1
|
Di Nardo M, Musio A. Cohesin - bridging the gap among gene transcription, genome stability, and human diseases. FEBS Lett 2025; 599:190-208. [PMID: 38852996 DOI: 10.1002/1873-3468.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
2
|
Strasser AS, Gonzalez-Reiche AS, Zhou X, Valdebenito-Maturana B, Ye X, Zhang B, Wu M, van Bakel H, Jabs EW. Limb reduction in an Esco2 cohesinopathy mouse model is mediated by p53-dependent apoptosis and vascular disruption. Nat Commun 2024; 15:7154. [PMID: 39168984 PMCID: PMC11339411 DOI: 10.1038/s41467-024-51328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Roberts syndrome (RBS) is an autosomal recessive disorder with profound growth deficiency and limb reduction caused by ESCO2 loss-of-function variants. Here, we elucidate the pathogenesis of limb reduction in an Esco2fl/fl;Prrx1-CreTg/0 mouse model using bulk- and single-cell-RNA-seq and gene co-expression network analyses during embryogenesis. Our results reveal morphological and vascular defects culminating in hemorrhage of mutant limbs at E12.5. Underlying this abnormal developmental progression is a pre-apoptotic, mesenchymal cell population specific to mutant limb buds enriched for p53-related signaling beginning at E9.5. We then characterize these p53-related processes of cell cycle arrest, DNA damage, cell death, and the inflammatory leukotriene signaling pathway in vivo. In utero treatment with pifithrin-α, a p53 inhibitor, rescued the hemorrhage in mutant limbs. Lastly, significant enrichments were identified among genes associated with RBS, thalidomide embryopathy, and other genetic limb reduction disorders, suggesting a common vascular etiology among these conditions.
Collapse
Affiliation(s)
- Arielle S Strasser
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Ana Silvia Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Braulio Valdebenito-Maturana
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Xiaoqian Ye
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA
| | - Meng Wu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| | - Ethylin Wang Jabs
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Clinical Genomics, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street, Rochester, MN, USA.
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, USA.
| |
Collapse
|
3
|
Pati D. Role of chromosomal cohesion and separation in aneuploidy and tumorigenesis. Cell Mol Life Sci 2024; 81:100. [PMID: 38388697 PMCID: PMC10884101 DOI: 10.1007/s00018-024-05122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
Cell division is a crucial process, and one of its essential steps involves copying the genetic material, which is organized into structures called chromosomes. Before a cell can divide into two, it needs to ensure that each newly copied chromosome is paired tightly with its identical twin. This pairing is maintained by a protein complex known as cohesin, which is conserved in various organisms, from single-celled ones to humans. Cohesin essentially encircles the DNA, creating a ring-like structure to handcuff, to keep the newly synthesized sister chromosomes together in pairs. Therefore, chromosomal cohesion and separation are fundamental processes governing the attachment and segregation of sister chromatids during cell division. Metaphase-to-anaphase transition requires dissolution of cohesins by the enzyme Separase. The tight regulation of these processes is vital for safeguarding genomic stability. Dysregulation in chromosomal cohesion and separation resulting in aneuploidy, a condition characterized by an abnormal chromosome count in a cell, is strongly associated with cancer. Aneuploidy is a recurring hallmark in many cancer types, and abnormalities in chromosomal cohesion and separation have been identified as significant contributors to various cancers, such as acute myeloid leukemia, myelodysplastic syndrome, colorectal, bladder, and other solid cancers. Mutations within the cohesin complex have been associated with these cancers, as they interfere with chromosomal segregation, genome organization, and gene expression, promoting aneuploidy and contributing to the initiation of malignancy. In summary, chromosomal cohesion and separation processes play a pivotal role in preserving genomic stability, and aberrations in these mechanisms can lead to aneuploidy and cancer. Gaining a deeper understanding of the molecular intricacies of chromosomal cohesion and separation offers promising prospects for the development of innovative therapeutic approaches in the battle against cancer.
Collapse
Affiliation(s)
- Debananda Pati
- Texas Children's Cancer Center, Department of Pediatrics Hematology/Oncology, Molecular and Cellular Biology, Baylor College of Medicine, 1102 Bates Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Mfarej MG, Hyland CA, Sanchez AC, Falk MM, Iovine MK, Skibbens RV. Cohesin: an emerging master regulator at the heart of cardiac development. Mol Biol Cell 2023; 34:rs2. [PMID: 36947206 PMCID: PMC10162415 DOI: 10.1091/mbc.e22-12-0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cohesins are ATPase complexes that play central roles in cellular processes such as chromosome division, DNA repair, and gene expression. Cohesinopathies arise from mutations in cohesin proteins or cohesin complex regulators and encompass a family of related developmental disorders that present with a range of severe birth defects, affect many different physiological systems, and often lead to embryonic fatality. Treatments for cohesinopathies are limited, in large part due to the lack of understanding of cohesin biology. Thus, characterizing the signaling networks that lie upstream and downstream of cohesin-dependent pathways remains clinically relevant. Here, we highlight alterations in cohesins and cohesin regulators that result in cohesinopathies, with a focus on cardiac defects. In addition, we suggest a novel and more unifying view regarding the mechanisms through which cohesinopathy-based heart defects may arise.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Caitlin A. Hyland
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Annie C. Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Matthias M. Falk
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
5
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
6
|
Jevitt AM, Rankin BD, Chen J, Rankin S. The cohesin modifier ESCO2 is stable during DNA replication. Chromosome Res 2023; 31:6. [PMID: 36708487 PMCID: PMC9884251 DOI: 10.1007/s10577-023-09711-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/01/2022] [Accepted: 12/13/2022] [Indexed: 01/29/2023]
Abstract
Cohesion between sister chromatids by the cohesin protein complex ensures accurate chromosome segregation and enables recombinational DNA repair. Sister chromatid cohesion is promoted by acetylation of the SMC3 subunit of cohesin by the ESCO2 acetyltransferase, inhibiting cohesin release from chromatin. The interaction of ESCO2 with the DNA replication machinery, in part through PCNA-interacting protein (PIP) motifs in ESCO2, is required for full cohesion establishment. Recent reports have suggested that Cul4-dependent degradation regulates the level of ESCO2 protein following replication. To follow up on these observations, we have characterized ESCO2 stability in Xenopus egg extracts, a cell-free system that recapitulates cohesion establishment in vitro. We found that ESCO2 was stable during DNA replication in this system. Indeed, further challenging the system by inducing DNA damage signaling or increasing the number of nuclei undergoing DNA replication had no significant impact on the stability of ESCO2. In transgenic somatic cell lines, we also did not see evidence of GFP-ESCO2 degradation during S phase of the cell cycle using both flow cytometry and live-cell imaging. We conclude that ESCO2 is stable during DNA replication in both embryonic and somatic cells.
