1
|
Zhou H, Wu W, Zhang Q, Zhang T, Jiang S, Chang L, Xie Y, Zhu J, Zhou D, Zhang Y, Xu P. Proteome overview of exosome derived from plasma of cows infected with Mycobacterium bovis. Tuberculosis (Edinb) 2024; 148:102541. [PMID: 39002312 DOI: 10.1016/j.tube.2024.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Bovine tuberculosis (bTB), primarily caused by Mycobacterium bovis (M. bovis), is a globally zoonotic disease with significant economic impacts. Plasma exosomes have been extensively used for investigating disease processes and exploring biomarkers. While mass spectrometry (MS)-based proteomic analysis of plasma exosomes has been employed for human tuberculosis (TB) studies, it has not yet been applied to bTB. Therefore, a comprehensive proteomic overview of plasma exosomes from M. bovis-infected cows is essential. In this study, we presented an extensive proteomic analysis of plasma exosomes from 89 M. bovis-infected cows across three farms, using data dependent acquisition (DDA) mode. Our analysis encompasses 239,894 spectra, 6,011 peptides and 835 proteins. The proteomic overview revealed both consistencies and differences among individual cows, supplements 595 proteins to the bovine exosome library, and enriches tuberculosis and related pathways. Additionally, six pathways were validated as immune response pathways, and three proteins (CATHL1, H1-1, and LCN2) were identified as potential indicators of bTB. This study is the first to investigate the exosome proteome of plasma from cows infected with M. bovis, providing a valuable dataset for exploring candidate bTB markers and understanding the mechanisms of host defense against M. bovis.
Collapse
Affiliation(s)
- Hangfan Zhou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Wenhui Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qilong Zhang
- Beijing Center for Animal Disease Control and Prevention, Beijing, 102629, China
| | - Tao Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Songhao Jiang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lei Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yuping Xie
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jiaqiang Zhu
- Beijing Xinhui Purui Technology Development Co., Ltd, Beijing, 102200, China
| | - Degang Zhou
- Beijing Center for Animal Disease Control and Prevention, Beijing, 102629, China.
| | - Yao Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Ping Xu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China; School of Basic Medicine, Anhui Medical University, Hefei, 230032, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Juli MSB, Raza A, Forutan M, Siddle HV, Fordyce G, Muller J, Boe-Hansen GB, Tabor AE. Characterisation of reproductive tract microbiome and immune biomarkers for bovine genital campylobacteriosis in vaccinated and unvaccinated heifers. Front Microbiol 2024; 15:1404525. [PMID: 39224219 PMCID: PMC11366586 DOI: 10.3389/fmicb.2024.1404525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background Bovine genital campylobacteriosis (BGC) is a globally important venereal disease of cattle caused by Campylobacter fetus subspecies venerealis. Diagnosis of BGC is highly challenging due to the lack of accurate diagnostic tests. Methods To characterise the biomarkers for C. fetus venerealis infection, a total of twelve cycling heifers were selected and categorised as vaccinated (n = 6) with Vibrovax® (Zoetis™) and unvaccinated (n = 6). All heifers were oestrous synchronised with a double dose of prostaglandin (PGF2α) 11 days apart and when in oestrous intravaginally challenged with 2.7 x 109 CFU live C. fetus venerealis. DNA extracted from vaginal mucus samples was screened using a C. fetus qPCR and 16S rRNA was characterised using Illumina sequencing (V5-V8 region). Relative abundances of serum proteins were calculated using sequential window acquisition of all theoretical fragment ion spectra coupled to tandem mass spectrometry (SWATH-MS) for all heifers at three timepoints: pre-challenge, post-challenge and post-recovery. Results In 16S rRNA sequencing of vaginal mucus, Campylobacter spp. appeared two days following challenge in unvaccinated compared to 14 days in vaccinated animals, consistent with the qPCR results. Increased relative abundances of Firmicutes and Campylobacterota were identified after C. fetus venerealis challenge and were associated with C. fetus venerealis in vaccinated and unvaccinated heifers. Greater relative abundance of Streptococcus spp. was observed during oestrous rather than dioestrous. In both vaccinated and unvaccinated heifers, Acinetobacter spp. increased after challenge with higher abundance of Corynebacterium spp. in the vaccinated group. A total of 130 unique proteins were identified in SWATH analysis of the serum samples, and the number of differentially abundant proteins found was higher in the vaccinated group after recovery from infection compared to pre-and post-challenge (adjusted P < 0.05 and Log2FC > 0.2). Conclusion Coglutinin, clusterin, HP homologs, vitamin D binding protein and fetuin B were identified as potential biomarkers for C. fetus venerealis infection and need further study to validate their efficiency as immune biomarkers for BGC.
Collapse
Affiliation(s)
- Mst Sogra Banu Juli
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
| | - Ali Raza
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mehrnush Forutan
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
| | - Hannah V. Siddle
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
| | - Geoffry Fordyce
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- Department of Agriculture & Fisheries, Charters Towers, QLD, Australia
| | - Jarud Muller
- Department of Agriculture & Fisheries, Charters Towers, QLD, Australia
| | - Gry B. Boe-Hansen
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Ala E. Tabor
- Centre for Animal Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Saint Lucia, QLD, Australia
| |
Collapse
|
3
|
Navarro León A, Muñoz M, Iglesias N, Blanco-Vázquez C, Balseiro A, Milhano Santos F, Ciordia S, Corrales FJ, Iglesias T, Casais R. Proteomic Serum Profiling of Holstein Friesian Cows with Different Pathological Forms of Bovine Paratuberculosis Reveals Changes in the Acute-Phase Response and Lipid Metabolism. J Proteome Res 2024; 23:2762-2779. [PMID: 37863471 PMCID: PMC11301775 DOI: 10.1021/acs.jproteome.3c00244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/22/2023]
Abstract
The lack of sensitive diagnostic methods to detect Mycobacterium avium subsp. paratuberculosis (Map) subclinical infections has hindered the control of paratuberculosis (PTB). The serum proteomic profiles of naturally infected cows presenting focal and diffuse pathological forms of PTB and negative controls (n = 4 per group) were analyzed using TMT-6plex quantitative proteomics. Focal and diffuse are the most frequent pathological forms in subclinical and clinical stages of PTB, respectively. One (focal versus (vs.) control), eight (diffuse vs. control), and four (focal vs. diffuse) differentially abundant (DA) proteins (q-value < 0.05) were identified. Ingenuity pathway analysis of the DA proteins revealed changes in the acute-phase response and lipid metabolism. Six candidate biomarkers were selected for further validation by specific ELISA using serum from animals with focal, multifocal, and diffuse PTB-associated lesions (n = 108) and controls (n = 56). Overall, the trends of the serum expression levels of the selected proteins were consistent with the proteomic results. Alpha-1-acid glycoprotein (ORM1)-based ELISA, insulin-like growth factor-binding protein 2 (IGFBP2)-based ELISA, and the anti-Map ELISA had the best diagnostic performance for detection of animals with focal, multifocal, and diffuse lesions, respectively. Our findings identify potential biomarkers that improve diagnostic sensitivity of PTB and help to elucidate the mechanisms involved in PTB pathogenesis.
Collapse
Affiliation(s)
- Alejandra
Isabel Navarro León
- Center
for Animal Biotechnology, Servicio Regional
de Investigación y Desarrollo Agroalimentario [SERIDA], 33394 Deva, Asturias, Spain
| | - Marta Muñoz
- Center
for Animal Biotechnology, Servicio Regional
de Investigación y Desarrollo Agroalimentario [SERIDA], 33394 Deva, Asturias, Spain
| | - Natalia Iglesias
- Center
for Animal Biotechnology, Servicio Regional
de Investigación y Desarrollo Agroalimentario [SERIDA], 33394 Deva, Asturias, Spain
| | - Cristina Blanco-Vázquez
- Center
for Animal Biotechnology, Servicio Regional
de Investigación y Desarrollo Agroalimentario [SERIDA], 33394 Deva, Asturias, Spain
| | - Ana Balseiro
- Departamento
de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain
| | - Fátima Milhano Santos
- Functional
Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas [CSIC],
Proteored-ISCIII, 28049 Madrid, Spain
| | - Sergio Ciordia
- Functional
Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas [CSIC],
Proteored-ISCIII, 28049 Madrid, Spain
| | - Fernando J. Corrales
- Functional
Proteomics Laboratory, National Center for Biotechnology, Consejo Superior de Investigaciones Científicas [CSIC],
Proteored-ISCIII, 28049 Madrid, Spain
| | - Tania Iglesias
- Unidad
de Consultoría Estadística, Servicios Científico-técnicos, Universidad de Oviedo, Campus de Gijón, 33203 Gijón, Asturias, Spain
| | - Rosa Casais
- Center
for Animal Biotechnology, Servicio Regional
de Investigación y Desarrollo Agroalimentario [SERIDA], 33394 Deva, Asturias, Spain
| |
Collapse
|
4
|
Badia-Bringué G, Canive M, Blanco-Vázquez C, Torremocha R, Ovalle S, Ramos-Ruiz R, Casais R, Alonso-Hearn M. MicroRNAs modulate immunological and inflammatory responses in Holstein cattle naturally infected with Mycobacterium avium subsp. paratuberculosis. Sci Rep 2024; 14:173. [PMID: 38167436 PMCID: PMC10762146 DOI: 10.1038/s41598-023-50251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
MicroRNAs (miRNAs) regulate the post-transcriptional expression of genes by binding to their target mRNAs. In this study, whole miRNA sequencing was used to compare the expression of miRNAs in ileocecal valve (ICV) and peripheral blood (PB) samples of cows with focal or diffuse paratuberculosis (PTB)-associated lesions in gut tissues versus (vs) control cows without lesions. Among the eight miRNAs differentially expressed in the PB samples from cows with diffuse lesions vs controls, three (miR-19a, miR-144, miR32) were also down-regulated in cows with diffuse vs focal lesions. In the ICV samples, we identified a total of 4, 5, and 18 miRNAs differentially expressed in cows with focal lesions vs controls, diffuse lesions vs controls, and diffuse vs focal lesions, respectively. The differential expression of five microRNAs (miR-19a, miR-144, miR-2425-3p, miR-139, miR-101) was confirmed by RT-qPCR. Next, mRNA target prediction was performed for each differentially expressed miRNA. A functional analysis using the predicted gene targets revealed a significant enrichment of the RNA polymerase and MAPK signaling pathways in the comparison of cows with focal vs no lesions and with diffuse vs focal lesions, respectively. The identified miRNAs could be used for the development of novel diagnostic and therapeutical tools for PTB control.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Research and Technology Alliance (BRTA), Derio, Spain
- Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Cristina Blanco-Vázquez
- Center of Animal Biotechnology, SERIDA-Regional Service of Agri-Food Research and Development, Deva, Spain
| | - Rosana Torremocha
- Genomic Unit, Scientific Park of Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Susana Ovalle
- Genomic Unit, Scientific Park of Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Ricardo Ramos-Ruiz
- Genomic Unit, Scientific Park of Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Rosa Casais
- Center of Animal Biotechnology, SERIDA-Regional Service of Agri-Food Research and Development, Deva, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Research and Technology Alliance (BRTA), Derio, Spain.
| |
Collapse
|
5
|
Alonso-Hearn M, Ballesteros A, Navarro A, Badia-Bringué G, Casais R. Lateral-flow assays for bovine paratuberculosis diagnosis. Front Vet Sci 2023; 10:1257488. [PMID: 37901111 PMCID: PMC10601461 DOI: 10.3389/fvets.2023.1257488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) causes bovine paratuberculosis (PTB). PTB is responsible for significant economic losses in dairy herds around the word. PTB control programs that rely on testing and culling of test-positive cows have been developed. Current diagnostics, such as ELISA for detecting MAP antibodies in serum samples and PCR detecting MAP DNA in feces, have inadequate sensitivity for detecting subclinical animals. Innovative "omics" technologies such as next-generation sequencing (NGS) technology-based RNA-sequencing (RNA-Seq), proteomics and metabolomics can be used to find host biomarkers. The discovered biomarkers (RNA, microRNAs, proteins, metabolites) can then be used to develop new and more sensitive approaches for PTB diagnosis. Traditional approaches for measuring host antibodies and biomarkers, such as ELISAs, northern blotting, quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR), cDNA microarrays, and mass spectrometry are time-consuming, expensive, and sometimes exhibit poor sensitivity. With the rapid development of nanotechnology, low-cost monitoring devices for measuring antibodies against MAP proteins in point-of-care (POC) settings have been developed. Lateral flow assays (LFAs), in particular, are thought to be appropriate for the on-site detection of antibodies to MAP antigens and/or host biomarkers. This review aims to summarize LFAs that have recently been developed to accurately detect antibodies against MAP antigens, as well as the benefits that host biomarkers linked with MAP infection give to PTB diagnosis. The identification of these novel biomarkers could be the basis for the development of new LFAs. The dairy industry and producers are likely to benefit from reliable and rapid technologies capable of detecting MAP infection in situ to establish a quick and sensitive PTB diagnosis.
