1
|
Shortreed NA, Panicker AJ, Mangalaparthi KK, Zhong J, Pandey A, Griffiths LG. Optimization of a high-throughput shotgun immunoproteomics pipeline for antigen identification. J Proteomics 2023; 281:104906. [PMID: 37059220 PMCID: PMC10399726 DOI: 10.1016/j.jprot.2023.104906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/28/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Identification of proteins which initiate and/or perpetuate adaptive immune responses has potential to greatly impact pre-clinical and clinical work across numerous fields. To date, however, the methodologies available to identify antigens responsible for driving adaptive immune responses have been plagued by numerous issues which have drastically limited their widespread adoption. Therefore, in this study, we sought to optimize a shotgun immunoproteomics approach to alleviate these persistent issues and create a high-throughput, quantitative methodology for antigen identification. Three individual components of a previously published approach, namely the protein extraction, antigen elution, and LC-MS/MS analysis steps, were optimized in a systematic manner. These studies determined that preparation of protein extracts using a one-step tissue disruption method in immunoprecipitation (IP) buffer, eluting antigens from affinity chromatography columns with 1% trifluoroacetic acid (TFA), and TMT-labeling & multiplexing equal volumes of eluted samples for LC-MS/MS analysis, resulted in quantitative longitudinal antigen identification, with reduced variability between replicates and increased total number of antigens identified. This optimized pipeline provides a multiplexed, highly reproducible, and fully quantitative approach to antigen identification which is broadly applicable to determine the role of antigenic proteins in inciting (i.e., primary antigens) and perpetuating (i.e., secondary antigens) a wide range of diseases. SIGNIFICANCE: Using a systematic, hypothesis-driven approach, we identified potential improvements for three individual steps of a previously published approach for antigen-identification. Optimization of each step created a methodology which resolved many of the persistent issues associated with previous antigen identification approaches. The optimized high-throughput shotgun immunoproteomics approach described herein identifies more than five times as many unique antigens as the previously published method, greatly reduces protocol cost and mass spectrometry time per experiment, minimizes both inter- and intra-experimental variability, and ensures each experiment is fully quantitative. Ultimately, this optimized antigen identification approach has the potential to facilitate novel antigen identification studies, allowing evaluation of the adaptive immune response in a longitudinal manner and encourage innovations in a wide array of fields.
Collapse
Affiliation(s)
- Nicholas A Shortreed
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Cardiovascular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Anjali J Panicker
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Immunology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Cardiovascular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Kiran K Mangalaparthi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA.
| |
Collapse
|
2
|
Mohammed NBB, Antonopoulos A, Dell A, Haslam SM, Dimitroff CJ. The pleiotropic role of galectin-3 in melanoma progression: Unraveling the enigma. Adv Cancer Res 2022; 157:157-193. [PMID: 36725108 PMCID: PMC9895887 DOI: 10.1016/bs.acr.2022.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanoma is a highly aggressive skin cancer with poor outcomes associated with distant metastasis. Intrinsic properties of melanoma cells alongside the crosstalk between melanoma cells and surrounding microenvironment determine the tumor behavior. Galectin-3 (Gal-3), a ß-galactoside-binding lectin, has emerged as a major effector in cancer progression, including melanoma behavior. Data from melanoma models and patient studies reveal that Gal-3 expression is dysregulated, both intracellularly and extracellularly, throughout the stages of melanoma progression. This review summarizes the most recent data and hypotheses on Gal-3 and its tumor-modulating functions, highlighting its role in driving melanoma growth, invasion, and metastatic colonization. It also provides insight into potential Gal-3-targeted strategies for melanoma diagnosis and treatment.
Collapse
Affiliation(s)
- Norhan B B Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.
| |
Collapse
|
3
|
Immunoproteomic analysis of Clostridium botulinum type B secretome for identification of immunogenic proteins against botulism. Biotechnol Lett 2021; 43:1019-1036. [PMID: 33629143 PMCID: PMC7904509 DOI: 10.1007/s10529-021-03091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 02/01/2021] [Indexed: 11/12/2022]
Abstract
Objectives To identify immunogenic proteins of C. botulinum type B secretome by immunoproteomic analysis. Results In the present study, an attempt was made to elucidate the vaccine candidates/diagnostic molecules against botulism using immuno proteomic approach. C. botulinum type B secretome was elucidated when it was grown in TPGY as well as CMM media. Predominant 51 proteins were identified in both the media using 2-DE and mass spectrometry analysis. 2D gels (CMM & TPGY) were probed with respected proteins mice antiserum and obtained 17 and 10 immunogenic proteins in TPGY as well as CMM media respectively. Hypothetical protein CLOSPO_00563, ornithine carbamoyl transferase, FlaA, molecular chaperone GroEL and secreted protease proteins were found as the common immuno dominant proteins in both media. Polyclonal Antibodies raised against C. botulinum types A and E showed cross-reactivity with secretome C. botulinum type B at the lowest dilution (1:1000) but did not show cross reactivity with highest dilution (1:30,000) with C. botulinum type B secretome. Polyclonal antibodies against C. botulinum type F secretome did not show cross reactivity with C. botulinum type B secretome. Conclusions Identified immunogenic proteins can be used as vaccine candidates and diagnostic markers for the infant and wound botulism but common immunogenic proteins may be the best vaccine candidate molecule for development of vaccine as well as diagnostic system against the infant and wound botulism. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03091-4.