Collapse
Affiliation(s)
- Allison M Jevitt
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Brooke D Rankin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jingrong Chen
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Susannah Rankin
- Cell Cycle and Cancer Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
7
|
Mfarej MG, Skibbens RV. Genetically induced redox stress occurs in a yeast model for Roberts syndrome. G3 (BETHESDA, MD.) 2022; 12:jkab426. [PMID: 34897432 PMCID: PMC9210317 DOI: 10.1093/g3journal/jkab426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 12/31/2022]
Abstract
Roberts syndrome (RBS) is a multispectrum developmental disorder characterized by severe limb, craniofacial, and organ abnormalities and often intellectual disabilities. The genetic basis of RBS is rooted in loss-of-function mutations in the essential N-acetyltransferase ESCO2 which is conserved from yeast (Eco1/Ctf7) to humans. ESCO2/Eco1 regulate many cellular processes that impact chromatin structure, chromosome transmission, gene expression, and repair of the genome. The etiology of RBS remains contentious with current models that include transcriptional dysregulation or mitotic failure. Here, we report evidence that supports an emerging model rooted in defective DNA damage responses. First, the results reveal that redox stress is elevated in both eco1 and cohesion factor Saccharomyces cerevisiae mutant cells. Second, we provide evidence that Eco1 and cohesion factors are required for the repair of oxidative DNA damage such that ECO1 and cohesin gene mutations result in reduced cell viability and hyperactivation of DNA damage checkpoints that occur in response to oxidative stress. Moreover, we show that mutation of ECO1 is solely sufficient to induce endogenous redox stress and sensitizes mutant cells to exogenous genotoxic challenges. Remarkably, antioxidant treatment desensitizes eco1 mutant cells to a range of DNA damaging agents, raising the possibility that modulating the cellular redox state may represent an important avenue of treatment for RBS and tumors that bear ESCO2 mutations.
Collapse
Affiliation(s)
- Michael G Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
8
|
Antony J, Chin CV, Horsfield JA. Cohesin Mutations in Cancer: Emerging Therapeutic Targets. Int J Mol Sci 2021; 22:6788. [PMID: 34202641 PMCID: PMC8269296 DOI: 10.3390/ijms22136788] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
The cohesin complex is crucial for mediating sister chromatid cohesion and for hierarchal three-dimensional organization of the genome. Mutations in cohesin genes are present in a range of cancers. Extensive research over the last few years has shown that cohesin mutations are key events that contribute to neoplastic transformation. Cohesin is involved in a range of cellular processes; therefore, the impact of cohesin mutations in cancer is complex and can be cell context dependent. Candidate targets with therapeutic potential in cohesin mutant cells are emerging from functional studies. Here, we review emerging targets and pharmacological agents that have therapeutic potential in cohesin mutant cells.
Collapse
Affiliation(s)
- Jisha Antony
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Chue Vin Chin
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
| | - Julia A. Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
9
|
Mfarej MG, Skibbens RV. DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae. PLoS One 2020; 15:e0242968. [PMID: 33373396 PMCID: PMC7771704 DOI: 10.1371/journal.pone.0242968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast Eco1 (ESCO2 in humans) acetyltransferase converts chromatin-bound cohesins to a DNA tethering state, thereby establishing sister chromatid cohesion. Eco1 establishes cohesion during DNA replication, after which Eco1 is targeted for degradation by SCF E3 ubiquitin ligase. SCF E3 ligase, and sequential phosphorylations that promote Eco1 ubiquitination and degradation, remain active throughout the M phase. In this way, Eco1 protein levels are high during S phase, but remain low throughout the remaining cell cycle. In response to DNA damage during M phase, however, Eco1 activity increases-providing for a new wave of cohesion establishment (termed Damage-Induced Cohesion, or DIC) which is critical for efficient DNA repair. To date, little evidence exists as to the mechanism through which Eco1 activity increases during M phase in response to DNA damage. Possibilities include that either the kinases or E3 ligase, that target Eco1 for degradation, are inhibited in response to DNA damage. Our results reveal instead that the degradation machinery remains fully active during M phase, despite the presence of DNA damage. In testing alternate models through which Eco1 activity increases in response to DNA damage, the results reveal that DNA damage induces new transcription of ECO1 and at a rate that exceeds the rate of Eco1 turnover, providing for rapid accumulation of Eco1 protein. We further show that DNA damage induction of ECO1 transcription is in part regulated by Yap5-a stress-induced transcription factor. Given the role for mutated ESCO2 (homolog of ECO1) in human birth defects, this study highlights the complex nature through which mutation of ESCO2, and defects in ESCO2 regulation, may promote developmental abnormalities and contribute to various diseases including cancer.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
10
|
Chin CV, Antony J, Ketharnathan S, Labudina A, Gimenez G, Parsons KM, He J, George AJ, Pallotta MM, Musio A, Braithwaite A, Guilford P, Hannan RD, Horsfield JA. Cohesin mutations are synthetic lethal with stimulation of WNT signaling. eLife 2020; 9:e61405. [PMID: 33284104 PMCID: PMC7746233 DOI: 10.7554/elife.61405] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Mutations in genes encoding subunits of the cohesin complex are common in several cancers, but may also expose druggable vulnerabilities. We generated isogenic MCF10A cell lines with deletion mutations of genes encoding cohesin subunits SMC3, RAD21, and STAG2 and screened for synthetic lethality with 3009 FDA-approved compounds. The screen identified several compounds that interfere with transcription, DNA damage repair and the cell cycle. Unexpectedly, one of the top 'hits' was a GSK3 inhibitor, an agonist of Wnt signaling. We show that sensitivity to GSK3 inhibition is likely due to stabilization of β-catenin in cohesin-mutant cells, and that Wnt-responsive gene expression is highly sensitized in STAG2-mutant CMK leukemia cells. Moreover, Wnt activity is enhanced in zebrafish mutant for cohesin subunits stag2b and rad21. Our results suggest that cohesin mutations could progress oncogenesis by enhancing Wnt signaling, and that targeting the Wnt pathway may represent a novel therapeutic strategy for cohesin-mutant cancers.
Collapse
Affiliation(s)
- Chue Vin Chin
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Jisha Antony
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Sarada Ketharnathan
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Anastasia Labudina
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Gregory Gimenez
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| | - Kate M Parsons
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Jinshu He
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Amee J George
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Maria Michela Pallotta
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR)PisaItaly
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR)PisaItaly
| | - Antony Braithwaite
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
| | - Parry Guilford
- Department of Biochemistry, University of OtagoDunedinNew Zealand
| | - Ross D Hannan
- The John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
- Department of Biochemistry and Molecular Biology, University of MelbourneParkvilleAustralia
- Sir Peter MacCallum Department of Oncology, University of MelbourneParkvilleAustralia
- School of Biomedical Sciences, University of QueenslandSt LuciaAustralia
| | - Julia A Horsfield
- Department of Pathology, Otago Medical School, University of OtagoDunedinNew Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of AucklandAucklandNew Zealand
- Genetics Otago Research Centre, University of OtagoDunedinNew Zealand
| |
Collapse
|
11
|
Mfarej MG, Skibbens RV. An ever-changing landscape in Roberts syndrome biology: Implications for macromolecular damage. PLoS Genet 2020; 16:e1009219. [PMID: 33382686 PMCID: PMC7774850 DOI: 10.1371/journal.pgen.1009219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Roberts syndrome (RBS) is a rare developmental disorder that can include craniofacial abnormalities, limb malformations, missing digits, intellectual disabilities, stillbirth, and early mortality. The genetic basis for RBS is linked to autosomal recessive loss-of-function mutation of the establishment of cohesion (ESCO) 2 acetyltransferase. ESCO2 is an essential gene that targets the DNA-binding cohesin complex. ESCO2 acetylates alternate subunits of cohesin to orchestrate vital cellular processes that include sister chromatid cohesion, chromosome condensation, transcription, and DNA repair. Although significant advances were made over the last 20 years in our understanding of ESCO2 and cohesin biology, the molecular etiology of RBS remains ambiguous. In this review, we highlight current models of RBS and reflect on data that suggests a novel role for macromolecular damage in the molecular etiology of RBS.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
12
|
van Schie JJM, Faramarz A, Balk JA, Stewart GS, Cantelli E, Oostra AB, Rooimans MA, Parish JL, de Almeida Estéves C, Dumic K, Barisic I, Diderich KEM, van Slegtenhorst MA, Mahtab M, Pisani FM, Te Riele H, Ameziane N, Wolthuis RMF, de Lange J. Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nat Commun 2020; 11:4287. [PMID: 32855419 PMCID: PMC7452896 DOI: 10.1038/s41467-020-18066-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/30/2020] [Indexed: 02/01/2023] Open
Abstract
Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DDX11 is essential for sister chromatid cohesion and resistance to G4 stabilizers. We propose that DDX11 is a DNA helicase protecting against G4 induced double-stranded breaks and concomitant loss of cohesion, possibly at DNA replication forks.