Collapse
Affiliation(s)
- Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance, Derio, Bizkaia, Spain
| | - Ana Ballesteros
- Biolan Health S.L, Technological Park of Bizkaia, Zamudio, Bizkaia, Spain
| | - Alejandra Navarro
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Center of Animal Biotechnology, Deva, Asturias, Spain
| | - Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance, Derio, Bizkaia, Spain
| | - Rosa Casais
- SERIDA, Servicio Regional de Investigación y Desarrollo Agroalimentario, Center of Animal Biotechnology, Deva, Asturias, Spain
| |
Collapse
|
6
|
Massaro A, Tata A, Pallante I, Bertazzo V, Bottazzari M, Paganini L, Dall'Ava B, Stefani A, De Buck J, Piro R, Pozzato N. Metabolic signature of Mycobacterium avium subsp. paratuberculosis infected and infectious dairy cattle by integrating nuclear magnetic resonance analysis and blood indices. Front Vet Sci 2023; 10:1146626. [PMID: 37138915 PMCID: PMC10150450 DOI: 10.3389/fvets.2023.1146626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/09/2023] [Indexed: 05/05/2023] Open
Abstract
The early diagnosis of Mycobacterium avium subsp. paratuberculosis (MAP) is one of the current challenges of farmers and veterinarians. This work aimed to investigate the changes in metabolic levels associated with natural MAP infection in infected and infectious dairy cattle. The study included sera from 23 infectious/seropositive, 10 infected but non-infectious/seronegative, and 26 negative Holstein Fresian cattle. The samples were selected from a collection of samples gathered during a prospective study. The samples were analyzed by quantitative nuclear magnetic resonance (NMR) spectroscopy and routine blood chemistry. The blood indices and the 1H NMR data were concatenated by low-level data fusion, resulting in a unique global fingerprint. Afterwards, the merged dataset was statistically analyzed by the least absolute shrinkage and selection operator (LASSO), which is a shrinkage and selection method for supervised learning. Finally, pathways analysis was performed to get more insights on the possible dysregulated metabolic pathways. The LASSO model achieved, in a 10 time repeated 5-fold cross-validation, an overall accuracy of 91.5% with high values of sensitivity and specificity in classifying correctly the negative, infected, and infectious animals. The pathway analysis revealed MAP-infected cattle have increased tyrosine metabolism and enhanced phenylalanine, tyrosine and tryptophan biosynthesis. The enhanced synthesis and degradation of ketone bodies was observed both in infected and infectious cattle. In conclusion, fusing data from multiple sources has proved to be useful in exploring the altered metabolic pathways in MAP infection and potentially diagnosing negative animals within paratuberculosis-infected herds.
Collapse
Affiliation(s)
- Andrea Massaro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
- *Correspondence: Alessandra Tata
| | - Ivana Pallante
- Laboratorio di Medicina Forense Veterinaria, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - Valentina Bertazzo
- Medicina di Laboratorio, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Massimo Bottazzari
- Laboratorio di Diagnostica Clinica e Sierologia di Piano, Istituto Zooprofilattico Sperimentale delle Venezie, Verona, Italy
| | - Laura Paganini
- Laboratorio di Diagnostica Clinica e Sierologia di Piano, Istituto Zooprofilattico Sperimentale delle Venezie, Verona, Italy
| | - Brunella Dall'Ava
- Laboratorio di Diagnostica Clinica e Sierologia di Piano, Istituto Zooprofilattico Sperimentale delle Venezie, Verona, Italy
| | - Annalisa Stefani
- Medicina di Laboratorio, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Roberto Piro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - Nicola Pozzato
- Laboratorio di Medicina Forense Veterinaria, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| |
Collapse
|
7
|
Leduc A, Le Guillou S, Bianchi L, Correia LO, Gelé M, Pires J, Martin P, Leroux C, Le Provost F, Boutinaud M. Milk proteins as a feed restriction signature indicating the metabolic adaptation of dairy cows. Sci Rep 2022; 12:18886. [PMID: 36344510 PMCID: PMC9640695 DOI: 10.1038/s41598-022-21804-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Milk production in dairy cows is affected by numerous factors, including diet. Feed restriction is known to have little impact on milk total protein content but its effect on the fine protein composition is still poorly documented. The objective of this study was to describe the effects of two feed restriction trials of different intensities on the milk protein composition of Holstein cows. One restriction trial was of high intensity (H: 8 mid-lactation Holstein cows) and the second of moderate intensity (M: 19 peak lactation Holstein cows). Feed restriction decreased the milk protein yield for caseins under the M trial and of all six major milk proteins under the H trial. These decreased yields lead to lower concentrations of αs1-, αs2- and β-caseins during the H trial. The milk proteome, analyzed on 32 milk samples, was affected as a function of restriction intensity. Among the 345 proteins identified eight varied under the M trial and 160 under the H trial. Ontology analyses revealed their implication in carbohydrate, lipid and protein metabolisms as well as in the immune system. These proteins reflected adaptations of the animal and mammary gland physiology to feed restriction and constituted a signature of this change.
Collapse
Affiliation(s)
- A Leduc
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- INRAE, Institut Agro Rennes Angers, PEGASE, 35590, Saint-Gilles, France
- Institut de L'Elevage, 75012, Paris, France
| | - S Le Guillou
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - L Bianchi
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - L Oliveira Correia
- INRAE, AgroParisTech, Micalis Institute, PAPPSO, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - M Gelé
- Institut de L'Elevage, 75012, Paris, France
| | - J Pires
- INRAE, UMRH, Vetagro Sup, Université Clermont Auvergne, 63122, Saint-Genès-Champanelle, France
| | - P Martin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - C Leroux
- INRAE, UMRH, Vetagro Sup, Université Clermont Auvergne, 63122, Saint-Genès-Champanelle, France
| | - F Le Provost
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - M Boutinaud
- INRAE, Institut Agro Rennes Angers, PEGASE, 35590, Saint-Gilles, France.
| |
Collapse
|
8
|
Park HE, Park JS, Park HT, Shin JI, Kim KM, Park SR, Choi JG, Jung M, Kang HL, Baik SC, Lee WK, Yoo HS, Shin MK. Fetuin as a potential serum biomarker to detect subclinical shedder of bovine paratuberculosis. Microb Pathog 2022; 169:105675. [PMID: 35820578 DOI: 10.1016/j.micpath.2022.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
Paratuberculosis (PTB) is a chronic contagious granulomatous enteritis of wild and domestic ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). PTB causes considerable economic losses to the dairy industry through decreased milk production and premature culling. PTB-affected cattle undergo a subclinical stage without clinical signs and initiate fecal shedding of MAP into the environment. Current diagnostic tools have low sensitivity for the detection of subclinical PTB infection. Therefore, alternative diagnostic tools are required to improve the diagnostic sensitivity of subclinical PTB infection. In this study, we performed ELISA for three previously identified host biomarkers (fetuin, alpha-1-acid glycoprotein, and apolipoprotein) and analyzed their diagnostic performance with conventional PTB diagnostic methods. We observed that serum fetuin levels were significantly lowered in the subclinical shedder and clinical shedder groups than in the healthy control group, indicating its potential utility as a diagnostic biomarker for bovine PTB. Also, fetuin showed an excellent discriminatory power with an AUC = 0.949, a sensitivity of 92.6%, and a specificity of 94.4% for the detection of subclinical MAP infection. In conclusion, our results demonstrated that fetuin could be used as a diagnostic biomarker for enhancing the diagnostic sensitivity for the detection of subclinical MAP infections that are difficult to detect based on current diagnostic methods.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jin-Sik Park
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Kyu-Min Kim
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Seo-Rin Park
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Jeong-Gyu Choi
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Seung-Chul Baik
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea; BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, 52727, Republic of Korea; Department of Convergence Medical Science, Gyeongsang National University, Jinju, 52727, Republic of Korea.
| |
Collapse
|
9
|
Kaushik A, Bandyopadhyay S, Porwal C, Srinivasan A, Rukmangadachar LA, Hariprasad G, Kola S, Kataria J, Singh UB. 2D-DIGE based urinary proteomics and functional enrichment studies to reveal novel Mycobacterium tuberculosis and human protein biomarker candidates for pulmonary tuberculosis. Biochem Biophys Res Commun 2022; 619:15-21. [PMID: 35728279 DOI: 10.1016/j.bbrc.2022.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
In the absence of a sensitive and specific diagnostic modality capable of detecting all forms of tuberculosis (TB), proteomics may identify specific Mycobacterium tuberculosis (M.tb) proteins in urine, with a potential as biomarkers. To identify candidate biomarkers for TB, proteome profile of urine from pulmonary TB patients was compared with non-disease controls (NDC) and disease controls (DC, Streptococcus pneumonia infected patients) using a combination of two-dimensional difference gel electrophoresis (2D-DIGE) and liquid chromatography tandem mass spectrometry (LCMS/MS). Eleven differentially expressed host proteins and Eighteen high abundant M.tb proteins were identified. Protein-protein interactome (PPI) and functional enrichment analyses like Gene Ontologies, Reactome pathway etc. demonstrated that the human proteins mainly belong to extracellular space and show physiological pathways for immune response and hematological disorders. Whereas, M.tb proteins belong to the cell periphery, plasma membrane and cell wall, and demonstrated catalytic, nucleotide binding and ATPase activities along with other functional processes. The study findings provide valuable inputs about the biomarkers of TB and shed light on the probable disease consequences as an outcome of the bacterial pathogenicity.
Collapse
Affiliation(s)
- Amit Kaushik
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Chhavi Porwal
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Gururao Hariprasad
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Srujana Kola
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jitender Kataria
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Urvashi B Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
10
|
Blanco-Vázquez C, Alonso-Hearn M, Iglesias N, Vázquez P, Juste RA, Garrido JM, Balseiro A, Canive M, Amado J, Queipo MA, Iglesias T, Casais R. Use of ATP-Binding Cassette Subfamily A Member 13 (ABCA13) for Sensitive Detection of Focal Pathological Forms of Subclinical Bovine Paratuberculosis. Front Vet Sci 2022; 9:816135. [PMID: 35359676 PMCID: PMC8960928 DOI: 10.3389/fvets.2022.816135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Bovine paratuberculosis (PTB) is a chronic enteritis caused by Mycobacterium avium subspecies paratuberculosis (Map) that causes a heavy economic impact worldwide. Map infected animals can remain asymptomatic for years while transmitting the mycobacteria to other members of the herd. Therefore, accurate detection of subclinically infected animals is crucial for disease control. In a previous RNA-Seq study, we identified several mRNAs that were overexpressed in whole blood of cows with different PTB-associated histological lesions compared with control animals without detected lesions. The proteins encoded by two of these mRNAs, ATP binding cassette subfamily A member 13 (ABCA13) and Matrix Metallopeptidase 8 (MMP8) were significantly overexpressed in whole blood of animals with focal histological lesions, the most frequent pathological form in the subclinical stages of the disease. In the current study, the potential of sensitive early diagnostic tools of commercial ELISAs, based on the detection of these two biomarkers, was evaluated in serum samples of 704 Holstein Friesian cows (566 infected animals and 138 control animals from PTB-free farms). For this evaluation, infected animals were classified into three groups, according to the type of histological lesions present in their gut tissues: focal (n = 447), multifocal (n = 59), and diffuse (n = 60). The ELISA based on the detection of ABCA13 was successfully validated showing good discriminatory power between animals with focal lesions and control animals (sensitivity 82.99% and specificity 80.43%). Conversely, the MMP8-based ELISA showed a poor discriminatory power between the different histological groups and non-infected controls. The ABCA13-based ELISA showed a higher diagnostic value (0.822) than the IDEXX ELISA (0.517), the fecal bacterial isolation (0.523) and the real-time PCR (0.531) for the detection of animals with focal lesions. Overall, our results indicate that this ABCA13 ELISA greatly improves the identification of subclinically infected animals with focal lesions that are undetectable using current diagnostic methods.
