1
|
Lin Y, Pascall DJ. Characterisation of putative novel tick viruses and zoonotic risk prediction. Ecol Evol 2024; 14:e10814. [PMID: 38259958 PMCID: PMC10800298 DOI: 10.1002/ece3.10814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 01/24/2024] Open
Abstract
Tick-associated viruses remain a substantial zoonotic risk worldwide, so knowledge of the diversity of tick viruses has potential health consequences. Despite their importance, large amounts of sequences in public data sets from tick meta-genomic and -transcriptomic projects remain unannotated, sequence data that could contain undocumented viruses. Through data mining and bioinformatic analysis of more than 37,800 public meta-genomic and -transcriptomic data sets, we found 83 unannotated contigs exhibiting high identity with known tick viruses. These putative viral contigs were classified into three RNA viral families (Alphatetraviridae, Orthomyxoviridae and Chuviridae) and one DNA viral family (Asfarviridae). After manual checking of quality and dissimilarity towards other sequences in the data set, these 83 contigs were reduced to five contigs in the Alphatetraviridae from four putative viruses, four in the Orthomyxoviridae from two putative viruses and one in the Chuviridae which clustered with known tick-associated viruses, forming a separate clade within the viral families. We further attempted to assess which previously known tick viruses likely represent zoonotic risks and thus deserve further investigation. We ranked the human infection potential of 133 known tick-associated viruses using a genome composition-based machine learning model. We found five high-risk tick-associated viruses (Langat virus, Lonestar tick chuvirus 1, Grotenhout virus, Taggert virus and Johnston Atoll virus) that have not been known to infect human and two viral families (Nairoviridae and Phenuiviridae) that contain a large proportion of potential zoonotic tick-associated viruses. This adds to the knowledge of tick virus diversity and highlights the importance of surveillance of newly emerging tick-associated diseases.
Collapse
Affiliation(s)
- Yuting Lin
- MRC Biostatistics UnitUniversity of CambridgeCambridgeUK
- Royal Veterinary CollegeUniversity of LondonLondonUK
| | | |
Collapse
|
2
|
Rong Lee M, Kim JC, Eun Park S, Kim WJ, Su Kim J. Detection of Viral Genes in Metarhizium anisopliae JEF-290-infected longhorned tick, Haemaphysalis longicornis using transcriptome analysis. J Invertebr Pathol 2023; 198:107926. [PMID: 37087092 DOI: 10.1016/j.jip.2023.107926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Ticks are carriers of viruses that can cause disease in humans and animals. The longhorned ticks (Haemaphysalis longicornis; LHT), for example, mediates the severe fever with thrombocytopenia syndrome virus (SFTSV) in humans, and the population of ticks is growing due to increases in temperature caused by climate change. As ticks carry primarily RNA viruses, there is a need to study the possibility of detecting new viruses through tick virome analysis. In this study, viruses in LHTs collected in Korea were investigated and virus titers in ticks exposed to the entomopathogenic fungus Metarhizium anisopliae JEF-290 were analyzed. Total RNA was extracted from the collected ticks, and short reads were obtained from Illumina sequencing. A total of 50,024 contigs with coding capacity were obtained after de novo assembly of the reads in the metaSPAdes genome assembler. A series of BLAST-based analyses using the GenBank database was performed to screen viral contigs, and three putative virus species were identified from the tick meta-transcriptome, such as Alongshan virus (ALSV), Denso virus and Taggert virus. Measurements of virus-expression levels of infected and non-infected LHTs failed to detect substantial differences in expression levels. However, we suggest that LHT can spread not only SFTSV, but also various other disease-causing viruses over large areas of the world. From the phylogenetic analysis of ALSV glycoproteins, genetic differences in the ALSV could be due to host differences as well as regional differences. Viral metagenome analysis can be used as a tool to manage future outbreaks of disease caused by ticks by detecting unknown viruses.
Collapse
Affiliation(s)
- Mi Rong Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea
| | - Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea
| | - So Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea
| | | | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54596, Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Republic of Korea.
| |
Collapse
|
3
|
O'Brien CA, Huang B, Warrilow D, Hazlewood JE, Bielefeldt-Ohmann H, Hall-Mendelin S, Pegg CL, Harrison JJ, Paramitha D, Newton ND, Schulz BL, Suhrbier A, Hobson-Peters J, Hall RA. Extended characterisation of five archival tick-borne viruses provides insights for virus discovery in Australian ticks. Parasit Vectors 2022; 15:59. [PMID: 35180893 PMCID: PMC8857802 DOI: 10.1186/s13071-022-05176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background A subset of Australians who have been bitten by ticks experience a complex of chronic and debilitating symptoms which cannot be attributed to the known pathogenic species of bacteria present in Australia. As a result, there has been a renewed effort to identify and characterise viruses in Australian terrestrial ticks. Recent transcriptome sequencing of Ixodes and Amblyomma ticks has revealed the presence of multiple virus sequences. However, without virus isolates our ability to understand the host range and pathogenesis of newly identified viruses is limited. We have established a successful method for high-throughput virus discovery and isolation in mosquitoes using antibodies to double-stranded RNA. In this study we sought to characterise five archival tick-borne viruses to adapt our virus discovery protocol for Australian ticks. Methods We performed virus characterisation using a combination of bioinformatic sequence analysis and in vitro techniques including replication kinetics, antigenic profiling, virus purification and mass spectrometry. Results Our sequence analysis of Nugget virus, Catch-me-Cave virus and Finch Creek virus revealed marked genetic stability in isolates collected from the same location approximately 30 years apart. We demonstrate that the Ixodes scapularis-derived ISE6 cell line supports replication of Australian members of the Flaviviridae, Nairoviridae, Phenuiviridae and Reoviridae families, including Saumarez Reef virus (SREV), a flavivirus isolated from the soft tick Ornithodoros capensis. While antibodies against double-stranded RNA could be used to detect replication of a tick-borne reovirus and mosquito-borne flavivirus, the tick-borne flaviviruses Gadgets Gully virus and SREV could not be detected using this method. Finally, four novel virus-like sequences were identified in transcriptome sequencing of the Australian native tick Ixodes holocyclus. Conclusions Genetic and antigenic characterisations of archival viruses in this study confirm that three viruses described in 2002 represent contemporary isolates of virus species first identified 30 years prior. Our findings with antibodies to double-stranded RNA highlight an unusual characteristic shared by two Australian tick-borne flaviviruses. Finally, comparative growth kinetics analyses of Australian tick-borne members of the Flaviviridae, Nairoviridae, Phenuiviridae and Reoviridae families in ISE6 and BSR cells will provide a useful resource for isolation of Australian tick-borne viruses using existing cell lines. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05176-z.