Collapse
Affiliation(s)
- Janne J M van Schie
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Atiq Faramarz
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Jesper A Balk
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Erika Cantelli
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
| | - Anneke B Oostra
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Martin A Rooimans
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Katja Dumic
- Department of Pediatric Endocrinology and Diabetes, University Hospital Centre Zagreb, University of Zagreb Medical School, Zagreb, Croatia
| | - Ingeborg Barisic
- Children's Hospital Zagreb, Center of Excellence for Reproductive and Regenerative Medicine, Medical School University of Zagreb, Zagreb, Croatia
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Hein Te Riele
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
| | - Najim Ameziane
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
- Centogene, Am Strande 7, 18055, Rostock, Germany
| | - Rob M F Wolthuis
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands.
| | - Job de Lange
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Benedict B, van Schie JJM, Oostra AB, Balk JA, Wolthuis RMF, Riele HT, de Lange J. WAPL-Dependent Repair of Damaged DNA Replication Forks Underlies Oncogene-Induced Loss of Sister Chromatid Cohesion. Dev Cell 2020; 52:683-698.e7. [PMID: 32084359 DOI: 10.1016/j.devcel.2020.01.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/19/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Premature loss of sister chromatid cohesion at metaphase is a diagnostic marker for different cohesinopathies. Here, we report that metaphase spreads of many cancer cell lines also show premature loss of sister chromatid cohesion. Cohesion loss occurs independently of mutations in cohesion factors including SA2, a cohesin subunit frequently inactivated in cancer. In untransformed cells, induction of DNA replication stress by activation of oncogenes or inhibition of DNA replication is sufficient to trigger sister chromatid cohesion loss. Importantly, cell growth under conditions of replication stress requires the cohesin remover WAPL. WAPL promotes rapid RAD51-dependent repair and restart of broken replication forks. We propose that active removal of cohesin allows cancer cells to overcome DNA replication stress. This leads to oncogene-induced cohesion loss from newly synthesized sister chromatids that may contribute to genomic instability and likely represents a targetable cancer cell vulnerability.
Collapse
Affiliation(s)
- Bente Benedict
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, the Netherlands
| | - Janne J M van Schie
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Anneke B Oostra
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jesper A Balk
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rob M F Wolthuis
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| | - Hein Te Riele
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, the Netherlands.
| | - Job de Lange
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Wang QL, Liu L. Establishment of cohesion 1 homolog 2 facilitates cell aggressive behaviors and induces poor prognosis in renal cell carcinoma. J Clin Lab Anal 2020; 34:e23163. [PMID: 31944408 PMCID: PMC7246384 DOI: 10.1002/jcla.23163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background and aims Establishment of cohesion 1 homolog 2 (ESCO2) has been identified as an essential factor for cohesion in cell cycle in human multiple cancers. Nonetheless, its functional implication on prognosis and cellular behaviors of renal cell carcinoma (RCC) is rarely elucidated. We performed this study to detect the effects of ESCO2 in RCC progression. Methods We accessed The Cancer Genome Atlas (TCGA) database to evaluate the ESCO2 expression levels in tumor tissues, including 32 normal tissues and 289 tumor tissues. Quantitative real‐time PCR and Western blot were implemented for expression detection. After ESCO2 knockdown using siRNAs interference, functional experiments were conducted to explore the role of ESCO2, such as cell proliferation analysis and colony formation assay. Transwell assays for migration and invasion was also performed. Results In this study, ESCO2 was significantly increased in RCC tissues and cell lines. The RCC patients with high expression of ESCO2 were susceptible to unfavorable prognosis, and its expression has a marked association with clinical features containing age, gender, pathologic stage, and so on. Furthermore, knockdown of ESCO2 inhibited cell growth, invasion, and migration. Mechanistically, phosphorylation protein kinase B (AKT) and mammalian target of rapamycin (mTOR), proliferating cell nuclear antigen (PCNA), and p53 were all down‐regulated due to the ESCO2 inhibition. Conclusions Therefore, our results raised the possibility that ESCO2 may act as a promising option for tumor therapeutic interference by exhibiting enhanced selectivity over conventional chemotherapy.
Collapse
Affiliation(s)
- Qiu-Li Wang
- Department of Nephrology, Jining NO.1 People's Hospital, Shandong, China
| | - Ling Liu
- Department of Nephrology, Jining NO.1 People's Hospital, Shandong, China
| |
Collapse
|
15
|
Faramarz A, Balk JA, van Schie JJM, Oostra AB, Ghandour CA, Rooimans MA, Wolthuis RMF, de Lange J. Non-redundant roles in sister chromatid cohesion of the DNA helicase DDX11 and the SMC3 acetyl transferases ESCO1 and ESCO2. PLoS One 2020; 15:e0220348. [PMID: 31935221 PMCID: PMC6959578 DOI: 10.1371/journal.pone.0220348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
In a process linked to DNA replication, duplicated chromosomes are entrapped in large, circular cohesin complexes and functional sister chromatid cohesion (SCC) is established by acetylation of the SMC3 cohesin subunit. Roberts Syndrome (RBS) and Warsaw Breakage Syndrome (WABS) are rare human developmental syndromes that are characterized by defective SCC. RBS is caused by mutations in the SMC3 acetyltransferase ESCO2, whereas mutations in the DNA helicase DDX11 lead to WABS. We found that WABS-derived cells predominantly rely on ESCO2, not ESCO1, for residual SCC, growth and survival. Reciprocally, RBS-derived cells depend on DDX11 to maintain low levels of SCC. Synthetic lethality between DDX11 and ESCO2 correlated with a prolonged delay in mitosis, and was rescued by knockdown of the cohesin remover WAPL. Rescue experiments using human or mouse cDNAs revealed that DDX11, ESCO1 and ESCO2 act on different but related aspects of SCC establishment. Furthermore, a DNA binding DDX11 mutant failed to correct SCC in WABS cells and DDX11 deficiency reduced replication fork speed. We propose that DDX11, ESCO1 and ESCO2 control different fractions of cohesin that are spatially and mechanistically separated.