Collapse
Affiliation(s)
- Cristina Blanco-Vázquez
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Natalia Iglesias
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva, Spain
| | - Patricia Vázquez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ramón A. Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Joseba M. Garrido
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, León, Spain
- Instituto de Ganadería de Montaña, Centro Superior de Investigaciones Científicas (CSIC-Universidad de León), León, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Javier Amado
- Laboratorio Regional de Sanidad Animal del Principado de Asturias, Gijón, Spain
| | - Manuel A. Queipo
- Servicio de Sanidad y Producción Animal del Principado de Asturias, Oviedo, Spain
| | - Tania Iglesias
- Unidad de Consultoría Estadística, Servicios científico-técnicos, Universidad de Oviedo, Gijón, Spain
| | - Rosa Casais
- Centro de Biotecnología Animal, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva, Spain
- *Correspondence: Rosa Casais
| |
Collapse
|
11
|
Ibeagha-Awemu EM, Bissonnette N, Do DN, Dudemaine PL, Wang M, Facciuolo A, Griebel P. Regionally Distinct Immune and Metabolic Transcriptional Responses in the Bovine Small Intestine and Draining Lymph Nodes During a Subclinical Mycobacterium avium subsp. paratuberculosis Infection. Front Immunol 2022; 12:760931. [PMID: 34975852 PMCID: PMC8714790 DOI: 10.3389/fimmu.2021.760931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative infectious agent of Johne’s disease (JD), an incurable granulomatous enteritis affecting domestic livestock and other ruminants around the world. Chronic MAP infections usually begin in calves with MAP uptake by Peyer’s patches (PP) located in the jejunum (JE) and ileum (IL). Determining host responses at these intestinal sites can provide a more complete understanding of how MAP manipulates the local microenvironment to support its long-term survival. We selected naturally infected (MAPinf, n=4) and naive (MAPneg, n=3) cows and transcriptionally profiled the JE and IL regions of the small intestine and draining mesenteric lymph nodes (LN). Differentially expressed (DE) genes associated with MAP infection were identified in the IL (585), JE (218), jejunum lymph node (JELN) (205), and ileum lymph node (ILLN) (117). Three DE genes (CD14, LOC616364 and ENSBTAG00000027033) were common to all MAPinf versus MAPneg tissues. Functional enrichment analysis revealed immune/disease related biological processes gene ontology (GO) terms and pathways predominated in IL tissue, indicative of an activated immune response state. Enriched GO terms and pathways in JE revealed a distinct set of host responses from those detected in IL. Regional differences were also identified between the mesenteric LNs draining each intestinal site. More down-regulated genes (52%) and fewer immune/disease pathways (n=5) were found in the ILLN compared to a higher number of up-regulated DE genes (56%) and enriched immune/disease pathways (n=13) in the JELN. Immunohistochemical staining validated myeloid cell transcriptional changes with increased CD172-positive myeloid cells in IL and JE tissues and draining LNs of MAPinf versus MAPneg cows. Several genes, GO terms, and pathways related to metabolism were significantly DE in IL and JE, but to a lesser extent (comparatively fewer enriched metabolic GO terms and pathways) in JELN suggesting distinct regional metabolic changes in IL compared to JE and JELN in response to MAP infection. These unique tissue- and regional-specific differences provides novel insight into the dichotomy in host responses to MAP infection that occur throughout the small intestine and mesenteric LN of chronically MAP infected cows.
Collapse
Affiliation(s)
- Eveline M Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Duy N Do
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Pier-Luc Dudemaine
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Mengqi Wang
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Antonio Facciuolo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
| | - Philip Griebel
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
12
|
Mazorra-Carrillo JL, Alcaraz-López OA, López-Rincón G, Villarreal-Ramos B, Gutiérrez-Pabello JA, Esquivel-Solís H. Host Serum Proteins as Potential Biomarkers of Bovine Tuberculosis Resistance Phenotype. Front Vet Sci 2021; 8:734087. [PMID: 34869715 PMCID: PMC8637331 DOI: 10.3389/fvets.2021.734087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022] Open
Abstract
Eradication of bovine tuberculosis (bTB) continues to be a worldwide challenge. The lack of reliable vaccines dampens the control and eradication programs of Mycobacterium bovis infection and spread. Selection and breeding of cattle resistant to M. bovis infection would greatly enhance the effectiveness of bTB eradication programs. Here, we have evaluated the potential of serum proteins as biomarkers of cattle resistance to bTB in Holstein-Friesian cows, 6-8-year-old, born and raised in similar conditions in herds with bTB prevalence >30%. Serum proteins obtained from uninfected cows (bTB-resistant; R) were compared to those from infected cows (bTB-susceptible; S), defined by a negative or positive bTB diagnosis, respectively. bTB diagnosis included: (i) single intradermal (caudal fold) tuberculin test, (ii) whole blood IFN-gamma test, (iii) gross visible lesions in lymph nodes and lungs by inspection at the abattoir, and (iv) a bacteriological culture for M. bovis. Using 2D-GE and LC-ESI-MS/MS, we found higher expression levels of primary amine oxidase (AO), complement component 5 (C5), and serotransferrin (TF) in R cattle than S cattle. In-house developed and standardized ELISAs for these novel biomarkers showed the best sensitivities of 72, 77, 77%, and specificities of 94, 94, 83%, for AO, C5, and TF, respectively. AUC-ROC (95% CI) values of 0.8935 (0.7906-0.9964), 0.9290 (0.8484-1.010), and 0.8580 (0.7291-0.9869) were obtained at cut-off points of 192.0, 176.5 ng/ml, and 2.1 mg/ml for AO, C5, and TF, respectively. These proteins are involved in inflammatory/immunomodulatory responses to infections and may provide a novel avenue of research to determine the mechanisms of protection against bTB. Overall, our results indicate that these proteins could be novel biomarkers to help identify cattle resistant to bTB, which in turn could be used to strengthen the effectiveness of existing eradication programs against bTB.
Collapse
Affiliation(s)
- Jorge Luis Mazorra-Carrillo
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Omar Antonio Alcaraz-López
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico.,Laboratorio de Investigación en Tuberculosis Bovina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gonzalo López-Rincón
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Bernardo Villarreal-Ramos
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom.,Centre of Excellence for Bovine Tuberculosis, Institute for Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - José A Gutiérrez-Pabello
- Laboratorio de Investigación en Tuberculosis Bovina, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hugo Esquivel-Solís
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
13
|
Taylor EN, Beckmann M, Villarreal-Ramos B, Vordermeier HM, Hewinson G, Rooke D, Mur LAJ, Koets AP. Metabolomic Changes in Naturally MAP-Infected Holstein-Friesian Heifers Indicate Immunologically Related Biochemical Reprogramming. Metabolites 2021; 11:metabo11110727. [PMID: 34822384 PMCID: PMC8625860 DOI: 10.3390/metabo11110727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022] Open
Abstract
Johne’s disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), causes weight loss, diarrhoea, and reduced milk yields in clinically infected cattle. Asymptomatic, subclinically infected cattle shed MAP bacteria but are frequently not detected by diagnostic tests. Herein, we compare the metabolite profiles of sera from subclinically infected Holstein–Friesian heifers and antibody binding to selected MAP antigens. The study used biobanked serum samples from 10 naturally MAP-infected and 10 control heifers, sampled monthly from ~1 to 19 months of age. Sera were assessed using flow infusion electrospray–high-resolution mass spectrometry (FIE–HRMS) on a Q Exactive hybrid quadrupole–Orbitrap mass spectrometer for high-throughput, sensitive, non-targeted metabolite fingerprinting. Partial least-squares discriminant analyses (PLS-DA) and hierarchical cluster analysis (HCA) of the data discriminated between naturally MAP-infected and control heifers. In total, 33 metabolites that differentially accumulated in naturally MAP-infected heifers compared to controls were identified. Five were significantly elevated within MAP-infected heifers throughout the study, i.e., leukotriene B4, bicyclo prostaglandin E2 (bicyclo PGE2), itaconic acid, 2-hydroxyglutaric acid and N6-acetyl-L-lysine. These findings highlight the potential of metabolomics in the identification of novel MAP diagnostic markers and particular biochemical pathways, which may provide insights into the bovine immune response to MAP.
Collapse
Affiliation(s)
- Emma N. Taylor
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
| | - Manfred Beckmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
| | - Bernardo Villarreal-Ramos
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
- Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion SY23 3DA, UK
- Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Hans-Martin Vordermeier
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
- Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion SY23 3DA, UK
- Animal and Plant Health Agency, Weybridge, Surrey KT15 3NB, UK
| | - Glyn Hewinson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
- Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion SY23 3DA, UK
| | - David Rooke
- ProTEM Services Ltd., Horsham, West Sussex RH12 4BD, UK;
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Ceredigion SY23 3DA, UK; (E.N.T.); (M.B.); (B.V.-R.); (H.-M.V.); (G.H.)
- Correspondence: (L.A.J.M.); (A.P.K.)
| | - Ad P. Koets
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands
- Population Health Systems, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
- Correspondence: (L.A.J.M.); (A.P.K.)
| |
Collapse
|
14
|
Alvarez AH. Revisiting tuberculosis screening: An insight to complementary diagnosis and prospective molecular approaches for the recognition of the dormant TB infection in human and cattle hosts. Microbiol Res 2021; 252:126853. [PMID: 34536677 DOI: 10.1016/j.micres.2021.126853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Tuberculosis (TB) is defined as a chronic infection in both human and cattle hosts and many subclinical cases remain undetected. After the pathogen is inhaled by a host, phagocyted bacilli can persist inside macrophages surviving intracellularly. Hosts develop granulomatous lesions in the lungs or lymph nodes, limiting infection. However, bacilli become persister cells. Immunological diagnosis of TB is performed basically by routine tuberculin skin test (TST), and in some cases, by ancillary interferon-gamma release assay (IGRA). The concept of human latent TB infection (LTBI) by M. tuberculosis is recognized in cohorts without symptoms by routine clinical diagnostic tests, and nowadays IGRA tests are used to confirm LTBI with either active or latent specific antigens of M. tuberculosis. On the other hand, dormant infection in cattle by M. bovis has not been described by TST or IGRA testing as complications occur by cross-reactive immune responses to homolog antigens of environmental mycobacteria or a false-negative test by anergic states of a wained bovine immunity, evidencing the need for deciphering more specific biomarkers by new-generation platforms of analysis for detection of M. bovis dormant infection. The study and description of bovine latent TB infection (boLTBI) would permit the recognition of hidden animal infection with an increase in the sensitivity of routine tests for an accurate estimation of infected dairy cattle. Evidence of immunological and experimental analysis of LTBI should be taken into account to improve the study and the description of the still neglected boLTBI.
Collapse
Affiliation(s)
- Angel H Alvarez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C. (CIATEJ), Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Normalistas 800 C.P. 44270, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
15
|
Kravitz A, Pelzer K, Sriranganathan N. The Paratuberculosis Paradigm Examined: A Review of Host Genetic Resistance and Innate Immune Fitness in Mycobacterium avium subsp. Paratuberculosis Infection. Front Vet Sci 2021; 8:721706. [PMID: 34485444 PMCID: PMC8414637 DOI: 10.3389/fvets.2021.721706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Paratuberculosis, or Johne's Disease (JD) is a debilitating chronic enteritis mainly affecting ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). This organism causes worldwide economic losses to the livestock industry, and is of public health importance due to the potential zoonotic risk between MAP and Crohn's disease (CD) in humans. Without economical treatments, or a vaccine capable of preventing infection without causing cross-reactions with bovine tuberculosis, test-and-cull methods for disease control are imperative. Unfortunately, difficulties in diagnostics and long subclinical stage hinder adequate control and is further complicated by variation in MAP exposure outcome. Interestingly, the majority of infections result in asymptomatic presentation and never progress to clinical disease. One contributing factor is host genetics, where polymorphisms in innate immune genes have been found to influence resistance and susceptibility to disease. Candidate genes identified across studies overlap with those found in CD and tuberculosis including; Solute carrier family 11 member 1 gene (SLC11A1), Nucleotide-binding-oligomerization domain containing gene 2 (NOD2), Major histocompatibility complex type II (MHC-II), and Toll-like receptor (TLR) genes. This review will highlight evidence supporting the vital role of these genes in MAP infection outcome, associated challenges, and implications for the future of JD research.
Collapse
Affiliation(s)
- Amanda Kravitz
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kevin Pelzer
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
16
|
Heidari M, Pakdel A, Bakhtiarizadeh MR, Dehghanian F. Integrated Analysis of lncRNAs, mRNAs, and TFs to Identify Regulatory Networks Underlying MAP Infection in Cattle. Front Genet 2021; 12:668448. [PMID: 34290737 PMCID: PMC8287970 DOI: 10.3389/fgene.2021.668448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022] Open
Abstract
Johne’s disease is a chronic infection of ruminants that burdens dairy herds with a significant economic loss. The pathogenesis of the disease has not been revealed clearly due to its complex nature. In order to achieve deeper biological insights into molecular mechanisms involved in MAP infection resulting in Johne’s disease, a system biology approach was used. As far as is known, this is the first study that considers lncRNAs, TFs, and mRNAs, simultaneously, to construct an integrated gene regulatory network involved in MAP infection. Weighted gene coexpression network analysis (WGCNA) and functional enrichment analysis were conducted to explore coexpression modules from which nonpreserved modules had altered connectivity patterns. After identification of hub and hub-hub genes as well as TFs and lncRNAs in the nonpreserved modules, integrated networks of lncRNA-mRNA-TF were constructed, and cis and trans targets of lncRNAs were identified. Both cis and trans targets of lncRNAs were found in eight nonpreserved modules. Twenty-one of 47 nonpreserved modules showed significant biological processes related to the immune system and MAP infection. Some of the MAP infection’s related pathways in the most important nonpreserved modules comprise “positive regulation of cytokine-mediated signaling pathway,” “negative regulation of leukocyte migration,” “T-cell differentiation,” “neutrophil activation,” and “defense response.” Furthermore, several genes were identified in these modules, including SLC11A1, MAPK8IP1, HMGCR, IFNGR1, CMPK2, CORO1A, IRF1, LDLR, BOLA-DMB, and BOLA-DMA, which are potentially associated with MAP pathogenesis. This study not only enhanced our knowledge of molecular mechanisms behind MAP infection but also highlighted several promising hub and hub-hub genes involved in macrophage-pathogen interaction.
