 0.32; cross-validated ANOVA: P = 0.00006). Univariate analyses of discriminant metabolites showed that taurine and citrate concentrations were elevated in postprandial urine, while allantoin concentration had decreased. Interestingly, lean and overweight dogs differed in terms of relative metabolite concentrations in postprandial urine (PLS-DA 1 comp: R2Y = 0.5, Q2Y = 0.36, cross-validated ANOVA: P = 0.005) but not in fasting urine. Overweight dogs had lower postprandial taurine and a trend of higher allantoin concentrations compared with lean dogs. These findings demonstrate that metabolomics can differentiate 3-hour postprandial urine from fasting urine in dogs, and that postprandial urine metabolites may be more useful than fasting metabolites for identification of metabolic alterations linked to overweight. The lowered urinary taurine concentration in overweight dogs could indicate alterations in lipid metabolism and merits further investigation.
Collapse
Affiliation(s)
- Josefin Söder
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sanna Lindåse
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kjell Malmlöf
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ali Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Katja Höglund
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Rossner R, Kaeberlein M, Leiser SF. Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes. J Biol Chem 2017; 292:11138-11146. [PMID: 28515321 DOI: 10.1074/jbc.r117.779678] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Flavin-containing monooxygenases (FMOs) are primarily studied as xenobiotic metabolizing enzymes with a prominent role in drug metabolism. In contrast, endogenous functions and substrates of FMOs are less well understood. A growing body of recent evidence, however, implicates FMOs in aging, several diseases, and metabolic pathways. The evidence suggests an important role for these well-conserved proteins in multiple processes and raises questions about the endogenous substrate(s) and regulation of FMOs. Here, we present an overview of evidence for FMOs' involvement in aging and disease, discussing the biological context and arguing for increased investigation into the function of these enzymes.
Collapse
Affiliation(s)
- Ryan Rossner
- From the Department of Pathology, University of Washington, Seattle, Washington 98195 and
| | - Matt Kaeberlein
- From the Department of Pathology, University of Washington, Seattle, Washington 98195 and
| | - Scott F Leiser
- the Departments of Molecular & Integrative Physiology and .,Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
13
|
Anti-Diabetic Activity and Metabolic Changes Induced by Andrographis paniculata Plant Extract in Obese Diabetic Rats. Molecules 2016; 21:molecules21081026. [PMID: 27517894 PMCID: PMC6273188 DOI: 10.3390/molecules21081026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/20/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022] Open
Abstract
Andrographis paniculata is an annual herb and widely cultivated in Southeast Asian countries for its medicinal use. In recent investigations, A. paniculata was found to be effective against Type 1 diabetes mellitus (Type 1 DM). Here, we used a non-genetic out-bred Sprague-Dawley rat model to test the antidiabetic activity of A. paniculata against Type 2 diabetes mellitus (Type 2 DM). Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy in combination with multivariate data analyses was used to evaluate the A. paniculata and metformin induced metabolic effects on the obese and obese–diabetic (obdb) rat models. Compared to the normal rats, high levels of creatinine, lactate, and allantoin were found in the urine of obese rats, whereas, obese-diabetic rats were marked by high glucose, choline and taurine levels, and low lactate, formate, creatinine, citrate, 2-oxoglutarate, succinate, dimethylamine, acetoacetate, acetate, allantoin and hippurate levels. Treatment of A. paniculata leaf water extract was found to be quite effective in restoring the disturbed metabolic profile of obdb rats back towards normal conditions. Thisstudy shows the anti-diabetic potential of A. paniculata plant extract and strengthens the idea of using this plant against the diabetes. Further classical genetic methods and state of the art molecular techniques could provide insights into the molecular mechanisms involved in the pathogenesis of diabetes mellitus and anti-diabetic effects of A. paniculata water extract.
Collapse
|
14
|
Zhao Q, Zhu Y, Best LG, Umans JG, Uppal K, Tran VT, Jones DP, Lee ET, Howard BV, Zhao J. Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study. PLoS One 2016; 11:e0159548. [PMID: 27434237 PMCID: PMC4951134 DOI: 10.1371/journal.pone.0159548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/04/2016] [Indexed: 01/08/2023] Open
Abstract
Obesity is a typical metabolic disorder resulting from the imbalance between energy intake and expenditure. American Indians suffer disproportionately high rates of obesity and diabetes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic American Indians participating in the Strong Heart Family Study. Using an untargeted liquid chromatography-mass spectrometry, we detected 1,364 distinct m/z features matched to known compounds in the current metabolomics databases. We conducted multivariate analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators. After adjusting for covariates and multiple testing, five metabolites were associated with body mass index and seven were associated with waist circumference. Of them, three were associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanolamide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine) have been previously implicated in obesity or its related pathways. Future studies are warranted to replicate these findings in larger populations or other ethnic groups.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - Yun Zhu
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| | - Lyle G. Best
- Missouri Breaks Industries Research Inc, Timber Lake, SD, United States of America
| | - Jason G. Umans
- MedStar Health Research Institute, Hyattsville, MD, United States of America
| | - Karan Uppal
- Division of Pulmonary Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - ViLinh T. Tran
- Division of Pulmonary Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Dean P. Jones
- Division of Pulmonary Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Elisa T. Lee
- Center for American Indian Health Research, University of Oklahoma Health Science Center, Oklahoma City, OK, United States of America
| | - Barbara V. Howard
- Medstar Research Institute and Georgetown and Howard Universities Centers for Translational Sciences, Washington, DC, United States of America
| | - Jinying Zhao
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, United States of America
| |
Collapse
|
15
|