Collapse
Affiliation(s)
- Atiq Faramarz
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Cherien A. Ghandour
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Bender D, Da Silva EML, Chen J, Poss A, Gawey L, Rulon Z, Rankin S. Multivalent interaction of ESCO2 with the replication machinery is required for sister chromatid cohesion in vertebrates. Proc Natl Acad Sci U S A 2020; 117:1081-1089. [PMID: 31879348 PMCID: PMC6969535 DOI: 10.1073/pnas.1911936117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tethering together of sister chromatids by the cohesin complex ensures their accurate alignment and segregation during cell division. In vertebrates, sister chromatid cohesion requires the activity of the ESCO2 acetyltransferase, which modifies the Smc3 subunit of cohesin. It was shown recently that ESCO2 promotes cohesion through interaction with the MCM replicative helicase. However, ESCO2 does not significantly colocalize with the MCM complex, suggesting there are additional interactions important for ESCO2 function. Here we show that ESCO2 is recruited to replication factories, sites of DNA replication, through interaction with PCNA. We show that ESCO2 contains multiple PCNA-interaction motifs in its N terminus, each of which is essential to its ability to establish cohesion. We propose that multiple PCNA-interaction motifs embedded in a largely flexible and disordered region of the protein underlie the unique ability of ESCO2 to establish cohesion between sister chromatids precisely as they are born during DNA replication.
Collapse
Affiliation(s)
- Dawn Bender
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Cell Biology, Oklahoma University Health Science Center, Oklahoma City, OK 73104
| | | | - Jingrong Chen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Annelise Poss
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Lauren Gawey
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Zane Rulon
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104;
- Department of Cell Biology, Oklahoma University Health Science Center, Oklahoma City, OK 73104
| |
Collapse
|
17
|
McKay MJ, Craig J, Kalitsis P, Kozlov S, Verschoor S, Chen P, Lobachevsky P, Vasireddy R, Yan Y, Ryan J, McGillivray G, Savarirayan R, Lavin MF, Ramsay RG, Xu H. A Roberts Syndrome Individual With Differential Genotoxin Sensitivity and a DNA Damage Response Defect. Int J Radiat Oncol Biol Phys 2019; 103:1194-1202. [PMID: 30508616 DOI: 10.1016/j.ijrobp.2018.11.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/14/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Roberts syndrome (RBS) is a rare, recessively transmitted developmental disorder characterized by growth retardation, craniofacial abnormalities, and truncation of limbs. All affected individuals to date have mutations in the ESCO2 (establishment of cohesion 2) gene, a key regulator of the cohesin complex, which is involved in sister chromatid cohesion and DNA double-strand break (DSB) repair. Here we characterize DNA damage responses (DDRs) for the first time in an RBS-affected family. METHODS AND MATERIALS Lymphoblastoid cell lines were established from an RBS family, including the proband and parents carrying ESCO2 mutations. Various DDR assays were performed on these cells, including cell survival, chromosome break, and apoptosis assays; checkpoint activation indicators; and measures of DNA breakage and repair. RESULTS Cells derived from the RBS-affected individual showed sensitivity to ionizing radiation (IR) and mitomycin C-induced DNA damage. In this ESCO2 compound heterozygote, other DDRs were also defective, including enhanced IR-induced clastogenicity and apoptosis; increased DNA DSB induction; and a reduced capacity for repairing IR-induced DNA DSBs, as measured by γ-H2AX foci and the comet assay. CONCLUSIONS In addition to its developmental features, RBS can be, like ataxia telangiectasia, considered a DDR-defective syndrome, which contributes to its cellular, molecular, and clinical phenotype.
Collapse
Affiliation(s)
- Michael J McKay
- Olivia Newton-John Cancer Research Institute and Austin Health, Heidelberg, Victoria, Australia; Latrobe University, Bundoora, Victoria, Australia
| | - Jeffery Craig
- School of Medicine, Deakin University, Geelong Waurn Campus, Geelong, Victoria, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Paul Kalitsis
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Sergei Kozlov
- University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland, Australia
| | - Sandra Verschoor
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Phillip Chen
- University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland, Australia
| | - Pavel Lobachevsky
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Raja Vasireddy
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Yuqian Yan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jacinta Ryan
- School of Medicine, Flinders University, Adelaide, South Australia, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - George McGillivray
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Ravi Savarirayan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Martin F Lavin
- University of Queensland Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland, Australia
| | - Robert G Ramsay
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Huiling Xu
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia; College of Life Sciences, Shanxi Normal University, Linfen, Shanxi, China.
| |
Collapse
|
18
|
Ivanov MP, Ladurner R, Poser I, Beveridge R, Rampler E, Hudecz O, Novatchkova M, Hériché JK, Wutz G, van der Lelij P, Kreidl E, Hutchins JR, Axelsson-Ekker H, Ellenberg J, Hyman AA, Mechtler K, Peters JM. The replicative helicase MCM recruits cohesin acetyltransferase ESCO2 to mediate centromeric sister chromatid cohesion. EMBO J 2018; 37:e97150. [PMID: 29930102 PMCID: PMC6068434 DOI: 10.15252/embj.201797150] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 02/27/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Chromosome segregation depends on sister chromatid cohesion which is established by cohesin during DNA replication. Cohesive cohesin complexes become acetylated to prevent their precocious release by WAPL before cells have reached mitosis. To obtain insight into how DNA replication, cohesion establishment and cohesin acetylation are coordinated, we analysed the interaction partners of 55 human proteins implicated in these processes by mass spectrometry. This proteomic screen revealed that on chromatin the cohesin acetyltransferase ESCO2 associates with the MCM2-7 subcomplex of the replicative Cdc45-MCM-GINS helicase. The analysis of ESCO2 mutants defective in MCM binding indicates that these interactions are required for proper recruitment of ESCO2 to chromatin, cohesin acetylation during DNA replication, and centromeric cohesion. We propose that MCM binding enables ESCO2 to travel with replisomes to acetylate cohesive cohesin complexes in the vicinity of replication forks so that these complexes can be protected from precocious release by WAPL Our results also indicate that ESCO1 and ESCO2 have distinct functions in maintaining cohesion between chromosome arms and centromeres, respectively.
Collapse
Affiliation(s)
| | - Rene Ladurner
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Evelyn Rampler
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Otto Hudecz
- Institute of Molecular Biotechnology, Vienna, Austria
| | | | | | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna, Austria
| | | | | | - Jan Ellenberg
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Karl Mechtler
- Research Institute of Molecular Pathology, Vienna, Austria
- Institute of Molecular Biotechnology, Vienna, Austria
| | | |
Collapse
|
19
|
Minamino M, Tei S, Negishi L, Kanemaki MT, Yoshimura A, Sutani T, Bando M, Shirahige K. Temporal Regulation of ESCO2 Degradation by the MCM Complex, the CUL4-DDB1-VPRBP Complex, and the Anaphase-Promoting Complex. Curr Biol 2018; 28:2665-2672.e5. [DOI: 10.1016/j.cub.2018.06.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 04/02/2018] [Accepted: 06/18/2018] [Indexed: 01/03/2023]
|
20
|
Chen H, Zhang L, He W, Liu T, Zhao Y, Chen H, Li Y. ESCO2 knockdown inhibits cell proliferation and induces apoptosis in human gastric cancer cells. Biochem Biophys Res Commun 2018; 496:475-481. [PMID: 29330052 DOI: 10.1016/j.bbrc.2018.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/08/2018] [Indexed: 01/04/2023]
Abstract
Establishment of cohesion 1 homolog 2 (ESCO2), an essential gene for cohesion regulation and genomic stability, has not been studied in human gastric cancer (GC). We found that ESCO2 knockdown in human GC cell lines dramatically inhibited cell proliferation and induced cell apoptosis in vitro and suppressed tumor xenograft development in vivo. Furthermore, adenosine monophosphate-activated protein kinase (AMPK) was activated following the suppression of its downstream targets, including mammalian target of rapamycin (mTOR) and p70 ribosomal S6 kinase 1 (p70S6K1), and this result was consistent with p53 activation. Significantly, co-immunoprecipitation (Co-IP) analyses indicated that ESCO2 can interact with p53 in GC cells. Taken together, our data demonstrate that ESCO2 is essential for the development of GC and might be a potential therapeutic target for treating GC.
