1
|
Vats A, Xi Y, Wolf-Johnston AS, Clinger OD, Arbuckle RK, Sheng L, Jiang X, Dermond CD, Li J, Stolz DB, St Leger AJ, Sahel JA, Jackson EK, Birder LA, Chen Y. Oral 8-aminoguanine against age-related retinal degeneration. Commun Biol 2025; 8:812. [PMID: 40419664 DOI: 10.1038/s42003-025-08242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
Vision decline in the elderly, often due to retinal aging, predisposes individuals to pathologies like age-related macular degeneration. Currently, there are few effective oral treatments for this condition. Our study introduces an oral agent, 8-aminoguanine (8-AG), which targets age-related retinal degeneration using an aged Fischer 344 rat model. When administered in drinking water at a low dose for 8 weeks starting at 22 months of age, 8-AG significantly preserves retinal structure and function, as evidenced by increased retinal thickness, enhanced photoreceptor integrity, and improved electroretinogram responses. 8-AG reduces apoptosis, oxidative damage, and microglial/macrophage activation in aging retinae. 8-AG also mitigates retinal inflammation at transcriptional and cytokine levels. Extending treatment to 17 weeks further amplifies these protective effects. Given its efficacy in various disease models, 8-AG shows great promise as an anti-aging compound with the potential to mitigate common hallmarks of aging.
Collapse
Affiliation(s)
- Abhishek Vats
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yibo Xi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda S Wolf-Johnston
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Owen D Clinger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Riley K Arbuckle
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Li Sheng
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xingcan Jiang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Chase D Dermond
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Li
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lori A Birder
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Cheng SY, Giguere D, Silverstein I, Conza A, Seddon JM, Kim S, Iwata T, Mueller C, Punzo C. Role of alpha-1 antitrypsin in Bruch's membrane integrity. Sci Rep 2025; 15:12223. [PMID: 40210893 PMCID: PMC11985914 DOI: 10.1038/s41598-025-96570-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/31/2025] [Indexed: 04/12/2025] Open
Abstract
Alpha-1 antitrypsin (AAT) is a serine protease inhibitor that plays a crucial role in maintaining extracellular matrix integrity. Studies suggest that AAT augmentation therapy may benefit multiple eye diseases, including age-related macular degeneration (AMD). However, the function of endogenous AAT in the eye remains unclear. Here we used genetic knockout mice to study the role of AAT in eye health. We show that loss of AAT results in Bruch's membrane (BrM) thickening driven in part by increased laminin deposition with a concomitant decrease in collagen and elastin, which are two other critical BrM components. Interestingly, BrM remodeling due to excess extracellular protease activity reduced the age-related deposition at the BrM of apolipoprotein E, while increasing complement factor H and lowering secretion of the proangiogenic vascular endothelial growth factor. Despite these changes, the phagocytic function of the retinal pigment epithelium was not affected nor was the expression of genes that partake in photoreceptor cell metabolism. Consistent with loss of AAT resulting in changes that should alleviate AMD pathologies, human AMD donor eyes exhibited lower AAT expression levels in the BrM/choroid layer when compared to healthy donor eyes. Together, the study provides insight into AAT's function and its potential involvement in AMD.
Collapse
Affiliation(s)
- Shun-Yun Cheng
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Delaney Giguere
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ilana Silverstein
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Adrienne Conza
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Johanna M Seddon
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - San Kim
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Takeshi Iwata
- Divivion of Molecular and Cellular Biology, National Institute of Sensory Organ, NHO Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | | | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Department of Genetics and Cellular Medicine and Horae Gene Therapy Center, Worcester, MA, 01605, USA.
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
3
|
Edwards G, Riordan SM, Buchholz C, Mardelli M, Euritt CP, Perez-Magnelli R, Rafiq A, Engelmeyer A, Koulen P. Stratification of the Extent of Visual Impairment Identifies Sex-Specific Degenerative Changes in Retinal Structure and Function during Aging. J Integr Neurosci 2025; 24:25805. [PMID: 40152567 PMCID: PMC12091267 DOI: 10.31083/jin25805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Initial manifestations of neurodegenerative ocular conditions, including age-related macular degeneration (AMD) and glaucoma, often remain undetected in the early stages and can begin after the age of 50 years with the likelihood gradually increasing each year thereafter. This study aimed to explore variances in visual and retinal function and anatomy among C57BL/6J mice, aiming to pinpoint differences between biological age and sex factors that potentially lead to the onset of vision impairment. METHODS A longitudinal study evaluated visual acuity (VA) and contrast sensitivity (CS) using optomotor reflex (OMR), and retinal function, encompassing scotopic and photopic measurements, was recorded by electroretinogram (ERG) at 12 months of age. Tissue was subsequently harvested for histological analysis, complementing the in vivo findings. Disparities in visual function were observed between individual male and female mice, necessitating categorization of visual impairment levels to investigate further sex-specific differences in the study's aging population. Comparisons between sex and the degree of visual impairment were conducted using ANOVA followed by Tukey's or Bonferroni's post-hoc corrections and unpaired t-tests. Pearson correlation analysis determined the association between biological factors. RESULTS Sex-related disparities were found in the visual function of male (n = 13) and female (n = 18) mice aged 5-12 months. Eyes were categorized by vision impairment: normal vision, or low, moderate, or severe vision loss at the end of the study. Male and female mice differed in mean contrast sensitivity, indicating less sensitivity to fine detail and moving stimuli in female mice (11-12 months old, p < 0.001). Spectral-domain optical coherence tomography (SD-OCT) revealed a thinner retinal outer nuclear layer in male mice (p < 0.0001), although this did not vary across different levels of vision impairment. ERG indicated slower retinal responses in male mice (p < 0.05), while histology showed a significant reduction in the inner plexiform layer thickness in male mice with severe vision loss (p < 0.0001). Conversely, female mice exhibited greater thinning in the photoreceptor layer when vision was unimpaired (p < 0.01). CONCLUSIONS The study shows that sex and extent of vision impairment influence visual and retinal health, with individual retinal layers differentially changing in thickness over time.
Collapse
Affiliation(s)
- Genea Edwards
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Sean M. Riordan
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Caitlin Buchholz
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Marc Mardelli
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Carlyn P. Euritt
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Rodrigo Perez-Magnelli
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ariej Rafiq
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Avery Engelmeyer
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Peter Koulen
- Department of Ophthalmology, Vision Research Center, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
4
|
Tanaka M, Yasuda H, Nakamura S, Shimazawa M. H-151, a Selective STING Inhibitor, Has Potential as a Treatment for Neovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38980271 PMCID: PMC11235146 DOI: 10.1167/iovs.65.8.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Purpose The cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) stimulator of interferon gene (STING) pathway is a crucial cascade in the inflammatory response initiated by the recognition of cytosolic double-stranded DNA (dsDNA). The aim of this study was to evaluate the effect of STING inhibitor in murine choroidal neovascularization (CNV). Methods To investigate whether the cGAS-STING pathway is activated during CNV, CNV was induced using laser photocoagulation in male C57BL/6J mice. The expression of change of cGAS and STING during CNV development was confirmed by Western-blotting. H-151, a potent STING palmitoylation antagonist, was used as a STING inhibitor. H-151 was administered intravitreally immediately after laser induction. To confirm the role of the cGAS-STING pathway in CNV formation, we evaluated CNV size and performed fundus fluorescein angiography. Results The expression levels of cGAS and STING were significantly upregulated in the RPE-choroid complex after CNV induction, and dsDNA merged with cGAS was observed in CNV lesions. Intravitreal administration of H-151 suppressed CNV development and fluorescent leakage from neovessels. In CNV lesions, the high expression of STING and cGAS was observed in infiltrating F4/80+ macrophages. H-151 administration attenuated downstream signals of the cGAS-STING pathway, including the phosphorylation of nuclear factor-κB, and downregulated the expression of interleukin 1β. Conclusions These findings support that the inhibition of cGAS-STING pathway treats abnormal ocular angiogenesis.
Collapse
Affiliation(s)
- Miruto Tanaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroto Yasuda
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
5
|
Wang Y, Zhang W, Yang J, Zhao X, Meng L, Chen Y, Zhang X. Differences between young and elderly polypoidal choroidal vasculopathy patients with and without pachychoroid phenotypes. Graefes Arch Clin Exp Ophthalmol 2024; 262:1765-1776. [PMID: 38231247 DOI: 10.1007/s00417-023-06361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
PURPOSE To investigate the distinct characteristics between young and elderly polypoidal choroidal vasculopathy (PCV) patients based on the pachy- or non-pachychoroid phenotypes. METHODS PCV patients treated with intravitreal injections of Conbercept based on the 3 + PRN regimen from 27 centers of China PCV Research Alliance were included. Patients were categorized into the young and the elderly aged group based on the cut-off point determined using the Youden method according to the pachychoroid phenotypes. The characteristics of past medical history, lifestyle factors, fundus manifestations, and treatment response between the subgroups were analyzed. RESULTS Three hundred eight eligible patients were included. Multivariate logistic regression showed a significant association between age and PCV subtype classification (OR = 0.921, P = 0.002). A cutoff age of 64.5 effectively distinguished between pachychoroid PCV and non-pachychoroid PCV (P < 0.001). Elderly PCV patients had a higher incidence of hypertension history (P = 0.044) but a lower incidence of diabetes history (P = 0.027). In terms of lifestyle, smoking history (P = 0.015) and staying up late (P = 0.004) were more significant in the young group of PCV patients. For clinical characteristics, the proportion of hemorrhagic PCV in the young group was significantly higher (P = 0.038), with a higher proportion of sharp-peaked PED (P = 0.049), thicker choroid (P < 0.001) but a lower portion of double-layer sign (P = 0.023) in OCT. Both groups showed significant anatomical changes compared to baseline in each follow-up period (P < 0.05), with the young group having a higher proportion of good anatomical response after the first injection (P = 0.009). CONCLUSION PCV patients stratified by subtype exhibit distinct characteristics between the young and elderly groups.
Collapse
Affiliation(s)
- Yuelin Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenfei Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyuan Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinyu Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Lihui Meng
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xiao Zhang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
- Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Brito M, Sorbier C, Mignet N, Boudy V, Borchard G, Vacher G. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int J Mol Sci 2024; 25:4099. [PMID: 38612907 PMCID: PMC11012607 DOI: 10.3390/ijms25074099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.
