1
|
Hoseini-Yazdi H, Read SA, Collins MJ, Bahmani H, Ellrich J, Schilling T. Increase in choroidal thickness after blue light stimulation of the blind spot in young adults. Bioelectron Med 2024; 10:13. [PMID: 38825695 PMCID: PMC11145801 DOI: 10.1186/s42234-024-00146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Blue light activates melanopsin, a photopigment that is expressed in intrinsically photosensitive retinal ganglion cells (ipRGCs). The axons of ipRGCs converge on the optic disc, which corresponds to the physiological blind spot in the visual field. Thus, a blue light stimulus aligned with the blind spot captures the ipRGCs axons at the optic disc. This study examined the potential changes in choroidal thickness and axial length associated with blue light stimulation of melanopsin-expressing ipRGCs at the blind spot. It was hypothesized that blue light stimulation at the blind spot in adults increases choroidal thickness. METHODS The blind spots of both eyes of 10 emmetropes and 10 myopes, with a mean age of 28 ± 6 years (SD), were stimulated locally for 1-minute with blue flickering light with a 460 nm peak wavelength. Measurements of choroidal thickness and axial length were collected from the left eye before stimulation and over a 60-minute poststimulation period. At a similar time of day, choroidal thickness and axial length were measured under sham control condition in all participants, while a subset of 3 emmetropes and 3 myopes were measured after 1-minute of red flickering light stimulation of the blind spot with a peak wavelength of 620 nm. Linear mixed model analyses were performed to examine the light-induced changes in choroidal thickness and axial length over time and between refractive groups. RESULTS Compared with sham control (2 ± 1 μm, n = 20) and red light (-1 ± 2 μm, n = 6) stimulation, subfoveal choroidal thickness increased within 60 min after blue light stimulation of the blind spot (7 ± 1 μm, n = 20; main effect of light, p < 0.001). Significant choroidal thickening after blue light stimulation occurred in emmetropes (10 ± 2 μm, p < 0.001) but not in myopes (4 ± 2 μm, p > 0.05). Choroidal thickening after blue light stimulation was greater in the fovea, diminishing in the parafoveal and perifoveal regions. There was no significant main effect of light, or light by refractive error interaction on the axial length after blind spot stimulation. CONCLUSIONS These findings demonstrate that stimulating melanopsin-expressing axons of ipRGCs at the blind spot with blue light increases choroidal thickness in young adults. This has potential implications for regulating eye growth.
Collapse
Affiliation(s)
- Hosein Hoseini-Yazdi
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, 4059, Australia
| | - Scott A Read
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, 4059, Australia
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, 4059, Australia
| | - Hamed Bahmani
- Dopavision GmbH, Krausenstr. 9-10, 10117, Berlin, Germany
| | - Jens Ellrich
- Dopavision GmbH, Krausenstr. 9-10, 10117, Berlin, Germany
- Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, 91054, Erlangen, Germany
| | - Tim Schilling
- Dopavision GmbH, Krausenstr. 9-10, 10117, Berlin, Germany.
| |
Collapse
|
2
|
Dauchy RT, Hanifin JP, Brainard GC, Blask DE. Light: An Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:116-147. [PMID: 38211974 PMCID: PMC11022951 DOI: 10.30802/aalas-jaalas-23-000089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 01/13/2024]
Abstract
Light is an environmental factor that is extrinsic to animals themselves and that exerts a profound influence on the regulation of circadian, neurohormonal, metabolic, and neurobehavioral systems of all animals, including research animals. These widespread biologic effects of light are mediated by distinct photoreceptors-rods and cones that comprise the conventional visual system and melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) of the nonvisual system that interact with the rods and cones. The rods and cones of the visual system, along with the ipRGCs of the nonvisual system, are species distinct in terms of opsins and opsin concentrations and interact with one another to provide vision and regulate circadian rhythms of neurohormonal and neurobehavioral responses to light. Here, we review a brief history of lighting technologies, the nature of light and circadian rhythms, our present understanding of mammalian photoreception, and current industry practices and standards. We also consider the implications of light for vivarium measurement, production, and technological application and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and well-being and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- ign, intergeniculate nucleus
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- k, kelvin temperature
- lan, light at night
- led, light-emitting diode
- lgn, lateral geniculate nucleus
- plr, pupillary light reflex
- pot, primary optic tract
- rht, retinohypothalamic tract
- scn, suprachiasmatic nuclei
- spd, spectral power distribution.
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana;,
| | - John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
3
|
Katada Y, Yoshida K, Serizawa N, Lee D, Kobayashi K, Negishi K, Okano H, Kandori H, Tsubota K, Kurihara T. Highly sensitive visual restoration and protection via ectopic expression of chimeric rhodopsin in mice. iScience 2023; 26:107716. [PMID: 37720108 PMCID: PMC10504486 DOI: 10.1016/j.isci.2023.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/22/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Photoreception requires amplification by mammalian rhodopsin through G protein activation, which requires a visual cycle. To achieve this in retinal gene therapy, we incorporated human rhodopsin cytoplasmic loops into Gloeobacter rhodopsin, thereby generating Gloeobacter and human chimeric rhodopsin (GHCR). In a murine model of inherited retinal degeneration, we induced retinal GHCR expression by intravitreal injection of a recombinant adeno-associated virus vector. Retinal explant and visual thalamus electrophysiological recordings, behavioral tests, and histological analysis showed that GHCR restored dim-environment vision and prevented the progression of retinal degeneration. Thus, GHCR may be a potent clinical tool for the treatment of retinal disorders.
Collapse
Affiliation(s)
- Yusaku Katada
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuho Yoshida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-0061, Japan
| | - Naho Serizawa
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Nutritional Sciences, Toyo University, Kita-ku, Tokyo 115-8650, Japan
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-0061, Japan
| | - Kazuo Tsubota
- Tsubota Laboratory, Inc., Shinjuku-ku, Tokyo 160-0016, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Barry C, Wang E. Racially fair pupillometry measurements for RGB smartphone cameras using the far red spectrum. Sci Rep 2023; 13:13841. [PMID: 37620445 PMCID: PMC10449795 DOI: 10.1038/s41598-023-40796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023] Open
Abstract
Pupillometry is a measurement of pupil dilation commonly performed as part of neurological assessments. Prior work have demonstrated the potential for pupillometry in screening or diagnosing a number of neurological disorders including Alzheimer's Disease, Schizophrenia, and Traumatic Brain Injury. Unfortunately, the expense and inaccessibility of specialized pupilometers that image in the near infrared spectrum limit the measurement to high resource clinics or institutions. Ideally, this measurement could be available via ubiquitous devices like smartphones or tablets with integrated visible spectrum imaging systems. In the visible spectrum of RGB cameras, the melanin in the iris absorbs light such that it is difficult to distinguish the pupil aperature that appears black. In this paper, we propose a novel pupillometry technique to enable smartphone RGB cameras to effectively differentiate the pupil from the iris. The proposed system utilizes a 630 nm long-pass filter to image in the far red (630-700 nm) spectrum, where the melanin in the iris reflects light to appear brighter in constrast to the dark pupil. Using a convolutional neural network, the proposed system measures pupil diameter as it dynamically changes in a frame by frame video. Comparing across 4 different smartphone models, the pupil-iris contrast of N = 12 participants increases by an average of 451% with the proposed system. In a validation study of N = 11 participants comparing the relative pupil change in the proposed system to a Neuroptics PLR-3000 Pupillometer during a pupillary light response test, the prototype system acheived a mean absolute error of 2.4%.
Collapse
Affiliation(s)
- Colin Barry
- Electrical and Computer Engineering Department, University of California San Diego, La Jolla, CA, USA.
- Design Lab, University of California San Diego, La Jolla, CA, USA.
| | - Edward Wang
- Electrical and Computer Engineering Department, University of California San Diego, La Jolla, CA, USA
- Design Lab, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Tien CL, Su SH, Cheng CY, Su KC. Customized designed notch filters and applied effects on glare and contrast sensitivity in patients with dry eye syndrome. Int Ophthalmol 2023:10.1007/s10792-023-02735-w. [PMID: 37329407 DOI: 10.1007/s10792-023-02735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/03/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE Glare visual acuity and contrast sensitivity are important indicators of visual quality. Studies have shown that the glare visual acuity and contrast sensitivity in dry eye patients tend to degenerate, further affecting their quality of life. The objective of this study was to investigate the effect of notch filters on glare VA and contrast sensitivity in patients with dry eye or with dry eye syndrome. METHOD 36 subjects in the 20‒65 age group were diagnosed as having dry eye disease or perceived dry eye syndromes themselves who were included after the initial screening with the OSDI questionnaire, and one was subsequently excluded as they had undergone retinal detachment surgery. Finally, 35 subjects (14 male and 21 female) with a mean age of 40.66 ± 15.62 years participated in this study. All subjects wore their habitual prescriptions and four different filter lenses (namely 480, 620, dual 480 & 620 notch filter, and FL-41 tinted lens), and measured the parameters of glare visual acuity and contrast sensitivity using CSV-1000 and sine wave contrast test (SWCT), respectively. Student t-test and Repeated measurement analysis (R-ANOVA) were utilized by using SPSS 26.0 software. RESULTS A dual-wavelength 480 & 620 nm optical notch filter had a significant anti-glare effect decreasing glare disabilities or discomfort, and leading to better visual quality, the same effect was also shown on a 480 nm notch filter lens. All participants showed a significant difference among the baseline, three notch filters (480 nm, 620 nm, dual-wavelength 480 & 620 nm), and FL-41 tinted lens were used on SWCT_A (1.5 cpd, F = 3.054, p = 0.019) and SWCT_E (18 cpd, F = 2.840, p = 0.049); but did not show statistical different on SWCT_B (3 cpd, F = 0.333, p = 0.771), SWCT_C (6 cpd, F = 1.779, p = 0.159), and SWCT_D (12 cpd, F = 1.447, p = 0.228). The baseline showed the best visual performance on CS at a low spatial frequency (SWCT_A, 1.5 cpd), any filter might reduce the contrast sensitivity at low spatial frequencies in the clinical trial, whereas 480 nm notch filter showed the best effectiveness on CS at a high spatial frequency (SWCT_E, 18 cpd), the FL-41 lens that also filters out the 480 nm band does not achieve the same effect. Moreover, patients with dry eye or those older than 40 years old preferred optical multilayer notch filters to FL-41 tinted lenses. CONCLUSION The 480- & 620-nm dual-wavelength and 480-nm single-wavelength notch filters have the best effect on the glare visual acuity and contrast sensitivity (CS) at high spatial frequencies in dry eye patients. The 620-nm notch filter performs better in CS at low and mid-low spatial frequencies; the FL-41 tinted lens performs poorly for glare VA and CS spatial frequencies examination. Patients with glare disabilities or CS disturbance at high spatial frequencies may choose a 480-nm notch filter lens, and patients who have CS disturbance at low spatial frequencies may consider a 620-nm notch filter for the prescription.
Collapse
Affiliation(s)
- Chuen-Lin Tien
- Department of Electrical Engineering, Feng Chia University, Taichung, 40724, Taiwan
- Ph.D. Program in Electrical and Communications Engineering, Feng Chia University, Taichung, 40724, Taiwan
| | - Su-Hui Su
- Ph.D. Program in Electrical and Communications Engineering, Feng Chia University, Taichung, 40724, Taiwan
| | - Ching-Ying Cheng
- Department of Optometry, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Kuo-Chen Su
- Department of Optometry, Chung Shan Medical University, Taichung, 402, Taiwan.