Collapse
Affiliation(s)
- Caitlin A O'Brien
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Bixing Huang
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - David Warrilow
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - Jessamine E Hazlewood
- Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology, Forensic and Scientific Services, Department of Health, P.O. Box 594, Archerfield, QLD, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Jessica J Harrison
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Natalee D Newton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Andreas Suhrbier
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.,Inflammation Biology Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia
| | - Roy A Hall
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, St Lucia, QLD, 4067, Australia.
| |
Collapse
|
4
|
Spatial and temporal aggregation of albatross chick mortality events in the Falklands suggests a role for an unidentified infectious disease. Polar Biol 2021. [DOI: 10.1007/s00300-020-02797-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Vanstreels RET, Palma RL, Mironov SV. Arthropod parasites of Antarctic and Subantarctic birds and pinnipeds: A review of host-parasite associations. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:275-290. [PMID: 33101906 PMCID: PMC7569742 DOI: 10.1016/j.ijppaw.2020.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 10/25/2022]
Abstract
Due to its cold and dry climate and scarcity of ice-free land, Antarctica has one of the most extreme environments on our planet. To survive in the Antarctic region, parasitic arthropods must either remain closely associated with their hosts throughout the entire life cycle or develop physiological adaptations to survive in the terrestrial habitat while their hosts are away foraging at sea or overwintering at lower latitudes. Forty-eight species of birds and seven species of pinnipeds breed in the Antarctic region, with 158 species/subspecies of parasitic arthropods recorded thus far, comprising: sucking lice (Echinophthiriidae), chewing lice (Menoponidae, Philopteridae), fleas (Ceratophyllidae, Pygiopsyllidae, Rhopalopsyllidae), pentastomes (Reighardiidae), hard ticks (Ixodidae), nest-associated haematophagous mites (Laelapidae), nasal mites (Halarachnidae, Rhinonyssidae) and feather mites (Alloptidae, Avenzoariidae, Xolalgidae, Freyanidae). In this review, we provide an updated compilation of the available information on the host-parasite associations of arthropods infesting birds and pinnipeds in the Antarctic region, and discuss some over-arching ecological patterns and gaps of knowledge.
Collapse
Affiliation(s)
| | - Ricardo L Palma
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Sergey V Mironov
- Zoological Institute, Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
6
|
Pettersson JHO, Ellström P, Ling J, Nilsson I, Bergström S, González-Acuña D, Olsen B, Holmes EC. Circumpolar diversification of the Ixodes uriae tick virome. PLoS Pathog 2020; 16:e1008759. [PMID: 32745135 PMCID: PMC7425989 DOI: 10.1371/journal.ppat.1008759] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/13/2020] [Accepted: 06/29/2020] [Indexed: 11/19/2022] Open
Abstract
Ticks (order: Ixodida) are a highly diverse and ecologically important group of ectoparasitic blood-feeding organisms. One such species, the seabird tick (Ixodes uriae), is widely distributed around the circumpolar regions of the northern and southern hemispheres. It has been suggested that Ix. uriae spread from the southern to the northern circumpolar region millions of years ago and has remained isolated in these regions ever since. Such a profound biographic subdivision provides a unique opportunity to determine whether viruses associated with ticks exhibit the same evolutionary patterns as their hosts. To test this, we collected Ix. uriae specimens near a Gentoo penguin (Pygoscelis papua) colony at Neko harbour, Antarctica, and from migratory birds—the Razorbill (Alca torda) and the Common murre (Uria aalge)—on Bonden island, northern Sweden. Through meta-transcriptomic next-generation sequencing we identified 16 RNA viruses, seven of which were novel. Notably, we detected the same species, Ronne virus, and two closely related species, Bonden virus and Piguzov virus, in both hemispheres indicating that there have been at least two cross-circumpolar dispersal events. Similarly, we identified viruses discovered previously in other locations several decades ago, including Gadgets Gully virus, Taggert virus and Okhotskiy virus. By identifying the same or closely related viruses in geographically disjunct sampling locations we provide evidence for virus dispersal within and between the circumpolar regions. In marked contrast, our phylogenetic analysis revealed no movement of the Ix. uriae tick hosts between the same locations. Combined, these data suggest that migratory birds are responsible for the movement of viruses at both local and global scales. As host populations diverge, so may those microorganisms, including viruses, that are dependent on those hosts. To examine this key issue in host-microbe evolution we compared the co-phylogenies of the seabird tick, Ixodes uriae, and their RNA viruses sampled from the far northern and southern hemispheres. Despite the huge geographic distance between them, phylogeographic analysis reveals that the same and closely related viruses were found both within and between the northern and southern circumpolar regions, most likely reflecting transfer by virus-infected migratory birds. In contrast, genomic data suggested that the Ix. uriae populations were phylogenetically distinct between the northern and southern hemispheres. This work emphasises the importance of migratory birds and ticks as vectors and sources of virus dispersal and introduction at both the local and global scales.