Collapse
Affiliation(s)
- Maëlis Brito
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Capucine Sorbier
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
| | - Vincent Boudy
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Gaëlle Vacher
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
7
|
Davidescu M, Mezzasoma L, Fettucciari K, Pascucci L, Pariano M, Di Michele A, Bereshchenko O, Cagini C, Cellini B, Corazzi L, Bellezza I, Macchioni L. Cardiolipin-mediated temporal response to hydroquinone toxicity in human retinal pigmented epithelial cell line. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119554. [PMID: 37524263 DOI: 10.1016/j.bbamcr.2023.119554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
Hydroquinone, a potent toxic agent of cigarette smoke, damages retinal pigmented epithelial cells by triggering oxidative stress and mitochondrial dysfunction, two events causally related to the development and progression of retinal diseases. The inner mitochondrial membrane is enriched in cardiolipin, a phospholipid susceptible of oxidative modifications which determine cell-fate decision. Using ARPE-19 cell line as a model of retinal pigmented epithelium, we analyzed the potential involvement of cardiolipin in hydroquinone toxicity. Hydroquinone exposure caused an early concentration-dependent increase in mitochondrial reactive oxygen species, decrease in mitochondrial membrane potential, and rise in the rate of oxygen consumption not accompanied by changes in ATP levels. Despite mitochondrial impairment, cell viability was preserved. Hydroquinone induced cardiolipin translocation to the outer mitochondrial membrane, and an increase in the colocalization of the autophagosome adapter protein LC3 with mitochondria, indicating the induction of protective mitophagy. A prolonged hydroquinone treatment induced pyroptotic cell death by cardiolipin-mediated caspase-1 and gasdermin-D activation. Cardiolipin-specific antioxidants counteracted hydroquinone effects pointing out that cardiolipin can act as a mitochondrial "eat-me signal" or as a pyroptotic cell death trigger. Our results indicate that cardiolipin may act as a timer for the mitophagy to pyroptosis switch and propose cardiolipin-targeting compounds as promising approaches for the treatment of oxidative stress-related retinal diseases.
Collapse
Affiliation(s)
- Magdalena Davidescu
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia 06132, Italy
| | - Letizia Mezzasoma
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia 06132, Italy
| | - Katia Fettucciari
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia 06132, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia 06132, Italy
| | - Alessandro Di Michele
- Department of Physic and Geology, University of Perugia, Via Pascoli, Perugia 06123, Italy
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences, Humanities and Education, University of Perugia, Piazza Ermini 1, Perugia 06123, Italy
| | - Carlo Cagini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia 06132, Italy
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia 06132, Italy
| | - Lanfranco Corazzi
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia 06132, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia 06132, Italy
| | - Lara Macchioni
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia 06132, Italy.
| |
Collapse
|
8
|
Gómez Sánchez A, Colucci P, Moran A, Moya López A, Colligris B, Álvarez Y, Kennedy BN. Systemic treatment with cigarette smoke extract affects zebrafish visual behaviour, intraocular vasculature morphology and outer segment phagocytosis. OPEN RESEARCH EUROPE 2023; 3:48. [PMID: 38283058 PMCID: PMC10822043 DOI: 10.12688/openreseurope.15491.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/30/2024]
Abstract
Introduction Cigarette smoking adversely affects multiple aspects of human health including eye disorders such as age-related macular degeneration, cataracts and dry eye disease. However, there remains a knowledge gap in how constituents of cigarette smoke affect vision and retinal biology. We used zebrafish to assess effects of short-term acute exposure to cigarette smoke extract (CSE) on visual behaviour and retinal biology. Methods Zebrafish larvae with a developed visual system at three days post-fertilization (dpf) were exposed to CSE for 4, 24 or 48 hours. Visual behaviour, hyaloid vasculature morphology, retinal histology, oxidative stress gene expression and outer segment phagocytosis were investigated using visual behavioural optokinetic and visual motor response assays (OKR and VMR), microscopy (light, fluorescence and transmission electron microscopy), and real-time PCR. Results In zebrafish larvae, 48 hours of CSE treatment resulted in significantly reduced visual behaviour. Larvae treated with 10, 15 or 20 μg/mL CSE showed an average of 13.7, 10.7 or 9.4 saccades per minute, respectively, significantly lower compared with 0.05% DMSO controls (p=0.0093, p=0.0004 and p<0.0001, respectively) that exhibited 19.7 saccades per minute. The diameter of intraocular vessels increased from 4.833 μm in 0.05% DMSO controls to 5.885 μm in the 20 μg/mL CSE-treated larvae (p=0.0333). Biometry analysis highlighted a significant axial length elongation in 20 μg/mL CSE-treated larvae (216.9 μm, p<0.0001) compared to 0.05% dimethyl sulfoxide (DMSO) controls (205.1 μm). Larvae exposed to 20 μg/mL CSE had significantly (p=0.0002) higher numbers of RPE phagosomes compared to vehicle controls (0.1425 and 0.093 phagosomes/μm RPE, respectively). Conclusions Zebrafish larvae with a developed visual system display apparent defects in visual behaviour and retinal biology after acute exposure to CSE, establishing a valuable in vivo model to investigate ocular disorders related to cigarette smoke.
Collapse
Affiliation(s)
- Alicia Gómez Sánchez
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- Ocupharm Diagnostic Group Research, Faculty of Optic and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Patrizia Colucci
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Ailis Moran
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Alexandro Moya López
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- Ocupharm Diagnostic Group Research, Faculty of Optic and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Basilio Colligris
- Ocupharm Diagnostic Group Research, Faculty of Optic and Optometry, Complutense University of Madrid, Madrid, Spain
| | - Yolanda Álvarez
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, D04 V1W8, Ireland
| |
Collapse
|
9
|
Pan Y, Fu Y, Baird PN, Guymer RH, Das T, Iwata T. Exploring the contribution of ARMS2 and HTRA1 genetic risk factors in age-related macular degeneration. Prog Retin Eye Res 2023; 97:101159. [PMID: 36581531 DOI: 10.1016/j.preteyeres.2022.101159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of severe irreversible central vision loss in individuals over 65 years old. Genome-wide association studies (GWASs) have shown that the region at chromosome 10q26, where the age-related maculopathy susceptibility (ARMS2/LOC387715) and HtrA serine peptidase 1 (HTRA1) genes are located, represents one of the strongest associated loci for AMD. However, the underlying biological mechanism of this genetic association has remained elusive. In this article, we extensively review the literature by us and others regarding the ARMS2/HTRA1 risk alleles and their functional significance. We also review the literature regarding the presumed function of the ARMS2 protein and the molecular processes of the HTRA1 protein in AMD pathogenesis in vitro and in vivo, including those of transgenic mice overexpressing HtrA1/HTRA1 which developed Bruch's membrane (BM) damage, choroidal neovascularization (CNV), and polypoidal choroidal vasculopathy (PCV), similar to human AMD patients. The elucidation of the molecular mechanisms of the ARMS2 and HTRA1 susceptibility loci has begun to untangle the complex biological pathways underlying AMD pathophysiology, pointing to new testable paradigms for treatment.
Collapse
Affiliation(s)
- Yang Pan
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Yingbin Fu
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, NC506, Houston, TX, 77030, USA
| | - Paul N Baird
- Department of Surgery, (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia
| | - Robyn H Guymer
- Department of Surgery, (Ophthalmology), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Australia; Centre for Eye Research Australia, Royal Victorian Eye & Ear Hospital, East Melbourne, Victoria, 3002, Australia
| | - Taraprasad Das
- Anant Bajaj Retina Institute-Srimati Kanuri Santhamma Centre for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L. V. Prasad Eye Institute, Hyderabad, 500034, India
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.
| |
Collapse
|
10
|
Brooks CD, Kodati B, Stankowska DL, Krishnamoorthy RR. Role of mitophagy in ocular neurodegeneration. Front Neurosci 2023; 17:1299552. [PMID: 37965225 PMCID: PMC10641468 DOI: 10.3389/fnins.2023.1299552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Neurons in the central nervous system are among the most metabolically active cells in the body, characterized by high oxygen consumption utilizing glucose both aerobically and anaerobically. Neurons have an abundance of mitochondria which generate adequate ATP to keep up with the high metabolic demand. One consequence of the oxidative phosphorylation mechanism of ATP synthesis, is the generation of reactive oxygen species which produces cellular injury as well as damage to mitochondria. Mitochondria respond to injury by fusion which serves to ameliorate the damage through genetic complementation. Mitochondria also undergo fission to meet an increased energy demand. Loss of mitochondria is also compensated by increased biogenesis to generate new mitochondria. Damaged mitochondria are removed by mitophagy, an autophagic process, in which damaged mitochondria are surrounded by a membrane to form an autophagosome which ultimately fuses with the lysosome resulting in degradation of faulty mitochondria. Dysregulation of mitophagy has been reported in several central nervous system disorders, including, Alzheimer's disease and Parkinson's disease. Recent studies point to aberrant mitophagy in ocular neurodegenerative disorders which could be an important contributor to the disease etiology/pathology. This review article highlights some of the recent findings that point to dysregulation of mitophagy and it's underlying mechanisms in ocular neurodegenerative diseases, including, glaucoma, age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Calvin D. Brooks
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Bindu Kodati
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Dorota L. Stankowska
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Raghu R. Krishnamoorthy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
11
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
12
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
13
|
Harju N. Regulation of oxidative stress and inflammatory responses in human retinal pigment epithelial cells. Acta Ophthalmol 2022; 100 Suppl 273:3-59. [DOI: 10.1111/aos.15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Niina Harju
- School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
14
|
Liu L, Li C, Yu H, Yang X. A critical review on air pollutant exposure and age-related macular degeneration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156717. [PMID: 35709989 DOI: 10.1016/j.scitotenv.2022.156717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of visual impairments and blindness worldwide in the elderly and its incidence strongly increases with ages. The etiology of AMD is complex and attributed to the genetic modifiers, environmental factors and gene-environment interactions. Recently, the impacts of air pollution on the development of eye diseases have become the new area of focus, and disordered air exposure combined with inadequate health management has caused problems for the eye health, such as dry eye, glaucoma, and retinopathy, while its specific role in the occurrence of AMD is still not well understood. In order to summarize the progress of this research field, we performed a critical review to summarize the epidemiological and mechanism evidence on the association between air pollutants exposure and AMD. This review documented that exposure to air pollutants will accelerate or worsen the morbidity and prevalence of AMD. Air pollutants exposure may change the homeostasis, interfere with the inflammatory response, and take direct action on the lipid metabolism and oxidative stress in the macula. More attention should be given to understanding the impact of ambient air pollution on AMD worldwide.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Cong Li
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaohong Yang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
15
|
Napoli D, Strettoi E. Structural abnormalities of retinal pigment epithelial cells in a light‐inducible, rhodopsin mutant mouse. J Anat 2022. [DOI: 10.1111/joa.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Debora Napoli
- Neuroscience Institute, Italian National Research Council, CNR Pisa Italy
- Regional Doctorate School of Neuroscience University of Florence Florence Italy
| | - Enrica Strettoi
- Neuroscience Institute, Italian National Research Council, CNR Pisa Italy
| |
Collapse
|
16
|
McLaughlin T, Medina A, Perkins J, Yera M, Wang JJ, Zhang SX. Cellular stress signaling and the unfolded protein response in retinal degeneration: mechanisms and therapeutic implications. Mol Neurodegener 2022; 17:25. [PMID: 35346303 PMCID: PMC8962104 DOI: 10.1186/s13024-022-00528-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background The retina, as part of the central nervous system (CNS) with limited capacity for self-reparation and regeneration in mammals, is under cumulative environmental stress due to high-energy demands and rapid protein turnover. These stressors disrupt the cellular protein and metabolic homeostasis, which, if not alleviated, can lead to dysfunction and cell death of retinal neurons. One primary cellular stress response is the highly conserved unfolded protein response (UPR). The UPR acts through three main signaling pathways in an attempt to restore the protein homeostasis in the endoplasmic reticulum (ER) by various means, including but not limited to, reducing protein translation, increasing protein-folding capacity, and promoting misfolded protein degradation. Moreover, recent work has identified a novel function of the UPR in regulation of cellular metabolism and mitochondrial function, disturbance of which contributes to neuronal degeneration and dysfunction. The role of the UPR in retinal neurons during aging and under disease conditions in age-related macular degeneration (AMD), retinitis pigmentosa (RP), glaucoma, and diabetic retinopathy (DR) has been explored over the past two decades. Each of the disease conditions and their corresponding animal models provide distinct challenges and unique opportunities to gain a better understanding of the role of the UPR in the maintenance of retinal health and function. Method We performed an extensive literature search on PubMed and Google Scholar using the following keywords: unfolded protein response, metabolism, ER stress, retinal degeneration, aging, age-related macular degeneration, retinitis pigmentosa, glaucoma, diabetic retinopathy. Results and conclusion We summarize recent advances in understanding cellular stress response, in particular the UPR, in retinal diseases, highlighting the potential roles of UPR pathways in regulation of cellular metabolism and mitochondrial function in retinal neurons. Further, we provide perspective on the promise and challenges for targeting the UPR pathways as a new therapeutic approach in age- and disease-related retinal degeneration.