Ibeagha-Awemu EM, Li R, Ammah AA, Dudemaine PL, Bissonnette N, Benchaar C, Zhao X. Transcriptome adaptation of the bovine mammary gland to diets rich in unsaturated fatty acids shows greater impact of linseed oil over safflower oil on gene expression and metabolic pathways. BMC Genomics 2016; 17:104. [PMID: 26861594 PMCID: PMC4748538 DOI: 10.1186/s12864-016-2423-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Nutritional strategies can decrease saturated fatty acids (SFAs) and increase health beneficial fatty acids (FAs) in bovine milk. The pathways/genes involved in these processes are not properly defined. Next-generation RNA-sequencing was used to investigate the bovine mammary gland transcriptome following supplemental feeding with 5% linseed oil (LSO) or 5% safflower oil (SFO). Holstein cows in mid-lactation were fed a control diet for 28 days (control period) followed by supplementation with 5% LSO (12 cows) or 5% SFO (12 cows) for 28 days (treatment period). Milk and mammary gland biopsies were sampled on days-14 (control period), +7 and +28 (treatment period). Milk was used to measure fat(FP)/protein(PP) percentages and individual FAs while RNA was subjected to sequencing. RESULTS Milk FP was decreased by 30.38% (LSO) or 32.42% (SFO) while PP was unaffected (LSO) or increased (SFO). Several beneficial FAs were increased by LSO (C18:1n11t, CLA:10t12c, CLA:9c11t, C20:3n3, C20:5n3, C22:5n3) and SFO (C18:1n11t, CLA:10t12c, C20:1c11, C20:2, C20:3n3) while several SFAs (C4:0, C6:0, C8:0, C14:0, C16:0, C17:0, C24:0) were decreased by both treatments (P < 0.05). 1006 (460 up- and 546 down-regulated) and 199 (127 up- and 72 down-regulated) genes were significantly differentially regulated (DE) by LSO and SFO, respectively. Top regulated genes (≥ 2 fold change) by both treatments (FBP2, UCP2, TIEG2, ANGPTL4, ALDH1L2) are potential candidate genes for milk fat traits. Involvement of SCP2, PDK4, NQO1, F2RL1, DBI, CPT1A, CNTFR, CALB1, ACADVL, SPTLC3, PIK3CG, PIGZ, ADORA2B, TRIB3, HPGD, IGFBP2 and TXN in FA/lipid metabolism in dairy cows is being reported for the first time. Functional analysis indicated similar and different top enriched functions for DE genes. DE genes were predicted to significantly decrease synthesis of FA/lipid by both treatments and FA metabolism by LSO. Top canonical pathways associated with DE genes of both treatments might be involved in lipid/cholesterol metabolism. CONCLUSION This study shows that rich α-linolenic acid LSO has a greater impact on mammary gland transcriptome by affecting more genes, pathways and processes as compared to SFO, rich in linoleic acid. Our study suggest that decrease in milk SFAs was due to down-regulation of genes in the FA/lipid synthesis and lipid metabolism pathways while increase in PUFAs was due to increased availability of ruminal biohydrogenation metabolites that were up taken and incorporated into milk or used as substrate for the synthesis of PUFAs.
Collapse
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Ran Li
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Adolf A Ammah
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Pier-Luc Dudemaine
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Chaouki Benchaar
- Agriculture and Agri-Food Canada, Research and Development Centre, Sherbrooke, Quebec, J1M 0C8, Canada.
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, Quebec, H9X 3 V9, Canada.
| |
Collapse
|
16
|
Nespital T, van der Velden LM, Mensinga A, van der Vaart ED, Strous GJ. Fos-Zippered GH Receptor Cytosolic Tails Act as Jak2 Substrates and Signal Transducers. Mol Endocrinol 2016; 30:290-301. [PMID: 26859362 DOI: 10.1210/me.2015-1315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Members of the Janus kinase (Jak) family initiate the majority of downstream signaling events of the cytokine receptor family. The prevailing principle is that the receptors act in dimers: 2 Jak2 molecules bind to the cytosolic tails of a cytokine receptor family member and initiate Jak-signal transducer and activator of transcription signaling upon a conformational change in the receptor complex, induced by the cognate cytokine. Due to the complexity of signaling complexes, there is a strong need for in vitro model systems. To investigate the molecular details of the Jak2 interaction with the GH receptor (GHR), we used cytosolic tails provided with leucine zippers derived from c-Fos to mimic the dimerized state of GHR. Expressed together with Jak2, fos-zippered tails, but not unzippered tails, were stabilized. In addition, the Jak-signal transducer and activator of transcription signaling pathway was activated by the fos-zippered tails. The stabilization depended also on α-helix rotation of the zippers. Fos-zippered GHR tails and Jak2, both purified from baculovirus-infected insect cells, interacted via box1 with a binding affinity of approximately 40nM. As expected, the Jak kinase inhibitor Ruxolitinib inhibited the stabilization but did not affect the c-Fos-zippered GHR tail-Jak2 interaction. Analysis by blue-native gel electrophoresis revealed high molecular-weight complexes containing both Jak2 and nonphosphorylated GHR tails, whereas Jak2-dissociated tails were highly phosphorylated and monomeric, implying that Jak2 detaches from its substrate upon phosphorylation.
Collapse
Affiliation(s)
- Tobias Nespital
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Lieke M van der Velden
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Anneloes Mensinga
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Elisabeth D van der Vaart
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Ger J Strous
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| |
Collapse
|
17
|
Gooda Sahib Jambocus N, Saari N, Ismail A, Khatib A, Mahomoodally MF, Abdul Hamid A. An Investigation into the Antiobesity Effects of Morinda citrifolia L. Leaf Extract in High Fat Diet Induced Obese Rats Using a (1)H NMR Metabolomics Approach. J Diabetes Res 2016; 2016:2391592. [PMID: 26798649 PMCID: PMC4698747 DOI: 10.1155/2016/2391592] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/13/2015] [Accepted: 09/13/2015] [Indexed: 12/29/2022] Open
Abstract
The prevalence of obesity is increasing worldwide, with high fat diet (HFD) as one of the main contributing factors. Obesity increases the predisposition to other diseases such as diabetes through various metabolic pathways. Limited availability of antiobesity drugs and the popularity of complementary medicine have encouraged research in finding phytochemical strategies to this multifaceted disease. HFD induced obese Sprague-Dawley rats were treated with an extract of Morinda citrifolia L. leaves (MLE 60). After 9 weeks of treatment, positive effects were observed on adiposity, fecal fat content, plasma lipids, and insulin and leptin levels. The inducement of obesity and treatment with MLE 60 on metabolic alterations were then further elucidated using a (1)H NMR based metabolomics approach. Discriminating metabolites involved were products of various metabolic pathways, including glucose metabolism and TCA cycle (lactate, 2-oxoglutarate, citrate, succinate, pyruvate, and acetate), amino acid metabolism (alanine, 2-hydroxybutyrate), choline metabolism (betaine), creatinine metabolism (creatinine), and gut microbiome metabolism (hippurate, phenylacetylglycine, dimethylamine, and trigonelline). Treatment with MLE 60 resulted in significant improvement in the metabolic perturbations caused obesity as demonstrated by the proximity of the treated group to the normal group in the OPLS-DA score plot and the change in trajectory movement of the diseased group towards the healthy group upon treatment.