Collapse
Affiliation(s)
- John H.-O. Pettersson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JHOP); (ECH)
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jiaxin Ling
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ingela Nilsson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Sven Bergström
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Daniel González-Acuña
- Laboratorio de Parásitos y Enfermedades de Fauna silvestre, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (JHOP); (ECH)
| |
Collapse
|
7
|
Sustained RNA virome diversity in Antarctic penguins and their ticks. ISME JOURNAL 2020; 14:1768-1782. [PMID: 32286545 PMCID: PMC7305176 DOI: 10.1038/s41396-020-0643-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 01/07/2023]
Abstract
Despite its isolation and extreme climate, Antarctica is home to diverse fauna and associated microorganisms. It has been proposed that the most iconic Antarctic animal, the penguin, experiences low pathogen pressure, accounting for their disease susceptibility in foreign environments. There is, however, a limited understanding of virome diversity in Antarctic species, the extent of in situ virus evolution, or how it relates to that in other geographic regions. To assess whether penguins have limited microbial diversity we determined the RNA viromes of three species of penguins and their ticks sampled on the Antarctic peninsula. Using total RNA sequencing we identified 107 viral species, comprising likely penguin associated viruses (n = 13), penguin diet and microbiome associated viruses (n = 82), and tick viruses (n = 8), two of which may have the potential to infect penguins. Notably, the level of virome diversity revealed in penguins is comparable to that seen in Australian waterbirds, including many of the same viral families. These data run counter to the idea that penguins are subject to lower pathogen pressure. The repeated detection of specific viruses in Antarctic penguins also suggests that rather than being simply spill-over hosts, these animals may act as key virus reservoirs.
Collapse
|
8
|
Hoffmann AB, Mazelier M, Léger P, Lozach PY. Deciphering Virus Entry with Fluorescently Labeled Viral Particles. Methods Mol Biol 2019; 1836:159-183. [PMID: 30151573 DOI: 10.1007/978-1-4939-8678-1_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
To infect host cells, viruses have to gain access to the intracellular compartment. The infection process starts with the attachment of viruses to the cell surface. Then a complex series of events, highly dynamic, tightly intricate, and often hard to investigate, follows. This includes virus displacement at the plasma membrane, binding to receptors, signaling, internalization, and release of the viral genome and material into the cytosol. In the past decades, the emergence of sensitive, accurate fluorescence-based technologies has opened new perspectives of investigations in the field. Visualization of single viral particles in fixed and living cells as well as quantification of each virus entry step has been made possible. Here we describe the procedure to fluorescently label viral particles. We also illustrate how to use this powerful tool to decipher the entry of viruses with the most recent fluorescence-based techniques such as high-speed confocal and total internal reflection microscopy, flow cytometry, and fluorimetry.
Collapse
Affiliation(s)
- Anja B Hoffmann
- From CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Magalie Mazelier
- From CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Psylvia Léger
- From CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pierre-Yves Lozach
- From CellNetworks Cluster of Excellence and Department of Infectious Diseases, Virology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
9
|
Salton M, Kliska K, Carmichael N, Alderman R. Population status of the endemic royal penguin (Eudyptes schlegeli) at Macquarie Island. Polar Biol 2019. [DOI: 10.1007/s00300-019-02470-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
|
11
|
Abstract
Ticks are important vectors for the transmission of pathogens including viruses. The viruses carried by ticks also known as tick-borne viruses (TBVs), contain a large group of viruses with diverse genetic properties and are concluded in two orders, nine families, and at least 12 genera. Some members of the TBVs are notorious agents causing severe diseases with high mortality rates in humans and livestock, while some others may pose risks to public health that are still unclear to us. Herein, we review the current knowledge of TBVs with emphases on the history of virus isolation and identification, tick vectors, and potential pathogenicity to humans and animals, including assigned species as well as the recently discovered and unassigned species. All these will promote our understanding of the diversity of TBVs, and will facilitate the further investigation of TBVs in association with both ticks and vertebrate hosts.
Collapse
Affiliation(s)
- Junming Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
12
|
No indication of arthropod-vectored viruses in mosquitoes (Diptera: Culicidae) collected on Greenland and Svalbard. Polar Biol 2018. [DOI: 10.1007/s00300-017-2242-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
O'Brien CA, Hall RA, Lew-Tabor A. Could Australian ticks harbour emerging viral pathogens? MICROBIOLOGY AUSTRALIA 2018. [DOI: 10.1071/ma18060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tick-borne viruses contribute significantly to the disease burden in Europe, Asia and the US. Historically, some of the most well-known viruses from this group include the human pathogens, tick-borne encephalitis virus and Crimean-Congo haemorrhagic fever virus. More recently multiple emerging tick-borne viruses have been associated with severe disease in humans with Bourbon virus and Heartland virus isolated from patients in the US and severe fever with thrombocytopenia syndrome virus reported from China, Japan, and South Korea. Such examples highlight the need for broader approaches to survey arthropod pathogens, to encompass not only known but novel pathogens circulating in Australian tick populations.