Collapse
Affiliation(s)
- Todd McLaughlin
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Andy Medina
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Jacob Perkins
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA
| | - Maria Yera
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA.,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Department of Ophthalmology and Ira G. Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 955 Main Street, Buffalo, NY, 14203, USA. .,Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA. .,Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
17
|
Cai B, Zhang Z, Sun S, Lin T, Ke Y, Li Z, Yang J, Li X. A Pilot Application of an iTRAQ-Based Proteomics Screen Estimates the Effects of Cigarette Smokers' Serum on RPE Cells With AMD High-Risk Alleles. Transl Vis Sci Technol 2022; 11:15. [PMID: 35138344 PMCID: PMC8842534 DOI: 10.1167/tvst.11.2.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 02/18/2021] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of this study was to explore whether there are interactions between genetic (ARMS2/HTRA1) and environmental factors (cigarette smoking) in the pathogenesis of age-related macular degeneration (AMD). METHODS Primary human retinal pigment epithelial (hRPE) cells were obtained from four donors' eyes with AMD high-risk ARMS2/HTRA1 alleles, and two donors' eyes with wild-type alleles were used as controls. The pooled serum from 32 smokers and 35 nonsmokers were collected and used separately to treat hRPE cells. The isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomics was used to identify associated proteins and comparing the differences between AMD high-risk and low-risk HTRA1/ARMS2 alleles after exposure to smokers' serum. RESULTS After stimulation with the smokers' serum, 400 differentially expressed proteins (DEPs) were detected in the high-risk allele cells. Several DEPs are involved in neuronal protein degeneration and oxidative stress pathways. The smokers' serum stimulation or HTRA1 overexpression can both upregulate caveolin-1, which was one of the DEPs. Besides, the smokers' serum enhanced the phagocytosis of cultured human RPE cells. CONCLUSIONS The study confirmed the AMD high-risk alleles, HTRA1, and cigarette smoking can promote AMD development by regulating caveolin-1 expression. TRANSLATIONAL RELEVANCE AMD high-risk alleles and environmental risk factors can promote the occurrence and development of AMD by regulating caveolin-1 expression, upregulation of which will induce apoptotic cell death in response to cellular stress in early AMD conditions.
Collapse
Affiliation(s)
- Bincui Cai
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, People's Republic of China
| | - Zhe Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, People's Republic of China
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Shuo Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, People's Republic of China
| | - Tingting Lin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, People's Republic of China
| | - Yifeng Ke
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, People's Republic of China
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, People's Republic of China
| | - Jin Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, People's Republic of China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin International Joint Research and Development Center of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, People's Republic of China
| |
Collapse
|
18
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
19
|
Feng L, Nie K, Huang Q, Fan W. Complement factor H deficiency combined with smoking promotes retinal degeneration in a novel mouse model. Exp Biol Med (Maywood) 2021; 247:77-86. [PMID: 34775843 DOI: 10.1177/15353702211052245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Age-related macular degeneration is the leading cause of blindness in the elderly. The Y402H polymorphism in complement factor H promotes disease-like pathogenesis, and a Cfh+/- murine model can replicate this phenotype, but only after two years. We reasoned that by combining CFH deficiency with cigarette smoke exposure, we might be able to accelerate disease progression to facilitate preclinical research in this disease. Wild-type and Cfh+/- mice were exposed to nose-only cigarette smoke for three months. Retinal tissue morphology and visual function were evaluated by optical coherence tomography, fundus photography and autofluorescence, and electroretinogram. Retinal pigment epithelial cell phenotype and ultrastructure were evaluated by immunofluorescence staining and transmission electron microscopy. Cfh+/- smoking mice showed a dome-like protruding lesion at the ellipsoid zone (drusen-like deposition), many retinal hyper-autofluorescence spots, and a marked decrease in A- and B-wave amplitudes. Compared with non-smoking mice, wild-type and Cfh+/- smoking mice showed sub-retinal pigment epithelium complement protein 3 deposition, activation of microglia, metabolic waste accumulation, and impairment of tight junctions. Microglia cells migrated into the photoreceptor outer segment layer in Cfh+/- smoking mice showed increased activation. Our results suggest that exposing Cfh+/- mice to smoking leads to earlier onset of age-related macular degeneration than in other animal models, which may facilitate preclinical research into the pathophysiology and treatment of this disease.
Collapse
Affiliation(s)
- Liwen Feng
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China.,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kailai Nie
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China.,Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Huang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Fan
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Examining the effects of cigarette smoke on mouse lens through a multi OMIC approach. Sci Rep 2021; 11:18801. [PMID: 34552108 PMCID: PMC8458305 DOI: 10.1038/s41598-021-95013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
Here, we report a multi OMIC (transcriptome, proteome, and metabolome) approach to investigate molecular changes in lens fiber cells (FC) of mice exposed to cigarette smoke (CS). Pregnant mice were placed in a whole-body smoke chamber and a few days later pups were born, which were exposed to CS for 5 hours/day, 5 days/week for a total of 3½ months. We examined the mice exposed to CS for CS-related cataractogenesis after completion of the CS exposure but no cataracts were observed. Lenses of CS-exposed and age-matched, untreated control mice were extracted and lens FC were subjected to multi OMIC profiling. We identified 348 genes, 130 proteins, and 14 metabolites exhibiting significant (p < 0.05) differential levels in lens FC of mice exposed to CS, corresponding to 3.6%, 4.3%, and 5.0% of the total genes, protein, and metabolites, respectively identified in this study. Our multi OMIC approach confirmed that only a small fraction of the transcriptome, the proteome, and the metabolome was perturbed in the lens FC of mice exposed to CS, which suggests that exposure of CS had a minimal effect on the mouse lens. It is worth noting that while our results confirm that CS exposure does not have a substantial impact on the molecular landscape of the mouse lens FC, we cannot rule out that CS exposure for longer durations and/or in combination with other morbidities or environmental factors would have a more robust effect and/or result in cataractogenesis.
Collapse
|
21
|
Bhattarai N, Korhonen E, Mysore Y, Kaarniranta K, Kauppinen A. Hydroquinone Induces NLRP3-Independent IL-18 Release from ARPE-19 Cells. Cells 2021; 10:cells10061405. [PMID: 34204067 PMCID: PMC8229790 DOI: 10.3390/cells10061405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Age-related macular degeneration (AMD) is a retinal disease leading to impaired vision. Cigarette smoke increases the risk for developing AMD by causing increased reactive oxygen species (ROS) production and damage in the retinal pigment epithelium (RPE). We have previously shown that the cigarette tar component hydroquinone causes oxidative stress in human RPE cells. In the present study, we investigated the propensity of hydroquinone to induce the secretion of interleukin (IL)-1β and IL-18. The activation of these cytokines is usually regulated by the Nucleotide-binding domain, Leucine-rich repeat, and Pyrin domain 3 (NLRP3) inflammasome. ARPE-19 cells were exposed to hydroquinone, and cell viability was monitored using the lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide salt (MTT) assays. Enzyme-linked immunosorbent assays (ELISAs) were used to measure the levels of proinflammatory cytokines IL-1β and IL-18 as well as NLRP3, caspase-1, and poly (ADP-ribose) polymerase (PARP). Hydroquinone did not change IL-1β release but significantly increased the secretion of IL-18. Cytoplasmic NLRP3 levels increased after the hydroquinone treatment of IL-1α-primed RPE cells, but IL-18 was equally released from primed and nonprimed cells. Hydroquinone reduced the intracellular levels of PARP, which were restored by treatment with the ROS scavenger N-acetyl-cysteine (NAC). NAC concurrently reduced the NLRP3 levels but had no effect on IL-18 release. In contrast, the NADPH oxidase inhibitor ammonium pyrrolidinedithiocarbamate (APDC) reduced the release of IL-18 but had no effect on the NLRP3 levels. Collectively, hydroquinone caused DNA damage seen as reduced intracellular PARP levels and induced NLRP3-independent IL-18 secretion in human RPE cells.
Collapse
Affiliation(s)
- Niina Bhattarai
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (Y.M.)
- Correspondence: (N.B.); (A.K.); Tel.: +358-44-983-0424 (N.B.); +358-40-355-3216 (A.K.)
| | - Eveliina Korhonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (Y.M.)
- Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Yashavanthi Mysore
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (Y.M.)
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; (E.K.); (Y.M.)