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
6
|
Posternack C, Kupchak P, Capriolo AI, Katz BJ. Targeting the intrinsically photosensitive retinal ganglion cell to reduce headache pain and light sensitivity in migraine: A randomized double-blind trial. J Clin Neurosci 2023; 113:22-31. [PMID: 37150129 DOI: 10.1016/j.jocn.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023]
Abstract
Approximately 80% of patients with migraine report light sensitivity during attacks and almost half report that following headache, light sensitivity is the most bothersome symptom. Light wavelengths stimulating intrinsically photosensitive retinal ganglion cells (IPRGCs) exacerbate headache-associated light sensitivity; green light is most comfortable. We developed optical tints that block wavelengths exacerbating migraine pain and transmit wavelengths that are most comfortable. We studied patients with migraine to determine if spectacles with these tints ameliorate headache pain and light sensitivity. Randomized participants wore control lenses or lenses blocking light wavelengths that stimulate IPRGCs. Participants applied the lenses at migraine onset and recorded baseline, two- and four-hour headache pain on an 11-point scale. Primary endpoint was pain reduction at two hours following the first severe or very severe headache. Statistical tests used included mixed-effects model analysis, Mann-Whitney test, Cochran-Mantel-Haenszel test, Shapiro-Wilk test, Welch t-test. In 78 subjects, two- and four-hour pain reduction was not significantly different between groups. In post-hoc analyses of headaches with baseline pain scores ≥ 2, a mixed-effects model suggested that IPRGC lenses were associated with clinically and statistically significant reductions in two- and four-hour headache pain. In post-hoc analyses, fewer subjects wearing IPRGC lenses reported two-hour light sensitivity. Preliminary evidence suggests that optical tints engineered to reduce stimulation of IPRGCs may reduce migraine-associated pain and light sensitivity. Trial Registration: This study was registered at ClinicalTrials.gov (NCT04341298).
Collapse
Affiliation(s)
| | - Peter Kupchak
- Statistical Consultant, 79 Beechwood Avenue, Guelph, ON N1H 5Z7, Canada
| | - Amber I Capriolo
- Avania U.S., 100 Crowley Drive, Suite 216, Marlborough, MA 01752, USA
| | - Bradley J Katz
- Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, Department of Neurology, University of Utah Health, Salt Lake City, UT 84132, USA.
| |
Collapse
|
7
|
Emanuel AJ, Do MTH. The Multistable Melanopsins of Mammals. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1174255. [PMID: 37994345 PMCID: PMC10664805 DOI: 10.3389/fopht.2023.1174255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/10/2023] [Indexed: 11/24/2023]
Abstract
Melanopsin is a light-activated G protein coupled receptor that is expressed widely across phylogeny. In mammals, melanopsin is found in intrinsically photosensitive retinal ganglion cells (ipRGCs), which are especially important for "non-image" visual functions that include the regulation of circadian rhythms, sleep, and mood. Photochemical and electrophysiological experiments have provided evidence that melanopsin has at least two stable conformations and is thus multistable, unlike the monostable photopigments of the classic rod and cone photoreceptors. Estimates of melanopsin's properties vary, challenging efforts to understand how the molecule influences vision. This article seeks to reconcile disparate views of melanopsin and offer a practical guide to melanopsin's complexities.
Collapse
Affiliation(s)
| | - Michael Tri H. Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Karthikeyan R, Davies WI, Gunhaga L. Non-image-forming functional roles of OPN3, OPN4 and OPN5 photopigments. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023. [DOI: 10.1016/j.jpap.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
|
9
|
Campbell I, Sharifpour R, Vandewalle G. Light as a Modulator of Non-Image-Forming Brain Functions—Positive and Negative Impacts of Increasing Light Availability. Clocks Sleep 2023; 5:116-140. [PMID: 36975552 PMCID: PMC10047820 DOI: 10.3390/clockssleep5010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Light use is rising steeply, mainly because of the advent of light-emitting diode (LED) devices. LEDs are frequently blue-enriched light sources and may have different impacts on the non-image forming (NIF) system, which is maximally sensitive to blue-wavelength light. Most importantly, the timing of LED device use is widespread, leading to novel light exposure patterns on the NIF system. The goal of this narrative review is to discuss the multiple aspects that we think should be accounted for when attempting to predict how this situation will affect the NIF impact of light on brain functions. We first cover both the image-forming and NIF pathways of the brain. We then detail our current understanding of the impact of light on human cognition, sleep, alertness, and mood. Finally, we discuss questions concerning the adoption of LED lighting and screens, which offer new opportunities to improve well-being, but also raise concerns about increasing light exposure, which may be detrimental to health, particularly in the evening.
Collapse
|
10
|
Liu A, Milner ES, Peng YR, Blume HA, Brown MC, Bryman GS, Emanuel AJ, Morquette P, Viet NM, Sanes JR, Gamlin PD, Do MTH. Encoding of environmental illumination by primate melanopsin neurons. Science 2023; 379:376-381. [PMID: 36701440 PMCID: PMC10445534 DOI: 10.1126/science.ade2024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/21/2022] [Indexed: 01/27/2023]
Abstract
Light regulates physiology, mood, and behavior through signals sent to the brain by intrinsically photosensitive retinal ganglion cells (ipRGCs). How primate ipRGCs sense light is unclear, as they are rare and challenging to target for electrophysiological recording. We developed a method of acute identification within the live, ex vivo retina. Using it, we found that ipRGCs of the macaque monkey are highly specialized to encode irradiance (the overall intensity of illumination) by blurring spatial, temporal, and chromatic features of the visual scene. We describe mechanisms at the molecular, cellular, and population scales that support irradiance encoding across orders-of-magnitude changes in light intensity. These mechanisms are conserved quantitatively across the ~70 million years of evolution that separate macaques from mice.
Collapse
Affiliation(s)
- Andreas Liu
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA 02115, USA
| | - Elliott S. Milner
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA 02115, USA
- Present address: Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, 25 Howland Street, London, W1T 4JG, UK
| | - Yi-Rong Peng
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Present address: Department of Ophthalmology, Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Hannah A. Blume
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA 02115, USA
| | - Michael C. Brown
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA 02115, USA
| | - Gregory S. Bryman
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA 02115, USA
- Present address: Merck & Co., Inc., 320 Bent St, Cambridge, MA 02141, USA
| | - Alan J. Emanuel
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA 02115, USA
- Present address: Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA
| | - Philippe Morquette
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA 02115, USA
| | - Nguyen-Minh Viet
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA 02115, USA
| | - Joshua R. Sanes
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Paul D. Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael Tri H. Do
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School. Boston, MA 02115, USA
| |
Collapse
|
11
|
Boertien TM, Van Someren EJW, Coumou AD, van den Broek AK, Klunder JH, Wong WY, van der Hoeven AE, Drent ML, Romijn JA, Fliers E, Bisschop PH. Compression of the optic chiasm is associated with reduced photoentrainment of the central biological clock. Eur J Endocrinol 2022; 187:809-821. [PMID: 36201161 DOI: 10.1530/eje-22-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Pituitary tumours that compress the optic chiasm are associated with long-term alterations in sleep-wake rhythm. This may result from damage to intrinsically photosensitive retinal ganglion cells (ipRGCs) projecting from the retina to the hypothalamic suprachiasmatic nucleus via the optic chiasm to ensure photoentrainment (i.e. synchronisation to the 24-h solar cycle through light). To test this hypothesis, we compared the post-illumination pupil response (PIPR), a direct indicator of ipRGC function, between hypopituitarism patients with and without a history of optic chiasm compression. DESIGN Observational study, comparing two predefined groups. METHODS We studied 49 patients with adequately substituted hypopituitarism: 25 patients with previous optic chiasm compression causing visual disturbances (CC+ group) and 24 patients without (CC- group). The PIPR was assessed by chromatic pupillometry and expressed as the relative change between baseline and post-blue-light stimulus pupil diameter. Objective and subjective sleep parameters were obtained using polysomnography, actigraphy, and questionnaires. RESULTS Post-blue-light stimulus pupillary constriction was less sustained in CC+ patients compared with CC- patients, resulting in a significantly smaller extended PIPR (mean difference: 8.1%, 95% CI: 2.2-13.9%, P = 0.008, Cohen's d = 0.78). Sleep-wake timing was consistently later in CC+ patients, without differences in sleep duration, efficiency, or other rest-activity rhythm features. Subjective sleep did not differ between groups. CONCLUSION Previous optic chiasm compression due to a pituitary tumour in patients with hypopituitarism is associated with an attenuated PIPR and delayed sleep timing. Together, these data suggest that ipRGC function and consequently photoentrainment of the central biological clock is impaired in patients with a history of optic chiasm compression.
Collapse
Affiliation(s)
- Tessel M Boertien
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| | - Eus J W Van Someren
- Netherlands Institute for Neuroscience (NIN), Sleep and Cognition, Amsterdam, The Netherlands
- Amsterdam UMC location VU University, Psychiatry, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Stress & Sleep, Amsterdam, The Netherlands
- VU University, Centre for Neurogenomics and Cognitive Research, Integrative Neurophysiology, Amsterdam, The Netherlands
| | - Adriaan D Coumou
- Amsterdam UMC location University of Amsterdam, Ophthalmology, Amsterdam, The Netherlands
| | - Annemieke K van den Broek
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Jet H Klunder
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Wing-Yi Wong
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Adrienne E van der Hoeven
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Madeleine L Drent
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
- Amsterdam UMC location VU University, Internal Medicine, Section of Endocrinology, Amsterdam, The Netherlands
| | - Johannes A Romijn
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Amsterdam, The Netherlands
| | - Eric Fliers
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| | - Peter H Bisschop
- Amsterdam UMC location University of Amsterdam, Endocrinology and Metabolism, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Steinhauer SR, Bradley MM, Siegle GJ, Roecklein KA, Dix A. Publication guidelines and recommendations for pupillary measurement in psychophysiological studies. Psychophysiology 2022; 59:e14035. [PMID: 35318693 PMCID: PMC9272460 DOI: 10.1111/psyp.14035] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/27/2022]
Abstract
A variety of psychological and physical phenomena elicit variations in the diameter of pupil of the eye. Changes in pupil size are mediated by the relative activation of the sphincter pupillae muscle (decrease pupil diameter) and the dilator pupillae muscle (increase pupil diameter), innervated by the parasympathetic and sympathetic branches, respectively, of the autonomic nervous system. The current guidelines are intended to inform and guide psychophysiological research involving pupil measurement by (1) summarizing important aspects concerning the physiology of the pupil, (2) providing methodological and data-analytic guidelines and recommendations, and (3) briefly reviewing psychological phenomena that modulate pupillary reactivity. Because of the increased ease and tractability of pupil measurement, the goal of these guidelines is to promote accurate recording, analysis, and reporting of pupillary data in psychophysiological research.