Collapse
Affiliation(s)
- Maryam Heidari
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Abbas Pakdel
- Department of Animal Sciences, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | | | | |
Collapse
|
17
|
Applied Proteomics in 'One Health'. Proteomes 2021; 9:proteomes9030031. [PMID: 34208880 PMCID: PMC8293331 DOI: 10.3390/proteomes9030031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
‘One Health’ summarises the idea that human health and animal health are interdependent and bound to the health of ecosystems. The purpose of proteomics methodologies and studies is to determine proteins present in samples of interest and to quantify changes in protein expression during pathological conditions. The objectives of this paper are to review the application of proteomics technologies within the One Health concept and to appraise their role in the elucidation of diseases and situations relevant to One Health. The paper develops in three sections. Proteomics Applications in Zoonotic Infections part discusses proteomics applications in zoonotic infections and explores the use of proteomics for studying pathogenetic pathways, transmission dynamics, diagnostic biomarkers and novel vaccines in prion, viral, bacterial, protozoan and metazoan zoonotic infections. Proteomics Applications in Antibiotic Resistance part discusses proteomics applications in mechanisms of resistance development and discovery of novel treatments for antibiotic resistance. Proteomics Applications in Food Safety part discusses the detection of allergens, exposure of adulteration, identification of pathogens and toxins, study of product traits and characterisation of proteins in food safety. Sensitive analysis of proteins, including low-abundant ones in complex biological samples, will be achieved in the future, thus enabling implementation of targeted proteomics in clinical settings, shedding light on biomarker research and promoting the One Health concept.
Collapse
|
18
|
Using Omics Approaches in the Discovery of Biomarkers for Early Diagnosis of Johne's Disease in Sheep and Goats. Animals (Basel) 2021; 11:ani11071912. [PMID: 34199073 PMCID: PMC8300312 DOI: 10.3390/ani11071912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Johne’s disease (JD) is caused by Mycobacterium avium subsp. paratuberculosis (MAP) and is an important and emerging problem in livestock. Most JD research has been carried out on cattle, but interest in the pathogenesis and diagnosis of this disease in sheep and goats is greatest in developing countries. Sheep and goats are also a relevant part of livestock production in Europe and Australia, and these species provide an excellent resource to study and better understand the mechanism of survival of MAP and gain insights into possible approaches to control this disease. This review gives an overview of the literature on paratuberculosis in sheep and goats, highlighting the immunological aspects and the potential for “omics” approaches to identify effective biomarkers for the early detection of infection. Abstract Johne’s disease (JD) is caused by Mycobacterium avium subsp. paratuberculosis (MAP) and is an important and emerging problem in livestock; therefore, its control and prevention is a priority to reduce economic losses and health risks. Most JD research has been carried out on cattle, but interest in the pathogenesis and diagnosis of this disease in sheep and goats is greatest in developing countries. Sheep and goats are also a relevant part of livestock production in Europe and Australia, and these species provide an excellent resource to study and better understand the mechanism of survival of MAP and gain insights into possible approaches to control this disease. This review gives an overview of the literature on paratuberculosis in sheep and goats, highlighting the immunological aspects and the potential for “omics” approaches to identify effective biomarkers for the early detection of infection. As JD has a long incubation period before the disease becomes evident, early diagnosis is important to control the spread of the disease.
Collapse
|
19
|
Blanco Vázquez C, Balseiro A, Alonso-Hearn M, Juste RA, Iglesias N, Canive M, Casais R. Bovine Intelectin 2 Expression as a Biomarker of Paratuberculosis Disease Progression. Animals (Basel) 2021; 11:ani11051370. [PMID: 34065919 PMCID: PMC8151335 DOI: 10.3390/ani11051370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Simple Summary The potential of the bovine intelectin 2 as a biomarker of Mycobacterium avium subsp. paratuberculosis infection was investigated using quantitative immunohistochemical analysis of ileocecal valve samples of animals with increasing degrees of lesion severity (focal, multifocal and diffuse histological lesions) and control animals without detected lesions. Significant differences were observed in the mean number of intelectin 2 immunolabelled cells between the three histopathological types and the control. Specifically, the mean number of intelectin 2 labelled cells was indicative of disease progression as the focal group had the highest number of intelectin 2 secreting cells followed by the multifocal, diffuse and control groups indicating that intelectin 2 is a good biomarker for the different stages of Mycobacterium avium subsp. paratuberculosis infection. Quantification of bovine intelectin 2 secreting cells could constitute a good post-mortem tool, complementary to histopathology, to improve detection of Mycobacterium avium subsp. Paratuberculosis infections, especially latent forms of infection. Abstract Paratuberculosis (PTB), a chronic granulomatous enteritis caused by Mycobacterium avium subsp. paratuberculosis (MAP), is responsible for important economic losses in the dairy industry. Our previous RNA-sequencing (RNA-Seq) analysis showed that bovine intelectin 2 (ITLN2) precursor gene was overexpressed in ileocecal valve (ICV) samples of animals with focal (log2 fold-change = 10.6) and diffuse (log2 fold-change = 6.8) PTB-associated lesions compared to animals without lesions. This study analyzes the potential use of ITLN2, a protein that has been described as fundamental in the innate immune response to infections, as a biomarker of MAP infection. The presence of ITLN2 was investigated by quantitative immunohistochemical analysis of ICV samples of 20 Holstein Friesian cows showing focal (n = 5), multifocal (n = 5), diffuse (n = 5) and no histological lesions (n = 5). Significant differences were observed in the mean number of ITLN2 immunostained goblet and Paneth cells between the three histopathological types and the control. The number of immunolabelled cells was higher in the focal histopathological type (116.9 ± 113.9) followed by the multifocal (108.7 ± 140.5), diffuse (76.5 ± 97.8) and control types (41.0 ± 81.3). These results validate ITLN2 as a post-mortem biomarker of disease progression.
Collapse
Affiliation(s)
- Cristina Blanco Vázquez
- Center for Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394 Deva, Spain; (C.B.V.); (N.I.)
| | - Ana Balseiro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, 24071 León, Spain;
- Departamento de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Finca Marzanas, Grulleros, 24346 León, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Spain; (M.A.-H.); (R.A.J.); (M.C.)
| | - Ramón A. Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Spain; (M.A.-H.); (R.A.J.); (M.C.)
| | - Natalia Iglesias
- Center for Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394 Deva, Spain; (C.B.V.); (N.I.)
| | - Maria Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Spain; (M.A.-H.); (R.A.J.); (M.C.)
| | - Rosa Casais
- Center for Animal Biotechnology, Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33394 Deva, Spain; (C.B.V.); (N.I.)
- Correspondence:
| |
Collapse
|
20
|
Park HE, Park JS, Park HT, Choi JG, Shin JI, Jung M, Kang HL, Baik SC, Lee WK, Kim D, Yoo HS, Shin MK. Alpha-2-Macroglobulin as a New Promising Biomarker Improving the Diagnostic Sensitivity of Bovine Paratuberculosis. Front Vet Sci 2021; 8:637716. [PMID: 33748212 PMCID: PMC7973028 DOI: 10.3389/fvets.2021.637716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Johne's disease (JD) is a chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), which induces persistent diarrhea and cachexia. JD causes huge economic losses to the dairy industry due to reduced milk production and premature culling. Infected animals excrete MAP via feces during the prolonged subclinical stage without exhibiting any clinical signs. Therefore, accurate detection of subclinical stage animals is crucial for successful eradication of JD in the herd. In the current study, we analyzed serum samples of MAP-infected and non-infected cattle to identify potential biomarker candidates. First, we identified 12 differentially expressed serum proteins in subclinical and clinical shedder groups compared to the healthy control group. Second, we conducted ELISA for three selected biomarkers (alpha-2-macroglobulin (A2M), alpha-1-beta glycoprotein, and transthyretin) and compared their diagnostic performance with that of two commercial ELISA diagnostic kits. Serum A2M levels were significantly higher in the MAP-exposed, subclinical shedder, subclinical non-shedder, and clinical shedder groups than in the healthy control group, suggesting its possible use as a diagnostic biomarker for MAP infection. Furthermore, A2M demonstrated a sensitivity of 90.4%, and a specificity of 100% while the two commercial ELISA kits demonstrated a sensitivity of 67.83 and 73.04% and a specificity of 100%, respectively. In conclusion, our results suggest that measuring A2M by ELISA can be used as a diagnostic tool to detect MAP infection, considerably improving the detection rate of subclinical shedders and MAP-exposed animals that are undetectable using current diagnostic tools.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Infectious Diseases, College of Veterinary Medicine, BK21Four and Bio-Max/N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Jin-Sik Park
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | - Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, BK21Four and Bio-Max/N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Jeong-Gyu Choi
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Jeong-Ih Shin
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Myunghwan Jung
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Seung-Chul Baik
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Woo-Kon Lee
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| | - Donghyuk Kim
- Schools of Energy & Chemical Engineering and Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, BK21Four and Bio-Max/N-Bio Institute, Seoul National University, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea.,Department of Convergence Medical Sciences, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
21
|
de Silva K. Developing smarter vaccines for paratuberculosis: From early biomarkers to vaccine design. Immunol Rev 2021; 301:145-156. [PMID: 33619731 DOI: 10.1111/imr.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Vaccines for paratuberculosis have been used for over a hundred years but the disease continues to affect ruminant health and livestock industries globally. Mycobacterium avium subspecies paratuberculosis which causes the disease also known as Johne's disease is a subversive pathogen able to undermine both innate and adaptive host defense mechanisms. This review focuses on early protective immune pathways that lead to some animals becoming resilient to infection to provide a road map for designing better vaccines and emphasizes the need for harnessing the potential of mucosal immunity.
Collapse
Affiliation(s)
- Kumudika de Silva
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Narellan, NSW, Australia
| |
Collapse
|
22
|
Tata A, Pallante I, Massaro A, Miano B, Bottazzari M, Fiorini P, Dal Prà M, Paganini L, Stefani A, De Buck J, Piro R, Pozzato N. Serum Metabolomic Profiles of Paratuberculosis Infected and Infectious Dairy Cattle by Ambient Mass Spectrometry. Front Vet Sci 2021; 7:625067. [PMID: 33553289 PMCID: PMC7854907 DOI: 10.3389/fvets.2020.625067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of paratuberculosis [Johne's disease (JD)], a chronic disease that causes substantial economic losses in the dairy cattle industry. The long incubation period means clinical signs are visible in animals only after years, and some cases remain undetected because of the subclinical manifestation of the disease. Considering the complexity of JD pathogenesis, animals can be classified as infected, infectious, or affected. The major limitation of currently available diagnostic tests is their failure in detecting infected non-infectious animals. The present study aimed to identify metabolic markers associated with infected and infectious stages of JD. Direct analysis in real time coupled with high resolution mass spectrometry (DART-HRMS) was, hence, applied in a prospective study where cohorts of heifers and cows were followed up annually for 2–4 years. The animals' infectious status was assigned based on a positive result of both serum ELISA and fecal PCR, or culture. The same animals were retrospectively assigned to the status of infected at the previous sampling for which all JD tests were negative. Stored sera from 10 infected animals and 17 infectious animals were compared with sera from 20 negative animals from the same herds. Two extraction protocols and two (-/+) ionization modes were tested. The three most informative datasets out of the four were merged by a mid-level data fusion approach and submitted to partial least squares discriminant analysis (PLS-DA). Compared to the MAP negative subjects, metabolomic analysis revealed the m/z signals of isobutyrate, dimethylethanolamine, palmitic acid, and rhamnitol were more intense in infected animals. Both infected and infectious animals showed higher relative intensities of tryptamine and creatine/creatinine as well as lower relative abundances of urea, glutamic acid and/or pyroglutamic acid. These metabolic differences could indicate altered fat metabolism and reduced energy intake in both infected and infectious cattle. In conclusion, DART-HRMS coupled to a mid-level data fusion approach allowed the molecular features that identified preclinical stages of JD to be teased out.