Collapse
|
14
|
Gauci PJ, McAllister J, Mitchell IR, Cybinski D, St George T, Gubala AJ. Genomic Characterisation of Vinegar Hill Virus, An Australian Nairovirus Isolated in 1983 from Argas Robertsi Ticks Collected from Cattle Egrets. Viruses 2017; 9:v9120373. [PMID: 29206186 PMCID: PMC5744148 DOI: 10.3390/v9120373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
This report describes the near complete genomic sequence and subsequent analysis of Vinegar Hill virus (VINHV; tentative member of the genus Orthonairovirus, family Nairoviridae, order Bunyavirales). VINHV is the second nairovirus reported to be isolated on mainland Australia and the first to be sequenced and analysed. Our genetic analysis shows that VINHV belongs to the Dera Ghazi Khan genogroup, a group of viruses previously isolated in other parts of the world including Asia, South Africa, and the USA. We discuss possible routes of entry for nairoviruses into Australia and the need to understand the virome of Australian ticks in the context of new and emerging disease.
Collapse
Affiliation(s)
- Penelope J Gauci
- Land Division, Defence Science & Technology Group, Fishermans Bend, Victoria 3207, Australia.
| | - Jane McAllister
- Land Division, Defence Science & Technology Group, Fishermans Bend, Victoria 3207, Australia.
| | - Ian R Mitchell
- Land Division, Defence Science & Technology Group, Fishermans Bend, Victoria 3207, Australia.
| | - Daisy Cybinski
- Formerly: Long Pocket Laboratories, Commonwealth Scientific and Industrial Research Organisation, Indooroopilly, Queensland 4068, Australia.
| | - Toby St George
- Formerly: Long Pocket Laboratories, Commonwealth Scientific and Industrial Research Organisation, Indooroopilly, Queensland 4068, Australia.
| | - Aneta J Gubala
- Land Division, Defence Science & Technology Group, Fishermans Bend, Victoria 3207, Australia.
| |
Collapse
|
15
|
Wanelik KM, Burthe SJ, Harris MP, Nunn MA, Godfray HCJ, Sheldon BC, McLean AR, Wanless S. Investigating the effects of age-related spatial structuring on the transmission of a tick-borne virus in a colonially breeding host. Ecol Evol 2017; 7:10930-10940. [PMID: 29299270 PMCID: PMC5743484 DOI: 10.1002/ece3.3612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 11/11/2022] Open
Abstract
Higher pathogen and parasite transmission is considered a universal cost of colonial breeding due to the physical proximity of colony members. However, this has rarely been tested in natural colonies, which are structured entities, whose members interact with a subset of individuals and differ in their infection histories. We use a population of common guillemots, Uria aalge, infected by a tick-borne virus, Great Island virus, to explore how age-related spatial structuring can influence the infection costs borne by different members of a breeding colony. Previous work has shown that the per-susceptible risk of infection (force of infection) is different for prebreeding (immature) and breeding (adult) guillemots which occupy different areas of the colony. We developed a mathematical model which showed that this difference in infection risk can only be maintained if mixing between these age groups is low. To estimate mixing between age groups, we recorded the movements of 63 individually recognizable, prebreeding guillemots in four different parts of a major colony in the North Sea during the breeding season. Prebreeding guillemots infrequently entered breeding areas (in only 26% of watches), though with marked differences in frequency of entry among individuals and more entries toward the end of the breeding season. Once entered, the proportion of time spent in breeding areas by prebreeding guillemots also varied between different parts of the colony. Our data and model predictions indicate low levels of age-group mixing, limiting exposure of breeding guillemots to infection. However, they also suggest that prebreeding guillemots have the potential to play an important role in driving infection dynamics. This highlights the sensitivity of breeding colonies to changes in the behavior of their members-a subject of particular importance in the context of global environmental change.
Collapse
Affiliation(s)
- Klara M. Wanelik
- Department of ZoologyUniversity of OxfordOxfordUK
- Centre for Ecology & HydrologyWallingfordUK
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Viruses associated with Antarctic wildlife: From serology based detection to identification of genomes using high throughput sequencing. Virus Res 2017; 243:91-105. [PMID: 29111456 PMCID: PMC7114543 DOI: 10.1016/j.virusres.2017.10.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022]
Abstract
Summary of identified viruses associated with Antarctic animals. Genomes of Antarctic animals viruses have only been determine in the last five years. Limited knowledge of animal virology relative to environmental virology in Antarctica.
The Antarctic, sub-Antarctic islands and surrounding sea-ice provide a unique environment for the existence of organisms. Nonetheless, birds and seals of a variety of species inhabit them, particularly during their breeding seasons. Early research on Antarctic wildlife health, using serology-based assays, showed exposure to viruses in the families Birnaviridae, Flaviviridae, Herpesviridae, Orthomyxoviridae and Paramyxoviridae circulating in seals (Phocidae), penguins (Spheniscidae), petrels (Procellariidae) and skuas (Stercorariidae). It is only during the last decade or so that polymerase chain reaction-based assays have been used to characterize viruses associated with Antarctic animals. Furthermore, it is only during the last five years that full/whole genomes of viruses (adenoviruses, anelloviruses, orthomyxoviruses, a papillomavirus, paramyoviruses, polyomaviruses and a togavirus) have been sequenced using Sanger sequencing or high throughput sequencing (HTS) approaches. This review summaries the knowledge of animal Antarctic virology and discusses potential future directions with the advent of HTS in virus discovery and ecology.