Collapse
Affiliation(s)
- Stuart R. Steinhauer
- Veterans Affairs Pittsburgh Healthcare System, VISN 4 MIRECC, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Greg J. Siegle
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Annika Dix
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Calligaro H, Dkhissi-Benyahya O, Panda S. Ocular and extraocular roles of neuropsin in vertebrates. Trends Neurosci 2022; 45:200-211. [PMID: 34952723 PMCID: PMC8854378 DOI: 10.1016/j.tins.2021.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023]
Abstract
The ability to detect and adapt to different levels of ambient light is critical for animal survival. Light detection is the basis of vision, but light also regulates eye development and drives several non-image-forming functions, including synchronizing circadian rhythms to the daily light/dark cycle, restricting pupils in response to changes in light intensity, and modulating mood in response to light. Until the early 2000s, these functions were thought to be solely mediated by ocular photoreceptors. However, neuropsin (OPN5), a UV-sensitive opsin, has been receiving growing attention, as new methods have revealed previously unappreciated functions of OPN5. In fact, OPN5-mediated extraocular and deep-brain photoreception have recently been described for the first time in mammals. This review aims to synthesize current knowledge of the properties and functions of OPN5 across vertebrates.
Collapse
Affiliation(s)
- Hugo Calligaro
- Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ouria Dkhissi-Benyahya
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute, Bron, France
| | - Satchidananda Panda
- Regulatory Biology, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
14
|
Zauner J, Plischke H, Strasburger H. Spectral dependency of the human pupillary light reflex. Influences of pre-adaptation and chronotype. PLoS One 2022; 17:e0253030. [PMID: 35020744 PMCID: PMC8754338 DOI: 10.1371/journal.pone.0253030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022] Open
Abstract
Non-visual photoreceptors (ipRGCs) and rods both exert a strong influence on the human pupil, yet pupil models regularly use cone-derived sensitivity as their basis. This inconsistency is further exacerbated by the fact that circadian effects can modulate the wavelength sensitivity. We assessed the pupillary reaction to narrowband light stimuli in the mesopic range. Pupil size for eighty-three healthy participants with normal color vision was measured in nine experimental protocols with varying series of continuous or discontinuous light stimuli under Ganzfeld conditions, presented after 90 seconds of dark adaptation. One hundred and fifty series of stimulation were conducted across three experiments, and were analyzed for wavelength-dependency on the normalized pupillary constriction (nPC), conditional on experimental settings and individual traits. Traits were surveyed by questionnaire; color vision was tested by Ishihara plates or the Lanthony D15 test. Data were analyzed with generalized additive mixed models (GAMM). The normalized pupillary constriction response is consistent with L+M-cone derived sensitivity when the series of light stimuli is continuous, i.e., is not interrupted by periods of darkness, but not otherwise. The results also show that a mesopic illuminance weighing led to an overall best prediction of pupillary constriction compared to other types of illuminance measures. IpRGC influence on nPC is not readily apparent from the results. When we explored the interaction of chronotype and time of day on the wavelength dependency, differences consistent with ipRGC influence became apparent. The models indicate that subjects of differing chronotype show a heightened or lowered sensitivity to short wavelengths, depending on their time of preference. IpRGC influence is also seen in the post-illumination pupil reflex if the prior light-stimulus duration is one second. However, shorter wavelengths than expected become more important if the light-stimulus duration is fifteen or thirty seconds. The influence of sex on nPC was present, but showed no interaction with wavelength. Our results help to define the conditions, under which the different wavelength sensitivities in the literature hold up for narrowband light settings. The chronotype effect might signify a mechanism for strengthening the individual´s chronotype. It could also be the result of the participant’s prior exposure to light (light history). Our explorative findings for this effect demand replication in a controlled study.
Collapse
Affiliation(s)
- Johannes Zauner
- Munich University of Applied Sciences, Munich, Germany
- * E-mail:
| | | | - Hans Strasburger
- Institute of Medical Psychology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
15
|
Steiner O, de Zeeuw J, Stotz S, Bes F, Kunz D. Post-Illumination Pupil Response as a Biomarker for Cognition in α-Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2022; 12:593-598. [PMID: 34806618 DOI: 10.3233/jpd-212775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neurodegenerative processes in the brain are reflected by structural retinal changes. As a possible biomarker of cognitive state in prodromal α-synucleinopathies, we compared melanopsin-mediated post-illumination pupil response (PIPR) with cognition (CERAD-plus) in 69 patients with isolated REM-sleep behavior disorder. PIPR was significantly correlated with cognitive domains, especially executive functioning (r = 0.417, p < 0.001), which was more pronounced in patients with lower dopamine-transporter density, suggesting advanced neurodegenerative state (n = 26; r = 0.575, p = 0.002). Patients with mild neurocognitive disorder (n = 10) had significantly reduced PIPR (smaller melanopsin-mediated response) compared to those without (p = 0.001). Thus, PIPR may be a functional-possibly monitoring-marker for impaired cognitive state in (prodromal) α-synucleinopathies.
Collapse
Affiliation(s)
- Oliver Steiner
- St. Hedwig-Hospital, Clinic for Sleep- & Chronomedicine, Berlin, Germany
| | - Jan de Zeeuw
- St. Hedwig-Hospital, Clinic for Sleep- & Chronomedicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology, Berlin, Germany
| | - Sophia Stotz
- St. Hedwig-Hospital, Clinic for Sleep- & Chronomedicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology, Berlin, Germany
| | - Frederik Bes
- St. Hedwig-Hospital, Clinic for Sleep- & Chronomedicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology, Berlin, Germany
| | - Dieter Kunz
- St. Hedwig-Hospital, Clinic for Sleep- & Chronomedicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Physiology, Sleep Research & Clinical Chronobiology, Berlin, Germany
| |
Collapse
|
16
|
Vöcking O, Leclère L, Hausen H. The rhodopsin-retinochrome system for retinal re-isomerization predates the origin of cephalopod eyes. BMC Ecol Evol 2021; 21:215. [PMID: 34844573 PMCID: PMC8628405 DOI: 10.1186/s12862-021-01939-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/11/2021] [Indexed: 11/10/2022] Open
Abstract
Background The process of photoreception in most animals depends on the light induced isomerization of the chromophore retinal, bound to rhodopsin. To re-use retinal, the all-trans-retinal form needs to be re-isomerized to 11-cis-retinal, which can be achieved in different ways. In vertebrates, this mostly includes a stepwise enzymatic process called the visual cycle. The best studied re-isomerization system in protostomes is the rhodopsin-retinochrome system of cephalopods, which consists of rhodopsin, the photoisomerase retinochrome and the protein RALBP functioning as shuttle for retinal. In this study we investigate the expression of the rhodopsin-retinochrome system and functional components of the vertebrate visual cycle in a polyplacophoran mollusk, Leptochiton asellus, and examine the phylogenetic distribution of the individual components in other protostome animals. Results Tree-based orthology assignments revealed that orthologs of the cephalopod retinochrome and RALBP are present in mollusks outside of cephalopods. By mining our dataset for vertebrate visual cycle components, we also found orthologs of the retinoid binding protein RLBP1, in polyplacophoran mollusks, cephalopods and a phoronid. In situ hybridization and antibody staining revealed that L. asellus retinochrome is co-expressed in the larval chiton photoreceptor cells (PRCs) with the visual rhodopsin, RALBP and RLBP1. In addition, multiple retinal dehydrogenases are expressed in the PRCs, which might also contribute to the rhodopsin-retinochrome system. Conclusions We conclude that the rhodopsin-retinochrome system is a common feature of mollusk PRCs and predates the origin of cephalopod eyes. Our results show that this system has to be extended by adding further components, which surprisingly, are shared with vertebrates. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01939-x.
Collapse
Affiliation(s)
- Oliver Vöcking
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway. .,Department of Biology, University of Kentucky, Thomas Hunt Morgan Building, 675 Rose Street, Lexington, KY, 40508, USA.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Villefranche-sur-Mer, France
| | - Harald Hausen
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008, Bergen, Norway
| |
Collapse
|
17
|
Contreras E, Nobleman AP, Robinson PR, Schmidt TM. Melanopsin phototransduction: beyond canonical cascades. J Exp Biol 2021; 224:273562. [PMID: 34842918 PMCID: PMC8714064 DOI: 10.1242/jeb.226522] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Melanopsin is a visual pigment that is expressed in a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs). It is involved in regulating non-image forming visual behaviors, such as circadian photoentrainment and the pupillary light reflex, while also playing a role in many aspects of image-forming vision, such as contrast sensitivity. Melanopsin was initially discovered in the melanophores of the skin of the frog Xenopus, and subsequently found in a subset of ganglion cells in rat, mouse and primate retinas. ipRGCs were initially thought to be a single retinal ganglion cell population, and melanopsin was thought to activate a single, invertebrate-like Gq/transient receptor potential canonical (TRPC)-based phototransduction cascade within these cells. However, in the 20 years since the discovery of melanopsin, our knowledge of this visual pigment and ipRGCs has expanded dramatically. Six ipRGC subtypes have now been identified in the mouse, each with unique morphological, physiological and functional properties. Multiple subtypes have also been identified in other species, suggesting that this cell type diversity is a general feature of the ipRGC system. This diversity has led to a renewed interest in melanopsin phototransduction that may not follow the canonical Gq/TRPC cascade in the mouse or in the plethora of other organisms that express the melanopsin photopigment. In this Review, we discuss recent findings and discoveries that have challenged the prevailing view of melanopsin phototransduction as a single pathway that influences solely non-image forming functions.
Collapse
Affiliation(s)
- Ely Contreras
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Alexis P. Nobleman
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Phyllis R. Robinson
- University of Maryland Baltimore County, Department of Biological Sciences, Baltimore, MD 21250, USA,Authors for correspondence (; )
| | - Tiffany M. Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA,Department of Ophthalmology, Feinberg School of Medicine, Chicago, IL 60611, USA,Authors for correspondence (; )
| |
Collapse
|
18
|
Pant M, Zele AJ, Feigl B, Adhikari P. Light adaptation characteristics of melanopsin. Vision Res 2021; 188:126-138. [PMID: 34315092 DOI: 10.1016/j.visres.2021.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022]
Abstract
Following photopigment bleaching, the rhodopsin and cone-opsins show a characteristic exponential regeneration in the dark with a photocycle dependent on the retinal pigment epithelium. Melanopsin pigment regeneration in animal models requires different pathways to rods and cones. To quantify melanopsin-mediated light adaptation in humans, we first estimated its photopigment regeneration kinetics through the photo-bleach recovery of the intrinsic melanopsin pupil light response (PLR). An intense broadband light (~120,000 Td) bleached 43% of melanopsin compared to 86% of the cone-opsins. Recovery from a 43% bleach was 3.4X slower for the melanopsin than cone-opsin. Post-bleach melanopsin regeneration followed an exponential growth with a 2.5 min time-constant (τ) that required 11.2 min for complete recovery; the half-bleaching level (Ip) was ~ 4.47 log melanopic Td (16.10 log melanopsin effective photons.cm-2.s-1; 8.25 log photoisomerisations.photoreceptor-1.s-1). The effect on the cone-directed PLR of the level of the melanopsin excitation during continuous light adaptation was then determined. We observed that cone-directed pupil constriction amplitudes increased by ~ 10% when adapting lights had a higher melanopic excitation but the same mean photometric luminance. Our findings suggest that melanopsin light adaptation enhances cone signalling along the non-visual retina-brain axis. Parameters τ and Ip will allow estimation of the level of melanopsin bleaching in any light units; the data have implications for quantifying the relative contributions of putative melanopsin pathways to regulate the post-bleach photopigment regeneration and adaptation.