Collapse
Affiliation(s)
- Alessandra Tata
- Istituto Zooprofilattico delle Venezie (IZSVe), Legnaro, Italy
| | - Ivana Pallante
- Istituto Zooprofilattico delle Venezie (IZSVe), Legnaro, Italy
| | - Andrea Massaro
- Istituto Zooprofilattico delle Venezie (IZSVe), Legnaro, Italy
| | - Brunella Miano
- Istituto Zooprofilattico delle Venezie (IZSVe), Legnaro, Italy
| | | | - Paola Fiorini
- Istituto Zooprofilattico delle Venezie (IZSVe), Legnaro, Italy
| | - Mauro Dal Prà
- Istituto Zooprofilattico delle Venezie (IZSVe), Legnaro, Italy
| | - Laura Paganini
- Istituto Zooprofilattico delle Venezie (IZSVe), Legnaro, Italy
| | | | - Jeroen De Buck
- Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
| | - Roberto Piro
- Istituto Zooprofilattico delle Venezie (IZSVe), Legnaro, Italy
| | - Nicola Pozzato
- Istituto Zooprofilattico delle Venezie (IZSVe), Legnaro, Italy
| |
Collapse
|
23
|
Abstract
Mycobacterial infections are widely distributed in animals and cause considerable economic losses, especially in livestock animals. Bovine paratuberculosis and bovine tuberculosis, which are representative mycobacterial infections in cattle, are difficult to diagnose using current-generation diagnostics due to their relatively long incubation periods. Thus, alternative diagnostic tools are needed for the detection of mycobacterial infections in cattle. A biomarker is an indicator present in biological fluids that reflects the biological state of an individual during the progression of a specific disease. Therefore, biomarkers are considered a potential diagnostic tool for various diseases. Recently, the number of studies investigating biomarkers as tools for diagnosing mycobacterial infections has increased. In human medicine, many diagnostic biomarkers have been developed and applied in clinical practice. In veterinary medicine, however, many such developments are still in the early stages. In this review, we summarize the current progress in biomarker research related to the development of diagnostic biomarkers for mycobacterial infections in cattle.
Collapse
|
24
|
Loupy KM, Lee T, Zambrano CA, Elsayed AI, D'Angelo HM, Fonken LK, Frank MG, Maier SF, Lowry CA. Alzheimer's Disease: Protective Effects of Mycobacterium vaccae, a Soil-Derived Mycobacterium with Anti-Inflammatory and Anti-Tubercular Properties, on the Proteomic Profiles of Plasma and Cerebrospinal Fluid in Rats. J Alzheimers Dis 2020; 78:965-987. [PMID: 33074227 DOI: 10.3233/jad-200568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is an inflammatory neurodegenerative disease that may be associated with prior bacterial infections. Microbial "old friends" can suppress exaggerated inflammation in response to disease-causing infections or increase clearance of pathogens such as Mycobacterium tuberculosis, which causes tuberculosis (TB). One such "old friend" is Mycobacterium vaccae NCTC 11659, a soil-derived bacterium that has been proposed either as a vaccine for prevention of TB, or as immunotherapy for the treatment of TB when used alongside first line anti-TB drug treatment. OBJECTIVE The goal of this study was to use a hypothesis generating approach to explore the effects of M. vaccae on physiological changes in the plasma and cerebrospinal fluid (CSF). METHODS Liquid chromatography-tandem mass spectrometry-based proteomics were performed in plasma and CSF of adult male rats after immunization with a heat-killed preparation of M. vaccae NCTC 11659 or borate-buffered saline vehicle. Gene enrichment analysis and analysis of protein-protein interactions were performed to integrate physiological network changes in plasma and CSF. We used RT-qPCR to assess immune and metabolic gene expression changes in the hippocampus. RESULTS In both plasma and CSF, immunization with M. vaccae increased proteins associated with immune activation and downregulated proteins corresponding to lipid (including phospholipid and cholesterol) metabolism. Immunization with M. vaccae also increased hippocampal expression of interleukin-4 (IL-4) mRNA, implicating anti-inflammatory effects in the central nervous system. CONCLUSION M. vaccae alters host immune activity and lipid metabolism. These data are consistent with the hypothesis that microbe-host interactions may protect against possible infection-induced, inflammation-related cognitive impairments.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas Lee
- Central Analytical Laboratory and Mass Spectrometry Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ, USA
| |
Collapse
|
25
|
Schalich KM, Herren AW, Selvaraj V. Analysis of differential strategies to enhance detection of low-abundance proteins in the bovine serum proteome. Anim Sci J 2020; 91:e13388. [PMID: 32578273 DOI: 10.1111/asj.13388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/29/2020] [Accepted: 04/19/2020] [Indexed: 12/28/2022]
Abstract
Serum-based biomarkers hold propitious applications for addressing livestock health, and management. However, discovery of protein biomarkers in complex biological fluids like serum is wholly intractable due to the large dynamic range of protein concentrations; that is, ˜10-12 high abundance proteins constitute >90% of the total protein content and effectively mask proteomic detection of low-abundance biomarkers. Toward addressing this limitation, we test a continuous elution size-based fractionation method, and two approaches that use affinity interaction-based separation of proteins in preparing bovine serum, and compare liquid chromatography tandem mass spectrometry protein identification to neat serum. Our results identify the high-abundance proteins in bovine serum, and demonstrate dynamic range compression and improved protein identification with the different enrichment methods. Although these findings indicate the highest protein number identified in bovine serum (445 proteins, all methods combined), and by any single sample processing method (312 proteins) to date, they still remain lower than levels deemed necessary for biomarker discovery. As such, this investigation revealed limitations to resolving the bovine serum proteome, and the need for species-specific tools for immunodepleting high-abundance proteins. In concert, this study represents a step toward advancing sample preparation methods for bovine serum biomarker identification.
Collapse
Affiliation(s)
- Kasey M Schalich
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | | | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Blanco Vázquez C, Alonso-Hearn M, Juste RA, Canive M, Iglesias T, Iglesias N, Amado J, Vicente F, Balseiro A, Casais R. Detection of latent forms of Mycobacterium avium subsp. paratuberculosis infection using host biomarker-based ELISAs greatly improves paratuberculosis diagnostic sensitivity. PLoS One 2020; 15:e0236336. [PMID: 32881863 PMCID: PMC7470414 DOI: 10.1371/journal.pone.0236336] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Bovine paratuberculosis (PTB) is a chronic granulomatous enteritis, caused by Mycobacterium avium subsp. paratuberculosis (MAP), responsible for important economic losses in the dairy industry. Current diagnostic methods have low sensitivities for detection of latent forms of MAP infection, defined by focal granulomatous lesions and scarce humoral response or MAP presence. In contrast, patent infections correspond to multifocal and diffuse types of enteritis where there is increased antibody production, and substantial mycobacterial load. Our previous RNA-Seq analysis allowed the selection of five candidate biomarkers overexpressed in peripheral blood of MAP infected Holstein cows with focal (ABCA13 and MMP8) and diffuse (FAM84A, SPARC and DES) lesions vs. control animals with no detectable PTB-associated lesions in intestine and regional lymph nodes. The aim of the current study was to assess the PTB diagnostic potential of commercial ELISAs designed for the specific detection of these biomarkers. The ability of these ELISAs to identify animals with latent and/or patent forms of MAP infection was investigated using serum from naturally infected cattle (n = 88) and non-infected control animals (n = 67). ROC analysis revealed that the ABCA13-based ELISA showed the highest diagnostic accuracy for the detection of infected animals with focal lesions (AUC 0.837, sensitivity 79.25% and specificity 88.06%) and with any type of histological lesion (AUC 0.793, sensitivity 69.41% and specificity 86.57%) improving on the diagnostic performance of the popular IDEXX ELISA and other conventional diagnostic methods. SPARC and MMP8 showed the highest diagnostic accuracy for the detection of animals with multifocal (AUC 0.852) and diffuse lesions (AUC 0.831), respectively. In conclusion, our results suggest that quantification of ABCA13, SPARC and MMP8 by ELISA has the potential for implementation as a diagnostic tool to reliably identify MAP infection, greatly improving early detection of MAP latent infections when antibody responses and fecal shedding are undetectable using conventional diagnostic methods.
Collapse
Affiliation(s)
- Cristina Blanco Vázquez
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva Gijón, Asturias, Spain
| | - Marta Alonso-Hearn
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Ramón A. Juste
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - María Canive
- Animal Health Department, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain
| | - Tania Iglesias
- Unidad de Consultoría Estadística, Servicios científico-técnicos, Universidad de Oviedo, Campus de Gijón, Asturias, Spain
| | - Natalia Iglesias
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva Gijón, Asturias, Spain
| | - Javier Amado
- Departament of Microbiology and Parasitology, Laboratorio de Sanidad Animal del Principado de Asturias (LSAPA), Gijón, Asturias, Spain
| | - Fernando Vicente
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Villaviciosa, Asturias, Spain
| | - Ana Balseiro
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva Gijón, Asturias, Spain
- Department of Animal Health, Facultad de Veterinaria, Instituto Ganadería de Montaña (CSIC-ULE), University of León, León, Spain
| | - Rosa Casais
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), Deva Gijón, Asturias, Spain
- * E-mail:
| |
Collapse
|
27
|
Nagy O, Tóthová C, Mudroň P. The impact of chronic diarrhoea in Mycobacterium avium subsp. paratuberculosis seropositive dairy cows on serum protein fractions and selected acute phase proteins. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1714631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Oskar Nagy
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Pavol Mudroň
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| |
Collapse
|
28
|
Abstract
Paratuberculosis and bovine tuberculosis are two mycobacterial diseases of ruminants which have a considerable impact on livestock health, welfare, and production. These are chronic "iceberg" diseases which take years to manifest and in which many subclinical cases remain undetected. Suggested biomarkers to detect infected or diseased animals are numerous and include cytokines, peptides, and expression of specific genes; however, these do not provide a strong correlation to disease. Despite these advances, disease detection still relies heavily on dated methods such as detection of pathogen shedding, skin tests, or serology. Here we review the evidence for suitable biomarkers and their mechanisms of action, with a focus on identifying animals that are resilient to disease. A better understanding of these factors will help establish new strategies to control the spread of these diseases.
Collapse
|
29
|
RNA-Seq analysis of ileocecal valve and peripheral blood from Holstein cattle infected with Mycobacterium avium subsp. paratuberculosis revealed dysregulation of the CXCL8/IL8 signaling pathway. Sci Rep 2019; 9:14845. [PMID: 31619718 PMCID: PMC6795908 DOI: 10.1038/s41598-019-51328-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Paratuberculosis is chronic granulomatous enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Whole RNA-sequencing (RNA-Seq) is a promising source of novel biomarkers for early MAP infection and disease progression in cattle. Since the blood transcriptome is widely used as a source of biomarkers, we analyzed whether it recapitulates, at least in part, the transcriptome of the ileocecal valve (ICV), the primary site of MAP colonization. Total RNA was prepared from peripheral blood (PB) and ICV samples, and RNA-Seq was used to compare gene expression between animals with focal or diffuse histopathological lesions in gut tissues versus control animals with no detectable signs of infection. Our results demonstrated both shared, and PB and ICV-specific gene expression in response to a natural MAP infection. As expected, the number of differentially expressed (DE) genes was larger in the ICV than in the PB samples. Among the DE genes in the PB and ICV samples, there were some common genes irrespective of the type of lesion including the C-X-C motif chemokine ligand 8 (CXCL8/IL8), apolipoprotein L (APOLD1), and the interferon inducible protein 27 (IFI27). The biological processes (BP) enriched in the PB gene expression profiles from the cows with diffuse lesions included the killing of cells of other organism, defense response, immune response and the regulation of neutrophil chemotaxis. Two of these BP, the defense and immune response, were also enriched in the ICV from the cows with diffuse lesions. Metabolic analysis of the DE genes revealed that the N-glycan biosynthesis, bile secretion, one-carbon pool by folate and purine metabolism were significantly enriched in the ICV from the cows with focal lesions. In the ICV from cows with diffuse lesions; the valine, leucine and isoleucine degradation route, purine metabolism, vitamin digestion and absorption and the cholesterol routes were enriched. Some of the identified DE genes, BP and metabolic pathways will be studied further to develop novel diagnostic tools, vaccines and immunotherapeutics.