Collapse
|
4
|
Kodet O, Kučera J, Strnadová K, Dvořánková B, Štork J, Lacina L, Smetana K. Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review). Int J Oncol 2020; 57:619-630. [PMID: 32705148 PMCID: PMC7384852 DOI: 10.3892/ijo.2020.5090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of cutaneous malignant melanoma has been steadily increasing worldwide for several decades. This phenomenon seems to follow the trend observed in many types of malignancies caused by multiple significant factors, including ageing. Despite the progress in cutaneous malignant melanoma therapeutic options, the curability of advanced disease after metastasis represents a serious challenge for further research. In this review, we summarise data on the microenvironment of cutaneous malignant melanoma with emphasis on intercellular signalling during the disease progression. Malignant melanocytes with features of neural crest stem cells interact with non‑malignant populations within this microenvironment. We focus on representative bioactive factors regulating this intercellular crosstalk. We describe the possible key factors and signalling cascades responsible for the high complexity of the melanoma microenvironment and its premetastatic niches. Furthermore, we present the concept of melanoma early becoming a systemic disease. This systemic effect is presented as a background for the new horizons in the therapy of cutaneous melanoma.
Collapse
Affiliation(s)
- Ondřej Kodet
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jan Kučera
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
| | - Karolína Strnadová
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Barbora Dvořánková
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Jiří Štork
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 128 00 Prague 2
- Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
5
|
Wu NL, Liu FT. The expression and function of galectins in skin physiology and pathology. Exp Dermatol 2019; 27:217-226. [PMID: 29427464 DOI: 10.1111/exd.13512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2018] [Indexed: 01/01/2023]
Abstract
The galectin family comprises β-galactoside-binding proteins widely expressed in many organisms. There are at least 16 family members, which can be classified into three groups based on their carbohydrate-recognition domains. Pleiotropic functions of different galectins in physiological and pathological processes through extracellular or intracellular actions have been revealed. In the skin, galectins are expressed in a variety of cells, including keratinocytes, melanocytes, fibroblasts, dendritic cells, lymphocytes, macrophages and endothelial cells. Expression of specific galectins is reported to affect cell status, such as activation or death, and regulate the interaction between different cell types or between cells and the extracellular matrix. In vitro cellular studies, in vivo animal studies and studies of human clinical material have revealed the pathophysiologic roles of galectins in the skin. The pathogenesis of diverse non-malignant skin disorders, such as atopic dermatitis, psoriasis, contact dermatitis and wound healing, as well as skin cancers, such as melanoma, squamous cell carcinoma, basal cell carcinoma and cutaneous haematologic malignancy can be regulated by different galectins. Revelation of biological roles of galectins in skin may pave the way to future development of galectin-based therapeutic strategies for skin diseases.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan.,Mackay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
6
|
Abstract
The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new, and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent progress in genomics and mass spectrometry have led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel-based, array-based, mass spectrometry-based, DNA-based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of protein antigens targeted by the immune system during disease.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Isabel Baltat
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Fulton KM, Ananchenko A, Wolfraim L, Martin S, Twine SM. Classical Immunoproteomics: Serological Proteome Analysis (SERPA) for Antigen Identification. Methods Mol Biol 2019; 2024:59-78. [PMID: 31364042 DOI: 10.1007/978-1-4939-9597-4_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study of the humoral immune response to infectious and chronic diseases is important for understanding the disease progression, identification of protective antigens, vaccine development, and discovery of biomarkers for early diagnosis. Proteomic approaches, including serological proteome analysis (SERPA), have been used to identify the repertoire of immunoreactive proteins in various diseases. In this chapter, we provide an outline of the SERPA approach, using the analysis of sera from mice vaccinated with a live attenuated tularemia vaccine as an example.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada.
| | - Anna Ananchenko
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | | | | | - Susan M Twine
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| |
Collapse
|
8
|
Griggio V, Mandili G, Vitale C, Capello M, Macor P, Serra S, Castella B, Peola S, Foglietta M, Drandi D, Omedé P, Sblattero D, Cappello P, Chiarle R, Deaglio S, Boccadoro M, Novelli F, Massaia M, Coscia M. Humoral immune responses toward tumor-derived antigens in previously untreated patients with chronic lymphocytic leukemia. Oncotarget 2018; 8:3274-3288. [PMID: 27906678 PMCID: PMC5356881 DOI: 10.18632/oncotarget.13712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
In chronic lymphocytic leukemia (CLL) the occurrence and the impact of antibody responses toward tumor-derived antigens are largely unexplored. Our serological proteomic data show that antibodies toward 47 identified antigens are detectable in 29 out of 35 patients (83%) with untreated CLL. The glycolytic enzyme alpha-enolase (ENO1) is the most frequently recognized antigen (i.e. 54% of CLL sera). We show that ENO1 is upregulated in the proliferating B-cell fraction of CLL lymph nodes. In CLL cells of the peripheral blood, ENO1 is exclusively expressed at the intracellular level, whereas it is exposed on the surface of apoptotic leukemic cells. From the clinical standpoint, patients with progressive CLL show a higher number of antigen recognitions compared to patients with stable disease. Consistently, the anti-ENO1 antibodies are prevalent in sera from patients with progressive disease and their presence is predictive of a shorter time to first treatment. This clinical inefficacy associates with the inability of patients’ sera to trigger complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity against leukemic cells. Together, these results indicate that antibody responses toward tumor-derived antigens are frequently detectable in sera from patients with CLL, but they are expression of a disrupted immune system and unable to hamper disease progression.