Collapse
|
17
|
Novel vagrant records and occurrence of vector-borne pathogens in King Penguins (Aptenodytes patagonicus) in South Africa. Polar Biol 2017. [DOI: 10.1007/s00300-017-2171-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Huang B, Firth C, Watterson D, Allcock R, Colmant AMG, Hobson-Peters J, Kirkland P, Hewitson G, McMahon J, Hall-Mendelin S, van den Hurk AF, Warrilow D. Genetic Characterization of Archived Bunyaviruses and their Potential for Emergence in Australia. Emerg Infect Dis 2016; 22:833-40. [PMID: 27088588 PMCID: PMC4861517 DOI: 10.3201/eid2205.151566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genetic relationships between bunyaviruses from Australia and pathogenic bunyaviruses from elsewhere indicate emergence potential. To better understand the diversity of bunyaviruses and their circulation in Australia, we sequenced 5 viruses (Gan Gan, Trubanaman, Kowanyama, Yacaaba, and Taggert) isolated and serologically identified 4 decades ago as members of the family Bunyaviridae. Gan Gan and Trubanaman viruses almost perfectly matched 2 recently isolated, purportedly novel viruses, Salt Ash and Murrumbidgee viruses, respectively. Kowanyama and Yacaaba viruses were identified as being related to members of a large clade containing pathogenic viruses. Taggert virus was confirmed as being a nairovirus; several viruses of this genus are pathogenic to humans. The genetic relationships and historical experimental infections in mice reveal the potential for these viruses to lead to disease emergence.
Collapse
|
19
|
First record of Babesia sp. in Antarctic penguins. Ticks Tick Borne Dis 2016; 7:498-501. [PMID: 26874670 DOI: 10.1016/j.ttbdis.2016.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
Abstract
This is the first reported case of Babesia sp. in Antarctic penguins, specifically a population of Chinstrap penguins (Pygoscelis antarctica) in the Vapour Col penguin rookery in Deception Island, South Shetlands, Antarctica. We collected peripheral blood from 50 adult and 30 chick Chinstrap penguins. Examination of the samples by microscopy showed intraerythrocytic forms morphologically similar to other avian Babesia species in 12 Chinstrap penguin adults and seven chicks. The estimated parasitaemias ranged from 0.25×10(-2)% to 0.75×10(-2)%. Despite the low number of parasites found in blood smears, semi-nested PCR assays yielded a 274 bp fragment in 12 of the 19 positive blood samples found by microscopy. Sequencing revealed that the fragment was 97% similar to Babesia sp. 18S rRNA from Australian Little Penguins (Eudyptula minor) confirming presence of the parasite. Parasite prevalence estimated by microscopy in adults and chicks was higher (24% vs. 23.3%, respectively) than found by semi-nested PCR (16% vs. 13.3% respectively). Although sampled penguins were apparently healthy, the effect of Babesia infection in these penguins is unknown. The identification of Babesia sp. in Antarctic penguins is an important finding. Ixodes uriae, as the only tick species present in the Antarctic Peninsula, is the key to understanding the natural history of this parasite. Future work should address the transmission dynamics and pathogenicity of Babesia sp. in Chinstrap penguin as well as in other penguin species, such as Gentoo penguin (Pygoscelis papua) and Adélie penguin (Pygoscelis adeliae), present within the tick distribution range in the Antarctic Peninsula.
Collapse
|
20
|
Hobson-Peters J, Warrilow D, McLean BJ, Watterson D, Colmant AMG, van den Hurk AF, Hall-Mendelin S, Hastie ML, Gorman JJ, Harrison JJ, Prow NA, Barnard RT, Allcock R, Johansen CA, Hall RA. Discovery and characterisation of a new insect-specific bunyavirus from Culex mosquitoes captured in northern Australia. Virology 2016; 489:269-81. [PMID: 26773387 DOI: 10.1016/j.virol.2015.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 09/21/2015] [Accepted: 11/05/2015] [Indexed: 11/25/2022]
Abstract
Insect-specific viruses belonging to significant arboviral families have recently been discovered. These viruses appear to be maintained within the insect population without the requirement for replication in a vertebrate host. Mosquitoes collected from Badu Island in the Torres Strait in 2003 were analysed for insect-specific viruses. A novel bunyavirus was isolated in high prevalence from Culex spp. The new virus, provisionally called Badu virus (BADUV), replicated in mosquito cells of both Culex and Aedes origin, but failed to replicate in vertebrate cells. Genomic sequencing revealed that the virus was distinct from sequenced bunyavirus isolates reported to date, but phylogenetically clustered most closely with recently discovered mosquito-borne, insect-specific bunyaviruses in the newly proposed Goukovirus genus. The detection of a functional furin cleavage motif upstream of the two glycoproteins in the M segment-encoded polyprotein suggests that BADUV may employ a unique strategy to process the virion glycoproteins.
Collapse
Affiliation(s)
- Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia.
| | - David Warrilow
- Public Health Virology Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland 4108, Australia
| | - Breeanna J McLean
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Agathe M G Colmant
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Andrew F van den Hurk
- Public Health Virology Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland 4108, Australia
| | - Sonja Hall-Mendelin
- Public Health Virology Forensic and Scientific Services, Department of Health, Queensland Government, PO Box 594, Archerfield, Queensland 4108, Australia
| | - Marcus L Hastie
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Jeffrey J Gorman
- Protein Discovery Centre, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Natalie A Prow
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Ross T Barnard
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Richard Allcock
- Lottery West State Biomedical Facility - Genomics, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Immunology, Pathwest Laboratory Medicine Western Australia, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Cheryl A Johansen
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia 4072, Queensland, Australia.
| |
Collapse
|
21
|
Muñoz-Leal S, González-Acuña D. The tick Ixodes uriae (Acari: Ixodidae): Hosts, geographical distribution, and vector roles. Ticks Tick Borne Dis 2015; 6:843-68. [PMID: 26249749 DOI: 10.1016/j.ttbdis.2015.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 06/30/2015] [Accepted: 07/21/2015] [Indexed: 11/30/2022]
Abstract
The seabird tick Ixodes uriae White 1852, has the most extensive geographical distribution of all tick species, including Afrotropical, Australasian, Nearctic, Neotropical and Palearctic Zoogeographic Regions. Additionally, this tick species parasitizes a wide range of seabirds and constitutes a host for several viral and bacterial agents. Considering the current biological knowledge about this tick species, in this article we list localities, hosts, tick-borne microorganisms and viruses transmitted by I. uriae described in the literature and include new geographical records.