Collapse
Affiliation(s)
- Mukund Pant
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Queensland Eye Institute, Brisbane, Australia
| | - Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.
| |
Collapse
|
19
|
Mure LS. Intrinsically Photosensitive Retinal Ganglion Cells of the Human Retina. Front Neurol 2021; 12:636330. [PMID: 33841306 PMCID: PMC8027232 DOI: 10.3389/fneur.2021.636330] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
Light profoundly affects our mental and physical health. In particular, light, when not delivered at the appropriate time, may have detrimental effects. In mammals, light is perceived not only by rods and cones but also by a subset of retinal ganglion cells that express the photopigment melanopsin that renders them intrinsically photosensitive (ipRGCs). ipRGCs participate in contrast detection and play critical roles in non-image-forming vision, a set of light responses that include circadian entrainment, pupillary light reflex (PLR), and the modulation of sleep/alertness, and mood. ipRGCs are also found in the human retina, and their response to light has been characterized indirectly through the suppression of nocturnal melatonin and PLR. However, until recently, human ipRGCs had rarely been investigated directly. This gap is progressively being filled as, over the last years, an increasing number of studies provided descriptions of their morphology, responses to light, and gene expression. Here, I review the progress in our knowledge of human ipRGCs, in particular, the different morphological and functional subtypes described so far and how they match the murine subtypes. I also highlight questions that remain to be addressed. Investigating ipRGCs is critical as these few cells play a major role in our well-being. Additionally, as ipRGCs display increased vulnerability or resilience to certain disorders compared to conventional RGCs, a deeper knowledge of their function could help identify therapeutic approaches or develop diagnostic tools. Overall, a better understanding of how light is perceived by the human eye will help deliver precise light usage recommendations and implement light-based therapeutic interventions to improve cognitive performance, mood, and life quality.
Collapse
Affiliation(s)
- Ludovic S Mure
- Institute of Physiology, University of Bern, Bern, Switzerland.,Department of Neurology, Zentrum für Experimentelle Neurologie, Inselspital University Hospital Bern, Bern, Switzerland
| |
Collapse
|
20
|
Chellappa SL, Bromundt V, Frey S, Cajochen C. Age-related neuroendocrine and alerting responses to light. GeroScience 2021; 43:1767-1781. [PMID: 33638088 DOI: 10.1007/s11357-021-00333-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 02/01/2021] [Indexed: 11/28/2022] Open
Abstract
Aging is associated with sleep and circadian alterations, which can negatively affect quality of life and longevity. Importantly, the age-related reduction in light sensitivity, particularly in the short-wavelength range, may underlie sleep and circadian alterations in older people. While evidence suggests that non-image-forming (NIF) light responses may diminish in older individuals, most laboratory studies have low sample sizes, use non-ecological light settings (e.g., monochromatic light), and typically focus on melatonin suppression by light. Here, we investigated whether NIF light effects on endogenous melatonin levels and sleep frontal slow-wave activity (primary outcomes), and subjective sleepiness and sustained attention (secondary outcomes) attenuate with aging. We conducted a stringently controlled within-subject study with 3 laboratory protocols separated by ~ 1 week in 31 young (18-30 years; 15 women) and 16 older individuals (55-80 years; eight women). Each protocol included 2 h of evening exposure to commercially available blue-enriched polychromatic light (6500 K) or non-blue-enriched light (3000 K or 2500 K) at low levels (~ 40 lx, habitual in evening indoor settings). Aging significantly affected the influence of light on endogenous melatonin levels, subjective sleepiness, sustained attention, and frontal slow-wave activity (interaction: P < 0.001, P = 0.004, P = 0.007, P = 0.001, respectively). In young individuals, light exposure at 6500 K significantly attenuated the increase in endogenous melatonin levels, improved subjective sleepiness and sustained attention performance, and decreased frontal slow-wave activity in the beginning of sleep. Conversely, older individuals did not exhibit signficant differential light sensitivity effects. Our findings provide evidence for an association of aging and reduced light sensitivity, with ramifications to sleep, cognition, and circadian health in older people.
Collapse
Affiliation(s)
- Sarah L Chellappa
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, 221 Longwood Avenue, 039 BLI, Boston, MA, 02115, USA. .,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Vivien Bromundt
- Sleep-Wake-Epilepsy-Center, Department of Neurology, Inselspital, Bern University Hospital, Bern, Switzerland.,Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Sylvia Frey
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland
| | - Christian Cajochen
- Centre for Chronobiology, Psychiatric Hospital of the University of Basel, Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
21
|
Aranda ML, Schmidt TM. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci 2021; 78:889-907. [PMID: 32965515 PMCID: PMC8650628 DOI: 10.1007/s00018-020-03641-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/10/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
The melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of atypical ganglion cell photoreceptor. These ipRGCs are a morphologically and physiologically heterogeneous population that project widely throughout the brain and mediate a wide array of visual functions ranging from photoentrainment of our circadian rhythms, to driving the pupillary light reflex to improve visual function, to modulating our mood, alertness, learning, sleep/wakefulness, regulation of body temperature, and even our visual perception. The presence of melanopsin as a unique molecular signature of ipRGCs has allowed for the development of a vast array of molecular and genetic tools to study ipRGC circuits. Given the emerging complexity of this system, this review will provide an overview of the genetic tools and methods used to study ipRGCs, how these tools have been used to dissect their role in a variety of visual circuits and behaviors in mice, and identify important directions for future study.
Collapse
Affiliation(s)
- Marcos L Aranda
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
22
|
Zandi B, Khanh TQ. Deep learning-based pupil model predicts time and spectral dependent light responses. Sci Rep 2021; 11:841. [PMID: 33436693 PMCID: PMC7803766 DOI: 10.1038/s41598-020-79908-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Although research has made significant findings in the neurophysiological process behind the pupillary light reflex, the temporal prediction of the pupil diameter triggered by polychromatic or chromatic stimulus spectra is still not possible. State of the art pupil models rested in estimating a static diameter at the equilibrium-state for spectra along the Planckian locus. Neither the temporal receptor-weighting nor the spectral-dependent adaptation behaviour of the afferent pupil control path is mapped in such functions. Here we propose a deep learning-driven concept of a pupil model, which reconstructs the pupil's time course either from photometric and colourimetric or receptor-based stimulus quantities. By merging feed-forward neural networks with a biomechanical differential equation, we predict the temporal pupil light response with a mean absolute error below 0.1 mm from polychromatic (2007 [Formula: see text] 1 K, 4983 [Formula: see text] 3 K, 10,138 [Formula: see text] 22 K) and chromatic spectra (450 nm, 530 nm, 610 nm, 660 nm) at 100.01 ± 0.25 cd/m2. This non-parametric and self-learning concept could open the door to a generalized description of the pupil behaviour.
Collapse
Affiliation(s)
- Babak Zandi
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany.
| | - Tran Quoc Khanh
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| |
Collapse
|
23
|
Abstract
Purpose To determine the effects of narrowband light exposure on choroidal thickness and the pupil response in humans. Methods Twenty subjects, ages 21 to 43 years, underwent 1 hour of exposure to broadband, short wavelength “blue,” or long wavelength “red” light, or darkness. Choroidal thickness, imaged with spectral domain optical coherence tomography, axial length, determined from biometry, and rod/cone- and intrinsically photosensitive retinal ganglion cell-driven pupil responses were measured before and after exposure. Pupil stimuli were six 1 second alternating red (651 nm) and blue (456 nm) stimuli, 60 seconds apart. Pupil metrics included maximum constriction and the 6 second post-illumination pupil response (PIPR). Results Compared with before exposure, the choroid significantly thinned after broadband light, red light, and dark exposure (all P < 0.05), but not after blue light exposure (P = 0.39). The maximum constriction to 1 second red stimuli significantly decreased after all light exposures (all P < 0.001), but increased after dark exposure (P = 0.02), compared with before exposure. Maximum constriction and 6-second PIPR to 1 second blue stimuli significantly decreased after all light exposures compared with before exposure (all P < 0.005), with no change after dark exposure (P > 0.05). There were no differences in axial length change or 6-second PIPR to red stimuli between exposures. Conclusions Narrowband blue and red light exposure induced differential changes in choroidal thickness. Maximum constriction, a function of rod/cone activity, and the intrinsically photosensitive retinal ganglion cell-mediated PIPR were attenuated after all light exposures. Findings demonstrate differing effects of short-term narrowband light and dark exposure on the choroid, rod/cone activity, and intrinsically photosensitive retinal ganglion cells.
Collapse
Affiliation(s)
| | - Lisa A Ostrin
- University of Houston College of Optometry, Houston, TX 77096, United States
| |
Collapse
|
24
|
Mutti DO, Mulvihill SP, Orr DJ, Shorter PD, Hartwick ATE. The Effect of Refractive Error on Melanopsin-Driven Pupillary Responses. Invest Ophthalmol Vis Sci 2020; 61:22. [PMID: 33091116 PMCID: PMC7594593 DOI: 10.1167/iovs.61.12.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Human and animal studies suggest that light-mediated dopamine release may underlie the protective effect of time outdoors on myopia development. Melanopsin-containing retinal ganglion cells may be involved in this process by integrating ambient light exposure and regulating retinal dopamine levels. The study evaluates this potential involvement by examining whether melanopsin-driven pupillary responses are associated with adult refractive error. Methods Subjects were 45 young adults (73% female, 24.1 ± 1.8 years) with refractive errors ranging from –6.33 D to +1.70 D. The RAPDx (Konan Medical) pupillometer measured normalized pupillary responses to three forms of square-wave light pulses alternating with darkness at 0.1 Hz: alternating long wavelength (red, peak at 608 nm) and short wavelength (blue, peak at 448 nm), followed by red only and then blue only. Results Non-myopic subjects displayed greater pupillary constriction in the blue-only condition and slower redilation following blue light offset than subjects with myopia (P = 0.011). Pupillary responses were not significantly different between myopic and non-myopic subjects in the red-only condition (P = 0.15). More hyperopic/less myopic refractive error as a continuous variable was linearly related to larger increases in pupillary constriction in response to blue-only stimuli (r = 0.48, P = 0.001). Conclusions Repeated light exposures to blue test stimuli resulted in an adaptation in the pupillary response (more constriction and slower redilation), presumably due to increased melanopsin-mediated input in more hyperopic/less myopic adults. This adaptive property supports a possible role for these ganglion cells in the protective effects of time outdoors on myopia development.