Collapse
Affiliation(s)
- Valentina Griggio
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Giorgia Mandili
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Candida Vitale
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Michela Capello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Paolo Macor
- Department of Life Sciences - University of Trieste, Trieste, Italy
| | - Sara Serra
- Department of Medical Sciences, University of Torino and Immunogenetics Unit - Human Genetics Foundation (HuGeF), Torino, Italy
| | - Barbara Castella
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Silvia Peola
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Myriam Foglietta
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Daniela Drandi
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Omedé
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | | | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Molecular Biotechnology Center, Torino, Italy
| | - Roberto Chiarle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Silvia Deaglio
- Department of Medical Sciences, University of Torino and Immunogenetics Unit - Human Genetics Foundation (HuGeF), Torino, Italy
| | - Mario Boccadoro
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Molecular Biotechnology Center, Torino, Italy.,Service of Immunogenetics and Transplantation, AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Massimo Massaia
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Torino, Italy
| | - Marta Coscia
- Division of Hematology, University of Torino, AOU Città della Salute e della Scienza di Torino, Torino, Italy.,Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
9
|
Chaperonin containing TCP1 subunit 5 is a tumor associated antigen of non-small cell lung cancer. Oncotarget 2017; 8:64170-64179. [PMID: 28969060 PMCID: PMC5609992 DOI: 10.18632/oncotarget.19369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/18/2017] [Indexed: 01/12/2023] Open
Abstract
Novel tumor antigens and their related autoantibodies have tremendous potential for early diagnosis of non-small cell lung cancer (NSCLC). In this study, we identify antigens from NSCLC tissue and autoantibodies in sera of patients with NSCLC using a modified proteomics-based approach. We seperated and identified four NSCLC-associated proteins extracted from the cytosol in tumor tissues by mini-two-dimensional gel electrophoresis, followed by Western blot and hybridization with individual sera for confirmation of antibody binding. Of the proteins we identified, we selected 58 kDa chaperonin containing TCP1(T-Complex Protein 1) subunit 5 (CCT5) for validation. Serum levels of carcinoembryonic antigen (CEA) and cytokeratin 19 fragments (CYFRA 21-1) were measured in all serum samples with an immunoluminometric assay and a receiver operating characteristic (ROC) curve was analyzed for autoantibodies against CCT5, CEA and CYFRA 21-1. The results show that CCT5 can induce an autoantibody response in NSCLC sera and show higher expression in NSCLC tissues by immunohistochemistry and Western blot. Anti-CCT5 autoantibody was found in 51% (23/45) of patients with NSCLC, but only 2.5% (1/40) in non-tumor individual controls. A receiver operating characteristic curve constructed with a panel of autoantibodies against CCT5 (AUC=0.749), CEA (AUC=0.6758), and CYFRA 21-1(AUC=0.760) show a sensitivity of 51.1% and 97.5% specificity in discriminating NSCLC from matched controls. These results indicate the potential utility of screening autoantibodies in sera, show that CCT5 could be used as a biomarker in cancer diagnosis.
Collapse
|
10
|
Abstract
Natural autoantibodies raised by humoral immune response to cancer can be exploited to identify potential tumor-associated antigens (TAAs), and might constitute new putative prognostic and/or diagnostic biomarkers. Here we describe how sera from tumor patients can be used to identify TAAs by screening antibody immunoreactivity against the cancer proteome resolved by two-dimensional gel electrophoresis.
Collapse
|
11
|
Abstract
Antigens that may be involved in the immune response to uveal melanoma have not been identified. Cellular and humoral responses to melanoma differentiation antigens, as well as to BRCA1-associated protein 1 (BAP1) and α-enolase, alterations of which are associated with metastatic disease, were examined in patients with uveal melanoma. Blood was collected from 66 patients with primary and 13 patients with metastatic uveal melanoma. These included 11 patients treated with immunotherapy. Peripheral blood mononuclear cells were stimulated with gp100, MART-1, tyrosinase, NY-ESO-1, BAP1, and α-enolase peptides and/or proteins, and cytokine production was assessed by bead array or enzyme-linked immunosorbent assay. Autoantibodies to the protein were assessed by enzyme-linked immunosorbent assay. A cellular or humoral response to one or more of the antigens was observed in 23% of the primary and 62% of the metastatic patients tested. Th1 and Th2 cellular and humoral responses to gp100, MART-1, and tyrosinase were observed in primary and metastatic patients. Cellular responses to NY-ESO-1 were not observed nor were Th17-associated responses. Cellular and humoral responses to BAP1 and α-enolase were also observed, predominantly in primary patients with tumor monosomy-3 and in metastatic patients. Individual patients treated with immunotherapy developed new reactivity to MART-1, tyrosinase, and/or α-enolase. Patients with primary and metastatic uveal melanomas manifest spontaneous immune responses to melanoma differentiation antigens, BAP1, and α-enolase. Both Th1-associated and Th2-associated responses are observed and can be modified by therapy. These results may help the development and monitoring of immunotherapy and studies of immune surveillance in uveal melanoma.
Collapse
|
12
|
Alegre E, Sammamed M, Fernández-Landázuri S, Zubiri L, González Á. Circulating biomarkers in malignant melanoma. Adv Clin Chem 2015; 69:47-89. [PMID: 25934359 DOI: 10.1016/bs.acc.2014.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Melanoma is an aggressive tumor with increasing incidence worldwide. Biomarkers are valuable tools to minimize the cost and improve efficacy of treatment of this deadly disease. Serological markers have not widely been introduced in routine clinical practice due to their insufficient diagnostic sensitivity and specificity. It is likely that the lack of objective responses with traditional treatment hinder biomarker research and development in melanoma. Recently, new drugs and therapies have, however, emerged in advanced melanoma with noticeable objective response ratio and survival. In this new scenario, serological tumor markers should be revisited. In addition, other potential circulating biomarkers such as cell-free DNA, exosomes, microRNA, and circulating tumor cells have also been identified. In this review, we summarize classical and emerging tumor markers and discuss their possible roles in emerging therapeutics.