Collapse
Affiliation(s)
- Najla Gooda Sahib Jambocus
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- *Najla Gooda Sahib Jambocus: and
| | - Nazamid Saari
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amin Ismail
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | | | - Azizah Abdul Hamid
- Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- *Azizah Abdul Hamid:
| |
Collapse
|
18
|
Misawa T, Date Y, Kikuchi J. Human Metabolic, Mineral, and Microbiota Fluctuations Across Daily Nutritional Intake Visualized by a Data-Driven Approach. J Proteome Res 2015; 14:1526-34. [DOI: 10.1021/pr501194k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Takuma Misawa
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
| | - Yasuhiro Date
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- Graduate
School of Medical Life Science, Yokohama City University, 1-7-29
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku,
Yokohama, Kanagawa 230-0045, Japan
- Graduate
School of Bioagricultural Sciences, Nagoya University, 1 Furo-cho, Chikusa-ku, Nagoya, Aichi 464-0810, Japan
- Biomass
Engineering Program, RIKEN Research Cluster for Innovation, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
19
|
Brocato J, Hernandez M, Laulicht F, Sun H, Shamy M, Alghamdi MA, Khoder MI, Kluz T, Chen LC, Costa M. In Vivo Exposures to Particulate Matter Collected from Saudi Arabia or Nickel Chloride Display Similar Dysregulation of Metabolic Syndrome Genes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:1421-36. [PMID: 26692068 PMCID: PMC4709028 DOI: 10.1080/15287394.2015.1095689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Particulate matter (PM) exposures have been linked to mortality, low birth weights, hospital admissions, and diseases associated with metabolic syndrome, including diabetes mellitus, cardiovascular disease, and obesity. In a previous in vitro and in vivo study, data demonstrated that PM(10μm) collected from Jeddah, Saudi Arabia (PMSA), altered expression of genes involved in lipid and cholesterol metabolism, as well as many other genes associated with metabolic disorders. PMSA contains a relatively high concentration of nickel (Ni), known to be linked to several metabolic disorders. In order to evaluate whether Ni and PM exposures induce similar gene expression profiles, mice were exposed to 100 μg/50 μl PM(SA) (PM-100), 50 μg/50 μl nickel chloride (Ni-50), or 100 μg/50 μl nickel chloride (Ni-100) twice per week for 4 wk and hepatic gene expression changes were determined. Ultimately, 55 of the same genes were altered in all 3 exposures. However, where the two Ni groups differed markedly was in the regulation (up or down) of these genes. Ni-100 and PM-100 groups displayed similar regulations, whereby 104 of the 107 genes were similarly modulated. Many of the 107 genes are involved in metabolic syndrome and include ALDH4A1, BCO2, CYP1A, CYP2U, TOP2A. In addition, the top affected pathways, such as fatty acid α-oxidation, and lipid and carbohydrate metabolism, are involved in metabolic diseases. Most notably, the top diseased outcome affected by these changes in gene expression was cardiovascular disease. Given these data, it appears that Ni and PM(SA) exposures display similar gene expression profiles, modulating the expression of genes involved in metabolic disorders.
Collapse
Affiliation(s)
- Jason Brocato
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Michelle Hernandez
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Freda Laulicht
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Hong Sun
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Magdy Shamy
- Department of Environmental Sciences, Faculty of Meteorology, Environmental and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mansour A. Alghamdi
- Department of Environmental Sciences, Faculty of Meteorology, Environmental and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdouh I. Khoder
- Department of Environmental Sciences, Faculty of Meteorology, Environmental and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thomas Kluz
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| |
Collapse
|
20
|
Abu Bakar MH, Sarmidi MR, Cheng KK, Ali Khan A, Suan CL, Zaman Huri H, Yaakob H. Metabolomics – the complementary field in systems biology: a review on obesity and type 2 diabetes. MOLECULAR BIOSYSTEMS 2015; 11:1742-74. [DOI: 10.1039/c5mb00158g] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper highlights the metabolomic roles in systems biology towards the elucidation of metabolic mechanisms in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Department of Bioprocess Engineering
- Faculty of Chemical Engineering
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
| | - Mohamad Roji Sarmidi
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA)
| | - Kian-Kai Cheng
- Department of Bioprocess Engineering
- Faculty of Chemical Engineering
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
| | - Abid Ali Khan
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
- Department of Biosciences
| | - Chua Lee Suan
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
| | - Hasniza Zaman Huri
- Department of Pharmacy
- Faculty of Medicine
- University of Malaya
- 50603 Kuala Lumpur
- Malaysia
| | - Harisun Yaakob
- Institute of Bioproduct Development
- Universiti Teknologi Malaysia
- 81310 Johor Bahru
- Malaysia
| |
Collapse
|
21
|
Evaluation of growth patterns and body composition in C57Bl/6J mice using dual energy X-ray absorptiometry. BIOMED RESEARCH INTERNATIONAL 2014; 2014:253067. [PMID: 25110666 PMCID: PMC4119710 DOI: 10.1155/2014/253067] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/29/2014] [Accepted: 06/16/2014] [Indexed: 11/17/2022]
Abstract
The normal growth pattern of female C57BL/6J mice, from 5 to 30 weeks of age, has been investigated in a longitudinal study. Weight, body surface area (BS), and body mass index (BMI) were evaluated in forty mice. Lean mass and fat mass, bone mineral content (BMC), and bone mineral density (BMD) were monitored by dual energy X-ray absorptiometry (DEXA). Weight and BS increased linearly (16.15 ± 0.64-27.64 ± 1.42 g; 51.13 ± 0.74-79.57 ± 2.15 cm(2), P < 0.01), more markedly from 5 to 9 weeks of age (P < 0.001). BMD showed a peak at 17 weeks (0.0548 ± 0.0011 g/cm(2) ∗ m, P < 0.01). Lean mass showed an evident gain at 9 (15.8 ± 0.8 g, P < 0.001) and 25 weeks (20.5 ± 0.3 g, P < 0.01), like fat mass from 13 to 17 weeks (2.0 ± 0.4-3.6 ± 0.7 g, P < 0.01). BMI and lean mass index (LMI) reached the highest value at 21 weeks (3.57 ± 0.02-0.284 ± 0.010 g/cm(2), resp.), like fat mass index (FMI) at 17 weeks (0.057 ± 0.009 g/cm(2)) (P < 0.01). BMI, weight, and BS showed a moderate positive correlation (0.45-0.85) with lean mass from 5 to 21 weeks. Mixed linear models provided a good prediction for lean mass, fat mass, and BMD. This study may represent a baseline reference for a future comparison of wild-type C57BL/6J mice with models of altered growth.