Collapse
Affiliation(s)
- Donald O Mutti
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| | | | - Danielle J Orr
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| | - Patrick D Shorter
- Optical Radiation Bioeffects Branch, Tri-Service Research Laboratory, Fort Sam Houston, Texas, United States
| | - Andrew T E Hartwick
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| |
Collapse
|
25
|
Sghari S, Davies WIL, Gunhaga L. Elucidation of Cellular Mechanisms That Regulate the Sustained Contraction and Relaxation of the Mammalian Iris. Invest Ophthalmol Vis Sci 2020; 61:5. [PMID: 32882011 PMCID: PMC7476664 DOI: 10.1167/iovs.61.11.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose In mammals, pupil constriction and dilation form the pupillary light reflex (PLR), which is mediated by both brain-regulated (parasympathetic) and local iris-driven reflexes. To better understand the cellular mechanisms that regulate pupil physiological dynamics via central and local photoreception, we have examined the regulation of the PLR via parasympathetic and local activation, respectively. Methods In this study, the PLR was examined in mouse enucleated eyes ex vivo in real-time under different ionic conditions in response to acetylcholine and/or blue light (480 nm). The use of pupillometry recordings captured the relaxation, contraction, and pupil escape (redilation) processes for 10 minutes up to 1 hour. Results Among others, our results show that ryanodine receptor channels are the main driver for iridal stimulation-contraction coupling, in which extracellular influx of Ca2+ is required for amplification of pupil constriction. Both local and parasympathetic iridal activations are necessary, but not sufficient for sustained pupil constriction. Moreover, the degree of membrane potential repolarization in the dark is correlated with the latency and velocity of iridal constriction. Furthermore, pupil escape is driven by membrane potential hyperpolarization where voltage-gated potassium channels play a crucial role. Conclusions Together, this study presents new mechanisms regulating synchronized pupil dilation and contraction, sustained pupil constriction, iridal stimulation-contraction coupling, and pupil escape.
Collapse
Affiliation(s)
- Soufien Sghari
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Wayne I. L. Davies
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine (UCMM), Umeå University, Umeå, Sweden
| |
Collapse
|
26
|
Zandi B, Klabes J, Khanh TQ. Prediction accuracy of L- and M-cone based human pupil light models. Sci Rep 2020; 10:10988. [PMID: 32620793 PMCID: PMC7335057 DOI: 10.1038/s41598-020-67593-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/10/2020] [Indexed: 12/19/2022] Open
Abstract
Multi-channel LED luminaires offer a powerful tool to vary retinal receptor signals while keeping visual parameters such as color or brightness perception constant. This technology could provide new fields of application in indoor lighting since the spectrum can be enhanced individually to the users' favor or task. One possible application would be to optimize a light spectrum by using the pupil diameter as a parameter to increase the visual acuity. A spectral- and time-dependent pupil model is the key requirement for this aim. We benchmarked in our work selected L- and M-cone based pupil models to find the estimation error in predicting the pupil diameter for chromatic and polychromatic spectra at 100 cd/m2. We report an increased estimation error up to 1.21 mm for 450 nm at 60-300 s exposure time. At short exposure times, the pupil diameter was approximately independent of the used spectrum, allowing to use the luminance for a pupil model. Polychromatic spectra along the Planckian locus showed at 60-300 s exposure time, a prediction error within a tolerance range of ± 0.5 mm. The time dependency seems to be more essential than the spectral dependency when using polychromatic spectra.
Collapse
Affiliation(s)
- Babak Zandi
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany.
| | - Julian Klabes
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| | - Tran Quoc Khanh
- Department of Electrical Engineering and Information Technology, Laboratory of Lighting Technology, Technical University of Darmstadt, 64289, Darmstadt, Germany
| |
Collapse
|
27
|
Hanifin JP, Dauchy RT, Blask DE, Hill SM, Brainard GC. Relevance of Electrical Light on Circadian, Neuroendocrine, and Neurobehavioral Regulation in Laboratory Animal Facilities. ILAR J 2020; 60:150-158. [PMID: 33094817 DOI: 10.1093/ilar/ilaa010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 02/03/2023] Open
Abstract
Light is a key extrinsic factor to be considered in operations and design of animal room facilities. Over the past four decades, many studies on typical laboratory animal populations have demonstrated impacts on neuroendocrine, neurobehavioral, and circadian physiology. These effects are regulated independently from the defined physiology for the visual system. The range of physiological responses that oscillate with the 24 hour rhythm of the day include sleep and wakefulness, body temperature, hormonal secretion, and a wide range of other physiological parameters. Melatonin has been the chief neuroendocrine hormone studied, but acute light-induced effects on corticosterone as well as other hormones have also been observed. Within the last two decades, a new photosensory system in the mammalian eye has been discovered. A small set of retinal ganglion cells, previously thought to function as a visual output neuron, have been shown to be directly photosensitive and act differently from the classic photoreceptors of the visual system. Understanding the effects of light on mammalian physiology and behavior must take into account how the classical visual photoreceptors and the newly discovered ipRGC photoreceptor systems interact. Scientists and facility managers need to appreciate lighting impacts on circadian, neuroendocrine, and neurobehavioral regulation in order to improve lighting of laboratory facilities to foster optimum health and well-being of animals.
Collapse
Affiliation(s)
- John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert T Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana
| | - Steven M Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Lee SI, Kinoshita S, Noguchi A, Eto T, Ohashi M, Nishimura Y, Maeda K, Motomura Y, Awata Y, Higuchi S. Melatonin suppression during a simulated night shift in medium intensity light is increased by 10-minute breaks in dim light and decreased by 10-minute breaks in bright light. Chronobiol Int 2020; 37:897-909. [PMID: 32326827 DOI: 10.1080/07420528.2020.1752704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Exposure to light at night results in disruption of endogenous circadian rhythmicity and/or suppression of pineal melatonin, which can consequently lead to acute or chronic adverse health problems. In the present study, we investigated whether exposure to very dim light or very bright light for a short duration influences melatonin suppression, subjective sleepiness, and performance during exposure to constant moderately bright light. Twenty-four healthy male university students were divided into two experimental groups: Half of them (mean age: 20.0 ± 0.9 years) participated in an experiment for short-duration (10 min) light conditions of medium intensity light (430 lx, medium breaks) vs. very dim light (< 1 lx, dim breaks) and the other half (mean age: 21.3 ± 2.5 years) participated in an experiment for short-duration light conditions of medium intensity light (430 lx, medium breaks) vs. very bright light (4700 lx, bright breaks). Each simulated night shift consisting of 5 sets (each including 50-minute night work and 10-minute break) was performed from 01:00 to 06:00 h. The subjects were exposed to medium intensity light (550 lx) during the night work. Each 10-minute break was conducted every hour from 02:00 to 06:00 h. Salivary melatonin concentrations were measured, subjective sleepiness was assessed, the psychomotor vigilance task was performed at hourly intervals from 21:00 h until the end of the experiment. Compared to melatonin suppression between 04:00 and 06:00 h in the condition of medium breaks, the condition of dim breaks significantly promoted melatonin suppression and the condition of bright breaks significantly diminished melatonin suppression. However, there was no remarkable effect of either dim breaks or bright breaks on subjective sleepiness and performance of the psychomotor vigilance task. Our findings suggest that periodic exposure to light for short durations during exposure to a constant light environment affects the sensitivity of pineal melatonin to constant light depending on the difference between light intensities in the two light conditions (i.e., short light exposure vs. constant light exposure). Also, our findings indicate that exposure to light of various intensities at night could be a factor influencing the light-induced melatonin suppression in real night work settings.
Collapse
Affiliation(s)
- Sang-Il Lee
- Department of Human Science, Faculty of Design, Kyushu University , Fukuoka, Japan.,Division of Human Environmental Systems, Faculty of Engineering, Hokkaido University , Sapporo, Japan
| | - Saki Kinoshita
- Department of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University , Fukuoka, Japan
| | - Anna Noguchi
- Department of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University , Fukuoka, Japan
| | - Taisuke Eto
- Department of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University , Fukuoka, Japan
| | - Michihiro Ohashi
- Department of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University , Fukuoka, Japan
| | - Yuki Nishimura
- Department of Kansei Science, Graduate School of Integrated Frontier Science, Kyushu University , Fukuoka, Japan.,Occupational Stress and Health Management Research Group, National Institute of Occupational Safety and Health , Kawasaki, Japan
| | - Kaho Maeda
- Ground Facilities Department, Japan Aerospace Exploration Agency , Tsukuba, Japan
| | - Yuki Motomura
- Department of Human Science, Faculty of Design, Kyushu University , Fukuoka, Japan
| | - Yasuhiro Awata
- Ground Facilities Department, Japan Aerospace Exploration Agency , Tsukuba, Japan
| | - Shigekazu Higuchi
- Department of Human Science, Faculty of Design, Kyushu University , Fukuoka, Japan
| |
Collapse
|
29
|
Mure LS, Vinberg F, Hanneken A, Panda S. Functional diversity of human intrinsically photosensitive retinal ganglion cells. Science 2020; 366:1251-1255. [PMID: 31806815 DOI: 10.1126/science.aaz0898] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/06/2019] [Indexed: 11/02/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are a subset of cells that participate in image-forming and non-image-forming visual responses. Although both functional and morphological subtypes of ipRGCs have been described in rodents, parallel functional subtypes have not been identified in primate or human retinas. In this study, we used a human organ donor preparation method to measure human ipRGCs' photoresponses. We discovered three functional ipRGC subtypes with distinct sensitivities and responses to light. The response of one ipRGC subtype appeared to depend on exogenous chromophore supply, and this response is conserved in both human and mouse retinas. Rods and cones also provided input to ipRGCs; however, each subtype integrated outer retina light signals in a distinct fashion.
Collapse
Affiliation(s)
- Ludovic S Mure
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, 65 Mario Capecchi Drive (S3140), Salt Lake City, UT 84132, USA
| | - Anne Hanneken
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Kusumoto J, Takeo M, Hashikawa K, Komori T, Tsuji T, Terashi H, Sakakibara S. OPN4 belongs to the photosensitive system of the human skin. Genes Cells 2020; 25:215-225. [DOI: 10.1111/gtc.12751] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Junya Kusumoto
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
- Department of Oral and Maxillofacial Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Makoto Takeo
- Laboratory for Organ Regeneration RIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Kazunobu Hashikawa
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Takahide Komori
- Department of Oral and Maxillofacial Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Takashi Tsuji
- Laboratory for Organ Regeneration RIKEN Center for Biosystems Dynamics Research Kobe Japan
| | - Hiroto Terashi
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
| | - Shunsuke Sakakibara
- Department of Plastic Surgery Kobe University Graduate School of Medicine Kobe Japan
| |
Collapse
|
31
|
Mure LS, Hatori M, Ruda K, Benegiamo G, Demas J, Panda S. Sustained Melanopsin Photoresponse Is Supported by Specific Roles of β-Arrestin 1 and 2 in Deactivation and Regeneration of Photopigment. Cell Rep 2019; 25:2497-2509.e4. [PMID: 30485815 PMCID: PMC6396282 DOI: 10.1016/j.celrep.2018.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/04/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are indispensable for non-image-forming visual responses that sustain under prolonged illumination. For sustained signaling of ipRGCs, the melanopsin photopigment must continuously regenerate. The underlying mechanism is unknown. We discovered that a cluster of Ser/Thr sites within the C-terminal region of mammalian melanopsin is phosphorylated after a light pulse. This forms a binding site for β-arrestin 1 (βARR1) and β-arrestin 2. β-arrestin 2 primarily regulates the deactivation of melanopsin; accordingly, βαrr2–/–mice exhibit prolonged ipRGC responses after cessation of a light pulse. β-arrestin 1 primes melanopsin for regeneration. Therefore, βαrr1–/– ipRGCs become desensitized after repeated or prolonged photostimulation. The lack of either β-arrestin atten-uates ipRGC response under prolonged illumination, suggesting that β-arrestin 2-mediated deactivation and β-arrestin 1-dependent regeneration of melanopsin function in sequence. In conclusion, we discovered a molecular mechanism by which β-arrestins regulate different aspects of melanopsin photoresponses and allow ipRGC-sustained responses under prolonged illumination. The mechanism by which melanopsin-expressing retinal ganglion cells (mRGCs) tonically respond to continuous illumination is unknown. Mure et al. show that phosphorylation-dependent binding of β-arrestin 1 and 2 coordinately deactivate and regenerate melanopsin photopigment to enable sustained firing of mRGCs in response to prolonged illumination.