Collapse
Affiliation(s)
- Hongmei Chen
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Tian-Shui South Road, Lanzhou 730000, Gansu, China; Institute of Medical Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, 199 Dong-Gang West Road, Lanzhou 730000, Gansu, China.
| | - Lei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, 1 Dong-Gang West Road, Lanzhou 730000, Gansu, China.
| | - Wenting He
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Tao Liu
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Yang Zhao
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Hao Chen
- Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| | - Yumin Li
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, 222 Tian-Shui South Road, Lanzhou 730000, Gansu, China; Second Hospital of Lanzhou University, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China; Key Laboratory of Digestive Tumor of Gansu Province, 82 Cui-Yin Door, Lanzhou 730030, Gansu, China.
| |
Collapse
|
21
|
Banerji R, Skibbens RV, Iovine MK. How many roads lead to cohesinopathies? Dev Dyn 2017; 246:881-888. [PMID: 28422453 DOI: 10.1002/dvdy.24510] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 04/11/2017] [Indexed: 12/16/2023] Open
Abstract
Genetic mapping studies reveal that mutations in cohesion pathways are responsible for multispectrum developmental abnormalities termed cohesinopathies. These include Roberts syndrome (RBS), Cornelia de Lange Syndrome (CdLS), and Warsaw Breakage Syndrome (WABS). The cohesinopathies are characterized by overlapping phenotypes ranging from craniofacial deformities, limb defects, and mental retardation. Though these syndromes share a similar suite of phenotypes and arise due to mutations in a common cohesion pathway, the underlying mechanisms are currently believed to be distinct. Defects in mitotic failure and apoptosis i.e. trans DNA tethering events are believed to be the underlying cause of RBS, whereas the underlying cause of CdLS is largely modeled as occurring through defects in transcriptional processes i.e. cis DNA tethering events. Here, we review recent findings described primarily in zebrafish, paired with additional studies in other model systems, including human patient cells, which challenge the notion that cohesinopathies represent separate syndromes. We highlight numerous studies that illustrate the utility of zebrafish to provide novel insights into the phenotypes, genes affected and the possible mechanisms underlying cohesinopathies. We propose that transcriptional deregulation is the predominant mechanism through which cohesinopathies arise. Developmental Dynamics 246:881-888, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajeswari Banerji
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - Robert V Skibbens
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| | - M Kathryn Iovine
- Department of Biological Science, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
22
|
Lu Y, Dai X, Zhang M, Miao Y, Zhou C, Cui Z, Xiong B. Cohesin acetyltransferase Esco2 regulates SAC and kinetochore functions via maintaining H4K16 acetylation during mouse oocyte meiosis. Nucleic Acids Res 2017; 45:9388-9397. [PMID: 28934466 PMCID: PMC5766191 DOI: 10.1093/nar/gkx563] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 01/11/2023] Open
Abstract
Sister chromatid cohesion, mediated by cohesin complex and established by the acetyltransferases Esco1 and Esco2, is essential for faithful chromosome segregation. Mutations in Esco2 cause Roberts syndrome, a developmental disease characterized by severe prenatal retardation as well as limb and facial abnormalities. However, its exact roles during oocyte meiosis have not clearly defined. Here, we report that Esco2 localizes to the chromosomes during oocyte meiotic maturation. Depletion of Esco2 by morpholino microinjection leads to the precocious polar body extrusion, the escape of metaphase I arrest induced by nocodazole treatment and the loss of BubR1 from kinetochores, indicative of inactivated SAC. Furthermore, depletion of Esco2 causes a severely impaired spindle assembly and chromosome alignment, accompanied by the remarkably elevated incidence of defective kinetochore-microtubule attachments which consequently lead to the generation of aneuploid eggs. Notably, we find that the involvement of Esco2 in SAC and kinetochore functions is mediated by its binding to histone H4 and acetylation of H4K16 both in vivo and in vitro. Thus, our data assign a novel meiotic function to Esco2 beyond its role in the cohesion establishment during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Cucco F, Musio A. Genome stability: What we have learned from cohesinopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2016; 172:171-8. [PMID: 27091086 DOI: 10.1002/ajmg.c.31492] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cohesin is a multiprotein complex involved in many DNA-related processes such as proper chromosome segregation, replication, transcription, and repair. Mutations in cohesin gene pathways are responsible for human diseases, collectively referred to as cohesinopathies. In addition, both cohesin gene expression dysregulation and mutations have been identified in cancer. Cohesinopathy cells are characterized by genome instability (GIN) visualized by a constellation of markers such as chromosome aneuploidies, chromosome aberrations, precocious sister chromatid separation, premature centromere separation, micronuclei formation, and sensitivity to genotoxic drugs. The emerging picture suggests that GIN observed in cohesinopathies may result from the synergistic effects of the multiple cohesin dysfunctions. © 2016 Wiley Periodicals, Inc.
Collapse
|
24
|
Ladurner R, Kreidl E, Ivanov MP, Ekker H, Idarraga-Amado MH, Busslinger GA, Wutz G, Cisneros DA, Peters JM. Sororin actively maintains sister chromatid cohesion. EMBO J 2016; 35:635-53. [PMID: 26903600 PMCID: PMC4801952 DOI: 10.15252/embj.201592532] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/17/2016] [Indexed: 11/26/2022] Open
Abstract
Cohesion between sister chromatids is established during DNA replication but needs to be maintained to enable proper chromosome–spindle attachments in mitosis or meiosis. Cohesion is mediated by cohesin, but also depends on cohesin acetylation and sororin. Sororin contributes to cohesion by stabilizing cohesin on DNA. Sororin achieves this by inhibiting WAPL, which otherwise releases cohesin from DNA and destroys cohesion. Here we describe mouse models which enable the controlled depletion of sororin by gene deletion or auxin‐induced degradation. We show that sororin is essential for embryonic development, cohesion maintenance, and proper chromosome segregation. We further show that the acetyltransferases ESCO1 and ESCO2 are essential for stabilizing cohesin on chromatin, that their only function in this process is to acetylate cohesin's SMC3 subunit, and that DNA replication is also required for stable cohesin–chromatin interactions. Unexpectedly, we find that sororin interacts dynamically with the cohesin complexes it stabilizes. This implies that sororin recruitment to cohesin does not depend on the DNA replication machinery or process itself, but on a property that cohesin acquires during cohesion establishment.