Collapse
|
22
|
Dudka I, Kossowska B, Senhadri H, Latajka R, Hajek J, Andrzejak R, Antonowicz-Juchniewicz J, Gancarz R. Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research: a preliminary study. ENVIRONMENT INTERNATIONAL 2014; 68:71-81. [PMID: 24713610 DOI: 10.1016/j.envint.2014.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 05/20/2023]
Abstract
Environmental metabonomics is the application of metabonomics to characterize the interactions of organisms with their environment. Metabolic profiling is an exciting addition to the armory of the epidemiologist for the discovery of new disease risk biomarkers and diagnostics. This work is a continuation of research searching for preclinical serum markers in a group of 389 healthy smelter workers exposed to lead, cadmium and arsenic. Changes in the metabolic profiles were studied using Proton Nuclear Magnetic Resonance Spectroscopy on pooled serum samples from both the metal exposed and control groups. These multivariate metabonomic datasets were analyzed with Principal Component Analysis and Partial Least Squares Discriminant Analysis. Analysis of metabolic profiles of people exposed to heavy metals suggests energy metabolism disturbance induced by heavy metals. Changes in lipid fraction (very-low-density lipoprotein - VLDL, low-density lipoprotein - LDL), unsaturated lipids and in the level of amino acids suggest perturbation of the metabolism of lipids and amino acids. This study illustrated the high reliability of NMR-based metabonomic profiling on the study of the biochemical effects induced by the mixture of heavy metals. This approach is capable of identifying intermediate biomarkers of response to toxicants at environmental/occupational concentrations, paving the way to its use in a monitoring of smelter workers exposed to low doses of lead, cadmium and arsenic.
Collapse
Affiliation(s)
- Ilona Dudka
- Organic and Pharmaceutical Technology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Barbara Kossowska
- Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland.
| | - Hanna Senhadri
- Institute of Biomedical Engineering and Instrumentation, Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Plac Grunwaldzki 13, 50-377 Wrocław, Poland.
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Julianna Hajek
- Organic and Pharmaceutical Technology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Ryszard Andrzejak
- Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 4, 50-367 Wrocław, Poland.
| | - Jolanta Antonowicz-Juchniewicz
- Department of Internal and Occupational Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 4, 50-367 Wrocław, Poland.
| | - Roman Gancarz
- Organic and Pharmaceutical Technology Group, Department of Chemistry, Wroclaw University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
23
|
Li J, Greenwood PL, Cockett NE, Hadfield TS, Vuocolo T, Byrne K, White JD, Tellam RL, Schirra HJ. Impacts of the Callipyge mutation on ovine plasma metabolites and muscle fibre type. PLoS One 2014; 9:e99726. [PMID: 24937646 PMCID: PMC4061035 DOI: 10.1371/journal.pone.0099726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/17/2014] [Indexed: 12/02/2022] Open
Abstract
The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness.
Collapse
Affiliation(s)
- Juan Li
- CSIRO Animal, Food and Health Sciences, St Lucia, Brisbane, Australia
| | - Paul L. Greenwood
- CSIRO Animal, Food and Health Sciences, FD McMaster Laboratory, Armidale, Australia
- New South Wales Department of Primary Industries, Beef Industry Centre of Excellence, University of New England, Armidale, Australia
| | - Noelle E. Cockett
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Tracy S. Hadfield
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Tony Vuocolo
- CSIRO Animal, Food and Health Sciences, St Lucia, Brisbane, Australia
| | - Keren Byrne
- CSIRO Animal, Food and Health Sciences, St Lucia, Brisbane, Australia
| | - Jason D. White
- The University of Melbourne, School of Veterinary Science, Parkville, Australia
| | - Ross L. Tellam
- CSIRO Animal, Food and Health Sciences, St Lucia, Brisbane, Australia
- * E-mail: (RLT); (HJS)
| | - Horst Joachim Schirra
- The University of Queensland, Centre for Advanced Imaging, Brisbane, Australia
- * E-mail: (RLT); (HJS)
| |
Collapse
|
24
|
Roman-Garcia P, Quiros-Gonzalez I, Mottram L, Lieben L, Sharan K, Wangwiwatsin A, Tubio J, Lewis K, Wilkinson D, Santhanam B, Sarper N, Clare S, Vassiliou GS, Velagapudi VR, Dougan G, Yadav VK. Vitamin B₁₂-dependent taurine synthesis regulates growth and bone mass. J Clin Invest 2014; 124:2988-3002. [PMID: 24911144 DOI: 10.1172/jci72606] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/24/2014] [Indexed: 02/04/2023] Open
Abstract
Both maternal and offspring-derived factors contribute to lifelong growth and bone mass accrual, although the specific role of maternal deficiencies in the growth and bone mass of offspring is poorly understood. In the present study, we have shown that vitamin B12 (B12) deficiency in a murine genetic model results in severe postweaning growth retardation and osteoporosis, and the severity and time of onset of this phenotype in the offspring depends on the maternal genotype. Using integrated physiological and metabolomic analysis, we determined that B12 deficiency in the offspring decreases liver taurine production and associates with abrogation of a growth hormone/insulin-like growth factor 1 (GH/IGF1) axis. Taurine increased GH-dependent IGF1 synthesis in the liver, which subsequently enhanced osteoblast function, and in B12-deficient offspring, oral administration of taurine rescued their growth retardation and osteoporosis phenotypes. These results identify B12 as an essential vitamin that positively regulates postweaning growth and bone formation through taurine synthesis and suggests potential therapies to increase bone mass.