- Correspondence: (N.B.); (A.K.); Tel.: +358-44-983-0424 (N.B.); +358-40-355-3216 (A.K.)
| |
Collapse
|
22
|
Napoli D, Biagioni M, Billeri F, Di Marco B, Orsini N, Novelli E, Strettoi E. Retinal Pigment Epithelium Remodeling in Mouse Models of Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22105381. [PMID: 34065385 PMCID: PMC8161377 DOI: 10.3390/ijms22105381] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
In retinitis pigmentosa (RP), one of many possible genetic mutations causes rod degeneration, followed by cone secondary death leading to blindness. Accumulating evidence indicates that rod death triggers multiple, non-cell-autonomous processes, which include oxidative stress and inflammation/immune responses, all contributing to cone demise. Inflammation relies on local microglia and recruitment of immune cells, reaching the retina through breakdowns of the inner blood retinal barrier (iBRB). Leakage in the inner retina vasculature suggests similarly altered outer BRB, formed by junctions between retinal pigment epithelium (RPE) cells, which are crucial for retinal homeostasis, immune response, and privilege. We investigated the RPE structural integrity in three models of RP (rd9, rd10, and Tvrm4 mice) by immunostaining for zonula occludens-1 (ZO-1), an essential regulatory component of tight junctions. Quantitative image analysis demonstrated discontinuities in ZO-1 profiles in all mutants, despite different degrees of photoreceptor loss. ZO-1 interruption zones corresponded to leakage of in vivo administered, fluorescent dextran through the choroid-RPE interface, demonstrating barrier dysfunction. Dexamethasone, administered to rd10 mice for rescuing cones, also rescued RPE structure. Thus, previously undetected, stereotyped abnormalities occur in the RPE of RP mice; pharmacological targeting of inflammation supports a feedback loop leading to simultaneous protection of cones and the RPE.
Collapse
Affiliation(s)
- Debora Napoli
- CNR Neuroscience Institute, 56124 Pisa, Italy; (M.B.); (F.B.); (B.D.M.); (N.O.); (E.N.)
- Correspondence: (D.N.); (E.S.); Tel.: +39-0503153157 (E.S.)
| | - Martina Biagioni
- CNR Neuroscience Institute, 56124 Pisa, Italy; (M.B.); (F.B.); (B.D.M.); (N.O.); (E.N.)
| | - Federico Billeri
- CNR Neuroscience Institute, 56124 Pisa, Italy; (M.B.); (F.B.); (B.D.M.); (N.O.); (E.N.)
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Beatrice Di Marco
- CNR Neuroscience Institute, 56124 Pisa, Italy; (M.B.); (F.B.); (B.D.M.); (N.O.); (E.N.)
| | - Noemi Orsini
- CNR Neuroscience Institute, 56124 Pisa, Italy; (M.B.); (F.B.); (B.D.M.); (N.O.); (E.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50139 Florence, Italy
| | - Elena Novelli
- CNR Neuroscience Institute, 56124 Pisa, Italy; (M.B.); (F.B.); (B.D.M.); (N.O.); (E.N.)
| | - Enrica Strettoi
- CNR Neuroscience Institute, 56124 Pisa, Italy; (M.B.); (F.B.); (B.D.M.); (N.O.); (E.N.)
- Correspondence: (D.N.); (E.S.); Tel.: +39-0503153157 (E.S.)
| |
Collapse
|
23
|
Kyo A, Yamamoto M, Hirayama K, Kohno T, Theisen-Kunde D, Brinkmann R, Miura Y, Honda S. Factors affecting resolution of subretinal fluid after selective retina therapy for central serous chorioretinopathy. Sci Rep 2021; 11:8973. [PMID: 33903643 PMCID: PMC8076253 DOI: 10.1038/s41598-021-88372-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to investigate the factors of clinical outcome of selective retina therapy (SRT) for central serous chorioretinopathy (CSC). This retrospective study included 77 eyes of 77 patients, who were treated with SRT for CSC and observed at least 6 months after the treatment. SRT laser (527 nm, 1.7 µs, 100 Hz) was used for treatment. The mean best-corrected visual acuity (logMAR), central macular thickness (CMT) and central choroidal thickness were changed from baseline to at 6-months follow-up with significant difference. The multivariate analyses found that the rate of change (reduction) in CMT was associated with focal leakage type on fluorescein angiography (FA) (p = 0.03, coefficient 15.26, 95% confidence interval 1.72–28.79) and larger baseline CMT (p < 0.01, coefficient − 0.13, 95% confidence interval − 0.13 to − 0.05). Complete resolution of subretinal fluid was associated with nonsmoking history (p = 0.03, odds ratio 0.276, 95% confidence interval 0.086–0.887) and focal leakage type on FA (p < 0.01, odds ratio 0.136, 95% confidence interval 0.042–0.437). These results may be useful for predicting the therapeutic effectiveness of SRT.
Collapse
Affiliation(s)
- Akika Kyo
- Department of Ophthalmology and Visual Science, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Manabu Yamamoto
- Department of Ophthalmology and Visual Science, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan.
| | - Kumiko Hirayama
- Department of Ophthalmology and Visual Science, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Takeya Kohno
- Department of Ophthalmology and Visual Science, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | | | - Ralf Brinkmann
- Medical Laser Center Lübeck, Lübeck, Germany.,Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany
| | - Yoko Miura
- Medical Laser Center Lübeck, Lübeck, Germany.,Institute of Biomedical Optics, University of Lübeck, Lübeck, Germany.,Department of Ophthalmology, University of Lübeck, Lübeck, Germany
| | - Shigeru Honda
- Department of Ophthalmology and Visual Science, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| |
Collapse
|
24
|
Ali M, Khan SY, Jang Y, Na CH, Talbot CC, Gottsch JD, Handa JT, Riazuddin SA. Cigarette Smoke Triggers Loss of Corneal Endothelial Cells and Disruption of Descemet's Membrane Proteins in Mice. Invest Ophthalmol Vis Sci 2021; 62:3. [PMID: 33651877 PMCID: PMC7938020 DOI: 10.1167/iovs.62.3.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate changes at a molecular level in the mouse corneal endothelium (CE) exposed to chronic cigarette smoke (CS). Methods Pregnant mice (gestation days 18–20) were placed in a whole-body exposure smoking chamber, and a few days later pups were born. After 3.5 months of CS exposure, a ConfoScan4 scanning microscope was used to examine the corneal endothelial cells (CECs) of CS-exposed and control (Ct) mice. The CE was peeled under a microscope and maintained as four biological replicates (two male and two female) for CS-exposed and Ct mice; each replicate consisted of 16 CEs. The proteome of the CE was investigated through mass spectrometry. Results The CE images of CS-exposed and Ct mice revealed a difference in the shape of CECs accompanied by a nearly 10% decrease in CEC density (P < 0.00003) following CS exposure. Proteome profiling identified a total of 524 proteins exhibiting statistically significant changes in CE from CS-exposed mice. Importantly, proteins associated with Descemet's membrane (DM), including COL4α1, COL4α2, COL4α3, COL4α4, COL4α5, COL4α6, COL8α1, COL8α2, and FN1, among others, exhibited diminished protein levels in the CE of CS-exposed mice. Conclusions Our data confirm that exposure to CS results in reduced CEC density accompanied by diminished levels of multiple collagen and extracellular matrix proteins associated with DM.
Collapse
Affiliation(s)
- Muhammad Ali
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Shahid Y Khan
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Yura Jang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Chan Hyun Na
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - John D Gottsch
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - James T Handa
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
25
|
Pugazhendhi A, Hubbell M, Jairam P, Ambati B. Neovascular Macular Degeneration: A Review of Etiology, Risk Factors, and Recent Advances in Research and Therapy. Int J Mol Sci 2021; 22:1170. [PMID: 33504013 PMCID: PMC7866170 DOI: 10.3390/ijms22031170] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Neovascular age-related macular degeneration (exudative or wet AMD) is a prevalent, progressive retinal degenerative macular disease that is characterized by neovascularization of the choroid, mainly affecting the elderly population causing gradual vision impairment. Risk factors such as age, race, genetics, iris color, smoking, drinking, BMI, and diet all play a part in nvAMD's progression, with anti-vascular endothelial growth factor (anti-VEGF) therapy being the mainstay of treatment. Current therapeutic advancements slow the progression of the disease but do not cure or reverse its course. Newer therapies such as gene therapies, Rho-kinase inhibitors, and levodopa offer potential new targets for treatment.
Collapse
Affiliation(s)
- Arunbalaji Pugazhendhi
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| | - Margaret Hubbell
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| | - Pooja Jairam
- Vagelos College of Physicians & Surgeons, Columbia Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - Balamurali Ambati
- Knights Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR 97403, USA; (A.P.); (M.H.)
| |
Collapse
|
26
|
Jabbehdari S, Handa JT. Oxidative stress as a therapeutic target for the prevention and treatment of early age-related macular degeneration. Surv Ophthalmol 2020; 66:423-440. [PMID: 32961209 DOI: 10.1016/j.survophthal.2020.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration, the leading cause of irreversible visual loss among older adults in developed countries, is a chronic, multifactorial, and progressive disease with the development of painless, central vision loss. Retinal pigment epithelial cell dysfunction is a core change in age-related macular degeneration that results from aging and the accumulated effects of genetic and environmental factors that, in part, is both caused by and leads to oxidative stress. In this review, we describe the role of oxidative stress, the cytoprotective oxidative stress pathways, and the impact of oxidative stress on critical cellular processes involved in age-related macular degeneration pathobiology. We also offer targeted therapy that may define how antioxidant therapy can either prevent or improve specific stages of age-related macular degeneration.
Collapse
Affiliation(s)
- Sayena Jabbehdari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
27
|
Wang L, Kaya KD, Kim S, Brooks MJ, Wang J, Xin Y, Qian J, Swaroop A, Handa JT. Retinal pigment epithelium transcriptome analysis in chronic smoking reveals a suppressed innate immune response and activation of differentiation pathways. Free Radic Biol Med 2020; 156:176-189. [PMID: 32634473 PMCID: PMC7434665 DOI: 10.1016/j.freeradbiomed.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
Cigarette smoking, a powerful mixture of chemical oxidants, is the strongest environmental risk factor for developing age-related macular degeneration (AMD), the most common cause of blindness among the elderly in western societies. Despite intensive study, the full impact of smoking on the retinal pigment epithelium (RPE), a central cell type involved in AMD pathobiology, remains unknown. The relative contribution of the known dysfunctional pathways to AMD, at what stage they are most pathogenic, or whether other processes are relevant, is poorly understood, and furthermore, whether smoking activates them, is unknown. We performed global RNA-sequencing of the RPE from C57BL/6J mice exposed to chronic cigarette smoke for 6 months to identify potential pathogenic and cytoprotective pathways. The RPE transcriptome induced by chronic cigarette smoking exhibited a mixed response of marked suppression of the innate immune response including type I and II interferons and upregulation of cell differentiation and morphogenic gene clusters, suggesting an attempt by the RPE to maintain its differentiated state despite smoke-induced injury. Given that mice exposed to chronic smoke develop early features of AMD, these novel findings are potentially relevant to the transition from aging to AMD.