Collapse
Affiliation(s)
- Estibaliz Alegre
- Laboratory of Biochemistry, University Clinic of Navarra, Pamplona, Spain
| | - Miguel Sammamed
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | | | - Leyre Zubiri
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain
| | - Álvaro González
- Laboratory of Biochemistry, University Clinic of Navarra, Pamplona, Spain.
| |
Collapse
|
13
|
Immunoproteomic profiling of Saccharomyces cerevisiae systemic infection in a murine model. J Proteomics 2014; 112:14-26. [PMID: 25173100 DOI: 10.1016/j.jprot.2014.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/01/2014] [Accepted: 08/06/2014] [Indexed: 02/01/2023]
Abstract
UNLABELLED Saccharomyces cerevisiae is considered a safe microorganism widely used as a dietary supplement. However, in the latest decades several cases of S. cerevisiae infections have been reported. Recent studies in a murine model of systemic infection have also revealed the virulence of some S. cerevisiae dietary strains. Here we use an immunoproteomic approach based on protein separation by 2D-PAGE followed by Western-blotting to compare the serological response against a virulent dietary and a non-virulent laboratory strains leading to the identification of highly different patterns of antigenic proteins. Thirty-six proteins that elicit a serological response in mice have been identified. Most of them are involved in stress responses and metabolic pathways. Their selectivity as putative biomarkers for S. cerevisiae infections was assessed by testing sera from S. cerevisiae-infected mice against Candida albicans and C. glabrata proteins. Some chaperones and metabolic proteins showed cross-reactivity. We also compare the S. cerevisiae immunodetected proteins with previously described C. albicans antigens. The results point to the stress-related proteins Ahp1, Yhb1 and Oye2, as well as the glutamine synthetase Gln1 and the oxysosterol binding protein Kes1 as putative candidates for being evaluated as biomarkers for diagnostic assays of S. cerevisiae infections. BIOLOGICAL SIGNIFICANCE S. cerevisiae can cause opportunistic infections, and therefore, a precise diagnosis of fungal infections is necessary. This immunoproteomic analysis of sera from a model murine infection with a virulent dietary S. cerevisiae strain has been shown to be a source of candidate proteins for being evaluated as biomarkers to develop assays for diagnosis of S. cerevisiae infections. To our knowledge, this is the first study devoted to the identification of S. cerevisiae immunogenic proteins and the results allowed the proposal of five antigens to be further investigated.
Collapse
|
14
|
Saito K, Iizuka Y, Ohta S, Takahashi S, Nakamura K, Saya H, Yoshida K, Kawakami Y, Toda M. Functional analysis of a novel glioma antigen, EFTUD1. Neuro Oncol 2014; 16:1618-29. [PMID: 25015090 DOI: 10.1093/neuonc/nou132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND A cDNA library made from 2 glioma cell lines, U87MG and T98G, was screened by serological identification of antigens by recombinant cDNA expression (SEREX) using serum from a glioblastoma patient. Elongation factor Tu GTP binding domain containing protein 1 (EFTUD1), which is required for ribosome biogenesis, was identified. A cancer microarray database showed overexpression of EFTUD1 in gliomas, suggesting that EFTUD1 is a candidate molecular target for gliomas. METHODS EFTUD1 expression in glioma cell lines and glioma tissue was assessed by Western blot, quantitative PCR, and immunohistochemistry. The effect on ribosome biogenesis, cell growth, cell cycle, and induction of apoptosis and autophagy in glioma cells during the downregulation of EFTUD1 was investigated. To reveal the role of autophagy, the autophagy-blocker, chloroquine (CQ), was used in glioma cells downregulating EFTUD1. The effect of combining CQ with EFTUD1 inhibition in glioma cells was analyzed. RESULTS EFTUD1 expression in glioma cell lines and tissue was higher than in normal brain tissue. Downregulating EFTUD1 induced G1 cell-cycle arrest and apoptosis, leading to reduced glioma cell proliferation. The mechanism underlying this antitumor effect was impaired ribosome biogenesis via EFTUD1 inhibition. Additionally, protective autophagy was induced by glioma cells as an adaptive response to EFTUD1 inhibition. The antitumor effect induced by the combined treatment was significantly higher than that of either EFTUD1 inhibition or CQ alone. CONCLUSION These results suggest that EFTUD1 represents a novel therapeutic target and that the combination of EFTUD1 inhibition with autophagy blockade may be effective in the treatment of gliomas.
Collapse
Affiliation(s)
- Katsuya Saito
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan (K.S., S.T., K.Y., M.T.); Neuro-immunology Research Group, Keio University School of Medicine, Tokyo, Japan (Y.I., S.O., M.T.); Department of Physiology, Keio University School of Medicine, Tokyo, Japan (S.O.); Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (K.N., Y.K.); Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (H.S.)
| | - Yukihiko Iizuka
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan (K.S., S.T., K.Y., M.T.); Neuro-immunology Research Group, Keio University School of Medicine, Tokyo, Japan (Y.I., S.O., M.T.); Department of Physiology, Keio University School of Medicine, Tokyo, Japan (S.O.); Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (K.N., Y.K.); Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (H.S.)
| | - Shigeki Ohta
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan (K.S., S.T., K.Y., M.T.); Neuro-immunology Research Group, Keio University School of Medicine, Tokyo, Japan (Y.I., S.O., M.T.); Department of Physiology, Keio University School of Medicine, Tokyo, Japan (S.O.); Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (K.N., Y.K.); Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (H.S.)
| | - Satoshi Takahashi
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan (K.S., S.T., K.Y., M.T.); Neuro-immunology Research Group, Keio University School of Medicine, Tokyo, Japan (Y.I., S.O., M.T.); Department of Physiology, Keio University School of Medicine, Tokyo, Japan (S.O.); Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (K.N., Y.K.); Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (H.S.)
| | - Kenta Nakamura
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan (K.S., S.T., K.Y., M.T.); Neuro-immunology Research Group, Keio University School of Medicine, Tokyo, Japan (Y.I., S.O., M.T.); Department of Physiology, Keio University School of Medicine, Tokyo, Japan (S.O.); Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (K.N., Y.K.); Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (H.S.)
| | - Hideyuki Saya
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan (K.S., S.T., K.Y., M.T.); Neuro-immunology Research Group, Keio University School of Medicine, Tokyo, Japan (Y.I., S.O., M.T.); Department of Physiology, Keio University School of Medicine, Tokyo, Japan (S.O.); Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (K.N., Y.K.); Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (H.S.)