Collapse
|
30
|
Interleukin 8 and Pentaxin (C-Reactive Protein) as Potential New Biomarkers of Bovine Tuberculosis. J Clin Microbiol 2019; 57:JCM.00274-19. [PMID: 31340991 PMCID: PMC6760949 DOI: 10.1128/jcm.00274-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Bovine tuberculosis (bTB) is caused by Mycobacterium bovis. During the early stage of infection, greater than 15% of M. bovis-infected cattle shed mycobacteria through nasal secretions, which can be detected by nested PCR. Bovine tuberculosis (bTB) is caused by Mycobacterium bovis. During the early stage of infection, greater than 15% of M. bovis-infected cattle shed mycobacteria through nasal secretions, which can be detected by nested PCR. To compare the differences in the protein profiles of M. bovis-infected cattle that were nested PCR positive (bTBPCR-P) and M. bovis-infected cattle that were nested PCR negative (bTBPCR-N) and to screen for biomarkers that will facilitate the early and accurate detection of bTB, we investigated the protein expression profiles of serum and bovine purified protein derivative (PPD-B)-stimulated plasma among bTBPCR-P (n = 20), bTBPCR-N (n = 20), and uninfected cattle (NC; n = 20) by iTRAQ labeling coupled with two-dimensional liquid chromatography-tandem mass spectrometry (iTRAQ-2D LC-MS/MS). After comprehensive analysis, we selected 15 putative differentially expressed serum proteins and 15 plasma proteins for validation by parallel reaction monitoring (PRM) with the same cohort used in the iTRAQ analysis. Four serum and five PPD-B-stimulated proteins were confirmed in follow-up enzyme-linked immunosorbent assays. PPD-B-stimulated interleukin 8 (IL-8) displayed the potential to differentiate M. bovis-infected cattle from NC, with an area under the curve (AUC) value of 0.9662, while PPD-B-stimulated C-reactive protein (CRP) displayed the potential to differentiate bTBPCR-P from bTBPCR-N, with an AUC value of 1.00. Finally, double-blind testing with 244 cattle indicated that the PPD-B-stimulated IL-8 test exhibited good agreement with traditional tests (κ > 0.877) with a >90% relative sensitivity and a >98% relative specificity; the PPD-B-stimulated CRP test displayed good agreement with nested PCR (κ = 0.9117), with an observed 94% relative sensitivity and 97% relative specificity. Therefore, the PPD-B-stimulated IL-8 and CRP tests could be used to detect bTB and to differentiate bTBPCR-P from bTBPCR-N.
Collapse
|
31
|
Katsafadou AI, Tsangaris GT, Anagnostopoulos AK, Billinis C, Barbagianni MS, Vasileiou NGC, Spanos SA, Mavrogianni VS, Fthenakis GC. Differential quantitative proteomics study of experimental Mannheimia haemolytica mastitis in sheep. J Proteomics 2019; 205:103393. [PMID: 31154024 DOI: 10.1016/j.jprot.2019.103393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023]
Abstract
Objective was the differential quantitative proteomics study of ovine mastitis induced by Mannheimia haemolytica; clinical, microbiological, cytological and histopathological methods were employed for confirmation and monitoring. Proteins were separated by two-dimensional gel electrophoresis (2-DE) for all samples and differentially abundant proteins were identified by mass spectrometry; comparisons were performed with pre- (blood, milk) and post- (milk of contralateral gland) inoculation findings. Animals developed mastitis, confirmed by isolation of challenge strain and increase of neutrophils in milk and by histopathological evidence. In blood plasma, 33 differentially abundant proteins (compared to findings before challenge) were identified: 6 with decrease, 13 with new appearance and 14 with varying abundance. In a post-challenge milk whey protein reference map, 65 proteins were identified; actin cytoplasmic-1, beta-lactoglobulin-1/B, cathelicidin-1 predominated. Further, 89 differentially abundant proteins (compared to findings before challenge) were identified: 18 with decrease, 53 with new appearance, 3 with increase and 15 with varying abundance; 15 proteins showed status changes in blood plasma and milk whey. Differential abundance from inoculated and contralateral glands revealed 74 proteins only from the inoculated gland. Most differentially abundant proteins in milk whey were involved in cell organisation and biogenesis (n = 17) or in inflammatory and defence response (n = 13). SIGNIFICANCE: The proteomes of blood and milk from ewes with experimental mastitis caused by Mannheimia haemolytica and the differential proteomics in sequential samples after challenge are presented for the first time. This is the first detailed proteomics study in M. haemolytica-associated mastitis in ewes. An experimental model fully simulating natural mastitis has been used. Use of experimentally induced mastitis minimised potential variations and allowed consistency of results. The study included evaluation of changes in blood plasma and milk whey. Protein patterns have been studied, indicating with great accuracy changes that had occurred as part of the disease process and development, during the acute phase of infection. Relevant protein-protein interactions were studied. The entirety of proteomics findings has suggested that affected ewes had mounted a defence response that had been regulated by many proteins (e.g., cathelicidins, haptoglobin, serum amyloid A) and through various pathways (e.g., acute phase response, binding and transporting significant ions and molecules); these were interdependent at various points. Potential biomarkers have been indicated for use in diagnostic assays of mastitis.
Collapse
Affiliation(s)
- Angeliki I Katsafadou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece; Proteomics Research Unit, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | - George Th Tsangaris
- Proteomics Research Unit, Biomedical Research Foundation of Academy of Athens, 11527 Athens, Greece
| | | | | | | | | | - Stavros A Spanos
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | | | | |
Collapse
|
32
|
Stabel JR, Reinhardt TA, Hempel RJ. Short communication: Vitamin D status and responses in dairy cows naturally infected with Mycobacterium avium ssp. paratuberculosis. J Dairy Sci 2018; 102:1594-1600. [PMID: 30594355 DOI: 10.3168/jds.2018-15241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/26/2018] [Indexed: 01/15/2023]
Abstract
Serum samples were obtained from Holstein dairy control cows and cows naturally infected with Mycobacterium avium ssp. paratuberculosis (MAP) to evaluate the effects of disease status on serum 25-hydroxyvitamin D3 (25OHD3) levels. Disease status was stratified for infected cows into asymptomatic, subclinical infection (n = 25), and cows demonstrating clinical signs (n = 20), along with noninfected control (n = 12) cows for comparison. In addition, portions of the ileocecal valve were taken from a subsample of cows (n = 5 per treatment group) at necropsy and processed for RNA sequencing gene transcription studies. Genes associated with vitamin D metabolism were queried to determine any association between infection and gene expression. Serum 25OHD3 levels were significantly lower in cows in the clinical stage of disease compared with either cows in the subclinical stage and noninfected control cows. Differential expression for genes associated with the vitamin D pathway such as CYP27A1, CYP27B1, vitamin D-binding protein (DBP), and IFNG was dependent upon infection status. An upregulation of CYP27A1 was noted for cows in subclinical status, whereas CYP27B1 expression was enhanced for clinical cows. Increased expression of vitamin D-binding protein was observed for infected cattle, regardless of infection status. In summary, decreases in circulating 25OHD3 for animals with clinical disease may suggest that these cows have reduced innate immune responses, thereby influencing the ability of animals to fight infection.
Collapse
Affiliation(s)
- J R Stabel
- USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010.
| | - T A Reinhardt
- USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010
| | - R J Hempel
- USDA-Agricultural Research Service, National Animal Disease Center, Ames, IA 50010
| |
Collapse
|
33
|
Moulder R, Bhosale SD, Goodlett DR, Lahesmaa R. Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling. MASS SPECTROMETRY REVIEWS 2018; 37:583-606. [PMID: 29120501 DOI: 10.1002/mas.21550] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 05/23/2023]
Abstract
Over the past decade, chemical labeling with isobaric tandem mass tags, such as isobaric tags for relative and absolute quantification reagents (iTRAQ) and tandem mass tag (TMT) reagents, has been employed in a wide range of different clinically orientated serum and plasma proteomics studies. In this review the scope of these works is presented with attention to the areas of research, methods employed and performance limitations. These applications have covered a wide range of diseases, disorders and infections, and have implemented a variety of different preparative and mass spectrometric approaches. In contrast to earlier works, which struggled to quantify more than a few hundred proteins, increasingly these studies have provided deeper insight into the plasma proteome extending the numbers of quantified proteins to over a thousand.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Santosh D Bhosale
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
34
|
Bahr NC, Halupnick R, Linder G, Kiggundu R, Nabeta HW, Williams DA, Musubire AK, Morawski BM, Sreevatsan S, Meya DB, Rhein J, Boulware DR. Delta-like 1 protein, vitamin D binding protein and fetuin for detection of Mycobacterium tuberculosis meningitis. Biomark Med 2018; 12:707-716. [PMID: 29856234 DOI: 10.2217/bmm-2017-0373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AIM Tuberculosis meningitis (TBM) diagnosis is difficult, new biomarkers are needed. We evaluated the diagnostic utility of delta-like 1 protein (DLL1), vitamin D binding protein (VDBP) and fetuin. METHODS Biomarker concentrations were measured by ELISA in cryopreserved cerebrospinal fluid from 139 HIV-infected Ugandans with suspected meningitis. TBM was diagnosed by GeneXpert MTB/Rif or culture. Cohort diagnoses included TBM (n = 22), cryptococcal (n = 71), or aseptic meningitis (n = 16) and no meningitis (n = 30). RESULTS DLL1 (cut-off value 1150 pg/ml) provided 32% sensitivity and 98% specificity. Adding fetuin, cryptococcal antigen and IFN-γ resulted in sensitivities of 36, 63 and 76% with specificities of 98, 90 and 92%, respectively. VDBP (cut-off value 2.0 μg/ml) provided 81% sensitivity and 68% specificity while fetuin (cut-off value 2 μg/ml) provided a sensitivity of 86% and specificity of 68%. CONCLUSION CSF DLL1, VDBP and fetuin exhibited fair diagnostic performance for TBM diagnosis.
Collapse
Affiliation(s)
- Nathan C Bahr
- Division of Infectious Diseases & International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.,Infectious Diseases Institute, Makerere University, Kampala, Uganda.,Department of Medicine, Division of Infectious Diseases, University of Kansas, Kansas City, KS 66160, USA
| | - Ryan Halupnick
- Division of Infectious Diseases & International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Grace Linder
- Division of Infectious Diseases & International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben Kiggundu
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Henry W Nabeta
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Darlisha A Williams
- Division of Infectious Diseases & International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Abdu K Musubire
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Bozena M Morawski
- Division of Infectious Diseases & International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - David B Meya
- Division of Infectious Diseases & International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Joshua Rhein
- Division of Infectious Diseases & International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.,Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - David R Boulware
- Division of Infectious Diseases & International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
35
|
Identification of potential urine proteins and microRNA biomarkers for the diagnosis of pulmonary tuberculosis patients. Emerg Microbes Infect 2018; 7:63. [PMID: 29636444 PMCID: PMC5893550 DOI: 10.1038/s41426-018-0066-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 12/31/2022]
Abstract
This study identified urinary biomarkers for tuberculosis (TB) diagnosis. The urine proteomic profiles of 45 pulmonary tuberculosis patients prior to anti-TB treatment and 45 healthy controls were analyzed and compared using two-dimensional electrophoresis with matrix-assisted laser desorption/ionization time of flight mass spectrometry. Nineteen differentially expressed proteins were identified preliminarily, and western blotting and qRT-PCR were performed to confirm these changes at the translational and transcriptional levels, respectively, using samples from 122 additional pulmonary tuberculosis patients and 73 additional healthy controls. Two proteins, mannose-binding lectin 2 and a 35-kDa fragment of inter-α-trypsin inhibitor H4, exhibited the highest differential expression. We constructed a protein-microRNA interaction network that primarily involved complement and inflammatory responses. Eleven microRNAs from microRNA-target protein interactions were screened and validated using qRT-PCR with some of the above samples, including 97 pulmonary tuberculosis patients and 48 healthy controls. Only miR-625-3p exhibited significant differential expression (p < 0.05). miR-625-3p was increased to a greater extent in samples of smear-positive than smear-negative patients. miR-625-3p was predicted to target mannose-binding lectin 2 protein. A binary logistic regression model based on miR-625-3p, mannose-binding lectin 2, and inter-α-trypsin inhibitor H4 was further established. This three-biomarker combination exhibited better performance for tuberculosis diagnosis than individual biomarkers or any two-biomarker combination and generated a diagnostic sensitivity of 85.87% and a specificity of 87.50%. These novel urine biomarkers may significantly improve tuberculosis diagnosis.
Collapse
|
36
|
Clinical veterinary proteomics: Techniques and approaches to decipher the animal plasma proteome. Vet J 2017; 230:6-12. [PMID: 29208216 DOI: 10.1016/j.tvjl.2017.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/03/2017] [Accepted: 10/26/2017] [Indexed: 12/11/2022]
Abstract
Over the last two decades, technological advancements in the field of proteomics have advanced our understanding of the complex biological systems of living organisms. Techniques based on mass spectrometry (MS) have emerged as powerful tools to contextualise existing genomic information and to create quantitative protein profiles from plasma, tissues or cell lines of various species. Proteomic approaches have been used increasingly in veterinary science to investigate biological processes responsible for growth, reproduction and pathological events. However, the adoption of proteomic approaches by veterinary investigators lags behind that of researchers in the human medical field. Furthermore, in contrast to human proteomics studies, interpretation of veterinary proteomic data is difficult due to the limited protein databases available for many animal species. This review article examines the current use of advanced proteomics techniques for evaluation of animal health and welfare and covers the current status of clinical veterinary proteomics research, including successful protein identification and data interpretation studies. It includes a description of an emerging tool, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS), available on selected mass spectrometry instruments. This newly developed data acquisition technique combines advantages of discovery and targeted proteomics approaches, and thus has the potential to advance the veterinary proteomics field by enhancing identification and reproducibility of proteomics data.