Collapse
Affiliation(s)
- Sebastián Muñoz-Leal
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 05508-270, Brasil; Departamento de Ciencias Pecuarias, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, CP 3780000, Chillán (Biobío), Chile.
| | - Daniel González-Acuña
- Departamento de Ciencias Pecuarias, Facultad de Ciencias Veterinarias, Universidad de Concepción, Av. Vicente Méndez 595, CP 3780000, Chillán (Biobío), Chile.
| |
Collapse
|
22
|
|
23
|
Cyclic avian mass mortality in the northeastern United States is associated with a novel orthomyxovirus. J Virol 2014; 89:1389-403. [PMID: 25392223 DOI: 10.1128/jvi.02019-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Since 1998, cyclic mortality events in common eiders (Somateria mollissima), numbering in the hundreds to thousands of dead birds, have been documented along the coast of Cape Cod, MA, USA. Although longitudinal disease investigations have uncovered potential contributing factors responsible for these outbreaks, detecting a primary etiological agent has proven enigmatic. Here, we identify a novel orthomyxovirus, tentatively named Wellfleet Bay virus (WFBV), as a potential causative agent of these outbreaks. Genomic analysis of WFBV revealed that it is most closely related to members of the Quaranjavirus genus within the family Orthomyxoviridae. Similar to other members of the genus, WFBV contains an alphabaculovirus gp64-like glycoprotein that was demonstrated to have fusion activity; this also tentatively suggests that ticks (and/or insects) may vector the virus in nature. However, in addition to the six RNA segments encoding the prototypical structural proteins identified in other quaranjaviruses, a previously unknown RNA segment (segment 7) encoding a novel protein designated VP7 was discovered in WFBV. Although WFBV shows low to moderate levels of sequence similarity to Quaranfil virus and Johnston Atoll virus, the original members of the Quaranjavirus genus, additional antigenic and genetic analyses demonstrated that it is closely related to the recently identified Cygnet River virus (CyRV) from South Australia, suggesting that WFBV and CyRV may be geographic variants of the same virus. Although the identification of WFBV in part may resolve the enigma of these mass mortality events, the details of the ecology and epidemiology of the virus remain to be determined. IMPORTANCE The emergence or reemergence of viral pathogens resulting in large-scale outbreaks of disease in humans and/or animals is one of the most important challenges facing biomedicine. For example, understanding how orthomyxoviruses such as novel influenza A virus reassortants and/or mutants emerge to cause epidemic or pandemic disease is at the forefront of current global health concerns. Here, we describe the emergence of a novel orthomyxovirus, Wellfleet Bay virus (WFBV), which has been associated with cyclic large-scale bird die-offs in the northeastern United States. This initial characterization study provides a foundation for further research into the evolution, epidemiology, and ecology of newly emerging orthomyxoviruses, such as WFBV, and their potential impacts on animal and/or human health.
Collapse
|
24
|
Tokarz R, Williams SH, Sameroff S, Sanchez Leon M, Jain K, Lipkin WI. Virome analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. J Virol 2014; 88:11480-92. [PMID: 25056893 PMCID: PMC4178814 DOI: 10.1128/jvi.01858-14] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 07/17/2014] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases. IMPORTANCE Ticks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Simon Hedley Williams
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Stephen Sameroff
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Maria Sanchez Leon
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| |
Collapse
|
25
|
Lasecka L, Baron MD. The molecular biology of nairoviruses, an emerging group of tick-borne arboviruses. Arch Virol 2014; 159:1249-65. [PMID: 24327094 PMCID: PMC7087186 DOI: 10.1007/s00705-013-1940-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/30/2013] [Indexed: 12/24/2022]
Abstract
The nairoviruses are a rapidly emerging group of tick-borne bunyaviruses that includes pathogens of humans (Crimean-Congo hemorrhagic fever virus [CCHFV]) and livestock (Nairobi sheep disease virus [NSDV], also known as Ganjam virus), as well as a large number of viruses for which the normal vertebrate host has not been established. Studies on this group of viruses have been fairly limited, not least because CCHFV is a BSL4 human pathogen, restricting the number of labs able to study the live virus, while NSDV, although highly pathogenic in naive animals, is not seen as a threat in developed countries, making it a low priority. Nevertheless, recent years have seen significant progress in our understanding of the biology of these viruses, particularly that of CCHFV, and this article seeks to draw together our existing knowledge to generate an overall picture of their molecular biology, underlining areas of particular ignorance for future studies.