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan (K.S., S.T., K.Y., M.T.); Neuro-immunology Research Group, Keio University School of Medicine, Tokyo, Japan (Y.I., S.O., M.T.); Department of Physiology, Keio University School of Medicine, Tokyo, Japan (S.O.); Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (K.N., Y.K.); Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (H.S.)
| | - Yutaka Kawakami
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan (K.S., S.T., K.Y., M.T.); Neuro-immunology Research Group, Keio University School of Medicine, Tokyo, Japan (Y.I., S.O., M.T.); Department of Physiology, Keio University School of Medicine, Tokyo, Japan (S.O.); Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (K.N., Y.K.); Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (H.S.)
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, Tokyo, Japan (K.S., S.T., K.Y., M.T.); Neuro-immunology Research Group, Keio University School of Medicine, Tokyo, Japan (Y.I., S.O., M.T.); Department of Physiology, Keio University School of Medicine, Tokyo, Japan (S.O.); Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (K.N., Y.K.); Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan (H.S.)
| |
Collapse
|
15
|
Duarte S, Momier D, Baqué P, Casanova V, Loubat A, Samson M, Guigonis JM, Staccini P, Saint-Paul MC, De Lima MP, Carle GF, Pierrefite-Carle V. Preventive cancer stem cell-based vaccination reduces liver metastasis development in a rat colon carcinoma syngeneic model. Stem Cells 2014. [PMID: 23193035 DOI: 10.1002/stem.1292] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cancer stem cells (CSCs) represent a minor population of self-renewing cancer cells that fuel tumor growth. As CSCs are generally spared by conventional treatments, this population is likely to be responsible for relapses that are observed in most cancers. In this work, we analyzed the preventive efficiency of a CSC-based vaccine on the development of liver metastasis from colon cancer in a syngeneic rat model. We isolated a CSC-enriched population from the rat PROb colon carcinoma cell line on the basis of the expression of the aldehyde dehydrogenase-1 (ALDH1) marker. Comparative analysis of vaccines containing lysates of PROb or ALDH(high) cells by mass spectrometry identifies four proteins specifically expressed in the CSC subpopulation. The expression of two of them (heat shock protein 27-kDa and aldose reductase) is already known to be associated with treatment resistance and poor prognosis in colon cancer. Preventive intraperitoneal administration of vaccines was then performed before the intrahepatic injection of PROb cancer cells. While no significant difference in tumor occurrence was observed between control and PROb-vaccinated groups, 50% of the CSC-based vaccinated animals became resistant to tumor development. In addition, CSC-based vaccination induced a 99.5% reduction in tumor volume compared to the control group. To our knowledge, this study constitutes the first work analyzing the potential of a CSC-based vaccination to prevent liver metastasis development. Our data demonstrate that a CSC-based vaccine reduces efficiently both tumor volume and occurrence in a rat colon carcinoma syngeneic model.
Collapse
Affiliation(s)
- Sonia Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Isolation and characterization of a canine mammary cell line prepared for proteomics analysis. Tissue Cell 2013; 45:183-90. [DOI: 10.1016/j.tice.2012.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/28/2012] [Accepted: 11/29/2012] [Indexed: 11/18/2022]
|
17
|
Ceruti P, Principe M, Capello M, Cappello P, Novelli F. Three are better than one: plasminogen receptors as cancer theranostic targets. Exp Hematol Oncol 2013; 2:12. [PMID: 23594883 PMCID: PMC3640925 DOI: 10.1186/2162-3619-2-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 12/22/2022] Open
Abstract
Activation of plasminogen on the cell surface initiates a cascade of protease activity with important implications for several physiological and pathological events. In particular, components of the plasminogen system participate in tumor growth, invasion and metastasis. Plasminogen receptors are in fact expressed on the cell surface of most tumors, and their expression frequently correlates with cancer diagnosis, survival and prognosis. Notably, they can trigger multiple specific immune responses in cancer patients, highlighting their role as tumor-associated antigens. In this review, three of the most characterized plasminogen receptors involved in tumorigenesis, namely Annexin 2 (ANX2), Cytokeratin 8 (CK8) and alpha-Enolase (ENOA), are analyzed to ascertain an overall view of their role in the most common cancers. This analysis emphasizes the possibility of delineating new personalized therapeutic strategies to counteract tumor growth and metastasis by targeting plasminogen receptors, as well as their potential application as cancer predictors.