Collapse
Affiliation(s)
- Ludovic S Mure
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Megumi Hatori
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Keio University School of Medicine, Tokyo, Japan
| | - Kiersten Ruda
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Giorgia Benegiamo
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - James Demas
- St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Satchidananda Panda
- Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
Yamakawa M, Tachibana A, Tatsumoto M, Okajima K, Ueda S, Hirata K. Hemodynamic responses related to intrinsically photosensitive retinal ganglion cells in migraine. Neurosci Res 2019; 160:57-64. [PMID: 31790724 DOI: 10.1016/j.neures.2019.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022]
Abstract
To clarify whether photoreception of intrinsically photosensitive retinal ganglion cells (ipRGCs) is related to migraine, we investigated the relationship between hemodynamic responses related to neural activity and visual stimulation of ipRGCs. It has been established that photoreception in ipRGCs is associated with photophobia in migraine. However, the relationship between visual stimulation of ipRGCs and hemodynamic responses in the visual cortex has not been clarified. Hemodynamic responses in the visual cortex were measured using functional near-infrared spectroscopy (fNIRS) as signals reflecting changes in oxygenated and deoxygenated hemoglobin concentrations. Different types of visual stimulation generated by a metamerism method were applied to the peripheral field of the eye of patients with migraine (N = 20) and healthy participants (N = 21). The stimulation intensity on the retina was controlled using an artificial pupil. In the primary visual cortex of patients with migraine, statistically significant changes in fNIRS signals dependent on visual stimulation intensity applied to ipRGCs were observed (p < 0.01), while no such changes were observed in healthy participants. These results reveal that visual stimulation of ipRGCs projecting to the primary visual cortex is involved in hemodynamic responses in patients with migraine, suggesting that ipRGCs, in addition to photometric values related to cones, are associated with migraine.
Collapse
Affiliation(s)
- Masahiko Yamakawa
- Graduate School of Environment and Information Sciences, Yokohama National University, Kanagawa, Japan.
| | - Atsumichi Tachibana
- Department of Histology & Neurobiology, Dokkyo Medical University, Tochigi, Japan
| | - Muneto Tatsumoto
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| | - Katsunori Okajima
- Faculty of Environment and Information Sciences, Yokohama National University, Kanagawa, Japan
| | - Shuichi Ueda
- Department of Histology & Neurobiology, Dokkyo Medical University, Tochigi, Japan
| | - Koichi Hirata
- Department of Neurology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
33
|
Abstract
OBJECTIVE To review clinical and pre-clinical evidence supporting the role of visual pathways, from the eye to the cortex, in the development of photophobia in headache disorders. BACKGROUND Photophobia is a poorly understood light-induced phenomenon that emerges in a variety of neurological and ophthalmological conditions. Over the years, multiple mechanisms have been proposed to explain its causes; however, scarce research and lack of systematic assessment of photophobia in patients has made the search for answers quite challenging. In the field of headaches, significant progress has been made recently on how specific visual networks contribute to photophobia features such as light-induced intensification of headache, increased perception of brightness and visual discomfort, which are frequently experienced by migraineurs. Such progress improved our understanding of the phenomenon and points to abnormal processing of light by both cone/rod-mediated image-forming and melanopsin-mediated non-image-forming visual pathways, and the consequential transfer of photic signals to multiple brain regions involved in sensory, autonomic and emotional regulation. CONCLUSION Photophobia phenotype is diverse, and the relative contribution of visual, trigeminal and autonomic systems may depend on the disease it emerges from. In migraine, photophobia could result from photic activation of retina-driven pathways involved in the regulation of homeostasis, making its association with headache more complex than previously thought.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Copenhagen
- Department of Ophthalmology, UCSF School of Medicine, San Francisco, CA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Do MTH. Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron 2019; 104:205-226. [PMID: 31647894 PMCID: PMC6944442 DOI: 10.1016/j.neuron.2019.07.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 12/19/2022]
Abstract
The mammalian visual system encodes information over a remarkable breadth of spatiotemporal scales and light intensities. This performance originates with its complement of photoreceptors: the classic rods and cones, as well as the intrinsically photosensitive retinal ganglion cells (ipRGCs). IpRGCs capture light with a G-protein-coupled receptor called melanopsin, depolarize like photoreceptors of invertebrates such as Drosophila, discharge electrical spikes, and innervate dozens of brain areas to influence physiology, behavior, perception, and mood. Several visual responses rely on melanopsin to be sustained and maximal. Some require ipRGCs to occur at all. IpRGCs fulfill their roles using mechanisms that include an unusual conformation of the melanopsin protein, an extraordinarily slow phototransduction cascade, divisions of labor even among cells of a morphological type, and unorthodox configurations of circuitry. The study of ipRGCs has yielded insight into general topics that include photoreceptor evolution, cellular diversity, and the steps from biophysical mechanisms to behavior.
Collapse
Affiliation(s)
- Michael Tri H Do
- F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Kronauer RE, Hilaire MA, Rahman SA, Czeisler CA, Klerman EB. An Exploration of the Temporal Dynamics of Circadian Resetting Responses to Short- and Long-Duration Light Exposures: Cross-Species Consistencies and Differences. J Biol Rhythms 2019; 34:497-514. [PMID: 31368391 PMCID: PMC7363039 DOI: 10.1177/0748730419862702] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Light is the most effective environmental stimulus for shifting the mammalian circadian pacemaker. Numerous studies have been conducted across multiple species to delineate wavelength, intensity, duration, and timing contributions to the response of the circadian pacemaker to light. Recent studies have revealed a surprising sensitivity of the human circadian pacemaker to short pulses of light. Such responses have challenged photon counting-based theories of the temporal dynamics of the mammalian circadian system to both short- and long-duration light stimuli. Here, we collate published light exposure data from multiple species, including gerbil, hamster, mouse, and human, to investigate these temporal dynamics and explore how the circadian system integrates light information at both short- and long-duration time scales to produce phase shifts. Based on our investigation of these data sets, we propose 3 new interpretations: (1) intensity and duration are independent factors of total phase shift magnitude, (2) the possibility of a linear/log temporal function of light duration that is universal for all intensities for durations less than approximately 12 min, and (3) a potential universal minimum light duration of ~0.7 sec that describes a "dead zone" of light stimulus. We show that these properties appear to be consistent across mammalian species. These interpretations, if confirmed by further experiments, have important practical implications in terms of understanding the underlying physiology and for the design of lighting regimens to reset the mammalian circadian pacemaker.
Collapse
Affiliation(s)
- Richard E. Kronauer
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Melissa A. Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Shadab A. Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Charles A. Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Elizabeth B. Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Wu Y, Cho HJ, Panyakaew P, Savant CS, Wu T, Dang N, Hallett M. Effect of light on blinking in patients with idiopathic isolated blepharospasm. Parkinsonism Relat Disord 2019; 67:66-71. [PMID: 31621610 DOI: 10.1016/j.parkreldis.2019.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/25/2019] [Accepted: 09/09/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Melanopsin may be involved in the pathophysiology of photophobia in idiopathic isolated blepharospasm. We assessed the efficacy of blocking wavelengths of melanopsin absorption to reduce blinking in blepharospasm as a possible surrogate for photophobia. METHODS Twenty-one participants (11 blepharospasm and 10 healthy controls) were studied. There were three sessions: (1) a baseline condition to measure the blink rate (BR) without intervention; (2) two conditions where the participants received intermittent light stimuli with high or low intensity without wearing study lenses; (3) four conditions in which the participants received intermittent light stimuli with high intensity while wearing one of four different lenses: tinted lenses with neutral gray or FL-41, or coated lenses that block 480-nm or 590-nm wavelength. The primary outcome measure was the BR. RESULTS The blepharospasm group blinked more frequently than controls in dim room conditions. Patients reported greater photosensitivity compared to controls based on the questionnaire and exhibited a higher BR with intermittent light stimuli. The BR decreased for both groups when using 480-nm and 590-nm blocking lenses. In the patients, 480-nm and 590-nm blocking lenses reduced the mean BR by 9.6 blink/min and 10.3 blink/min, respectively, while in the control group, the mean BR decreased by 4.4 blink/min and 4.3 blink/min, respectively. CONCLUSIONS Blepharospasm patients had increased BR with light stimuli which decreased with 590-nm and 480-nm blocking lenses. The 480-nm- and 590-nm- coated lenses might have therapeutic potential in treating photophobia although BR does not appear to be an optimal biomarker for photophobia.
Collapse
Affiliation(s)
- Yiwen Wu
- Department of Neurology & Institute of Neurology, RuiJin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Laboratory of Neurodegenerative Diseases & Key Laboratory of Stem Cell Biology, Institute of Health Science, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine, Shanghai, China; Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Hyun Joo Cho
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Pattamon Panyakaew
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Medicine, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok, Thailand.
| | - Charulata Sankhla Savant
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; PD Hinduja National Hospital,V Savakar Marg, Mahim. Mumbai,India.
| | - Tianxia Wu
- Clinical Trials Unit, Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Nguyet Dang
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Fernandez F. Circadian Responses to Fragmented Light: Research Synopsis in Humans. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:337-348. [PMID: 31249494 PMCID: PMC6585514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Light is the chief signal used by the human circadian pacemaker to maintain precise biological timekeeping. Though it has been historically assumed that light resets the pacemaker's rhythm in a dose-dependent fashion, a number of studies report enhanced circadian photosensitivity to the initial moments of light exposure, such that there are quickly diminishing returns on phase-shifting the longer the light is shown. In the current review, we summarize findings from a family of experiments conducted over two decades in the research wing of the Brigham and Women's Hospital that examined the human pacemaker's responses to standardized changes in light patterns generated from an overhead fluorescent ballast. Across several hundred days of laboratory recording, the research group observed phase-shifts in the body temperature and melatonin rhythms that scaled with illuminance. However, as suspected, phase resetting was optimized when exposure occurred as a series of minute-long episodes separated by periods of intervening darkness. These observations set the stage for a more recent program of study at Stanford University that evaluated whether the human pacemaker was capable of integrating fragmented bursts of light in much the same way it perceived steady luminance. The results here suggest that ultra-short durations of light-lasting just 1-2 seconds in total-can elicit pacemaker responses rivaling those created by continuous hour-long stimulation if those few seconds of light are evenly distributed across the hour as discreet 2-millisecond pulses. We conclude our review with a brief discussion of these findings and their potential application in future phototherapy techniques.