Collapse
Affiliation(s)
- Lei Wang
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Koray D Kaya
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Sujung Kim
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Jie Wang
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Ying Xin
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - James T Handa
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
28
|
Tandon R, Vashist P, Gupta N, Gupta V, Sahay P, Deka D, Singh S, Vishwanath K, Murthy GVS. Association of dry eye disease and sun exposure in geographically diverse adult (≥40 years) populations of India: The SEED (sun exposure, environment and dry eye disease) study - Second report of the ICMR-EYE SEE study group. Ocul Surf 2020; 18:718-730. [PMID: 32783926 DOI: 10.1016/j.jtos.2020.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/12/2020] [Accepted: 07/25/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To estimate the prevalence and determine risk factors for dry eye disease (DED) in geographically diverse regions of India. METHOD A population based cross-sectional study was conducted on people aged ≥40 years in plain, hilly and coastal areas. Dry eye assessment by objective [tear film break-up time (TBUT), Schirmer I, corneal staining] and subjective [Ocular Surface Disease Index (OSDI)] parameters was performed with questionnaire-based assessment of exposure to sunlight, cigarette smoke, indoor smoke. The prevalence of DED with age, sex, occupation, location, smoking, exposure to sunlight, indoor smoke, diabetes, hypertension, was subjected to logistic regression analysis. RESULTS 9,735 people (age 54.5 ± 0.1 years; range 40-99, males 45.5%) were included. The prevalence of DED was 26.2%, was higher in plains (41.3%) compared to hilly (24.0%) and coastal area (9.9%) (p < 0.001) and increased with age (p < 0.001), female gender (p < 0.001), smoking (p < 0.001), indoor smoke (p < 0.001), diabetes (p-0.02), hypertension (0.001), occupations with predominant outdoor activity (p-0.013) and increasing exposure to sunlight (trend). Multi-logistic regression showed a positive association with female sex (OR-1.2, CI-1.01, 1.4), exposure to indoor smoke (OR-1.3, CI-1.1, 1.5), smoking (OR-1.2; CI-1.03, 1.3), prolonged exposure to sunlight (OR-1.8, CI-1.5, 2.2), hypertension (OR 1.3, CI-1.2, 1.4), diabetes (OR-1.2, CI-1, 1.5) and negative association with region - hilly (OR-0.5, CI-0.4, 0.6) and coastal (OR-0.2; CI-0.1, 0.2), and BMI (OR-0.8, CI-0.7, 0.9). CONCLUSION DED is common in population ≥40 years of age. Its prevalence is affected by extrinsic (geographic location, exposure to sunlight, smoking, indoor smoke) and intrinsic (age, sex, hypertension, diabetes, BMI) factors.
Collapse
Affiliation(s)
- Radhika Tandon
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, New Delhi, India.
| | - Praveen Vashist
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, New Delhi, India
| | - Noopur Gupta
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, New Delhi, India
| | - Vivek Gupta
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, New Delhi, India
| | - Pranita Sahay
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, AIIMS, New Delhi, India
| | - Dipali Deka
- Regional Institute of Ophthalmology, Guwahati, India
| | | | - K Vishwanath
- Pushpagiri Vitreo Retina Institute, Secunderabad, Telangana, India
| | - G V S Murthy
- Indian Institute of Public Health, Hyderabad, India
| |
Collapse
|
29
|
Autophagy Upregulation by the TFEB Inducer Trehalose Protects against Oxidative Damage and Cell Death Associated with NRF2 Inhibition in Human RPE Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5296341. [PMID: 32774677 PMCID: PMC7396061 DOI: 10.1155/2020/5296341] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Trehalose is a natural dietary molecule that has shown antiaging and neuroprotective effects in several animal models of neurodegenerative diseases. The role of trehalose in the management of age-related macular degeneration (AMD) is yet to be investigated and whether trehalose could be a remedy for the treatment of diseases linked to oxidative stress and NRF2 dysregulation. Here, we showed that incubation of human retinal pigment epithelial (RPE) cells with trehalose enhanced the mRNA and protein expressions of TFEB, autophagy genes ATG5 and ATG7, as well as protein expressions of macroautophagy markers, LC3B and p62/SQTM1, and the chaperone-mediated autophagy (CMA) receptor LAMP2. Cathepsin D, a hydrolytic lysosomal enzyme, was also increased by trehalose, indicating higher proteolytic activity. Moreover, trehalose upregulated autophagy flux evident by an increase in the endogenous LC3B level, and accumulation of GFP-LC3B puncta and free GFP fragments in GFP-LC3 - expressing cells in the presence of chloroquine. In addition, the mRNA levels of key molecular targets implicated in RPE damage and AMD, such as vascular endothelial growth factor- (VEGF-) A and heat shock protein 27 (HSP27), were downregulated, whereas NRF2 was upregulated by trehalose. Subsequently, we mimicked in vitro AMD conditions using hydroquinone (HQ) as the oxidative insult on RPE cells and evaluated the cytoprotective effect of trehalose compared to vehicle treatment. HQ depleted NRF2, increased oxidative stress, and reduced the viability of cells, while trehalose pretreatment protected against HQ-induced toxicity. The cytoprotection by trehalose was dependent on autophagy but not NRF2 activation, since autophagy inhibition by shRNA knockdown of ATG5 led to a loss of the protective effect. The results support the transcriptional upregulation of TFEB and autophagy by trehalose and its protection against HQ-induced oxidative damage in RPE cells. Further investigation is, therefore, warranted into the therapeutic value of trehalose in alleviating AMD and retinal diseases associated with impaired NRF2 antioxidant defense.
Collapse
|
30
|
B. Domènech E, Marfany G. The Relevance of Oxidative Stress in the Pathogenesis and Therapy of Retinal Dystrophies. Antioxidants (Basel) 2020; 9:E347. [PMID: 32340220 PMCID: PMC7222416 DOI: 10.3390/antiox9040347] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Retinal cell survival requires an equilibrium between oxygen, reactive oxygen species, and antioxidant molecules that counteract oxidative stress damage. Oxidative stress alters cell homeostasis and elicits a protective cell response, which is most relevant in photoreceptors and retinal ganglion cells, neurons with a high metabolic rate that are continuously subject to light/oxidative stress insults. We analyze how the alteration of cellular endogenous pathways for protection against oxidative stress leads to retinal dysfunction in prevalent (age-related macular degeneration, glaucoma) as well as in rare genetic visual disorders (Retinitis pigmentosa, Leber hereditary optic neuropathy). We also highlight some of the key molecular actors and discuss potential therapies using antioxidants agents, modulators of gene expression and inducers of cytoprotective signaling pathways to treat damaging oxidative stress effects and ameliorate severe phenotypic symptoms in multifactorial and rare retinal dystrophies.
Collapse
Affiliation(s)
- Elena B. Domènech
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain;
- CIBERER, ISCIII, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gemma Marfany
- Departament de Genètica, Microbiologia i Estadística, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain;
- CIBERER, ISCIII, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
31
|
Collin GB, Gogna N, Chang B, Damkham N, Pinkney J, Hyde LF, Stone L, Naggert JK, Nishina PM, Krebs MP. Mouse Models of Inherited Retinal Degeneration with Photoreceptor Cell Loss. Cells 2020; 9:E931. [PMID: 32290105 PMCID: PMC7227028 DOI: 10.3390/cells9040931] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited retinal degeneration (RD) leads to the impairment or loss of vision in millions of individuals worldwide, most frequently due to the loss of photoreceptor (PR) cells. Animal models, particularly the laboratory mouse, have been used to understand the pathogenic mechanisms that underlie PR cell loss and to explore therapies that may prevent, delay, or reverse RD. Here, we reviewed entries in the Mouse Genome Informatics and PubMed databases to compile a comprehensive list of monogenic mouse models in which PR cell loss is demonstrated. The progression of PR cell loss with postnatal age was documented in mutant alleles of genes grouped by biological function. As anticipated, a wide range in the onset and rate of cell loss was observed among the reported models. The analysis underscored relationships between RD genes and ciliary function, transcription-coupled DNA damage repair, and cellular chloride homeostasis. Comparing the mouse gene list to human RD genes identified in the RetNet database revealed that mouse models are available for 40% of the known human diseases, suggesting opportunities for future research. This work may provide insight into the molecular players and pathways through which PR degenerative disease occurs and may be useful for planning translational studies.
Collapse
Affiliation(s)
- Gayle B. Collin
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Navdeep Gogna
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Nattaya Damkham
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jai Pinkney
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lillian F. Hyde
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Lisa Stone
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Jürgen K. Naggert
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Patsy M. Nishina
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| | - Mark P. Krebs
- The Jackson Laboratory, Bar Harbor, Maine, ME 04609, USA; (G.B.C.); (N.G.); (B.C.); (N.D.); (J.P.); (L.F.H.); (L.S.); (J.K.N.)