Collapse
|
25
|
Chia DJ. Minireview: mechanisms of growth hormone-mediated gene regulation. Mol Endocrinol 2014; 28:1012-25. [PMID: 24825400 DOI: 10.1210/me.2014-1099] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GH exerts a diverse array of physiological actions that include prominent roles in growth and metabolism, with a major contribution via stimulating IGF-1 synthesis. GH achieves its effects by influencing gene expression profiles, and Igf1 is a key transcriptional target of GH signaling in liver and other tissues. This review examines the mechanisms of GH-mediated gene regulation that begin with signal transduction pathways activated downstream of the GH receptor and continue with chromatin events at target genes and additionally encompasses the topics of negative regulation and cross talk with other cellular inputs. The transcription factor, signal transducer and activator of transcription 5b, is regarded as the major signaling pathway by which GH achieves its physiological effects, including in stimulating Igf1 gene transcription in liver. Recent studies exploring the mechanisms of how activated signal transducer and activator of transcription 5b accomplishes this are highlighted, which begin to characterize epigenetic features at regulatory domains of the Igf1 locus. Further research in this field offers promise to better understand the GH-IGF-1 axis in normal physiology and disease and to identify strategies to manipulate the axis to improve human health.
Collapse
Affiliation(s)
- Dennis J Chia
- Department of Pediatrics, Icahn School of Medicine at Mt Sinai, New York, New York 10029
| |
Collapse
|
26
|
Gao X, Liu X, Xu J, Xue C, Xue Y, Wang Y. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng 2014; 118:476-81. [PMID: 24721123 DOI: 10.1016/j.jbiosc.2014.03.001] [Citation(s) in RCA: 263] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/19/2014] [Accepted: 03/02/2014] [Indexed: 12/13/2022]
Abstract
Trimethylamine N-oxide (TMAO) is an oxidation product of trimethylamine (TMA) and is present in many aquatic foods. Here, we investigated the effects of TMAO on glucose tolerance in high fat diet (HFD)-fed mice. Male C57BL/6 mice were randomly assigned to the control, high fat (HF), and TMAO groups. The HF group was fed a diet containing 25% fat, and the TMAO group was fed the HFD plus 0.2% TMAO for 4 weeks. After 3 weeks of feeding, oral glucose tolerance tests were performed. Dietary TMAO increased fasting insulin levels and homeostasis model assessment-estimated insulin resistance (HOMA-IR) and exacerbated the impaired glucose tolerance in HFD-fed mice. These effects were associated with the expression of genes related to the insulin signal pathway, glycogen synthesis, gluconeogenesis and glucose transport in liver. mRNA levels of the pro-inflammatory cytokine MCP-1 increased significantly and of the anti-inflammatory cytokine IL-10 greatly decreased in adipose tissue. Our results suggest that dietary TMAO exacerbates impaired glucose tolerance, obstructs the hepatic insulin signaling pathway, and causes adipose tissue inflammation in mice fed a high fat diet.
Collapse
Affiliation(s)
- Xiang Gao
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Xiaofang Liu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Yong Xue
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, No. 5, Yu Shan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
27
|
Othman DSMP, Schirra H, McEwan AG, Kappler U. Metabolic versatility in Haemophilus influenzae: a metabolomic and genomic analysis. Front Microbiol 2014; 5:69. [PMID: 24624122 PMCID: PMC3941224 DOI: 10.3389/fmicb.2014.00069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/09/2014] [Indexed: 12/11/2022] Open
Abstract
Haemophilus influenzae is a host adapted human pathogen known to contribute to a variety of acute and chronic diseases of the upper and lower respiratory tract as well as the middle ear. At the sites of infection as well as during growth as a commensal the environmental conditions encountered by H. influenzae will vary significantly, especially in terms of oxygen availability, however, the mechanisms by which the bacteria can adapt their metabolism to cope with such changes have not been studied in detail. Using targeted metabolomics the spectrum of metabolites produced during growth of H. influenzae on glucose in RPMI-based medium was found to change from acetate as the main product during aerobic growth to formate as the major product during anaerobic growth. This change in end-product is likely caused by a switch in the major route of pyruvate degradation. Neither lactate nor succinate or fumarate were major products of H. influenzae growth under any condition studied. Gene expression studies and enzyme activity data revealed that despite an identical genetic makeup and very similar metabolite production profiles, H. influenzae strain Rd appeared to favor glucose degradation via the pentose phosphate pathway, while strain 2019, a clinical isolate, showed higher expression of enzymes involved in glycolysis. Components of the respiratory chain were most highly expressed during microaerophilic and anaerobic growth in both strains, but again clear differences existed in the expression of genes associated e.g., with NADH oxidation, nitrate and nitrite reduction in the two strains studied. Together our results indicate that H. influenzae uses a specialized type of metabolism that could be termed “respiration assisted fermentation” where the respiratory chain likely serves to alleviate redox imbalances caused by incomplete glucose oxidation, and at the same time provides a means of converting a variety of compounds including nitrite and nitrate that arise as part of the host defence mechanisms.