Collapse
Affiliation(s)
- Rene Ladurner
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | - Emanuel Kreidl
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | | | - Heinz Ekker
- Campus Science Support Facilities NGS Facility, Vienna, Austria
| | | | | | - Gordana Wutz
- IMP Research Institute of Molecular Pathology, Vienna, Austria
| | | | | |
Collapse
|
25
|
De K, Bolaños-Villegas P, Mitra S, Yang X, Homan G, Jauh GY, Makaroff CA. The Opposing Actions of Arabidopsis CHROMOSOME TRANSMISSION FIDELITY7 and WINGS APART-LIKE1 and 2 Differ in Mitotic and Meiotic Cells. THE PLANT CELL 2016; 28:521-36. [PMID: 26813623 PMCID: PMC4790872 DOI: 10.1105/tpc.15.00781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 01/06/2016] [Accepted: 01/21/2016] [Indexed: 05/23/2023]
Abstract
Sister chromatid cohesion, which is mediated by the cohesin complex, is essential for the proper segregation of chromosomes during mitosis and meiosis. Stable binding of cohesin with chromosomes is regulated in part by the opposing actions of CTF7 (CHROMOSOME TRANSMISSION FIDELITY7) and WAPL (WINGS APART-LIKE). In this study, we characterized the interaction between Arabidopsis thaliana CTF7 and WAPL by conducting a detailed analysis of wapl1-1 wapl2 ctf7 plants. ctf7 plants exhibit major defects in vegetative growth and development and are completely sterile. Inactivation of WAPL restores normal growth, mitosis, and some fertility to ctf7 plants. This shows that the CTF7/WAPL cohesin system is not essential for mitosis in vegetative cells and suggests that plants may contain a second mechanism to regulate mitotic cohesin. WAPL inactivation restores cohesin binding and suppresses ctf7-associated meiotic cohesion defects, demonstrating that WAPL and CTF7 function as antagonists to regulate meiotic sister chromatid cohesion. The ctf7 mutation only had a minor effect on wapl-associated defects in chromosome condensation and centromere association. These results demonstrate that WAPL has additional roles that are independent of its role in regulating chromatin-bound cohesin.
Collapse
Affiliation(s)
- Kuntal De
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Pablo Bolaños-Villegas
- University of Costa Rica, Fabio Baudrit Agricultural Research Station, La Garita de Alajuela, 20102, Costa Rica Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
| | - Sayantan Mitra
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Xiaohui Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Garret Homan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan Biotechnology Center, National Chung-Hsing University, Taichung 402, Taiwan
| | | |
Collapse
|
26
|
Xu B, Gogol M, Gaudenz K, Gerton JL. Improved transcription and translation with L-leucine stimulation of mTORC1 in Roberts syndrome. BMC Genomics 2016; 17:25. [PMID: 26729373 PMCID: PMC4700579 DOI: 10.1186/s12864-015-2354-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Background Roberts syndrome (RBS) is a human developmental disorder caused by mutations in the cohesin acetyltransferase ESCO2. We previously reported that mTORC1 signaling was depressed and overall translation was reduced in RBS cells and zebrafish models for RBS. Treatment of RBS cells and zebrafish RBS models with L-leucine partially rescued mTOR function and protein synthesis, correlating with increased cell division and improved development. Results In this study, we use RBS cells to model mTORC1 repression and analyze transcription and translation with ribosome profiling to determine gene-level effects of L-leucine. L-leucine treatment partially rescued translational efficiency of ribosomal subunits, translation initiation factors, snoRNA production, and mitochondrial function in RBS cells, consistent with these processes being mTORC1 controlled. In contrast, other genes are differentially expressed independent of L-leucine treatment, including imprinted genes such as H19 and GTL2, miRNAs regulated by GTL2, HOX genes, and genes in nucleolar associated domains. Conclusions Our study distinguishes between gene expression changes in RBS cells that are TOR dependent and those that are independent. Some of the TOR independent gene expression changes likely reflect the architectural role of cohesin in chromatin looping and gene expression. This study reveals the dramatic rescue effects of L-leucine stimulation of mTORC1 in RBS cells and supports that normal gene expression and translation requires ESCO2 function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2354-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Madelaine Gogol
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Karin Gaudenz
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA.
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA. .,Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| |
Collapse
|
27
|
Singh VP, Gerton JL. Cohesin and human disease: lessons from mouse models. Curr Opin Cell Biol 2015; 37:9-17. [PMID: 26343989 DOI: 10.1016/j.ceb.2015.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Cohesin is an evolutionarily conserved large ring-like multi-subunit protein structure that can encircle DNA. Cohesin affects many processes that occur on chromosomes such as segregation, DNA replication, double-strand break repair, condensation, chromosome organization, and gene expression. Mutations in the genes that encode cohesin and its regulators cause human developmental disorders and cancer. Several mouse models have been established with the aim of understanding the cohesin mediated processes that are disrupted in these diseases. Mouse models support the idea that cohesin is essential for cell division, but partial loss of function can alter gene expression, DNA replication and repair, gametogenesis, and nuclear organization.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|
28
|
Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function. Nat Commun 2015; 6:8399. [PMID: 26423134 PMCID: PMC4600715 DOI: 10.1038/ncomms9399] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/19/2015] [Indexed: 01/05/2023] Open
Abstract
Warsaw breakage syndrome (WABS) is caused by defective DDX11, a DNA helicase that is essential for chromatid cohesion. Here, a paired genome-wide siRNA screen in patient-derived cell lines reveals that WABS cells do not tolerate partial depletion of individual APC/C subunits or the spindle checkpoint inhibitor p31comet. A combination of reduced cohesion and impaired APC/C function also leads to fatal mitotic arrest in diploid RPE1 cells. Moreover, WABS cell lines, and several cancer cell lines with cohesion defects, display a highly increased response to a new cell-permeable APC/C inhibitor, apcin, but not to the spindle poison paclitaxel. Synthetic lethality of APC/C inhibition and cohesion defects strictly depends on a functional mitotic spindle checkpoint as well as on intact microtubule pulling forces. This indicates that the underlying mechanism involves cohesion fatigue in response to mitotic delay, leading to spindle checkpoint re-activation and lethal mitotic arrest. Our results point to APC/C inhibitors as promising therapeutic agents targeting cohesion-defective cancers. Cohesion is associated with many forms of cancer. De Lange et al. show that such cohesion defects can sensitise cells to apoptosis in response to a new APC/C ubiquitin ligase inhibitor, by prolonging mitotic arrest and checkpoint activation due to cohesion fatigue.
Collapse
|
29
|
Rankin S. Complex elaboration: making sense of meiotic cohesin dynamics. FEBS J 2015; 282:2426-43. [PMID: 25895170 PMCID: PMC4490075 DOI: 10.1111/febs.13301] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 11/30/2022]
Abstract
In mitotically dividing cells, the cohesin complex tethers sister chromatids, the products of DNA replication, together from the time they are generated during S phase until anaphase. Cohesion between sister chromatids ensures accurate chromosome segregation, and promotes normal gene regulation and certain kinds of DNA repair. In somatic cells, the core cohesin complex is composed of four subunits: Smc1, Smc3, Rad21 and an SA subunit. During meiotic cell divisions meiosis-specific isoforms of several of the cohesin subunits are also expressed and incorporated into distinct meiotic cohesin complexes. The relative contributions of these meiosis-specific forms of cohesin to chromosome dynamics during meiotic progression have not been fully worked out. However, the localization of these proteins during chromosome pairing and synapsis, and their unique loss-of-function phenotypes, suggest non-overlapping roles in controlling meiotic chromosome behavior. Many of the proteins that regulate cohesin function during mitosis also appear to regulate cohesin during meiosis. Here we review how cohesin contributes to meiotic chromosome dynamics, and explore similarities and differences between cohesin regulation during the mitotic cell cycle and meiotic progression. A deeper understanding of the regulation and function of cohesin in meiosis will provide important new insights into how the cohesin complex is able to promote distinct kinds of chromosome interactions under diverse conditions.