| |
Collapse
|
32
|
Mehrzadi S, Hemati K, Reiter RJ, Hosseinzadeh A. Mitochondrial dysfunction in age-related macular degeneration: melatonin as a potential treatment. Expert Opin Ther Targets 2020; 24:359-378. [PMID: 32116056 DOI: 10.1080/14728222.2020.1737015] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Age-related Macular Degeneration (AMD), a retinal neurodegenerative disease is the most common cause of blindness among the elderly in developed countries. The impairment of mitochondrial biogenesis has been reported in human retinal pigment epithelium (RPE) cells affected by AMD. Oxidative/nitrosative stress plays an important role in AMD development. The mitochondrial respiratory system is considered a major site of reactive oxygen species (ROS) generation. During aging, insufficient free radical scavenger systems, impairment of DNA repair mechanisms and reduction of mitochondrial degradation and turnover contribute to the massive accumulation of ROS disrupting mitochondrial function. Impaired mitochondrial function leads to the decline in the autophagic capacity and induction of inflammation and apoptosis in human RPE cells affected by AMD.Areas covered: This article evaluates the ameliorative effect of melatonin on AMD and examines AMD pathogenesis with an emphasis on mitochondrial dysfunction. It also considers the potential effects of melatonin on mitochondrial function.Expert opinion: The effect of melatonin on mitochondrial function results in the reduction of oxidative stress, inflammation and apoptosis in the retina; these findings demonstrate that melatonin has the potential to prevent and treat AMD.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Abokyi S, To CH, Lam TT, Tse DY. Central Role of Oxidative Stress in Age-Related Macular Degeneration: Evidence from a Review of the Molecular Mechanisms and Animal Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7901270. [PMID: 32104539 PMCID: PMC7035553 DOI: 10.1155/2020/7901270] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/18/2020] [Indexed: 11/17/2022]
Abstract
Age-related macular degeneration (AMD) is a common cause of visual impairment in the elderly. There are very limited therapeutic options for AMD with the predominant therapies targeting vascular endothelial growth factor (VEGF) in the retina of patients afflicted with wet AMD. Hence, it is important to remind readers, especially those interested in AMD, about current studies that may help to develop novel therapies for other stages of AMD. This study, therefore, provides a comprehensive review of studies on human specimens as well as rodent models of the disease, to identify and analyze the molecular mechanisms behind AMD development and progression. The evaluation of this information highlights the central role that oxidative damage in the retina plays in contributing to major pathways, including inflammation and angiogenesis, found in the AMD phenotype. Following on the debate of oxidative stress as the earliest injury in the AMD pathogenesis, we demonstrated how the targeting of oxidative stress-associated pathways, such as autophagy and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling, might be the futuristic direction to explore in the search of an effective treatment for AMD, as the dysregulation of these mechanisms is crucial to oxidative injury in the retina. In addition, animal models of AMD have been discussed in great detail, with their strengths and pitfalls included, to assist inform in the selection of suitable models for investigating any of the molecular mechanisms.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
- Department of Optometry, University of Cape Coast, Ghana
| | - Chi-Ho To
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Tim T. Lam
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Dennis Y. Tse
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
34
|
Zhu Y, Aredo B, Chen B, Zhao CX, He YG, Ufret-Vincenty RL. Mice With a Combined Deficiency of Superoxide Dismutase 1 (Sod1), DJ-1 (Park7), and Parkin (Prkn) Develop Spontaneous Retinal Degeneration With Aging. Invest Ophthalmol Vis Sci 2020; 60:3740-3751. [PMID: 31487745 PMCID: PMC6733419 DOI: 10.1167/iovs.19-27212] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Chronic oxidative stress is an important mechanism of disease in aging disorders. We do not have a good model to recapitulate AMD and other retinal disorders in which chronic oxidative stress plays an important role. We hypothesized that mice with a combined deficiency in superoxide dismutase 1 (Sod1), DJ-1 (Park-7), and Parkin (Prkn) (triple knock out, TKO) would have an increased level of chronic oxidative stress in the retina, with anatomic and functional consequences just with aging. Methods Eyes of TKO and B6J control mice were (1) monitored with optical coherence tomography (OCT) and electroretinography (ERG) over time, and (2) collected for oxidative marker protein analysis by ELISA or immunohistochemistry and for transmission electron microscopy studies. Results TKO mice developed qualitative disruptions in outer retinal layers in OCT by 3 months, increased accumulation of fundus spots and subretinal microglia by 6 months of age, significant retinal thinning by 9 months, and decreased ERG signal by 12 months. Furthermore, we found increased accumulation of the oxidative marker malondialdehyde (MDA) in the retina and increased basal laminal deposits (BLD) and mitochondria number and size in the retinal pigment epithelium of aging TKO mice. Conclusions TKO mice can serve as a platform to study retinal diseases that involve chronic oxidative stress, including macular degeneration, retinal detachment, and ischemic retinopathies. In order to model each of these diseases, additional disease-specific catalysts or triggers could be superimposed onto the TKO mice. Such studies could provide better insight into disease mechanisms and perhaps lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Yuanfei Zhu
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Bogale Aredo
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Bo Chen
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Cynthia X Zhao
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Yu-Guang He
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, United States
| | | |
Collapse
|
35
|
Ferrington DA, Fisher CR, Kowluru RA. Mitochondrial Defects Drive Degenerative Retinal Diseases. Trends Mol Med 2020; 26:105-118. [PMID: 31771932 PMCID: PMC6938541 DOI: 10.1016/j.molmed.2019.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
Abstract
Mitochondrial dysfunction is involved in the pathology of two major blinding retinal diseases, diabetic retinopathy (DR) and age-related macular degeneration (AMD). These diseases accumulate mitochondrial defects in distinct retinal subcellular structures, the vascular/neural network in DR and the retinal pigment epithelium (RPE) in AMD. These mitochondrial defects cause a metabolic crisis that drives disease. With no treatments to stop these diseases, coupled with an increasing population suffering from AMD and DR, there is an urgent need to develop new therapeutics targeting the mitochondria to prevent or reverse disease-specific pathology.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences and Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Cody R Fisher
- Department of Ophthalmology and Visual Neurosciences and Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Renu A Kowluru
- Ophthalmology, Vision, and Anatomical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
36
|
Dalvi S, Galloway CA, Winschel L, Hashim A, Soto C, Tang C, MacDonald LA, Singh R. Environmental stress impairs photoreceptor outer segment (POS) phagocytosis and degradation and induces autofluorescent material accumulation in hiPSC-RPE cells. Cell Death Discov 2019; 5:96. [PMID: 31123602 PMCID: PMC6522536 DOI: 10.1038/s41420-019-0171-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 11/09/2022] Open
Abstract
Retinal pigment epithelium (RPE) cell dysfunction is central to the pathogenesis of age-related macular degeneration (AMD), a leading cause of adult blindness. Aging, the single biggest risk factor for AMD development, favors increase in RPE autofluorescent material due to accumulation of POS-digestion by-products through lysosomal dysfunction and impaired POS degradation. Apart from aging, environmental agents affect lysosomal function in multiple model systems and are implicated in AMD. Iron (Fe) overload and cigarette smoke exposure are the two environmental factors that are known to affect the lysosomal pathway and impact RPE cell health. However, the impact of Fe and cigarette smoke, on POS processing and its consequence for autofluorescent material accumulation in human RPE cells are yet to be established. Human induced pluripotent stem cell (hiPSC)-derived RPE, which phagocytoses and degrades POS in culture and can be derived from control individuals (no history/susceptibility for retinal disease), provides a model system to investigate the singular effect of excess Fe and/or cigarette smoke on POS processing by RPE cells. Using at least three distinct control hiPSC lines, we show that, compared to untreated hiPSC-RPE cells, POS uptake is reduced in both Fe (ferric ammonium citrate or FAC) and FAC + CSE (cigarette smoke extract)-treated hiPSC-RPE cells. Furthermore, exposure of hiPSC-RPE cultures to FAC + CSE leads to reduced levels of active cathepsin-D (CTSD), a lysosomal enzyme involved in POS processing, and causes delayed degradation of POS. Notably, delayed degradation of POS over time (2 weeks) in hiPSC-RPE cells exposed to Fe and CSE was sufficient to increase autofluorescent material build-up in these cells. Given that inefficient POS processing-mediated autofluorescent material accumulation in RPE cells has already been linked to AMD development, our results implicate a causative role of environmental agents, like Fe and cigarette smoke, in AMD.
Collapse
Affiliation(s)
- Sonal Dalvi
- 1Department of Ophthalmology (Flaum Eye Institute), University of Rochester, Rochester, NY USA.,2Department of Biomedical Genetics, University of Rochester, Rochester, NY USA
| | - Chad A Galloway
- 1Department of Ophthalmology (Flaum Eye Institute), University of Rochester, Rochester, NY USA.,2Department of Biomedical Genetics, University of Rochester, Rochester, NY USA.,5Present Address: Department of Pathology and Lab Medicine, University of Rochester, Rochester, NY USA
| | - Lauren Winschel
- 1Department of Ophthalmology (Flaum Eye Institute), University of Rochester, Rochester, NY USA.,2Department of Biomedical Genetics, University of Rochester, Rochester, NY USA
| | - Ali Hashim
- 1Department of Ophthalmology (Flaum Eye Institute), University of Rochester, Rochester, NY USA.,2Department of Biomedical Genetics, University of Rochester, Rochester, NY USA
| | - Celia Soto
- 1Department of Ophthalmology (Flaum Eye Institute), University of Rochester, Rochester, NY USA.,2Department of Biomedical Genetics, University of Rochester, Rochester, NY USA
| | - Cynthia Tang
- 1Department of Ophthalmology (Flaum Eye Institute), University of Rochester, Rochester, NY USA.,2Department of Biomedical Genetics, University of Rochester, Rochester, NY USA
| | - Leslie A MacDonald
- 1Department of Ophthalmology (Flaum Eye Institute), University of Rochester, Rochester, NY USA.,2Department of Biomedical Genetics, University of Rochester, Rochester, NY USA
| | - Ruchira Singh
- 1Department of Ophthalmology (Flaum Eye Institute), University of Rochester, Rochester, NY USA.,2Department of Biomedical Genetics, University of Rochester, Rochester, NY USA.,3UR Stem Cell and Regenerative Medicine Institute, Rochester, NY USA.,4Center for Visual Science, University of Rochester, Rochester, NY USA
| |
Collapse
|
37
|
Determination of Mitochondrial Oxygen Consumption in the Retina Ex Vivo: Applications for Retinal Disease. Methods Mol Biol 2019; 1753:167-177. [PMID: 29564788 DOI: 10.1007/978-1-4939-7720-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Mitochondrial dysfunction, and consequently altered aerobic energy metabolism, is associated with numerous retinal diseases, including photoreceptor degeneration and diabetic retinopathy. Here, we describe a detailed protocol to directly measure oxygen consumption in the intact retina ex vivo using microplate-based fluorescence technology. We have used this method to assess preferred energy substrate for retinal tissue and suggested its application for investigating mechanisms of retinal disease.
Collapse
|
38
|
Dalvi S, Galloway CA, Singh R. Pluripotent Stem Cells to Model Degenerative Retinal Diseases: The RPE Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:1-31. [PMID: 31654384 DOI: 10.1007/978-3-030-28471-8_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pluripotent stem cell technology, including human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs), has provided a suitable platform to investigate molecular and pathological alterations in an individual cell type using patient's own cells. Importantly, hiPSCs/hESCs are amenable to genome editing providing unique access to isogenic controls. Specifically, the ability to introduce disease-causing mutations in control (unaffected) and conversely correct disease-causing mutations in patient-derived hiPSCs has provided a powerful approach to clearly link the disease phenotype with a specific gene mutation. In fact, utilizing hiPSC/hESC and CRISPR technology has provided significant insight into the pathomechanism of several diseases. With regard to the eye, the use of hiPSCs/hESCs to study human retinal diseases is especially relevant to retinal pigment epithelium (RPE)-based disorders. This is because several studies have now consistently shown that hiPSC-RPE in culture displays key physical, gene expression and functional attributes of human RPE in vivo. In this book chapter, we will discuss the current utility, limitations, and plausible future approaches of pluripotent stem cell technology for the study of retinal degenerative diseases. Of note, although we will broadly summarize the significant advances made in modeling and studying several retinal diseases utilizing hiPSCs/hESCs, our specific focus will be on the utility of patient-derived hiPSCs for (1) establishment of human cell models and (2) molecular and pharmacological studies on patient-derived cell models of retinal degenerative diseases where RPE cellular defects play a major pathogenic role in disease development and progression.