Collapse
Affiliation(s)
| | - Horst Schirra
- Centre for Advanced Imaging, The University of Queensland St. Lucia, QLD, Australia
| | - Alastair G McEwan
- School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| |
Collapse
|
28
|
Won EY, Yoon MK, Kim SW, Jung Y, Bae HW, Lee D, Park SG, Lee CH, Hwang GS, Chi SW. Gender-specific metabolomic profiling of obesity in leptin-deficient ob/ob mice by 1H NMR spectroscopy. PLoS One 2013; 8:e75998. [PMID: 24098417 PMCID: PMC3789719 DOI: 10.1371/journal.pone.0075998] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/20/2013] [Indexed: 12/27/2022] Open
Abstract
Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from C57BL/6J lean mice, based on the (1)H NMR spectroscopy in combination with multivariate statistical analysis, revealed clear metabolic differences between obese and lean mice. We also identified 48 urine and 22 serum metabolites that were statistically significantly altered in obese mice compared to lean controls. These metabolites are involved in amino acid metabolism (leucine, alanine, ariginine, lysine, and methionine), tricarbocylic acid cycle and glucose metabolism (pyruvate, citrate, glycolate, acetoacetate, and acetone), lipid metabolism (cholesterol and carnitine), creatine metabolism (creatine and creatinine), and gut-microbiome-derived metabolism (choline, TMAO, hippurate, p-cresol, isobutyrate, 2-hydroxyisobutyrate, methylamine, and trigonelline). Notably, our metabolomic studies showed distinct gender variations. The obese male mice metabolism was specifically associated with insulin signaling, whereas the obese female mice metabolism was associated with lipid metabolism. Taken together, our study identifies the biomarker signature for obesity in ob/ob mice and provides biochemical insights into the metabolic alteration in obesity based on gender.
Collapse
Affiliation(s)
- Eun-Young Won
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Mi-Kyung Yoon
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Sang-Woo Kim
- Laboratory Animal Center, KRIBB, Daejeon, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Hyun-Whee Bae
- Integrated Metabolomics Research Group, Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Daeyoup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Chul-Ho Lee
- Laboratory Animal Center, KRIBB, Daejeon, Republic of Korea
- * E-mail: (CHL); (GSH); (SWC)
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- * E-mail: (CHL); (GSH); (SWC)
| | - Seung-Wook Chi
- Medical Proteomics Research Center, KRIBB, Daejeon, Republic of Korea
- * E-mail: (CHL); (GSH); (SWC)
| |
Collapse
|
29
|
Li JJ, Yang J, Cui WX, Chen XQ, Chen GL, Wen XD, Wang Q. Analysis of Therapeutic Effect of Ilex hainanensis Merr. Extract on Nonalcoholic Fatty Liver Disease through Urine Metabolite Profiling by Ultraperformance Liquid Chromatography/Quadrupole Time of Flight Mass Spectrometry. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:451975. [PMID: 24066013 PMCID: PMC3771456 DOI: 10.1155/2013/451975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, is increased worldwide in parallel with the obesity epidemic. Our previous studies have showed that the extract of I. hainanensis (EIH) can prevent NAFLD in rat fed with high-fat diet. In this work, we aimed to find biomarkers of NAFLD and investigate the therapeutic effects of EIH. NAFLD model was induced in male Sprague-Dawley rats by high-fat diet. The NAFLD rats were administered EIH orally (250 mg/kg) for two weeks. After the experimental period, samples of 24 h urine were collected and analyzed by ultraperformance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC-Q-TOF). Orthogonal partial least squares analysis (OPLSs) models were built to find biomarkers of NAFLD and investigate the therapeutic effects of EIH. 22 metabolites, which are distributed in several metabolic pathways, were identified as potential biomarkers of NAFLD. Taking these biomarkers as screening indexes, EIH could reverse the pathological process of NAFLD through regulating the disturbed pathway of metabolism. The metabolomic results not only supply a systematic view of the development and progression of NAFLD but also provide a theoretical basis for the prevention or treatment of NAFLD.
Collapse
Affiliation(s)
- Jing-jing Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wei-xi Cui
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-qing Chen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Gang-ling Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-dong Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qiang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
30
|
Abd Rahman S, Schirra HJ, Lichanska AM, Huynh T, Leong GM. Urine metabonomic profiling of a female adolescent with PIT-1 mutation before and during growth hormone therapy: insights into the metabolic effects of growth hormone. Growth Horm IGF Res 2013; 23:29-36. [PMID: 23380306 DOI: 10.1016/j.ghir.2012.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/02/2012] [Accepted: 12/08/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Growth hormone (GH) is a protein hormone with important roles in growth and metabolism. The objective of this study was to investigate the metabolism of a human subject with severe GH deficiency (GHD) due to a PIT-1 gene mutation and the metabolic effects of GH therapy using Nuclear Magnetic Resonance (NMR)-based metabonomics. NMR-based metabonomics is a platform that allows the metabolic profile of biological fluids such as urine to be recorded, and any alterations in the profile modulated by GH can potentially be detected. DESIGN Urine samples were collected from a female subject with severe GHD before, during and after GH therapy, and from healthy age- and sex-matched controls and analysed with NMR-based metabonomics. SETTING The samples were collected at a hospital and the study was performed at a research facility. PARTICIPANTS We studied a 17 year old female adolescent with severe GHD secondary to PIT-1 gene mutation who had reached final adult height and who had ceased GH therapy for over 3 years. The subject was subsequently followed for 5 years with and without GH therapy. Twelve healthy age-matched female subjects acted as control subjects. INTERVENTION The GH-deficient subject re-commenced GH therapy at a dose of 1 mg/day to normalise serum IGF-1 levels. MAIN OUTCOME MEASURES Urine metabolic profiles were recorded using NMR spectroscopy and analysed with multivariate statistics to distinguish the profiles at different time points and identify significant metabolites affected by GH therapy. RESULTS NMR-based metabonomics revealed that the metabolic profile of the GH-deficient subject altered with GH therapy and that her profile was different from healthy controls before, and during withdrawal of GH therapy. CONCLUSION This study illustrates the potential use of NMR-based metabonomics for monitoring the effects of GH therapy on metabolism by profiling the urine of GH-deficient subjects. Further controlled studies in larger numbers of GH-deficient subjects are required to determine the clinical benefits of NMR-based metabonomics in subjects receiving GH therapy.