Collapse
Affiliation(s)
- Patrizia Ceruti
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Moitza Principe
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Michela Capello
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Paola Cappello
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CeRMS), Azienda Ospedaliera Città della Salute e della Scienza, Via Cherasco 15, Turin, 10126, Italy.,Department of Molecular Biotechnology and Health Science, University of Turin, Turin, Italy
| |
Collapse
|
18
|
The contribution of proteomics to the identification of biomarkers for cutaneous malignant melanoma. Clin Biochem 2013; 46:518-23. [DOI: 10.1016/j.clinbiochem.2012.12.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/07/2012] [Accepted: 12/10/2012] [Indexed: 01/02/2023]
|
19
|
New targets for the immunotherapy of colon cancer-does reactive disease hold the answer? Cancer Gene Ther 2013; 20:157-68. [PMID: 23492821 DOI: 10.1038/cgt.2013.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers in both men and women, posing a serious demographic and economic burden worldwide. In the United Kingdom, CRC affects 1 in every 20 people and it is often detected once well established and after it has spread beyond the bowel (Stage IIA-C and Stage IIIA-C). A diagnosis at such advanced stages is associated with poor treatment response and survival. However, studies have identified two sub-groups of post-treatment CRC patients--those with good outcome (reactive disease) and those with poor outcome (non-reactive disease). We aim to review the state-of-the-art for CRC with respect to the expression of cancer-testis antigens (CTAs) and their identification, evaluation and correlation with disease progression, treatment response and survival. We will also discuss the relationship between CTA expression and regulatory T-cell (Treg) activity to tumorigenesis and tumor immune evasion in CRC and how this could account for the clinical presentation of CRC. Understanding the molecular basis of reactive CRC may help us identify more potent novel immunotherapeutic targets to aid the effective treatment of this disease. In this review, based on our presentation at the 2012 International Society for the Cell and Gene Therapy of Cancer annual meeting, we will summarize some of the most current advances in CTA and CRC research and their influence on the development of novel immunotherapeutic approaches for this common and at times difficult to treat disease.
Collapse
|
20
|
Abstract
The varied landscape of the adaptive immune response is determined by the peptides presented by immune cells, derived from viral or microbial pathogens or cancerous cells. The study of immune biomarkers or antigens is not new and classical methods such as agglutination, enzyme-linked immunosorbent assay, or Western blotting have been used for many years to study the immune response to vaccination or disease. However, in many of these traditional techniques, protein or peptide identification has often been the bottleneck. Recent advances in genomics and proteomics, has led to many of the rapid advances in proteomics approaches. Immunoproteomics describes a rapidly growing collection of approaches that have the common goal of identifying and measuring antigenic peptides or proteins. This includes gel based, array based, mass spectrometry, DNA based, or in silico approaches. Immunoproteomics is yielding an understanding of disease and disease progression, vaccine candidates, and biomarkers. This review gives an overview of immunoproteomics and closely related technologies that are used to define the full set of antigens targeted by the immune system during disease.
Collapse
Affiliation(s)
- Kelly M Fulton
- Human Health Therapeutics, National Research Council Canada, Ottawa, ON, Canada
| | | |
Collapse
|
21
|
Protein and non-protein biomarkers in melanoma: a critical update. Amino Acids 2012; 43:2203-30. [DOI: 10.1007/s00726-012-1409-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/24/2012] [Indexed: 12/16/2022]
|
22
|
Larsen L, Chen HY, Saegusa J, Liu FT. Galectin-3 and the skin. J Dermatol Sci 2011; 64:85-91. [PMID: 21889881 PMCID: PMC3192432 DOI: 10.1016/j.jdermsci.2011.07.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/20/2011] [Accepted: 07/28/2011] [Indexed: 12/17/2022]
Abstract
Galectin-3 is highly expressed in epithelial cells including keratinocytes and is involved in the pathogenesis of inflammatory skin diseases by affecting the functions of immune cells. For example, galectin-3 can contribute to atopic dermatitis (AD) by promoting polarization toward a Th2 immune response by regulating dendritic cell (DC) and T cell functions. In addition, galectin-3 may be involved in the development of contact hypersensitivity by regulating the migratory capacity of antigen presenting cells. Galectin-3 may act as a regulator of epithelial tumor progression and development through various signaling pathways, such as inhibiting keratinocyte apoptosis through regulation of the activation status of extracellular signal-regulated kinase (ERK) and activated protein kinase B (AKT). Galectin-3 is detected at different stages of melanoma development. In contrast, a marked decrease in the expression of galectin-3 is observed in non-melanoma skin cancers, such as squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Galectin-3 may play an important role in tumor cell growth, apoptosis, cell motility, invasion, and metastasis. Galectin-3 may be a novel therapeutic target for a variety of skin diseases.
Collapse
Affiliation(s)
- Larissa Larsen
- Department of Dermatology, University of California, Davis, School of Medicine, Sacramento, CA 95816, United States
| | | | | | | |
Collapse
|
23
|
Zhu P, Bowden P, Zhang D, Marshall JG. Mass spectrometry of peptides and proteins from human blood. MASS SPECTROMETRY REVIEWS 2011; 30:685-732. [PMID: 24737629 DOI: 10.1002/mas.20291] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 12/09/2009] [Accepted: 01/19/2010] [Indexed: 06/03/2023]
Abstract
It is difficult to convey the accelerating rate and growing importance of mass spectrometry applications to human blood proteins and peptides. Mass spectrometry can rapidly detect and identify the ionizable peptides from the proteins in a simple mixture and reveal many of their post-translational modifications. However, blood is a complex mixture that may contain many proteins first expressed in cells and tissues. The complete analysis of blood proteins is a daunting task that will rely on a wide range of disciplines from physics, chemistry, biochemistry, genetics, electromagnetic instrumentation, mathematics and computation. Therefore the comprehensive discovery and analysis of blood proteins will rank among the great technical challenges and require the cumulative sum of many of mankind's scientific achievements together. A variety of methods have been used to fractionate, analyze and identify proteins from blood, each yielding a small piece of the whole and throwing the great size of the task into sharp relief. The approaches attempted to date clearly indicate that enumerating the proteins and peptides of blood can be accomplished. There is no doubt that the mass spectrometry of blood will be crucial to the discovery and analysis of proteins, enzyme activities, and post-translational processes that underlay the mechanisms of disease. At present both discovery and quantification of proteins from blood are commonly reaching sensitivities of ∼1 ng/mL.