Collapse
Affiliation(s)
- Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, OK, USA
| |
Collapse
|
30
|
Yelick PC, Trainor PA. Ribosomopathies: Global process, tissue specific defects. Rare Dis 2015; 3:e1025185. [PMID: 26442198 PMCID: PMC4590025 DOI: 10.1080/21675511.2015.1025185] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/18/2015] [Accepted: 02/26/2015] [Indexed: 01/01/2023] Open
Abstract
Disruptions in ribosomal biogenesis would be expected to have global and in fact lethal effects on a developing organism. However, mutations in ribosomal protein genes have been shown in to exhibit tissue specific defects. This seemingly contradictory finding - that globally expressed genes thought to play fundamental housekeeping functions can in fact exhibit tissue and cell type specific functions - provides new insight into roles for ribosomes, the protein translational machinery of the cell, in regulating normal development and disease. Furthermore it illustrates the surprisingly dynamic nature of processes regulating cell type specific protein translation. In this review, we discuss our current knowledge of a variety of ribosomal protein mutations associated with human disease, and models to better understand the molecular mechanisms associated with each. We use specific examples to emphasize both the similarities and differences between the effects of various human ribosomal protein mutations. Finally, we discuss areas of future study that are needed to further our understanding of the role of ribosome biogenesis in normal development, and possible approaches that can be used to treat debilitating ribosomopathy diseases.
Collapse
Affiliation(s)
| | - Paul A Trainor
- Stowers Institute ; Kansas City, MO USA ; University of Kansas Medical Center ; Kansas City, KS USA
| |
Collapse
|
31
|
Brownlee PM, Chambers AL, Cloney R, Bianchi A, Downs JA. BAF180 promotes cohesion and prevents genome instability and aneuploidy. Cell Rep 2014; 6:973-981. [PMID: 24613357 PMCID: PMC3988838 DOI: 10.1016/j.celrep.2014.02.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 01/07/2023] Open
Abstract
BAF180, a subunit of the PBAF chromatin remodeling complex, is frequently mutated in cancer. Although PBAF regulates transcription, it remains unclear whether this is what drives tumorigenesis in cells lacking BAF180. Based on data from yeast, we hypothesized that BAF180 may prevent tumorigenesis by promoting cohesion. Here, we show BAF180 is required for centromeric cohesion in mouse and human cells. Mutations identified in tumor samples are unable to support this activity, and also compromise cohesion-dependent functions in yeast. We provide evidence of genome instability in line with loss of cohesion, and importantly, we find dynamic chromosome instability following DNA damage in cells lacking BAF180. These data demonstrate a function for BAF180 in promoting genome stability that is distinct from its well-characterized role in transcriptional regulation, uncovering a potent mechanism for its tumor-suppressor activity.
Collapse
Affiliation(s)
- Peter M Brownlee
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Anna L Chambers
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Ross Cloney
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Alessandro Bianchi
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Jessica A Downs
- MRC Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
32
|
Ball AR, Chen YY, Yokomori K. Mechanisms of cohesin-mediated gene regulation and lessons learned from cohesinopathies. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1839:191-202. [PMID: 24269489 PMCID: PMC3951616 DOI: 10.1016/j.bbagrm.2013.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 11/09/2013] [Accepted: 11/14/2013] [Indexed: 12/16/2022]
Abstract
Cohesins are conserved and essential Structural Maintenance of Chromosomes (SMC) protein-containing complexes that physically interact with chromatin and modulate higher-order chromatin organization. Cohesins mediate sister chromatid cohesion and cellular long-distance chromatin interactions affecting genome maintenance and gene expression. Discoveries of mutations in cohesin's subunits and its regulator proteins in human developmental disorders, so-called "cohesinopathies," reveal crucial roles for cohesins in development and cellular growth and differentiation. In this review, we discuss the latest findings concerning cohesin's functions in higher-order chromatin architecture organization and gene regulation and new insight gained from studies of cohesinopathies. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Alexander R Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Yen-Yun Chen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA 92697-1700, USA.
| |
Collapse
|
33
|
Xu B, Lu S, Gerton JL. Roberts syndrome: A deficit in acetylated cohesin leads to nucleolar dysfunction. Rare Dis 2014; 2:e27743. [PMID: 25054091 PMCID: PMC4091327 DOI: 10.4161/rdis.27743] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/10/2013] [Accepted: 01/06/2014] [Indexed: 12/26/2022] Open
Abstract
All living organisms must go through cycles of replicating their genetic information and then dividing the copies between two new cells. This cyclical process, in cells from bacteria and human alike, requires a protein complex known as cohesin. Cohesin is a structural maintenance of chromosomes (SMC) complex. While bacteria have one form of this complex, yeast have several SMC complexes, and humans have at least a dozen cohesin complexes alone. Therefore the ancient structure and function of SMC complexes has been both conserved and specialized over the course of evolution. These complexes play roles in replication, repair, organization, and segregation of the genome. Mutations in the genes that encode cohesin and its regulatory factors are associated with developmental disorders such as Roberts syndrome, Cornelia de Lange syndrome, and cancer. In this review, we focus on how acetylation of cohesin contributes to its function. In Roberts syndrome, the lack of cohesin acetylation contributes to nucleolar defects and translational inhibition. An understanding of basic SMC complex function will be essential to unraveling the molecular etiology of human diseases associated with defective SMC function.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research; Kansas City, MO USA
| | - Shuai Lu
- Stowers Institute for Medical Research; Kansas City, MO USA ; Department of Biochemistry and Molecular Biology; University of Kansas School of Medicine; Kansas City, KS USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research; Kansas City, MO USA ; Department of Biochemistry and Molecular Biology; University of Kansas School of Medicine; Kansas City, KS USA
| |
Collapse
|
34
|
Skibbens RV, Colquhoun JM, Green MJ, Molnar CA, Sin DN, Sullivan BJ, Tanzosh EE. Cohesinopathies of a feather flock together. PLoS Genet 2013; 9:e1004036. [PMID: 24367282 PMCID: PMC3868590 DOI: 10.1371/journal.pgen.1004036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Roberts Syndrome (RBS) and Cornelia de Lange Syndrome (CdLS) are severe developmental maladies that present with nearly an identical suite of multi-spectrum birth defects. Not surprisingly, RBS and CdLS arise from mutations within a single pathway--here involving cohesion. Sister chromatid tethering reactions that comprise cohesion are required for high fidelity chromosome segregation, but cohesin tethers also regulate gene transcription, promote DNA repair, and impact DNA replication. Currently, RBS is thought to arise from elevated levels of apoptosis, mitotic failure, and limited progenitor cell proliferation, while CdLS is thought to arise, instead, from transcription dysregulation. Here, we review new information that implicates RBS gene mutations in altered transcription profiles. We propose that cohesin-dependent transcription dysregulation may extend to other developmental maladies; the diagnoses of which are complicated through multi-functional proteins that manifest a sliding scale of diverse and severe phenotypes. We further review evidence that cohesinopathies are more common than currently posited.