Collapse
Affiliation(s)
- Shaffinaz Abd Rahman
- The University of Queensland, Obesity Research Centre, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
31
|
Specific metabolic fingerprint of a dietary exposure to a very low dose of endosulfan. J Toxicol 2013; 2013:545802. [PMID: 23431292 PMCID: PMC3569910 DOI: 10.1155/2013/545802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/20/2012] [Indexed: 02/04/2023] Open
Abstract
Like other persistent organochlorine pesticides, endosulfan residues have been detected in foods including fruit, vegetables, and fish. The aim of our study was to assess the impact of a dietary exposure to low doses of endosulfan from foetal development until adult age on metabolic homeostasis in mice and to identify biomarkers of exposure using an 1H-NMR-based metabonomic approach in various tissues and biofluids. We report in both genders an increase in plasma glucose as well as changes in levels of factors involved in the regulation of liver oxidative stress, confirming the prooxidant activities of this compound. Some metabolic changes were distinct in males and females. For example in plasma, a decrease in lipid LDL and choline content was only observed in female. Lactate levels in males were significantly increased. In conclusion, our results show that metabolic changes in liver could be linked to the onset of pathologies like diabetes and insulin resistance. Moreover from our results it appears that the NMR-based metabonomic approach could be useful for the characterization in plasma of a dietary exposure to low dose of pesticide in human.
Collapse
|
32
|
The impact of temperature on the metabolome and endocrine metabolic signals in Atlantic salmon (Salmo salar). Comp Biochem Physiol A Mol Integr Physiol 2013; 164:44-53. [DOI: 10.1016/j.cbpa.2012.10.005] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 11/24/2022]
|
33
|
Schlipalius DI, Valmas N, Tuck AG, Jagadeesan R, Ma L, Kaur R, Goldinger A, Anderson C, Kuang J, Zuryn S, Mau YS, Cheng Q, Collins PJ, Nayak MK, Schirra HJ, Hilliard MA, Ebert PR. A Core Metabolic Enzyme Mediates Resistance to Phosphine Gas. Science 2012; 338:807-10. [DOI: 10.1126/science.1224951] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
34
|
Mueller KM, Themanns M, Friedbichler K, Kornfeld JW, Esterbauer H, Tuckermann JP, Moriggl R. Hepatic growth hormone and glucocorticoid receptor signaling in body growth, steatosis and metabolic liver cancer development. Mol Cell Endocrinol 2012; 361:1-11. [PMID: 22564914 PMCID: PMC3419266 DOI: 10.1016/j.mce.2012.03.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/30/2012] [Indexed: 01/07/2023]
Abstract
Growth hormone (GH) and glucocorticoids (GCs) are involved in the control of processes that are essential for the maintenance of vital body functions including energy supply and growth control. GH and GCs have been well characterized to regulate systemic energy homeostasis, particular during certain conditions of physical stress. However, dysfunctional signaling in both pathways is linked to various metabolic disorders associated with aberrant carbohydrate and lipid metabolism. In liver, GH-dependent activation of the transcription factor signal transducer and activator of transcription (STAT) 5 controls a variety of physiologic functions within hepatocytes. Similarly, GCs, through activation of the glucocorticoid receptor (GR), influence many important liver functions such as gluconeogenesis. Studies in hepatic Stat5 or GR knockout mice have revealed that they similarly control liver function on their target gene level and indeed, the GR functions often as a cofactor of STAT5 for GH-induced genes. Gene sets, which require physical STAT5-GR interaction, include those controlling body growth and maturation. More recently, it has become evident that impairment of GH-STAT5 signaling in different experimental models correlates with metabolic liver disease, ranging from hepatic steatosis to hepatocellular carcinoma (HCC). While GH-activated STAT5 has a protective role in chronic liver disease, experimental disruption of GC-GR signaling rather seems to ameliorate metabolic disorders under metabolic challenge. In this review, we focus on the current knowledge about hepatic GH-STAT5 and GC-GR signaling in body growth, metabolism, and protection from fatty liver disease and HCC development.
Collapse
Affiliation(s)
| | | | | | - Jan-Wilhelm Kornfeld
- Institute for Genetics, Department of Mouse Genetics and Metabolism, University of Cologne, Cologne, Germany
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University Vienna, Vienna, Austria
| | - Jan P. Tuckermann
- Tissue-Specific Hormone Action, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany
- Institute for General Zoology and Endocrinology, University of Ulm, Ulm, Germany
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Corresponding author. Address: Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13a, 1090 Vienna, Austria. Tel.: +43 14277 64111; fax: +43 14277 9641.
| |
Collapse
|
35
|
Investigating potential mechanisms of obesity by metabolomics. J Biomed Biotechnol 2012; 2012:805683. [PMID: 22665992 PMCID: PMC3362137 DOI: 10.1155/2012/805683] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/21/2012] [Indexed: 01/01/2023] Open
Abstract
Obesity is a serious health problem with an increased risk of several common diseases including diabetes, cardiovascular disease, and cancer. Metabolomics is an emerging analytical technique for systemic determination of metabolite profiles, which is useful for understanding the biochemical changes in obesity or related diseases both in individual organs and at the organism level. Increasingly, this technology has been applied to the study of obesity, complementing transcriptomics and/or proteomics analyses. Indeed, the alterations of metabolites in biofluids/tissues are direct indicators of variations in physiology or pathology. In this paper, we will examine the obesity-related alterations in significant metabolites that have been identified by metabolomics as well as their metabolic pathway associations. Issues concerning the screening of biologically significant metabolites related to obesity will also be discussed.