Collapse
Affiliation(s)
- Peihong Zhu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, Canada M5B 2K3
| | | | | | | |
Collapse
|
24
|
Hamrita B, Nasr HB, Hammann P, Kuhn L, Guillier CL, Chaieb A, Khairi H, Chahed K. An elongation factor-like protein (EF-Tu) elicits a humoral response in infiltrating ductal breast carcinomas: An immunoproteomics investigation. Clin Biochem 2011; 44:1097-1104. [DOI: 10.1016/j.clinbiochem.2011.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
|
25
|
Capello M, Ferri-Borgogno S, Cappello P, Novelli F. α-Enolase: a promising therapeutic and diagnostic tumor target. FEBS J 2011; 278:1064-74. [PMID: 21261815 DOI: 10.1111/j.1742-4658.2011.08025.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
α-enolase (ENOA) is a metabolic enzyme involved in the synthesis of pyruvate. It also acts as a plasminogen receptor and thus mediates activation of plasmin and extracellular matrix degradation. In tumor cells, ΕΝΟΑ is upregulated and supports anaerobic proliferation (Warburg effect), it is expressed at the cell surface, where it promotes cancer invasion, and is subjected to a specific array of post-translational modifications, namely acetylation, methylation and phosphorylation. Both ENOA overexpression and its post-translational modifications could be of diagnostic and prognostic value in cancer. This review will discuss recent information on the biochemical, proteomics and immunological characterization of ENOA, particularly its ability to trigger a specific humoral and cellular immune response. In our opinion, this information can pave the way for effective new therapeutic and diagnostic strategies to counteract the growth of the most aggressive human disease.
Collapse
Affiliation(s)
- Michela Capello
- Department of Medicine and Experimental Oncology, Center for Experimental Research and Medical Studies (CeRMS), San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | | | | | | |
Collapse
|
26
|
Iván G, Grolmusz V. When the Web meets the cell: using personalized PageRank for analyzing protein interaction networks. ACTA ACUST UNITED AC 2010; 27:405-7. [PMID: 21149343 DOI: 10.1093/bioinformatics/btq680] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Enormous and constantly increasing quantity of biological information is represented in metabolic and in protein interaction network databases. Most of these data are freely accessible through large public depositories. The robust analysis of these resources needs novel technologies, being developed today. RESULTS Here we demonstrate a technique, originating from the PageRank computation for the World Wide Web, for analyzing large interaction networks. The method is fast, scalable and robust, and its capabilities are demonstrated on metabolic network data of the tuberculosis bacterium and the proteomics analysis of the blood of melanoma patients. AVAILABILITY The Perl script for computing the personalized PageRank in protein networks is available for non-profit research applications (together with sample input files) at the address: http://uratim.com/pp.zip.
Collapse
Affiliation(s)
- Gábor Iván
- Protein Information Technology Group, Eötvös University, Pázmány Péter sétány 1/C and Uratim Ltd., InfoPark D, H-1117 Budapest, Hungary
| | | |
Collapse
|
27
|
Nakamura Y, Komiyama T, Furue M, Gojobori T, Akiyama Y. CIG-DB: the database for human or mouse immunoglobulin and T cell receptor genes available for cancer studies. BMC Bioinformatics 2010; 11:398. [PMID: 20663186 PMCID: PMC2919518 DOI: 10.1186/1471-2105-11-398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 07/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunoglobulin (IG or antibody) and the T-cell receptor (TR) are pivotal proteins in the immune system of higher organisms. In cancer immunotherapy, the immune responses mediated by tumor-epitope-binding IG or TR play important roles in anticancer effects. Although there are public databases specific for immunological genes, their contents have not been associated with clinical studies. Therefore, we developed an integrated database of IG/TR data reported in cancer studies (the Cancer-related Immunological Gene Database [CIG-DB]). DESCRIPTION This database is designed as a platform to explore public human and murine IG/TR genes sequenced in cancer studies. A total of 38,308 annotation entries for IG/TR proteins were collected from GenBank/DDBJ/EMBL and the Protein Data Bank, and 2,740 non-redundant corresponding MEDLINE references were appended. Next, we filtered the MEDLINE texts by MeSH terms, titles, and abstracts containing keywords related to cancer. After we performed a manual check, we classified the protein entries into two groups: 611 on cancer therapy (Group I) and 1,470 on hematological tumors (Group II). Thus, a total of 2,081 cancer-related IG and TR entries were tabularized. To effectively classify future entries, we developed a computational method based on text mining and canonical discriminant analysis by parsing MeSH/title/abstract words. We performed a leave-one-out cross validation for the method, which showed high accuracy rates: 94.6% for IG references and 94.7% for TR references. We also collected 920 epitope sequences bound with IG/TR. The CIG-DB is equipped with search engines for amino acid sequences and MEDLINE references, sequence analysis tools, and a 3D viewer. This database is accessible without charge or registration at http://www.scchr-cigdb.jp/, and the search results are freely downloadable. CONCLUSIONS The CIG-DB serves as a bridge between immunological gene data and cancer studies, presenting annotation on IG, TR, and their epitopes. This database contains IG and TR data classified into two cancer-related groups and is able to automatically classify accumulating entries into these groups. The entries in Group I are particularly crucial for cancer immunotherapy, providing supportive information for genetic engineering of novel antibody medicines, tumor-specific TR, and peptide vaccines.