Collapse
|
37
|
Barkema HW, Orsel K, Nielsen SS, Koets AP, Rutten VPMG, Bannantine JP, Keefe GP, Kelton DF, Wells SJ, Whittington RJ, Mackintosh CG, Manning EJ, Weber MF, Heuer C, Forde TL, Ritter C, Roche S, Corbett CS, Wolf R, Griebel PJ, Kastelic JP, De Buck J. Knowledge gaps that hamper prevention and control of Mycobacterium avium subspecies paratuberculosis infection. Transbound Emerg Dis 2017; 65 Suppl 1:125-148. [PMID: 28941207 DOI: 10.1111/tbed.12723] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 12/17/2022]
Abstract
In the last decades, many regional and country-wide control programmes for Johne's disease (JD) were developed due to associated economic losses, or because of a possible association with Crohn's disease. These control programmes were often not successful, partly because management protocols were not followed, including the introduction of infected replacement cattle, because tests to identify infected animals were unreliable, and uptake by farmers was not high enough because of a perceived low return on investment. In the absence of a cure or effective commercial vaccines, control of JD is currently primarily based on herd management strategies to avoid infection of cattle and restrict within-farm and farm-to-farm transmission. Although JD control programmes have been implemented in most developed countries, lessons learned from JD prevention and control programmes are underreported. Also, JD control programmes are typically evaluated in a limited number of herds and the duration of the study is less than 5 year, making it difficult to adequately assess the efficacy of control programmes. In this manuscript, we identify the most important gaps in knowledge hampering JD prevention and control programmes, including vaccination and diagnostics. Secondly, we discuss directions that research should take to address those knowledge gaps.
Collapse
Affiliation(s)
- H W Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - K Orsel
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - S S Nielsen
- University of Copenhagen, Copenhagen, Denmark
| | - A P Koets
- Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Wageningen, The Netherlands
| | - V P M G Rutten
- Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | | | - G P Keefe
- University of Prince Edward Island, Charlottetown, Canada
| | | | - S J Wells
- University of Minnesota, Minneapolis, MN, USA
| | | | | | | | - M F Weber
- GD Animal Health, Deventer, The Netherlands
| | - C Heuer
- Massey University, Palmerston North, New Zealand
| | | | - C Ritter
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - S Roche
- University of Guelph, Guelph, Canada
| | - C S Corbett
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - R Wolf
- Amt der Steiermärkischen Landesregierung, Graz, Austria
| | | | - J P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - J De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
38
|
Chemonges S, Gupta R, Mills PC, Kopp SR, Sadowski P. Characterisation of the circulating acellular proteome of healthy sheep using LC-MS/MS-based proteomics analysis of serum. Proteome Sci 2017; 15:11. [PMID: 28615994 PMCID: PMC5466729 DOI: 10.1186/s12953-017-0119-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 06/02/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Unlike humans, there is currently no publicly available reference mass spectrometry-based circulating acellular proteome data for sheep, limiting the analysis and interpretation of a range of physiological changes and disease states. The objective of this study was to develop a robust and comprehensive method to characterise the circulating acellular proteome in ovine serum. METHODS Serum samples from healthy sheep were subjected to shotgun proteomic analysis using nano liquid chromatography nano electrospray ionisation tandem mass spectrometry (nanoLC-nanoESI-MS/MS) on a quadrupole time-of-flight instrument (TripleTOF® 5600+, SCIEX). Proteins were identified using ProteinPilot™ (SCIEX) and Mascot (Matrix Science) software based on a minimum of two unmodified highly scoring unique peptides per protein at a false discovery rate (FDR) of 1% software by searching a subset of the Universal Protein Resource Knowledgebase (UniProtKB) database (http://www.uniprot.org). PeptideShaker (CompOmics, VIB-UGent) searches were used to validate protein identifications from ProteinPilot™ and Mascot. RESULTS ProteinPilot™ and Mascot identified 245 and 379 protein groups (IDs), respectively, and PeptideShaker validated 133 protein IDs from the entire dataset. Since Mascot software is considered the industry standard and identified the most proteins, these were analysed using the Protein ANalysis THrough Evolutionary Relationships (PANTHER) classification tool revealing the association of 349 genes with 127 protein pathway hits. These data are available via ProteomeXchange with identifier PXD004989. CONCLUSIONS These results demonstrated for the first time the feasibility of characterising the ovine circulating acellular proteome using nanoLC-nanoESI-MS/MS. This peptide spectral data contributes to a protein library that can be used to identify a wide range of proteins in ovine serum.
Collapse
Affiliation(s)
- Saul Chemonges
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Rajesh Gupta
- Proteomics and Small Molecule Mass Spectrometry, Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Steven R. Kopp
- School of Veterinary Science, The University of Queensland, Gatton, Australia
| | - Pawel Sadowski
- Proteomics and Small Molecule Mass Spectrometry, Central Analytical Research Facility, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
39
|
Wanzala SI, Palmer MV, Waters WR, Thacker TC, Carstensen M, Travis DA, Sreevatsan S. Evaluation of pathogen-specific biomarkers for the diagnosis of tuberculosis in white-tailed deer (Odocoileus virginianus). Am J Vet Res 2017; 78:729-734. [PMID: 28541150 DOI: 10.2460/ajvr.78.6.729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To develop a noninvasive biomarker-based detection system specific for Mycobacterium bovis for monitoring infection in wild animals. SAMPLE Serum samples from 8 experimentally infected yearling white-tailed deer (Odocoileus virginianus) and 3 age-matched control deer and from 393 Minnesota Department of Natural Resources hunter-harvested white-tailed deer in northwest Minnesota. PROCEDURES 8 yearling deer were inoculated with 2 × 108 CFUs of virulent M bovis strain 1315 (day 0), and sera were obtained on days 0, 19, 48, and 60; sera were obtained from 3 uninoculated control deer on those same days. Sera from these deer and 9 M bovis-positive hunter-harvested deer were tested for 3 Mycobacterium-specific biomarkers (MB1895c, MB2515c, and polyketide synthase 5) by use of an indirect ELISA. That same ELISA was used to test sera obtained from 384 exposed noninfected deer in northwest Minnesota from 2007 through 2010, concurrent with an outbreak of tuberculosis involving cattle and deer in that region. RESULTS ELISA results revealed that tuberculosis infection could be detected as early as 48 days after inoculation in experimentally infected deer. Results for 384 deer sera revealed that prevalence of tuberculosis decreased over the 4-year period. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the prevalence of tuberculosis in Minnesota deer decreased after 2009 but tuberculosis may have persisted (as subclinical disease) at extremely low levels, as indicated by the presence of low concentrations of circulating biomarkers. Biomarker-based diagnostic tests may offer a specific approach for early identification of M bovis infection.
Collapse
|
40
|
Park HE, Park HT, Jung YH, Yoo HS. Establishment a real-time reverse transcription PCR based on host biomarkers for the detection of the subclinical cases of Mycobacterium avium subsp. paratuberculosis. PLoS One 2017; 12:e0178336. [PMID: 28542507 PMCID: PMC5444815 DOI: 10.1371/journal.pone.0178336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022] Open
Abstract
Bovine paratuberculosis (PTB) is a chronic enteric inflammatory disease of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) that causes large economic losses in the dairy industry. Spread of PTB is mainly provoked by a long subclinical stage during which MAP is shed into the environment with feces; accordingly, detection of subclinical animals is very important to its control. However, current diagnostic methods are not suitable for detection of subclinical animals. Therefore, the current study was conducted to develop a diagnostic method for analysis of the expression of genes of prognostic potential biomarker candidates in the whole blood of cattle naturally infected with MAP. Real-time PCR with nine potential biomarker candidates was developed for the diagnosis of MAP subclinical infection. Animals were divided into four groups based on fecal MAP PCR and serum ELISA. Eight genes (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) were up-regulated in MAP-infected cattle (p <0.05). Moreover, ROC analysis revealed that eight genes (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) showed fair diagnostic performance (AUC≥0.8). Four biomarkers (Timp1, S100a8, Defb1, and Defb10) showed the highest diagnostic accuracy in the PCR positive and ELISA negative group (PN group) and three biomarkers (Tfrc, Hp, and Serpine1) showed the highest diagnostic accuracy in the PCR negative and ELISA positive group (NP group). Moreover, three biomarkers (S100a8, Hp, and Defb10) were considered the most reliable for the PCR positive and ELISA positive group (PP group). Taken together, our data suggest that real-time PCR based on eight biomarkers (Timp1, Hp, Serpine1, Tfrc, Mmp9, Defb1, Defb10, and S100a8) might be useful for diagnosis of JD, including subclinical stage cases.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hong-Tae Park
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Hoon Jung
- Department of Animal Resoures Devlopment, National Instiute of Animal Science, Rural Development Administration, Cheonan, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
- * E-mail:
| |
Collapse
|
41
|
Li P, Wang R, Dong W, Hu L, Zong B, Zhang Y, Wang X, Guo A, Zhang A, Xiang Y, Chen H, Tan C. Comparative Proteomics Analysis of Human Macrophages Infected with Virulent Mycobacterium bovis. Front Cell Infect Microbiol 2017; 7:65. [PMID: 28337427 PMCID: PMC5343028 DOI: 10.3389/fcimb.2017.00065] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/21/2017] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis (M. bovis), the most common pathogens of tuberculosis (TB), is virulent to human and cattle, and transmission between cattle and humans warrants reconsideration concerning food safety and public health. Recently, efforts have begun to analyze cellular proteomic responses induced by Mycobacterium tuberculosis (M. tb). However, the underlying mechanisms by which virulent M. bovis affects human hosts are not fully understood. For the present study, we utilized a global and comparative labeling strategy of isobaric tag for relative and absolute quantitation (iTRAQ) to assess proteomic changes in the human monocyte cell line (THP-1) using a vaccine strain and two virulent strains H37Rv and M. bovis. We measured 2,032 proteins, of which 61 were significantly differentially regulated. Ingenuity Pathway Analysis was employed to investigate the canonical pathways and functional networks involved in the infection. Several pathways, most notably the phagosome maturation pathway and TNF signaling pathway, were differentially affected by virulent strain treatment, including the key proteins CCL20 and ICAM1. Our qRT-PCR results were in accordance with those obtained from iTRAQ. The key enzyme MTHFD2, which is mainly involved in metabolism pathways, as well as LAMTOR2 might be effective upon M. bovis infection. String analysis also suggested that the vacuolar protein VPS26A interacted with TBC1D9B uniquely induced by M. bovis. In this study, we have first demonstrated the application of iTRAQ to compare human protein alterations induced by virulent M. bovis infections, thus providing a conceptual understanding of mycobacteria pathogenesis within the host as well as insight into preventing and controlling TB in human and animal hosts' transmission.
Collapse
Affiliation(s)
- Pei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Rui Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Wenqi Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Bingbing Zong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Yanyan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Yaozu Xiang
- Advanced Institute of Translational Medicine, School of Life Sciences and Technology, Tongji University Shanghai, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
42
|
Olsen HG, Knutsen TM, Lewandowska-Sabat AM, Grove H, Nome T, Svendsen M, Arnyasi M, Sodeland M, Sundsaasen KK, Dahl SR, Heringstad B, Hansen HH, Olsaker I, Kent MP, Lien S. Fine mapping of a QTL on bovine chromosome 6 using imputed full sequence data suggests a key role for the group-specific component (GC) gene in clinical mastitis and milk production. Genet Sel Evol 2016; 48:79. [PMID: 27760518 PMCID: PMC5072345 DOI: 10.1186/s12711-016-0257-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 10/12/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Clinical mastitis is an inflammation of the mammary gland and causes significant costs to dairy production. It is unfavourably genetically correlated to milk production, and, thus, knowledge of the mechanisms that underlie these traits would be valuable to improve both of them simultaneously through breeding. A quantitative trait locus (QTL) that affects both clinical mastitis and milk production has recently been fine-mapped to around 89 Mb on bovine chromosome 6 (BTA6), but identification of the gene that underlies this QTL was not possible due to the strong linkage disequilibrium between single nucleotide polymorphisms (SNPs) within this region. Our aim was to identify the gene and, if possible, the causal polymorphism(s) responsible for this QTL through association analysis of high-density SNPs and imputed full sequence data in combination with analyses of transcript and protein levels of the identified candidate gene. RESULTS Associations between SNPs and the studied traits were strongest for SNPs that were located within and immediately upstream of the group-specific component (GC) gene. This gene encodes the vitamin D-binding protein (DBP) and has multiple roles in immune defense and milk production. A 12-kb duplication that was identified downstream of this gene covered its last exon and segregated with the QTL allele that is associated with increased mastitis susceptibility and milk production. However, analyses of GC mRNA levels on the available samples revealed no differences in expression between animals having or lacking this duplication. Moreover, we detected no differences in the concentrations of DBP and its ligand vitamin D between the animals with different GC genotypes that were available for this study. CONCLUSIONS Our results suggest GC as the gene that underlies the QTL for clinical mastitis and milk production. However, since only healthy animals were sampled for transcription and expression analyses, we could not draw any final conclusion on the absence of quantitative differences between animals with different genotypes. Future studies should investigate GC RNA expression and protein levels in cows with different genotypes during an infection.