Collapse
|
36
|
Wang Z, Chen Z, Yang S, Wang Y, Yu L, Zhang B, Rao Z, Gao J, Tu S. (1)H NMR-based metabolomic analysis for identifying serum biomarkers to evaluate methotrexate treatment in patients with early rheumatoid arthritis. Exp Ther Med 2012; 4:165-171. [PMID: 23060942 DOI: 10.3892/etm.2012.567] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/20/2012] [Indexed: 01/16/2023] Open
Abstract
To identify the major serum biomarkers predicting the response to methotrexate (MTX) treatment in patients with early rheumatoid arthritis (RA), we evaluated the relationships between the individual response to MTX and various associated factors utilizing the (1)H nuclear magnetic resonance ((1)H NMR)-based metabolomic method. Thirty-eight early RA patients were enrolled in this cohort study, and they received MTX (10 mg/week) orally as monotherapy for 24 weeks. According to the American College of Rheumatology criteria for improvement, clinical evaluation following MTX treatment was carried out at baseline and at the end of 24 weeks. Furthermore, collected serum samples were analyzed using 600 M (1)H NMR for spectral binning. The obtained data were processed by both the unsupervised principal component analysis (PCA) and the supervised partial least squares discriminant analysis (PLS-DA). Lastly, multivariate analyses were performed to recognize the spectral pattern of endogenous metabolites related to MTX treatment. Differential clustering of (1)H NMR spectra identified by PCA was found between the effective (n=25) and non-effective (n=13) group of RA patients receiving MTX treatment. Multivariate statistical analysis showed a difference in metabolic profiles between the two groups using PLS-DA (R(2)=0.802, Q(2)=0.643). In targeted profiling, 11 endogenous metabolites of the effective group showed a significant difference when compared with those of the non-effective group (p<0.05). Serum metabolites correlated with MTX treatment in patients with early RA were identified, which may be the major predictive factors for evaluating the response to MTX treatment in patients with early RA. Furthermore, our results highlight the usefulness of (1)H NMR-based metabolomics as a feasible and efficient prognostic tool for predicting therapeutic efficacy to MTX treatment.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Oncology, Wuhan General Hospital of Guangzhou Command, People's Liberation Army, Wuhan 430070
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wijeyesekera A, Selman C, Barton RH, Holmes E, Nicholson JK, Withers DJ. Metabotyping of long-lived mice using 1H NMR spectroscopy. J Proteome Res 2012; 11:2224-35. [PMID: 22225495 PMCID: PMC4467904 DOI: 10.1021/pr2010154] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significant advances in understanding aging have been achieved through studying model organisms with extended healthy lifespans. Employing 1H NMR spectroscopy, we characterized the plasma metabolic phenotype (metabotype) of three long-lived murine models: 30% dietary restricted (DR), insulin receptor substrate 1 null (Irs1-/-), and Ames dwarf (Prop1df/df). A panel of metabolic differences were generated for each model relative to their controls, and subsequently, the three long-lived models were compared to one another. Concentrations of mobile very low density lipoproteins, trimethylamine, and choline were significantly decreased in the plasma of all three models. Metabolites including glucose, choline, glycerophosphocholine, and various lipids were significantly reduced, while acetoacetate, d-3-hydroxybutyrate and trimethylamine-N-oxide levels were increased in DR compared to ad libitum fed controls. Plasma lipids and glycerophosphocholine were also decreased in Irs1-/- mice compared to controls, as were methionine and citrate. In contrast, high density lipoproteins and glycerophosphocholine were increased in Ames dwarf mice, as were methionine and citrate. Pairwise comparisons indicated that differences existed between the metabotypes of the different long-lived mice models. Irs1-/- mice, for example, had elevated glucose, acetate, acetone, and creatine but lower methionine relative to DR mice and Ames dwarfs. Our study identified several potential candidate biomarkers directionally altered across all three models that may be predictive of longevity but also identified differences in the metabolic signatures. This comparative approach suggests that the metabolic networks underlying lifespan extension may not be exactly the same for each model of longevity and is consistent with multifactorial control of the aging process.
Collapse
Affiliation(s)
- Anisha Wijeyesekera
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
38
|
Akula N, Baranova A, Seto D, Solka J, Nalls MA, Singleton A, Ferrucci L, Tanaka T, Bandinelli S, Cho YS, Kim YJ, Lee JY, Han BG, McMahon FJ. A network-based approach to prioritize results from genome-wide association studies. PLoS One 2011; 6:e24220. [PMID: 21915301 PMCID: PMC3168369 DOI: 10.1371/journal.pone.0024220] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 08/08/2011] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies (GWAS) are a valuable approach to understanding the genetic basis of complex traits. One of the challenges of GWAS is the translation of genetic association results into biological hypotheses suitable for further investigation in the laboratory. To address this challenge, we introduce Network Interface Miner for Multigenic Interactions (NIMMI), a network-based method that combines GWAS data with human protein-protein interaction data (PPI). NIMMI builds biological networks weighted by connectivity, which is estimated by use of a modification of the Google PageRank algorithm. These weights are then combined with genetic association p-values derived from GWAS, producing what we call ‘trait prioritized sub-networks.’ As a proof of principle, NIMMI was tested on three GWAS datasets previously analyzed for height, a classical polygenic trait. Despite differences in sample size and ancestry, NIMMI captured 95% of the known height associated genes within the top 20% of ranked sub-networks, far better than what could be achieved by a single-locus approach. The top 2% of NIMMI height-prioritized sub-networks were significantly enriched for genes involved in transcription, signal transduction, transport, and gene expression, as well as nucleic acid, phosphate, protein, and zinc metabolism. All of these sub-networks were ranked near the top across all three height GWAS datasets we tested. We also tested NIMMI on a categorical phenotype, Crohn’s disease. NIMMI prioritized sub-networks involved in B- and T-cell receptor, chemokine, interleukin, and other pathways consistent with the known autoimmune nature of Crohn’s disease. NIMMI is a simple, user-friendly, open-source software tool that efficiently combines genetic association data with biological networks, translating GWAS findings into biological hypotheses.
Collapse
Affiliation(s)
- Nirmala Akula
- Mood and Anxiety Section, Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chikayama E, Suto M, Nishihara T, Shinozaki K, Hirayama T, Kikuchi J. Systematic NMR analysis of stable isotope labeled metabolite mixtures in plant and animal systems: coarse grained views of metabolic pathways. PLoS One 2008; 3:e3805. [PMID: 19030231 PMCID: PMC2583929 DOI: 10.1371/journal.pone.0003805] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 10/21/2008] [Indexed: 11/23/2022] Open
Abstract
Background Metabolic phenotyping has become an important ‘bird's-eye-view’ technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of ‘top-down’ chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. Methodology/Principal Findings The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 1H and 13C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each 13C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient 13C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. Conclusions/Significance Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of 13C atoms of given metabolites on development-dependent changes in the 56 identified 13C-HSQC signals, we have determined the changes in metabolic networks that are associated with energy and nitrogen metabolism.
Collapse
|