Collapse
Affiliation(s)
- Sonal Dalvi
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Chad A Galloway
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Ruchira Singh
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY, USA. .,Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA. .,UR Stem Cell and Regenerative Medicine Institute, Rochester, NY, USA. .,Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
39
|
Absorption of blue light by cigarette smoke components is highly toxic for retinal pigmented epithelial cells. Arch Toxicol 2018; 93:453-465. [DOI: 10.1007/s00204-018-2344-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023]
|
40
|
Bellezza I. Oxidative Stress in Age-Related Macular Degeneration: Nrf2 as Therapeutic Target. Front Pharmacol 2018; 9:1280. [PMID: 30455645 PMCID: PMC6230566 DOI: 10.3389/fphar.2018.01280] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 01/07/2023] Open
Abstract
Age-related macular degeneration is one of the leading causes of vision loss in the elderly. Genetics, environmental insults, and age-related issues are risk factors for the development of the disease. All these risk factors are linked to the induction of oxidative stress. In young subjects retinal pigment epithelial cells mitigate reactive oxygen generation by the elimination of dysfunctional mitochondria, via mitophagy, and by increasing antioxidant defenses via Nrf2 activation. The high amount of UV light absorbed by the retina, together with cigarette smoking, cooperate with the aging process to increase the amount of reactive oxygen species generated by retinal pigment epithelium where oxidative stress arises. Moreover, in the elderly both the mitophagic process and Nrf2 activation are impaired thus causing retinal cell death. This review will focus on the impact of oxidative stress on the pathogenesis of age-related macular degeneration and analyze the natural and synthetic Nrf2-activating compounds that have been tested as potential therapeutic agents for the disease.
Collapse
Affiliation(s)
- Ilaria Bellezza
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
41
|
Modenese A, Gobba F. Macular degeneration and occupational risk factors: a systematic review. Int Arch Occup Environ Health 2018; 92:1-11. [PMID: 30191305 PMCID: PMC6323067 DOI: 10.1007/s00420-018-1355-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 09/04/2018] [Indexed: 01/08/2023]
Abstract
Purpose Macular degeneration is a multi-factorial disease, leading cause of blindness for people over 50 years old in developed countries. To date, the knowledge on possible occupational factors involved in the development of the disease is scant. Method We performed a systematic scientific literature search on the association between macular degeneration and occupational risk factors searching the MedLine and Scopus databases. Results We examined 158 articles and, according to the inclusion criteria, 13 peer-reviewed studies evaluating occupational risk factors for macular degeneration or reporting the frequency of the disease in specific groups of workers were included in the review. Ten on thirteen articles evaluated the presence of macular degeneration in workers exposed to solar radiation. Only one study found that non-specific history of occupational chemical exposure was associated with the disease. Two studies showed an association between macular degeneration and the general category of “blue-collar” workers, but they did not identify the specific risk factors involved. Conclusions To date few studies have examined occupational risk factors for macular degeneration. Nevertheless, available data indicate that long-term occupational solar radiation exposure, in particular for its blue-light component, is associated with macular degeneration in outdoor workers. Electronic supplementary material The online version of this article (10.1007/s00420-018-1355-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alberto Modenese
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125, Modena, Italy.
| | - Fabriziomaria Gobba
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125, Modena, Italy
| |
Collapse
|
42
|
Ebrahimi KB, Cano M, Rhee J, Datta S, Wang L, Handa JT. Oxidative Stress Induces an Interactive Decline in Wnt and Nrf2 Signaling in Degenerating Retinal Pigment Epithelium. Antioxid Redox Signal 2018; 29:389-407. [PMID: 29186981 PMCID: PMC6025703 DOI: 10.1089/ars.2017.7084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Cells have evolved a highly sophisticated web of cytoprotective systems to neutralize unwanted oxidative stress, but are challenged by unique modern day stresses such as cigarette smoking and ingestion of a high-fat diet (HFD). Age-related disease, such as age-related macular degeneration (AMD), the most common cause of blindness among the elderly in Western societies, develops in part, when oxidative stress overwhelms cytoprotective systems to injure tissue. Since most studies focus on the protection by a single protective system, the aim of this study was to investigate the impact of more than one cytoprotective system against oxidative stress. RESULTS Wingless (Wnt) and nuclear factor-erythroid 2-related factor 2 (Nrf2), two fundamental signaling systems that are vital to cell survival, decline after mice are exposed to chronic cigarette smoke and HFD, two established AMD risk factors, in a bidirectional feedback loop through phosphorylated glycogen synthase kinase 3 beta. Decreased Wnt and Nrf2 signaling leads to retinal pigment epithelial dysfunction and apoptosis, and a phenotype that is strikingly similar to geographic atrophy (GA), an advanced form of AMD with no effective treatment. INNOVATION This study is the first to show that chronic oxidative stress from common modern day environmental exposures reduces two fundamental and vital cytoprotective networks in a bidirectional feedback loop, and their decline leads to advanced disease phenotype. CONCLUSION Our data offer new insights into how combined modern oxidative stresses of cigarette smoking and HFD contribute to GA through an interactive decline in Wnt and Nrf2 signaling. Antioxid. Redox Signal. 29, 389-407.
Collapse
Affiliation(s)
- Katayoon B Ebrahimi
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Marisol Cano
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - John Rhee
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sayantan Datta
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Lei Wang
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| | - James T Handa
- Wilmer Eye Institute , Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
43
|
Yin Y, Liu D, Tian D. Salidroside prevents hydroperoxide-induced oxidative stress and apoptosis in retinal pigment epithelium cells. Exp Ther Med 2018; 16:2363-2368. [PMID: 30210588 PMCID: PMC6122584 DOI: 10.3892/etm.2018.6494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 06/29/2018] [Indexed: 11/06/2022] Open
Abstract
Salidroside (SAL) is the major pharmacologically active constituent of Rhodiola rosea, which possesses a wide range of pharmacological functions, including anti-aging, anti-inflammatory, antioxidant, anticancer and neuroprotective activities. However, the effects and mechanisms of SAL on oxidative stress in retinal pigment epithelial (RPE) cells exposed to hydrogen peroxide (H2O2) remain unclear. The present study investigated the protective effects of SAL and the underlying mechanisms against H2O2-induced oxidative stress in human RPE cells. ARPE-19 cells were treated with various doses of SAL for 24 h and then exposed to 200 µM H2O2 for 24 h. Cell viability was analyzed by a MTT assay, and the intracellular levels of reactive oxygen species were measured using CellROX orange reagent. Cell apoptosis was analyzed by annexin V/propidium iodide double staining, followed by flow cytometry. The levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, phospho (p)-protein kinase B (Akt), Akt, p-glycogen synthase kinase (GSK)-3β and GSK-3β were evaluated using western blotting. The results demonstrated that SAL markedly attenuated H2O2-induced loss of cell viability. SAL also ameliorated H2O2-induced oxidative stress and cell apoptosis in RPE cells. In addition, pretreatment with SAL significantly increased the phosphorylation levels of Akt and GSK-3β in H2O2-treated ARPE-19 cells. In conclusion, the present study demonstrated that SAL protected RPE cells against H2O2-induced cell injury through the activation of the Akt/GSK-3β signaling pathway. This suggests that SAL may be a potential therapeutic strategy for the treatment of age-related macular degeneration.
Collapse
Affiliation(s)
- Yan Yin
- Department of Ophthalmology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Dejie Liu
- Department of Ophthalmology, Yantai Yeda Hospital, Yantai, Shandong 264006, P.R. China
| | - Donghua Tian
- Department of Ophthalmology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
44
|
Taubitz T, Tschulakow AV, Tikhonovich M, Illing B, Fang Y, Biesemeier A, Julien-Schraermeyer S, Schraermeyer U. Ultrastructural alterations in the retinal pigment epithelium and photoreceptors of a Stargardt patient and three Stargardt mouse models: indication for the central role of RPE melanin in oxidative stress. PeerJ 2018; 6:e5215. [PMID: 30038866 PMCID: PMC6054867 DOI: 10.7717/peerj.5215] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background Stargardt disease (SD) is characterized by the accumulation of the age-pigment lipofuscin in the retinal pigment epithelium (RPE) and subsequent neuroretinal degeneration. The disease leads to vision loss early in life. Here, we investigate age-dependent ultrastructural changes in three SD mouse models: albino Abca4-/- and pigmented Abca4-/- and Abca4-/-.Rdh8-/- mice. Since we found indications for oxidative stress primarily in albino SD mice, we tested RPE melanin for its antioxidative capabilities. Methods SD mouse eyes were investigated by light, fluorescence and electron microscopy and were compared to the respective albino and pigmented wild type mice and to a human donor SD eye. To confirm the role of RPE melanin in scavenging oxidative stress, melanin from S. officinalis as a standard and porcine RPE were tested for their capability to quench superoxide anions. Results Histological alterations indicative of oxidative stress and/or lysosomal dysfunction were present in albino Abca4-/- and Abca4-/-.Rdh8-/- mice. Retinal damage, such as inner segment rupture and pyknotic or free photoreceptor nuclei in the subretinal space and RPE vacuolization were exclusively found in albino Abca4-/- mice. Shortened and disorganized photoreceptor outer segments and dead RPE cells were found in albino Abca4-/- and Abca4-/-.Rdh8-/- mice, with earlier onset in albino Abca4-/- mice. Undegraded phagosomes and lipofuscin accumulation were present in the RPE of all three SD strains, but numbers were highest in Abca4-/-.Rdh8-/- mice. Lipofuscin morphology differed between SD strains: (melano-)lipofuscin granules in pigmented Abca4-/- mice had a homogenous electron density and sharp demarcations, while lipofuscin in albino Abca4-/- mice had a flocculent electron density and often lacked a surrounding membrane, indicating loss of lysosomal integrity. Young Abca4-/-.Rdh8-/- mice showed (melano-)lipofuscin granules with homogenous electron density, while in aged animals granules with flocculent electron density predominated. Both strains of pigmented SD mice had melanolipofuscin clusters as found in the human SD eye. Like melanin from S. officinalis, porcine RPE melanin can also quench superoxide anions. Discussion The presented pathologies in albino Abca4-/- and Abca4-/-.Rdh8-/- mice suggest oxidative stress and/or lysosomal dysfunction within the RPE. Since albino Abca4-/- mice have the earliest onset and severest damage and as absence of melanin and also melanin turnover with age are known to diminish RPEs anti-oxidative properties, we assume that RPE melanin plays a role in SD related damages. A lack of pathology in pigmented Abca4-/- mice due to lower stress levels as compared to the Abca4-/-.Rdh8-/- mice underlines this hypothesis. It is also supported by the finding that RPE melanin can quench superoxide anions. We therefore suppose that RPE melanin is important in retinal health and we discuss its role as an oxidative stress scavenger.