Collapse
Affiliation(s)
- Hanne Gro Olsen
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway.
| | - Tim Martin Knutsen
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | - Anna M Lewandowska-Sabat
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Harald Grove
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | - Torfinn Nome
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | | | - Mariann Arnyasi
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | - Marte Sodeland
- Institute of Marine Research, Flødevigen, 4817, His, Norway.,Department of Natural Sciences, Faculty of Engineering and Science, University of Agder, PO Box 422, 4604, Kristiansand, Norway
| | - Kristil K Sundsaasen
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | - Sandra Rinne Dahl
- Hormone Laboratory, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | | | - Hanne H Hansen
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | - Ingrid Olsaker
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Matthew Peter Kent
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, 1432, Ås, Norway
| |
Collapse
|
43
|
Hempel RJ, Bannantine JP, Stabel JR. Transcriptional Profiling of Ileocecal Valve of Holstein Dairy Cows Infected with Mycobacterium avium subsp. Paratuberculosis. PLoS One 2016; 11:e0153932. [PMID: 27093613 PMCID: PMC4836751 DOI: 10.1371/journal.pone.0153932] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/06/2016] [Indexed: 12/22/2022] Open
Abstract
Johne’s disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV) of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and provides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection.
Collapse
Affiliation(s)
- Randy J. Hempel
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
| | - John P. Bannantine
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
| | - Judith R. Stabel
- USDA-Agricultural Research Service (ARS), National Animal Disease Center, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
44
|
Park HE, Shin MK, Park HT, Jung M, Cho YI, Yoo HS. Gene expression profiles of putative biomarker candidates in Mycobacterium avium subsp. paratuberculosis-infected cattle. Pathog Dis 2016; 74:ftw022. [PMID: 27029383 DOI: 10.1093/femspd/ftw022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to analyze the gene expression of prognostic potential biomarker candidates using the whole blood of cattle naturally infected with ITALIC! Mycobacterium aviumsubsp. ITALIC! paratuberculosis(MAP). We conducted real-time PCR to evaluate 23 potential biomarker candidates. Experimental animals were divided into four groups based on fecal MAP PCR and serum ELISA. Seven ( ITALIC! KLRB1, ITALIC! HGF, ITALIC! MPO, ITALIC! LTF, ITALIC! SERPINE1, ITALIC! S100A8and ITALIC! S100A9) genes were up-regulated in fecal MAP-positive cattle and three ( ITALIC! KLRB1, ITALIC! MPOand ITALIC! S100A9) were up-regulated in MAP-seropositive cattle relative to uninfected cattle. In subclinically infected animals, 17 genes ( ITALIC! TFRC, ITALIC! S100A8, ITALIC! S100A9, ITALIC! MPO, ITALIC! GBP6, ITALIC! LTF, ITALIC! KLRB1, ITALIC! SERPINE1, ITALIC! PIGR, ITALIC! IL-10, ITALIC! CXCR3, ITALIC! CD14, ITALIC! MMP9, ITALIC! ELANE, ITALIC! CHI3L1, ITALIC! HPand ITALIC! HGF) were up-regulated compared with the control group. Moreover, six genes ( ITALIC! CXCR3, ITALIC! HP, ITALIC! HGF, ITALIC! LTF, ITALIC! TFRCand ITALIC! GBP6) showed significant differences between experimental groups. Taken together, our data suggest that six genes ( ITALIC! LTF, ITALIC! HGF, ITALIC! HP, ITALIC! CXCR3, ITALIC! GBP6and ITALIC! TFRC) played essential roles in the immune response to MAP during the subclinical stage and therefore might be useful as prognostic biomarkers.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Hong-Tae Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Myunghwan Jung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Il Cho
- Department of Animal Resources Development, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| |
Collapse
|
45
|
Britton LE, Cassidy JP, O'Donovan J, Gordon SV, Markey B. Potential application of emerging diagnostic techniques to the diagnosis of bovine Johne's disease (paratuberculosis). Vet J 2015; 209:32-9. [PMID: 26831164 DOI: 10.1016/j.tvjl.2015.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/15/2015] [Accepted: 10/10/2015] [Indexed: 12/19/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease (paratuberculosis), a chronic wasting disease in cattle with important welfare, economic and potential public health implications. Current tests are unable to recognise all stages of the disease, which makes it difficult to diagnose and control. This review explores emerging diagnostic techniques that could complement and enhance the diagnosis of MAP infection, including bacteriophage analysis, new MAP-specific antigens, host protein expression in response to infection, transcriptomic studies, analysis of microRNAs and investigation of the gastrointestinal microbiome. It emphasises the inherent challenges of diagnosing bovine Johne's disease and investigates novel areas which may have the potential both to advance our understanding of the immunopathology of MAP infection and to augment current diagnostic tests.
Collapse
Affiliation(s)
| | | | - Jim O'Donovan
- Department of Agriculture, Food and the Marine, Model Farm Road, Cork, Ireland
| | | | - Bryan Markey
- University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
46
|
Arlas T, Wolf C, Petrucci B, Estanislau J, Gregory R, Jobim M, Mattos R. Proteomics of endometrial fluid after dexamethasone treatment in mares susceptible to endometritis. Theriogenology 2015; 84:617-23. [DOI: 10.1016/j.theriogenology.2015.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/07/2015] [Accepted: 04/22/2015] [Indexed: 10/23/2022]
|
47
|
Mortier RAR, Barkema HW, De Buck J. Susceptibility to and diagnosis of Mycobacterium avium subspecies paratuberculosis infection in dairy calves: A review. Prev Vet Med 2015; 121:189-98. [PMID: 26321657 DOI: 10.1016/j.prevetmed.2015.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/31/2015] [Accepted: 08/18/2015] [Indexed: 12/18/2022]
Abstract
The primary objectives of paratuberculosis control programs are reducing exposure of calves to Mycobacterium avium subspecies paratuberculosis (MAP), reducing herd infection pressure and regular testing of cattle >36 months of age. Although control programs based on these principles have reduced prevalence of MAP infection in dairy herds, they have generally not eliminated the infection. Recent infection trial(s) have yielded new knowledge regarding diagnostic testing and age- and dose-dependent susceptibility to MAP infection. Calves up to 1 year of age are still susceptible to MAP infection; therefore, control programs should refrain from referring to specific ages with respect to susceptibility and prevention of new infections. Notwithstanding, lesions were more severe when calves were inoculated at 2 weeks versus 1 year of age. Furthermore, a high inoculation dose resulted in more pronounced lesions than a low inoculation dose, especially in young calves. Consequently, keeping infection pressure low should decrease the incidence of new MAP infections and severity of JD in cattle that do acquire the infection. It was also evident that early diagnosis of MAP infection was possible and could improve efficacy of control programs. Although its use will still need to be validated in the field, a combination of antibody ELISA and fecal culture in young stock, in addition to testing cattle >36 months of age when screening a herd for paratuberculosis, was expected to improve detection of dairy cattle infected with MAP. Although calves were inoculated using a standardized method in a controlled environment, there were substantial differences among calves with regards to immune response, shedding and pathology. Therefore, we inferred there were genetic differences in susceptibility. Important insights were derived from experimental infection trials. Therefore, it was expected that these could improve paratuberculosis control programs by reducing severity and incidence of JD by lowering infection pressure on-farm, and reducing exposure of young calves and older cattle. Furthermore, an earlier diagnosis could be achieved by combining ELISA and fecal shedding in young stock, in addition to testing cattle >36 months of age.
Collapse
Affiliation(s)
- Rienske A R Mortier
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada.
| | - Herman W Barkema
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada.
| | - Jeroen De Buck
- Department of Production Animal Health, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada.
| |
Collapse
|
48
|
Quero S, Párraga-Niño N, García-Núñez M, Sabrià M. [Proteomics in infectious diseases]. Enferm Infecc Microbiol Clin 2015; 34:253-60. [PMID: 25583331 DOI: 10.1016/j.eimc.2014.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 11/27/2022]
Abstract
Infectious diseases have a high incidence in the population, causing a major impact on global health. In vitro culture of microorganisms is the first technique applied for infection diagnosis which is laborious and time consuming. In recent decades, efforts have been focused on the applicability of "Omics" sciences, highlighting the progress provided by proteomic techniques in the field of infectious diseases. This review describes the management, processing and analysis of biological samples for proteomic research.
Collapse
Affiliation(s)
- Sara Quero
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España; Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, España
| | - Noemí Párraga-Niño
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España.
| | - Marian García-Núñez
- Unitat de Malalties Infeccioses, Fundació Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, España; CIBER de Enfermedades Respiratorias, Bunyola, Illes Balears, España
| | - Miquel Sabrià
- Universitat Autònoma de Barcelona, Cerdanyola, Barcelona, España; CIBER de Enfermedades Respiratorias, Bunyola, Illes Balears, España; Unitat de Malalties Infeccioses, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, España
| |
Collapse
|
49
|
De Buck J, Shaykhutdinov R, Barkema HW, Vogel HJ. Metabolomic profiling in cattle experimentally infected with Mycobacterium avium subsp. paratuberculosis. PLoS One 2014; 9:e111872. [PMID: 25372282 PMCID: PMC4221196 DOI: 10.1371/journal.pone.0111872] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/02/2014] [Indexed: 11/18/2022] Open
Abstract
The sensitivity of current diagnostics for Johne's disease, a slow, progressing enteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), is too low to reliably detect all infected animals in the subclinical stage. The objective was to identify individual metabolites or metabolite profiles that could be used as biomarkers of early MAP infection in ruminants. In a monthly follow-up for 17 months, calves infected at 2 weeks of age were compared with aged-matched controls. Sera from all animals were analyzed by 1H nuclear magnetic resonance spectrometry. Spectra were acquired, processed, and quantified for analysis. The concentration of many metabolites changed over time in all calves, but some metabolites only changed over time in either infected or non-infected groups and the change in others was impacted by the infection. Hierarchical multivariate statistical analysis achieved best separation between groups between 300 and 400 days after infection. Therefore, a cross-sectional comparison between 1-year-old calves experimentally infected at various ages with either a high- or a low-dose and age-matched non-infected controls was performed. Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS DA) yielded distinct separation of non-infected from infected cattle, regardless of dose and time (3, 6, 9 or 12 months) after infection. Receiver Operating Curves demonstrated that constructed models were high quality. Increased isobutyrate in the infected cattle was the most important agreement between the longitudinal and cross-sectional analysis. In general, high- and low-dose cattle responded similarly to infection. Differences in acetone, citrate, glycerol and iso-butyrate concentrations indicated energy shortages and increased fat metabolism in infected cattle, whereas changes in urea and several amino acids (AA), including the branched chain AA, indicated increased protein turnover. In conclusion, metabolomics was a sensitive method for detecting MAP infection much sooner than with current diagnostic methods, with individual metabolites significantly distinguishing infected from non-infected cattle.
Collapse
Affiliation(s)
- Jeroen De Buck
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Rustem Shaykhutdinov
- Biochemistry Research Group, Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, Faculty of Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
50
|
Gene-expression profiling of calves 6 and 9 months after inoculation with Mycobacterium avium subspecies paratuberculosis. Vet Res 2014; 45:96. [PMID: 25294045 PMCID: PMC4198621 DOI: 10.1186/s13567-014-0096-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022] Open
Abstract
Early detection of Johne’s disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is essential to reduce transmission; consequently, new diagnostic techniques and approaches to detect MAP or markers of early MAP infection are being explored. The objective was to identify biomarkers associated with MAP infection at 6 and 9 months after oral inoculation. Therefore, gene expression analysis was done using whole blood cells obtained from MAP-infected calves. All MAP-inoculated calves had a cell-mediated immune response (IFN-γ) to Johnin PPD specific antigens, and 60% had an antibody response to MAP antigens. Gene expression analysis at 6 months after inoculation revealed downregulation of chemoattractants, namely neutrophil beta-defensin-9 like peptide (BNBD9-Like), S100 calcium binding protein A9 (s100A9) and G protein coupled receptor 77 (GPR77) or C5a anaphylatoxin chemotactic receptor (C5a2). Furthermore, BOLA/MHC-1 intracellular antigen presentation gene was downregulated 9 months after inoculation. In parallel, qPCR experiments to evaluate the robustness of some differentially expressed genes revealed consistent downregulation of BOLA/MHC-I, BNBD9-Like and upregulation of CD46 at 3, 6, 9, 12, and 15 months after inoculation. In conclusion, measuring the expression of these genes has potential for implementation in a diagnostic tool for the early detection of MAP infection.
Collapse
|