Collapse
Affiliation(s)
- Fabian Fernandez
- To whom all correspondence should be addressed: Fabian Fernandez, PhD, Department of Psychology, 1501 N. Campbell Avenue Life Sciences North, Room 349, Tucson, Arizona, 85724;
| |
Collapse
|
38
|
Chougule PS, Najjar RP, Finkelstein MT, Kandiah N, Milea D. Light-Induced Pupillary Responses in Alzheimer's Disease. Front Neurol 2019; 10:360. [PMID: 31031692 PMCID: PMC6473037 DOI: 10.3389/fneur.2019.00360] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/25/2019] [Indexed: 12/25/2022] Open
Abstract
The impact of Alzheimer's disease (AD) on the pupillary light response (PLR) is controversial, being dependent on the stage of the disease and on the experimental pupillometric protocols. The main hypothesis driving pupillometry research in AD is based on the concept that the AD-related neurodegeneration affects both the parasympathetic and the sympathetic arms of the PLR (cholinergic and noradrenergic theory), combined with additional alterations of the afferent limb, involving the melanopsin expressing retinal ganglion cells (mRGCs), subserving the PLR. Only a few studies have evaluated the value of pupillometry as a potential biomarker in AD, providing various results compatible with parasympathetic dysfunction, displaying increased latency of pupillary constriction to light, decreased constriction amplitude, faster redilation after light offset, decreased maximum velocity of constriction (MCV) and maximum constriction acceleration (MCA) compared to controls. Decreased MCV and MCA appeared to be the most accurate of all PLR parameters allowing differentiation between AD and healthy controls while increased post-illumination pupillary response was the most consistent feature, however, these results could not be replicated by more recent studies, focusing on early and pre-clinical stages of the disease. Whether static or dynamic pupillometry yields useful biomarkers for AD screening or diagnosis remains unclear. In this review, we synopsize the current knowledge on pupillometric features in AD and other neurodegenerative diseases, and discuss potential roles of pupillometry in AD detection, diagnosis and monitoring, alone or in combination with additional biomarkers.
Collapse
Affiliation(s)
- Pratik S Chougule
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore
| | - Raymond P Najjar
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Maxwell T Finkelstein
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore
| | - Nagaendran Kandiah
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.,Duke-National University of Singapore (NUS), Singapore, Singapore
| | - Dan Milea
- Department of Visual Neurosciences, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology & Visual Sciences ACP, Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore
| |
Collapse
|
39
|
Abstract
Light, through its non-imaging forming effects, plays a dominant role on a myriad of physiological functions, including the human sleep–wake cycle. The non-image forming effects of light heavily rely on specific properties such as intensity, duration, timing, pattern, and wavelengths. Here, we address how specific properties of light influence sleep and wakefulness in humans through acute effects, e.g., on alertness, and/or effects on the circadian timing system. Of critical relevance, we discuss how different characteristics of light exposure across the 24-h day can lead to changes in sleep–wake timing, sleep propensity, sleep architecture, and sleep and wake electroencephalogram (EEG) power spectra. Ultimately, knowledge on how light affects sleep and wakefulness can improve light settings at home and at the workplace to improve health and well-being and optimize treatments of chronobiological disorders.
Collapse
|
40
|
Prayag AS, Jost S, Avouac P, Dumortier D, Gronfier C. Dynamics of Non-visual Responses in Humans: As Fast as Lightning? Front Neurosci 2019; 13:126. [PMID: 30890907 PMCID: PMC6411922 DOI: 10.3389/fnins.2019.00126] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
The eye drives non-visual (NV) responses to light, including circadian resetting, pupillary reflex and alerting effects. Initially thought to depend on melanopsin-expressing retinal ganglion cells (ipRGCs), classical photopigments play a modulatory role in some of these responses. As most studies have investigated only a limited number of NV functions, generally under conditions of relatively high light levels and long duration of exposure, whether NV functions share similar irradiance sensitivities and response dynamics during light exposure is unknown. We addressed this issue using light exposure paradigms spectrally and spatially tuned to target mainly cones or ipRGCs, and by measuring longitudinally (50 min) several NV responses in 28 men. We demonstrate that the response dynamics of NV functions are faster than previously thought. We find that the brain, the heart, and thermoregulation are activated within 1 to 5 min of light exposure. Further, we show that NV functions do not share the same response sensitivities. While the half-maximum response is only ∼48 s for the tonic pupil diameter, it is ∼12 min for EEG gamma activity. Most NV responses seem to be saturated by low light levels, as low as 90 melanopic lux. Our results also reveal that it is possible to maintain optimal visual performance while modulating NV responses. Our findings have real-life implications. On one hand, light therapy paradigms should be re-evaluated with lower intensities and shorter durations, with the potential of improving patients' compliance. On the other hand, the significant impact of low intensity and short duration light exposures on NV physiology should make us reconsider the potential health consequences of light exposure before bedtime, in particular on sleep and circadian physiology.
Collapse
Affiliation(s)
- Abhishek S Prayag
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Sophie Jost
- ENTPE, LGCB, Université de Lyon, Lyon, France
| | | | | | - Claude Gronfier
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
41
|
Daguet I, Bouhassira D, Gronfier C. Baseline Pupil Diameter Is Not a Reliable Biomarker of Subjective Sleepiness. Front Neurol 2019; 10:108. [PMID: 30858817 PMCID: PMC6398346 DOI: 10.3389/fneur.2019.00108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/28/2019] [Indexed: 12/14/2022] Open
Abstract
Sleepiness is commonly seen as reflecting the basic physiological need to sleep and is associated with physiological and neurobiological changes. Subjective evaluations of sleepiness, however, are neither representative of cognitive and physical performances, nor of physiological sleepiness. Finding a simple, rapid, and objective marker of sleepiness is essential in order to prevent errors and accidents, but this has remained largely unsuccessful. The aim of this study was to determine whether the baseline pupil diameter is a physiological biomarker of sleepiness at all times of day and to isolate the regulatory components involved. Twelve healthy men (20-29 years old) participated in a 56-h experimental protocol, including a 34-h constant routine paradigm with enforced wakefulness. This protocol was used in order to eliminate the potential influence of all environmental rhythms and reveal the endogenous circadian rhythmicity of two physiological measures: sleepiness and pupil diameter. Sleepiness was assessed subjectively every hour on a computerized 10 cm visual analog scale and pupil size was recorded every 2 h with a hand-held video-pupilometer. Our results revealed that subjective sleepiness increased linearly with time awake and displayed a circadian rhythm. Baseline pupil diameter showed a linear decrease with time spent awake as well as a circadian 24-h rhythm. This is the first evidence of a circadian variation of the baseline pupil size in a highly-controlled constant routine paradigm conducted in very dim light conditions. An overall negative correlation between the size of the pupil and the subjective level of sleepiness was observed. Analyzing the contribution of the two sleep regulation components in this correlation, we further showed: (1) a negative correlation between the homeostatic sleep pressure components, (2) a negative correlation between the circadian drives only during half of the 24 hours, corresponding to 62% of the biological day and 25% of the biological night. These results highlight that, due to the dual regulation of sleepiness by the homeostatic and circadian processes, baseline pupil diameter is an index of sleepiness only at certain times and therefore cannot be used as a systematic and reliable biomarker of sleepiness.
Collapse
Affiliation(s)
- Inès Daguet
- Lyon Neuroscience Research Center, Waking Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Didier Bouhassira
- INSERM U987, Centre d'Evaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center, Waking Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
42
|
Rukmini AV, Milea D, Gooley JJ. Chromatic Pupillometry Methods for Assessing Photoreceptor Health in Retinal and Optic Nerve Diseases. Front Neurol 2019; 10:76. [PMID: 30809186 PMCID: PMC6379484 DOI: 10.3389/fneur.2019.00076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
The pupillary light reflex is mediated by melanopsin-containing intrinsically-photosensitive retinal ganglion cells (ipRGCs), which also receive input from rods and cones. Melanopsin-dependent pupillary light responses are short-wavelength sensitive, have a higher threshold of activation, and are much slower to activate and de-activate compared with rod/cone-mediated responses. Given that rod/cone photoreceptors and melanopsin differ in their response properties, light stimuli can be designed to stimulate preferentially each of the different photoreceptor types, providing a read-out of their function. This has given rise to chromatic pupillometry methods that aim to assess the health of outer retinal photoreceptors and ipRGCs by measuring pupillary responses to blue or red light stimuli. Here, we review different types of chromatic pupillometry protocols that have been tested in patients with retinal or optic nerve disease, including approaches that use short-duration light exposures or continuous exposure to light. Across different protocols, patients with outer retinal disease (e.g., retinitis pigmentosa or Leber congenital amaurosis) show reduced or absent pupillary responses to dim blue-light stimuli used to assess rod function, and reduced responses to moderately-bright red-light stimuli used to assess cone function. By comparison, patients with optic nerve disease (e.g., glaucoma or ischemic optic neuropathy, but not mitochondrial disease) show impaired pupillary responses during continuous exposure to bright blue-light stimuli, and a reduced post-illumination pupillary response after light offset, used to assess melanopsin function. These proof-of-concept studies demonstrate that chromatic pupillometry methods can be used to assess damage to rod/cone photoreceptors and ipRGCs. In future studies, it will be important to determine whether chromatic pupillometry methods can be used for screening and early detection of retinal and optic nerve diseases. Such methods may also prove useful for objectively evaluating the degree of recovery to ipRGC function in blind patients who undergo gene therapy or other treatments to restore vision.
Collapse
Affiliation(s)
- A V Rukmini
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| | - Dan Milea
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore.,The Ophthalmology and Visual Sciences Academic Clinical Programme (EYE-ACP), SingHealth and Duke-NUS, Singapore, Singapore
| | - Joshua J Gooley
- Programme in Neuroscience and Behavioural Disorders, Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
43
|
Bonmati-Carrion MA, Hild K, Isherwood CM, Sweeney SJ, Revell VL, Madrid JA, Rol MA, Skene DJ. Effect of Single and Combined Monochromatic Light on the Human Pupillary Light Response. Front Neurol 2018; 9:1019. [PMID: 30555403 PMCID: PMC6282540 DOI: 10.3389/fneur.2018.01019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
The pupillary light reflex (PLR) is a neurological reflex driven by rods, cones, and melanopsin-containing retinal ganglion cells. Our aim was to achieve a more precise picture of the effects of 5-min duration monochromatic light stimuli, alone or in combination, on the human PLR, to determine its spectral sensitivity and to assess the importance of photon flux. Using pupillometry, the PLR was assessed in 13 participants (6 women) aged 27.2 ± 5.41 years (mean ± SD) during 5-min light stimuli of purple (437 nm), blue (479 nm), red (627 nm), and combinations of red+purple or red+blue light. In addition, nine 5-min, photon-matched light stimuli, ranging in 10 nm increments peaking between 420 and 500 nm were tested in 15 participants (8 women) aged 25.7 ± 8.90 years. Maximum pupil constriction, time to achieve this, constriction velocity, area under the curve (AUC) at short (0-60 s), and longer duration (240-300 s) light exposures, and 6-s post-illumination pupillary response (6-s PIPR) were assessed. Photoreceptor activation was estimated by mathematical modeling. The velocity of constriction was significantly faster with blue monochromatic light than with red or purple light. Within the blue light spectrum (between 420 and 500 nm), the velocity of constriction was significantly faster with the 480 nm light stimulus, while the slowest pupil constriction was observed with 430 nm light. Maximum pupil constriction was achieved with 470 nm light, and the greatest AUC0-60 and AUC240-300 was observed with 490 and 460 nm light, respectively. The 6-s PIPR was maximum after 490 nm light stimulus. Both the transient (AUC0-60) and sustained (AUC240-300) response was significantly correlated with melanopic activation. Higher photon fluxes for both purple and blue light produced greater amplitude sustained pupillary constriction. The findings confirm human PLR dependence on wavelength, monochromatic or bichromatic light and photon flux under 5-min duration light stimuli. Since the most rapid and high amplitude PLR occurred within the 460-490 nm light range (alone or combined), our results suggest that color discrimination should be studied under total or partial substitution of this blue light range (460-490 nm) by shorter wavelengths (~440 nm). Thus for nocturnal lighting, replacement of blue light with purple light might be a plausible solution to preserve color discrimination while minimizing melanopic activation.