Collapse
Affiliation(s)
- Tatjana Taubitz
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Alexander V Tschulakow
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Marina Tikhonovich
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Barbara Illing
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Yuan Fang
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Antje Biesemeier
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Sylvie Julien-Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Ulrich Schraermeyer
- Division of Experimental Vitreoretinal Surgery, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
45
|
Li Y, Zou X, Gao J, Cao K, Feng Z, Liu J. APR3 modulates oxidative stress and mitochondrial function in ARPE-19 cells. FASEB J 2018; 32:fj201800001RR. [PMID: 29792731 DOI: 10.1096/fj.201800001rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Impairment of retinal pigment epithelial (RPE) cells is considered a key contributor to the development of age-related macular degeneration. Apoptosis-related protein 3 (APR3) was recently discovered after treatment with all- trans retinoic acid, a pivotal molecule in RPE cells. However, the function of APR3 remains poorly understood. In the present study, we found that APR3 could interact with nuclear factor (erythroid-derived 2)-like 2, which is a regulator of phase II enzymes, and that knockdown of APR3 promoted nuclear factor (erythroid-derived 2)-like 2 nuclear translocation and activated expression of phase II enzymes, which was accompanied by improved redox status and mitochondrial activity. Overexpression of APR3 revealed its mitochondrial localization and induced a robust production of reactive oxygen species that was accompanied by impaired mitochondrial oxygen consumption, complex activity, and lower ATP content, resulting in significant changes in mitochondrial structure, which may contribute to cell apoptosis. High doses of all- trans retinoic acid treatment were found to significantly induce APR3 expression, increase reactive oxygen species levels, and decrease ATP content, which were abolished by knockdown of APR3. These results indicate that APR3 plays a vital role in regulating redox status and mitochondrial activity and thus suggest APR3 might be a potential novel target for study of treatment of age-related macular degeneration.-Li, Y., Zou, X., Gao, J., Cao, K., Feng, Z., Liu, J. APR3 modulates oxidative stress and mitochondrial function in ARPE-19 cells.
Collapse
Affiliation(s)
- Yuan Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; and
| | - Xuan Zou
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jing Gao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; and
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; and
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; and
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; and
| |
Collapse
|
46
|
Advani J, Subbannayya Y, Patel K, Khan AA, Patil AH, Jain AP, Solanki HS, Radhakrishnan A, Pinto SM, Sahasrabuddhe NA, Thomas JK, Mathur PP, Nair BG, Chang X, Prasad TSK, Sidransky D, Gowda H, Chatterjee A. Long-Term Cigarette Smoke Exposure and Changes in MiRNA Expression and Proteome in Non-Small-Cell Lung Cancer. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:390-403. [PMID: 28692419 DOI: 10.1089/omi.2017.0045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic exposure to cigarette smoke markedly increases the risk for lung cancer. Regulation of gene expression at the post-transcriptional level by miRNAs influences a variety of cancer-related interactomes. Yet, relatively little is known on the effects of long-term cigarette smoke exposure on miRNA expression and gene regulation. NCI-H292 (H292) is a cell line sensitive to cigarette smoke with mucoepidermoid characteristics in culture. We report, in this study, original observations on long-term (12 months) cigarette smoke effects in the H292 cell line, using microarray-based miRNA expression profiling, and stable isotopic labeling with amino acids in cell culture-based quantitative proteomic analysis. We identified 112 upregulated and 147 downregulated miRNAs (by twofold) in cigarette smoke-treated H292 cells. The liquid chromatography-tandem mass spectrometry analysis identified 3,959 proteins, of which, 303 proteins were overexpressed and 112 proteins downregulated (by twofold). We observed 39 miRNA target pairs (proven targets) that were differentially expressed in response to chronic cigarette smoke exposure. Gene ontology analysis of the target proteins revealed enrichment of proteins in biological processes driving metabolism, cell communication, and nucleic acid metabolism. Pathway analysis revealed the enrichment of phagosome maturation, antigen presentation pathway, nuclear factor erythroid 2-related factor 2-mediated oxidative stress response, and cholesterol biosynthesis pathways in cigarette smoke-exposed cells. In conclusion, this report makes an important contribution to knowledge on molecular changes in a lung cell line in response to long term cigarette smoke exposure. The findings might inform future strategies for drug target, biomarker and diagnostics innovation in lung cancer, and clinical oncology. These observations also call for further research on the extent to which continuing or stopping cigarette smoking in patients diagnosed with lung cancer translates into molecular and clinical outcomes.
Collapse
Affiliation(s)
- Jayshree Advani
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | - Yashwanth Subbannayya
- 2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - Krishna Patel
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Aafaque Ahmad Khan
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Arun H Patil
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Ankit P Jain
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Hitendra S Solanki
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,4 School of Biotechnology, KIIT University , Bhubaneswar, India
| | | | - Sneha M Pinto
- 2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | | | - Joji K Thomas
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India
| | | | - Bipin G Nair
- 3 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Xiaofei Chang
- 5 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - T S Keshava Prasad
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - David Sidransky
- 5 Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Harsha Gowda
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| | - Aditi Chatterjee
- 1 Institute of Bioinformatics , International Technology Park, Bangalore, India .,2 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India
| |
Collapse
|
47
|
Malek G, Busik J, Grant MB, Choudhary M. Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 2018; 13:359-377. [PMID: 29382242 DOI: 10.1080/17460441.2018.1430136] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The impact of vision debilitating diseases is a global public health concern, which will continue until effective preventative and management protocols are developed. Two retinal diseases responsible for the majority of vision loss in the working age adults and elderly populations are diabetic retinopathy (DR) and age-related macular degeneration (AMD), respectively. Model systems, which recapitulate aspects of human pathology, are valid experimental modalities that have contributed to the identification of signaling pathways involved in disease development and consequently potential therapies. Areas covered: The pathology of DR and AMD, which serve as the basis for designing appropriate models of disease, is discussed. The authors also review in vitro and in vivo models of DR and AMD and evaluate the utility of these models in exploratory and pre-clinical studies. Expert opinion: The complex nature of non-Mendelian diseases such as DR and AMD has made identification of effective therapeutic treatments challenging. However, the authors believe that while in vivo models are often criticized for not being a 'perfect' recapitulation of disease, they have been valuable experimentally when used with consideration of the strengths and limitations of the experimental model selected and have a place in the drug discovery process.
Collapse
Affiliation(s)
- Goldis Malek
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pathology , Duke University School of Medicine , Durham , NC , USA
| | - Julia Busik
- c Department of Physiology , Michigan State University , East Lansing , MI , USA
| | - Maria B Grant
- d Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , Al , USA
| | - Mayur Choudhary
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
48
|
Szczesny B, Marcatti M, Ahmad A, Montalbano M, Brunyánszki A, Bibli SI, Papapetropoulos A, Szabo C. Mitochondrial DNA damage and subsequent activation of Z-DNA binding protein 1 links oxidative stress to inflammation in epithelial cells. Sci Rep 2018; 8:914. [PMID: 29343810 PMCID: PMC5772643 DOI: 10.1038/s41598-018-19216-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022] Open
Abstract
This report identifies mitochondrial DNA (mtDNA) as a target and active mediator that links low-level oxidative stress to inflammatory response in pulmonary epithelial cells. Extrusion of mtDNA into the bronchoalveolar lavage fluid occurs as an early event in mice subjected to cigarette smoke injury, concomitantly with the depletion of mtDNA in the lung tissue. In cultured lung epithelial cells, prolonged, low-level oxidative stress damages the mtDNA, without any detectable damage to the nuclear DNA. In turn, cellular depletion of the mtDNA occurs, together with a transient remodeling of cellular bioenergetics and morphology - all without any detectable impairment in overall cell viability. Damaged mtDNA first enters the cytoplasm, where it binds to Z-DNA binding protein 1 (ZBP1) and triggers inflammation via the TANK-binding kinase 1 /interferon regulatory factor 3 signaling pathway. Fragments of the mtDNA are subsequently released into the extracellular space via exosomes. MtDNA-containing exosomes are capable of inducing an inflammatory response in naïve (non-oxidatively stressed) epithelial cells. In vivo, administration of isolated mtDNA into the in lungs of naïve mice induces the production of pro-inflammatory mediators, without histopathologic evidence of tissue injury. We propose that mtDNA-specific damage, and subsequent activation of the ZBP1 pathway, is a mechanism that links prolonged, low-level oxidative stress to autocrine and paracrine inflammation during the early stages of inflammatory lung disease.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Michela Marcatti
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Akbar Ahmad
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mauro Montalbano
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA
| | - Attila Brunyánszki
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Andreas Papapetropoulos
- Faculty of Pharmacy, University of Athens, Athens, Greece.,Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
49
|
Ischemic Retinopathies: Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3940241. [PMID: 29410732 PMCID: PMC5749295 DOI: 10.1155/2017/3940241] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022]
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity (ROP), diabetic retinopathy (DR), and (in many cases) age-related macular degeneration (AMD), are ocular disorders characterized by an initial phase of microvascular changes that results in ischemia, followed by a second phase of abnormal neovascularization that may culminate into retinal detachment and blindness. IRs are complex retinal conditions in which several factors play a key role during the development of the different pathological stages of the disease. Increasing evidence reveals that oxidative stress and inflammatory processes are important contributors to the pathogenesis of IRs. Despite the beneficial effects of the photocoagulation and anti-VEGF therapy during neovascularization phase, the need to identify novel targets to prevent initial phases of these ocular pathologies is still needed. In this review, we provide an update on the involvement of oxidative stress and inflammation in the progression of IRs and address some therapeutic interventions by using antioxidants and anti-inflammatory agents.
Collapse
|
50
|
Complement factor H in AMD: Bridging genetic associations and pathobiology. Prog Retin Eye Res 2017; 62:38-57. [PMID: 28928087 DOI: 10.1016/j.preteyeres.2017.09.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/08/2017] [Accepted: 09/13/2017] [Indexed: 01/28/2023]
Abstract
Age-Related Macular Degeneration (AMD) is a complex multifactorial disease characterized in its early stages by lipoprotein accumulations in Bruch's Membrane (BrM), seen on fundoscopic exam as drusen, and in its late forms by neovascularization ("wet") or geographic atrophy of the Retinal Pigmented Epithelial (RPE) cell layer ("dry"). Genetic studies have strongly supported a relationship between the alternative complement cascade, in particular the common H402 variant in Complement Factor H (CFH) and development of AMD. However, the functional significance of the CFH Y402H polymorphism remains elusive. In this article, we critically review the literature surrounding the functional significance of this polymorphism. Furthermore, based on our group's studies we propose a model in which CFH H402 affects CFH binding to heparan sulfate proteoglycans leading to accelerated lipoprotein accumulation in BrM and drusen progression. We also review the literature on the role of other complement components in AMD pathobiologies, including C3a, C5a and the membrane attack complex (MAC), and on transgenic mouse models developed to interrogate in vivo the effects of the CFH Y402H polymorphism.
Collapse
|