Collapse
Affiliation(s)
- Lidia Lasecka
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Michael D. Baron
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| |
Collapse
|
26
|
Wilkinson DA, Dietrich M, Lebarbenchon C, Jaeger A, Le Rouzic C, Bastien M, Lagadec E, McCoy KD, Pascalis H, Le Corre M, Dellagi K, Tortosa P. Massive infection of seabird ticks with bacterial species related to Coxiella burnetii. Appl Environ Microbiol 2014; 80:3327-33. [PMID: 24657860 PMCID: PMC4018846 DOI: 10.1128/aem.00477-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/12/2014] [Indexed: 11/20/2022] Open
Abstract
Seabird ticks are known reservoirs of bacterial pathogens of medical importance; however, ticks parasitizing tropical seabirds have received less attention than their counterparts from temperate and subpolar regions. Recently, Rickettsia africae was described to infect seabird ticks of the western Indian Ocean and New Caledonia, constituting the only available data on bacterial pathogens associated with tropical seabird tick species. Here, we combined a pyrosequencing-based approach with a classical molecular analysis targeting bacteria of potential medical importance in order to describe the bacterial community in two tropical seabird ticks, Amblyomma loculosum and Carios (Ornithodoros) capensis. We also investigated the patterns of prevalence and host specificity within the biogeographical context of the western Indian Ocean islands. The bacterial community of the two tick species was characterized by a strong dominance of Coxiella and Rickettsia. Our data support a strict Coxiella-host tick specificity, a pattern resembling the one found for Rickettsia spp. in the same two seabird tick species. Both the high prevalence and stringent host tick specificity suggest that these bacteria may be tick symbionts with probable vertical transmission. Detailed studies of the pathogenicity of these bacteria will now be required to determine whether horizontal transmission can occur and to clarify their status as potential human pathogens. More generally, our results show that the combination of next generation sequencing with targeted detection/genotyping approaches proves to be efficient in poorly investigated fields where research can be considered to be starting from scratch.
Collapse
Affiliation(s)
- David A. Wilkinson
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Muriel Dietrich
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Camille Lebarbenchon
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Audrey Jaeger
- Laboratoire ECOMAR, FRE3560 INEE-CNRS, Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Céline Le Rouzic
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Laboratoire ECOMAR, FRE3560 INEE-CNRS, Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Matthieu Bastien
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Laboratoire ECOMAR, FRE3560 INEE-CNRS, Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Erwan Lagadec
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Institut de Recherche pour le Développement, Ste Clotilde, La Réunion, France
| | - Karen D. McCoy
- Unité Mixte de Recherche 5290 CNRS IRD UM1 UM2, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, Montpellier, France
| | - Hervé Pascalis
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Institut de Recherche pour le Développement, Ste Clotilde, La Réunion, France
| | - Matthieu Le Corre
- Laboratoire ECOMAR, FRE3560 INEE-CNRS, Université de La Réunion, Ste Clotilde, La Réunion, France
| | - Koussay Dellagi
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Institut de Recherche pour le Développement, Ste Clotilde, La Réunion, France
| | - Pablo Tortosa
- Centre de Recherche et de Veille sur les Maladies Émergentes dans l'Océan Indien (CRVOI), GIP CYROI, Ste Clotilde, La Réunion, France
- Université de La Réunion, Ste Clotilde, La Réunion, France
- Institut Écologie et Environnement, CNRS, Paris, France
| |
Collapse
|
27
|
Palacios G, Savji N, Travassos da Rosa A, Guzman H, Yu X, Desai A, Rosen GE, Hutchison S, Lipkin WI, Tesh R. Characterization of the Uukuniemi virus group (Phlebovirus: Bunyaviridae): evidence for seven distinct species. J Virol 2013; 87:3187-95. [PMID: 23283959 PMCID: PMC3592153 DOI: 10.1128/jvi.02719-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/24/2012] [Indexed: 11/20/2022] Open
Abstract
Evolutionary insights into the phleboviruses are limited because of an imprecise classification scheme based on partial nucleotide sequences and scattered antigenic relationships. In this report, the serologic and phylogenetic relationships of the Uukuniemi group viruses and their relationships with other recently characterized tick-borne phleboviruses are described using full-length genome sequences. We propose that the viruses currently included in the Uukuniemi virus group be assigned to five different species as follows: Uukuniemi virus, EgAn 1825-61 virus, Fin V707 virus, Chizé virus, and Zaliv Terpenia virus would be classified into the Uukuniemi species; Murre virus, RML-105-105355 virus, and Sunday Canyon virus would be classified into a Murre virus species; and Grand Arbaud virus, Precarious Point virus, and Manawa virus would each be given individual species status. Although limited sequence similarity was detected between current members of the Uukuniemi group and Severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus, a clear serological reaction was observed between some of them, indicating that SFTSV and Heartland virus should be considered part of the Uukuniemi virus group. Moreover, based on the genomic diversity of the phleboviruses and given the low correlation observed between complement fixation titers and genetic distance, we propose a system for classification of the Bunyaviridae based on genetic as well as serological data. Finally, the recent descriptions of SFTSV and Heartland virus also indicate that the public health importance of the Uukuniemi group viruses must be reevaluated.
Collapse
Affiliation(s)
- Gustavo Palacios
- United States Army Medical Research Institute for Infectious Diseases, Frederick, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dilcher M, Weidmann M. Confusions in orbivirus protein classification. Virol J 2012; 9:166. [PMID: 22909086 PMCID: PMC3494582 DOI: 10.1186/1743-422x-9-166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 07/24/2012] [Indexed: 11/24/2022] Open
Abstract
An extensive comparative analysis of orbivirus genomes revealed four cases of unclear numeration and protein designation, due to confused reference to protein size or segment size by which they are encoded. A concise nomenclature based on type species, sequence homology and functional characteristics independent of segment or protein size is suggested.