Collapse
Affiliation(s)
- Yoji Nakamura
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan
| | | | | | | | | |
Collapse
|
28
|
Hood BL, Grahovac J, Flint MS, Sun M, Charro N, Becker D, Wells A, Conrads TP. Proteomic analysis of laser microdissected melanoma cells from skin organ cultures. J Proteome Res 2010; 9:3656-63. [PMID: 20459140 PMCID: PMC3733114 DOI: 10.1021/pr100164x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Gaining insights into the molecular events that govern the progression from melanoma in situ to advanced melanoma and understanding how the local microenvironment at the melanoma site influences this progression are two clinically pivotal aspects that to date are largely unexplored. In an effort to identify key regulators of the crosstalk between melanoma cells and the melanoma-skin microenvironment, primary and metastatic human melanoma cells were seeded into skin organ cultures (SOCs) and grown for two weeks. Melanoma cells were recovered from SOCs by laser microdissection and whole-cell tryptic digests were analyzed by nanoflow liquid chromatography-tandem mass spectrometry. The differential protein abundances were calculated by spectral counting, the results of which provides evidence that cell-matrix and cell-adhesion molecules that are upregulated in the presence of these melanoma cells recapitulate proteomic data obtained from comparative analysis of human biopsies of invasive melanoma and a tissue sample of adjacent, noninvolved skin. This concordance demonstrates the value of SOCs for conducting proteomic investigations of the melanoma microenvironment.
Collapse
Affiliation(s)
- Brian L. Hood
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh
- Department of Mass Spectrometry Platform, Cancer Biomarkers Facility, University of Pittsburgh Cancer Institute, University of Pittsburgh
| | - Jelena Grahovac
- Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh
| | - Melanie S. Flint
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh
- Department of Mass Spectrometry Platform, Cancer Biomarkers Facility, University of Pittsburgh Cancer Institute, University of Pittsburgh
| | - Mai Sun
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh
- Department of Mass Spectrometry Platform, Cancer Biomarkers Facility, University of Pittsburgh Cancer Institute, University of Pittsburgh
| | - Nuno Charro
- Department of Mass Spectrometry Platform, Cancer Biomarkers Facility, University of Pittsburgh Cancer Institute, University of Pittsburgh
| | - Dorothea Becker
- Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh
| | - Alan Wells
- Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh
- Pittsburgh VA HealthCare System
| | - Thomas P Conrads
- Department of Pharmacology & Chemical Biology, University of Pittsburgh Cancer Institute, University of Pittsburgh
- Department of Pathology, University of Pittsburgh Cancer Institute, University of Pittsburgh
| |
Collapse
|
29
|
Shimbo T, Tanemura A, Yamazaki T, Tamai K, Katayama I, Kaneda Y. Serum anti-BPAG1 auto-antibody is a novel marker for human melanoma. PLoS One 2010; 5:e10566. [PMID: 20479946 PMCID: PMC2866734 DOI: 10.1371/journal.pone.0010566] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/19/2010] [Indexed: 01/12/2023] Open
Abstract
Malignant melanoma is one of the most aggressive types of tumor. Because malignant melanoma is difficult to treat once it has metastasized, early detection and treatment are essential. The search for reliable biomarkers of early-stage melanoma, therefore, has received much attention. By using a novel method of screening tumor antigens and their auto-antibodies, we identified bullous pemphigoid antigen 1 (BPAG1) as a melanoma antigen recognized by its auto-antibody. BPAG1 is an auto-antigen in the skin disease bullous pemphigoid (BP) and anti-BPAG1 auto-antibodies are detectable in sera from BP patients and are used for BP diagnosis. However, BPAG1 has been viewed as predominantly a keratinocyte-associated protein and a relationship between BPAG1 expression and melanoma has not been previously reported. In the present study, we show that bpag1 is expressed in the mouse F10 melanoma cell line in vitro and F10 melanoma tumors in vivo and that BPAG1 is expressed in human melanoma cell lines (A375 and G361) and normal human melanocytes. Moreover, the levels of anti-BPAG1 auto-antibodies in the sera of melanoma patients were significantly higher than in the sera of healthy volunteers (p<0.01). Furthermore, anti-BPAG1 auto-antibodies were detected in melanoma patients at both early and advanced stages of disease. Here, we report anti-BPAG1 auto-antibodies as a promising marker for the diagnosis of melanoma, and we discuss the significance of the detection of such auto-antibodies in cancer biology and patients.
Collapse
Affiliation(s)
- Takashi Shimbo
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takehiko Yamazaki
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Katsuto Tamai
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ichiro Katayama
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
30
|
Forgber M, Gellrich S, Sharav T, Sterry W, Walden P. Proteome-based analysis of serologically defined tumor-associated antigens in cutaneous lymphoma. PLoS One 2009; 4:e8376. [PMID: 20020065 PMCID: PMC2793029 DOI: 10.1371/journal.pone.0008376] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Accepted: 11/16/2009] [Indexed: 01/09/2023] Open
Abstract
Information on specificities of serological responses against tumor cells in cutaneous lymphoma patients is relatively restricted. To advance the knowledge of serological immune responses against and to assess the scope of tumor antigenicity of cutaneous lymphoma, 1- and 2-dimensional Western blot analyses with sera from patients were combined with proteomics-based protein identification. Testing sera from 87 cutaneous lymphoma patients by 1-dimensional Western blot analysis, 64 cases of seroreactivity against lymphoma cells were found. The positive responses were relatively weak, restricted to few antigens in each case, and heterogeneous. To identify the antigens, proteins of the mycosis fungoides cell line MyLa and primary tumor cells were separated by 2-dimensional gel electrophoresis, Western-blotted and probed with heterogeneous and autologous patient sera. The antigens were identified from silver-stained replica gels by MALDI-TOF mass spectrometry. 14 different antigens were assigned and identified with this proteome-serological approach. Only one, vimentin, had been reported before, the other 13 are new antigens for cutaneous lymphomas.
Collapse
Affiliation(s)
- Michael Forgber
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | - Sylke Gellrich
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | - Tumenjargal Sharav
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | - Wolfram Sterry
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
| | - Peter Walden
- Department of Dermatology, Venerology and Allergy, Charité - Universitätsmedizin Berlin, Humboldt University, Berlin, Germany
- * E-mail:
| |
Collapse
|