Collapse
Affiliation(s)
- Maria A Bonmati-Carrion
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Konstanze Hild
- Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Cheryl M Isherwood
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Stephen J Sweeney
- Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, United Kingdom
| | - Victoria L Revell
- Surrey Clinical Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Juan A Madrid
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Maria A Rol
- Chronobiology Laboratory, Department of Physiology, IMIB-Arrixaca, University of Murcia, Murcia, Spain.,Ciber Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
44
|
Spitschan M, Woelders T. The Method of Silent Substitution for Examining Melanopsin Contributions to Pupil Control. Front Neurol 2018; 9:941. [PMID: 30538662 PMCID: PMC6277556 DOI: 10.3389/fneur.2018.00941] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/17/2018] [Indexed: 01/23/2023] Open
Abstract
The human pupillary light response is driven by all classes of photoreceptors in the human eye-the three classes of cones, the rods, and the intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. These photoreceptor classes have distinct but overlapping spectral tuning, and even a monochromatic light with a wavelength matched to the peak spectral sensitivity of a given photoreceptor will stimulate all photoreceptors. The method of silent substitution uses pairs of lights ("metamers") to selectively stimulate a given class of photoreceptors while keeping the activation of all others constant. In this primer, we describe the method of silent substitution and provide an overview of studies that have used it to examine inputs to the human pupillary light response.
Collapse
Affiliation(s)
- Manuel Spitschan
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Tom Woelders
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
45
|
Leger D, Duforez F, Gronfier C. [Treating circadian sleep-wake disorders by light]. Presse Med 2018; 47:1003-1009. [PMID: 30413331 DOI: 10.1016/j.lpm.2018.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 11/16/2022] Open
Abstract
Phototherapy is one treatment of circadian sleep-wake disorders, which is based on consensual and numerous scientific and clinical evidences. Phototherapy efficiency depends on several light characteristics based on intensity, length of exposure, time of exposure and wavelength. Phototherapy is potentially indicated in the following circadian disorders: advanced sleep-wake phase disorder (ASWPD), delayed sleep-wake phase disorder (DSWPD), non-24-hour sleep-wake rhythm disorder (N24SWD), jet-lag and night-shift work sleep-wake disorders (NSSWD). Phototherapy, acting via the retina, may be avoided in patients with retina disorders, an ophthalmologist should be consulted.
Collapse
Affiliation(s)
- Damien Leger
- AP-HP, HUPC, Hôtel-Dieu de Paris, université Paris Descartes, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM, 1, place du Parvis Jean-Paul-II, 75004 Paris, France.
| | - François Duforez
- AP-HP, HUPC, Hôtel-Dieu de Paris, université Paris Descartes, Centre du Sommeil et de la Vigilance, EA 7330 VIFASOM, 1, place du Parvis Jean-Paul-II, 75004 Paris, France; European Sleep Center, 9, avenue d'Eylau, 75116 Paris, France
| | - Claude Gronfier
- Université Claude-Bernard Lyon 1, université de Lyon, centre de recherche en neurosciences de Lyon (CRNL), équipe Waking, Inserm UMRS 1028, CNRS UMR 5292, 69000 Lyon, France
| | | |
Collapse
|
46
|
|
47
|
Rodgers J, Peirson SN, Hughes S, Hankins MW. Functional characterisation of naturally occurring mutations in human melanopsin. Cell Mol Life Sci 2018; 75:3609-3624. [PMID: 29700553 PMCID: PMC6133154 DOI: 10.1007/s00018-018-2813-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Melanopsin is a blue light-sensitive opsin photopigment involved in a range of non-image forming behaviours, including circadian photoentrainment and the pupil light response. Many naturally occurring genetic variants exist within the human melanopsin gene (OPN4), yet it remains unclear how these variants affect melanopsin protein function and downstream physiological responses to light. Here, we have used bioinformatic analysis and in vitro expression systems to determine the functional phenotypes of missense human OPN4 variants. From 1242 human OPN4 variants collated in the NCBI Short Genetic Variation database (dbSNP), we identified 96 that lead to non-synonymous amino acid substitutions. These 96 missense mutations were screened using sequence alignment and comparative approaches to select 16 potentially deleterious variants for functional characterisation using calcium imaging of melanopsin-driven light responses in HEK293T cells. We identify several previously uncharacterised OPN4 mutations with altered functional properties, including attenuated or abolished light responses, as well as variants demonstrating abnormal response kinetics. These data provide valuable insight into the structure-function relationships of human melanopsin, including several key functional residues of the melanopsin protein. The identification of melanopsin variants with significantly altered function may serve to detect individuals with disrupted melanopsin-based light perception, and potentially highlight those at increased risk of sleep disturbance, circadian dysfunction, and visual abnormalities.
Collapse
Affiliation(s)
- Jessica Rodgers
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, University of Oxford, OMPI G, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
48
|
Joyce DS, Feigl B, Kerr G, Roeder L, Zele AJ. Melanopsin-mediated pupil function is impaired in Parkinson's disease. Sci Rep 2018; 8:7796. [PMID: 29773814 PMCID: PMC5958070 DOI: 10.1038/s41598-018-26078-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/30/2018] [Indexed: 01/16/2023] Open
Abstract
Parkinson's disease (PD) is characterised by non-motor symptoms including sleep and circadian disruption. Melanopsin-expressing intrinsically photosensitive Retinal Ganglion Cells (ipRGC) transmit light signals to brain areas controlling circadian rhythms and the pupil light reflex. To determine if non-motor symptoms observed in PD are linked to ipRGC dysfunction, we evaluated melanopsin and rod/cone contributions to the pupil response in medicated participants with PD (n = 17) and controls (n = 12). Autonomic tone was evaluated by measuring pupillary unrest in darkness. In the PD group, there is evidence for an attenuated post-illumination pupil response (PIPR) amplitude and reduced pupil constriction amplitude, and PIPR amplitudes did not correlate with measures of sleep quality, retinal nerve fibre layer thickness, disease severity, or medication dosage. Both groups exhibited similar pupillary unrest. We show that melanopsin- and the rod/cone-photoreceptor contributions to the pupil control pathway are impaired in people with early-stage PD who have no clinically observable ophthalmic abnormalities. Given that ipRGCs project to brain targets involved in arousal, sleep and circadian rhythms, ipRGC dysfunction may underpin some of the non-motor symptoms observed in PD.
Collapse
Affiliation(s)
- Daniel S Joyce
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- Visual Science Laboratory, School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, USA
| | - Beatrix Feigl
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- Medical Retina Laboratory, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
- Queensland Eye Institute, Brisbane, Australia
| | - Graham Kerr
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- Movement Neuroscience Program, Queensland University of Technology (QUT), Brisbane, Australia
| | - Luisa Roeder
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- Movement Neuroscience Program, Queensland University of Technology (QUT), Brisbane, Australia
| | - Andrew J Zele
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
- Visual Science Laboratory, School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, Australia.
| |
Collapse
|
49
|
Seasonal Variation in Bright Daylight Exposure, Mood and Behavior among a Group of Office Workers in Sweden. J Circadian Rhythms 2018; 16:2. [PMID: 30210562 PMCID: PMC5853818 DOI: 10.5334/jcr.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of the study was to investigate seasonal variation in mood and behavior among a group of office workers in Sweden (56°N). Thirty subjects participated in this longitudinal study. The subjects kept a weekly log that included questionnaires for ratings of psychological wellbeing and daily sleep-activity diaries where they also noted time spent outdoors. The lighting conditions in the offices were subjectively evaluated during one day, five times over the year. There was a seasonal variation in positive affect and in sleep-activity behavior. Across the year, there was a large variation in the total time spent outdoors in daylight. The subjects reported seasonal variation concerning the pleasantness, variation and strength of the light in the offices and regarding the visibility in the rooms. Finally, the subjects spent most of their time indoors, relying on artificial lighting, which demonstrates the importance of the lighting quality in indoor environments.
Collapse
|
50
|
Lee S, Uchiyama Y, Shimomura Y, Katsuura T. Subadditive responses to extremely short blue and green pulsed light on visual evoked potentials, pupillary constriction and electroretinograms. J Physiol Anthropol 2017; 36:39. [PMID: 29149913 PMCID: PMC5693602 DOI: 10.1186/s40101-017-0156-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023] Open
Abstract
Background The simultaneous exposure to blue and green light was reported to result in less melatonin suppression than monochromatic exposure to blue or green light. Here, we conducted an experiment using extremely short blue- and green-pulsed light to examine their visual and nonvisual effects on visual evoked potentials (VEPs), pupillary constriction, electroretinograms (ERGs), and subjective evaluations. Methods Twelve adult male subjects were exposed to three light conditions: blue-pulsed light (2.5-ms pulse width), green-pulsed light (2.5-ms pulse width), and simultaneous blue- and green-pulsed light with white background light. We measured the subject’s pupil diameter three times in each condition. Then, after 10 min of rest, the subject was exposed to the same three light conditions. We measured the averaged ERG and VEP during 210 pulsed-light exposures in each condition. We also determined subjective evaluations using a visual analog scale (VAS) method. Results The pupillary constriction during the simultaneous exposure to blue- and green-pulsed light was significantly lower than that during the blue-pulsed light exposure despite the double irradiance intensity of the combination. We also found that the b/|a| wave of the ERGs during the simultaneous exposure to blue- and green-pulsed light was lower than that during the blue-pulsed light exposure. We confirmed the subadditive response to pulsed light on pupillary constriction and ERG. However, the P100 of the VEPs during the blue-pulsed light were smaller than those during the simultaneous blue- and green-pulsed light and green-pulsed light, indicating that the P100 amplitude might depend on the luminance of light. Conclusions Our findings demonstrated the effect of the subadditive response to extremely short pulsed light on pupillary constriction and ERG responses. The effects on ipRGCs by the blue-pulsed light exposure are apparently reduced by the simultaneous irradiation of green light. The blue versus yellow (b/y) bipolar cells in the retina might be responsible for this phenomenon.
Collapse
Affiliation(s)
- Soomin Lee
- Center for Environment, Health and Sciences, Chiba University, 6-2-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan.
| | - Yuria Uchiyama
- Graduate School of Engineering, Chiba University, Chiba, Japan
| | | | - Tetsuo Katsuura
- Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|