Collapse
Affiliation(s)
- Meik Dilcher
- Department of Virology, University Medical Center Göttingen, Kreuzbergring 57, D-37075, Göttingen, Germany.
| | | |
Collapse
|
29
|
Dilcher M, Hasib L, Lechner M, Wieseke N, Middendorf M, Marz M, Koch A, Spiegel M, Dobler G, Hufert FT, Weidmann M. Genetic characterization of Tribeč virus and Kemerovo virus, two tick-transmitted human-pathogenic Orbiviruses. Virology 2012; 423:68-76. [DOI: 10.1016/j.virol.2011.11.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 09/17/2011] [Accepted: 11/17/2011] [Indexed: 11/24/2022]
|
30
|
Gouleako virus isolated from West African mosquitoes constitutes a proposed novel genus in the family Bunyaviridae. J Virol 2011; 85:9227-34. [PMID: 21715500 DOI: 10.1128/jvi.00230-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The family Bunyaviridae is the most diversified family of RNA viruses. We describe a novel prototypic bunyavirus, tentatively named Gouléako virus, isolated from various mosquito species trapped in Côte d'Ivoire. The S segment comprised 1,087 nucleotides (nt), the M segment 3,188 nt, and the L segment 6,358 nt, constituting the shortest bunyavirus genome known so far. The virus had shorter genome termini than phleboviruses and showed no evidence of encoded NSs and NSm proteins. An uncharacterized 105-amino-acid (aa) putative open reading frame (ORF) was detected in the S segment. Genetic equidistance to other bunyaviruses (74 to 88% aa identity) and absence of serological cross-reactivity with phleboviruses suggested a proposed novel Bunyaviridae genus.
Collapse
|
31
|
Belhouchet M, Mohd Jaafar F, Tesh R, Grimes J, Maan S, Mertens PPC, Attoui H. Complete sequence of Great Island virus and comparison with the T2 and outer-capsid proteins of Kemerovo, Lipovnik and Tribec viruses (genus Orbivirus, family Reoviridae). J Gen Virol 2010; 91:2985-93. [PMID: 20739272 DOI: 10.1099/vir.0.024760-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The complete nucleotide sequence of Great Island virus (GIV) genome was determined, along with genome segments (Seg) 1, 2 and 6 of Kemerovo (KEMV), Lipovnik (LIPV) and Tribec (TRBV) viruses. All four viruses, together with Broadhaven virus, are currently classified within the species Great Island virus and have been isolated from ticks, birds or humans. Sequence comparisons showed that Seg-4 of GIV encoded the outer-capsid protein responsible for cell attachment, although it was approximately half the length of its counterpart in the Culicoides or mosquito-transmitted orbiviruses. A second overlapping ORF (in the +2 reading frame) was identified in Seg-9 of GIV, encoding a putative dsRNA-binding protein. Phylogenetic analyses of the RNA-dependent RNA polymerase (Pol) and T2 protein amino acid sequences indicated that the tick-borne orbiviruses represent an ancestral group from which the mosquito-borne orbiviruses have evolved. This mirrors the evolutionary relationships between the arthropod vectors of these viruses, supporting a co-speciation hypothesis for these arboviruses and their arthropod-vectors. Phylogenetic analyses of the T2 proteins of KEMV, LIPV, TRBV and GIV (showing 82% amino acid identity) correlated with the early classification of Great Island viruses as two distinct serocomplexes (Great Island and Kemerovo serocomplexes). Amino acid identity levels in the VP1(Pol) and T2 proteins between the two serocomplexes were 73 and 82%, respectively, whilst those between previously characterized Orbivirus species are 53-73% and 26-83%, respectively. These data suggest that, despite limited genome segment reassortment between these two groups, their current classification within the same Orbivirus species could be re-evaluated.
Collapse
Affiliation(s)
- Mourad Belhouchet
- Department of Vector-Borne Diseases, Institute for Animal Health, Pirbright, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Lobo FP, Mota BEF, Pena SDJ, Azevedo V, Macedo AM, Tauch A, Machado CR, Franco GR. Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. PLoS One 2009; 4:e6282. [PMID: 19617912 PMCID: PMC2707012 DOI: 10.1371/journal.pone.0006282] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 06/17/2009] [Indexed: 12/18/2022] Open
Abstract
Virus-host biological interaction is a continuous coevolutionary process involving both host immune system and viral escape mechanisms. Flaviviridae family is composed of fast evolving RNA viruses that infects vertebrate (mammals and birds) and/or invertebrate (ticks and mosquitoes) organisms. These host groups are very distinct life forms separated by a long evolutionary time, so lineage-specific anti-viral mechanisms are likely to have evolved. Flaviviridae viruses which infect a single host lineage would be subjected to specific host-induced pressures and, therefore, selected by them. In this work we compare the genomic evolutionary patterns of Flaviviridae viruses and their hosts in an attempt to uncover coevolutionary processes inducing common features in such disparate groups. Especially, we have analyzed dinucleotide and codon usage patterns in the coding regions of vertebrate and invertebrate organisms as well as in Flaviviridae viruses which specifically infect one or both host types. The two host groups posses very distinctive dinucleotide and codon usage patterns. A pronounced CpG under-representation was found in the vertebrate group, possibly induced by the methylation-deamination process, as well as a prominent TpA decrease. The invertebrate group displayed only a TpA frequency reduction bias. Flaviviridae viruses mimicked host nucleotide motif usage in a host-specific manner. Vertebrate-infecting viruses possessed under-representation of CpG and TpA, and insect-only viruses displayed only a TpA under-representation bias. Single-host Flaviviridae members which persistently infect mammals or insect hosts (Hepacivirus and insect-only Flavivirus, respectively) were found to posses a codon usage profile more similar to that of their hosts than to related Flaviviridae. We demonstrated that vertebrates and mosquitoes genomes are under very distinct lineage-specific constraints, and Flaviviridae viruses which specifically infect these lineages appear to be subject to the same evolutionary pressures that shaped their host coding regions, evidencing the lineage-specific coevolutionary processes between the viral and host groups.
Collapse
Affiliation(s)
- Francisco P Lobo
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|