Collapse
Affiliation(s)
- Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Jennifer M. Colquhoun
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Megan J. Green
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Merck, Sharp & Dohme, West Point, Pennsylvania, United States of America
| | - Cody A. Molnar
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Danielle N. Sin
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Brian J. Sullivan
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Eden E. Tanzosh
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
- Janssen R&D, LLC, Raritan, New Jersey, United States of America
| |
Collapse
|
35
|
Xu B, Lee KK, Zhang L, Gerton JL. Stimulation of mTORC1 with L-leucine rescues defects associated with Roberts syndrome. PLoS Genet 2013; 9:e1003857. [PMID: 24098154 PMCID: PMC3789817 DOI: 10.1371/journal.pgen.1003857] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 08/21/2013] [Indexed: 12/22/2022] Open
Abstract
Roberts syndrome (RBS) is a human disease characterized by defects in limb and craniofacial development and growth and mental retardation. RBS is caused by mutations in ESCO2, a gene which encodes an acetyltransferase for the cohesin complex. While the essential role of the cohesin complex in chromosome segregation has been well characterized, it plays additional roles in DNA damage repair, chromosome condensation, and gene expression. The developmental phenotypes of Roberts syndrome and other cohesinopathies suggest that gene expression is impaired during embryogenesis. It was previously reported that ribosomal RNA production and protein translation were impaired in immortalized RBS cells. It was speculated that cohesin binding at the rDNA was important for nucleolar form and function. We have explored the hypothesis that reduced ribosome function contributes to RBS in zebrafish models and human cells. Two key pathways that sense cellular stress are the p53 and mTOR pathways. We report that mTOR signaling is inhibited in human RBS cells based on the reduced phosphorylation of the downstream effectors S6K1, S6 and 4EBP1, and this correlates with p53 activation. Nucleoli, the sites of ribosome production, are highly fragmented in RBS cells. We tested the effect of inhibiting p53 or stimulating mTOR in RBS cells. The rescue provided by mTOR activation was more significant, with activation rescuing both cell division and cell death. To study this cohesinopathy in a whole animal model we used ESCO2-mutant and morphant zebrafish embryos, which have developmental defects mimicking RBS. Consistent with RBS patient cells, the ESCO2 mutant embryos show p53 activation and inhibition of the TOR pathway. Stimulation of the TOR pathway with L-leucine rescued many developmental defects of ESCO2-mutant embryos. Our data support the idea that RBS can be attributed in part to defects in ribosome biogenesis, and stimulation of the TOR pathway has therapeutic potential.
Collapse
Affiliation(s)
- Baoshan Xu
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Kenneth K. Lee
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Lily Zhang
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| |
Collapse
|
36
|
Bolaños-Villegas P, Yang X, Wang HJ, Juan CT, Chuang MH, Makaroff CA, Jauh GY. Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:927-40. [PMID: 23750584 PMCID: PMC3824207 DOI: 10.1111/tpj.12261] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/25/2013] [Accepted: 05/29/2013] [Indexed: 05/21/2023]
Abstract
The proper transmission of DNA in dividing cells is crucial for the survival of eukaryotic organisms. During cell division, faithful segregation of replicated chromosomes requires their tight attachment, known as sister chromatid cohesion, until anaphase. Sister chromatid cohesion is established during S-phase in a process requiring an acetyltransferase that in yeast is known as Establishment of cohesion 1 (Eco1). Inactivation of Eco1 typically disrupts chromosome segregation and homologous recombination-dependent DNA repair in dividing cells, ultimately resulting in lethality. We report here the isolation and detailed characterization of two homozygous T-DNA insertion mutants for the Arabidopsis thaliana Eco1 homolog, CHROMOSOME TRANSMISSION FIDELITY 7/ESTABLISHMENT OF COHESION 1 (CTF7/ECO1), called ctf7-1 and ctf7-2. Mutants exhibited dwarfism, poor anther development and sterility. Analysis of somatic tissues by flow cytometry, scanning electron microscopy and quantitative real-time PCR identified defects in DNA repair and cell division, including an increase in the area of leaf epidermal cells, an increase in DNA content and the upregulation of genes involved in DNA repair including BRCA1 and PARP2. No significant change was observed in the expression of genes that influence entry into the endocycle. Analysis of meiocytes identified changes in chromosome morphology and defective segregation; the abundance of chromosomal-bound cohesion subunits was also reduced. Transcript levels for several meiotic genes, including the recombinase genes DMC1 and RAD51C and the S-phase licensing factor CDC45 were elevated in mutant anthers. Taken together our results demonstrate that Arabidopsis CTF7/ECO1 plays important roles in the preservation of genome integrity and meiosis.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia SinicaTaipei, 11529, Taiwan
| | - Xiaohui Yang
- Department of Chemistry and Biochemistry, Miami UniversityOxford, OH, 45056, USA
| | - Huei-Jing Wang
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, 11529, Taiwan
| | - Chien-Ta Juan
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, 11529, Taiwan
| | - Min-Hsiang Chuang
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, 11529, Taiwan
| | | | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia SinicaTaipei, 11529, Taiwan
- Biotechnology Center, Graduate Institute of Biotechnology, National Chung-Hsing UniversityTaichung, 402, Taiwan
| |
Collapse
|
37
|
Mehta GD, Kumar R, Srivastava S, Ghosh SK. Cohesin: functions beyond sister chromatid cohesion. FEBS Lett 2013; 587:2299-312. [PMID: 23831059 DOI: 10.1016/j.febslet.2013.06.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022]
Abstract
Faithful segregation of chromosomes during mitosis and meiosis is the cornerstone process of life. Cohesin, a multi-protein complex conserved from yeast to human, plays a crucial role in this process by keeping the sister chromatids together from S-phase to anaphase onset during mitosis and meiosis. Technological advancements have discovered myriad functions of cohesin beyond its role in sister chromatid cohesion (SCC), such as transcription regulation, DNA repair, chromosome condensation, homolog pairing, monoorientation of sister kinetochore, etc. Here, we have focused on such functions of cohesin that are either independent of or dependent on its canonical role of sister chromatid cohesion. At the end, human diseases associated with malfunctioning of cohesin, albeit with mostly unperturbed sister chromatid cohesion, have been discussed.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
Chromosome cohesion, mediated by the cohesin complex, is essential for the process of chromosome segregation. Mutations in cohesin and its regulators are associated with a group of human diseases known as the cohesinopathies. These diseases are characterized by defects in head, face, limb, and heart development, mental retardation, and poor growth. The developmental features of the diseases are not well explained by defects in chromosome segregation, but instead are consistent with changes in gene expression during embryogenesis. Thus a central question to understanding the cohesinopathies is how mutations in cohesin lead to changes in gene expression. One of the prevailing models is that cohesin binding to promoters and enhancers directly regulates transcription. I propose that in addition cohesin may influence gene expression via translational mechanisms. If true, cohesinopathies may be related in etiology to another group of human diseases known as ribosomopathies, diseases caused by defects in ribosome biogenesis. By considering this possibility we can more fully evaluate causes and treatments for the cohesinopathies.
Collapse
|
40
|
Horsfield JA, Print CG, Mönnich M. Diverse developmental disorders from the one ring: distinct molecular pathways underlie the cohesinopathies. Front Genet 2012; 3:171. [PMID: 22988450 PMCID: PMC3439829 DOI: 10.3389/fgene.2012.00171] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 08/17/2012] [Indexed: 11/13/2022] Open
Abstract
The multi-subunit protein complex, cohesin, is responsible for sister chromatid cohesion during cell division. The interaction of cohesin with DNA is controlled by a number of additional regulatory proteins. Mutations in cohesin, or its regulators, cause a spectrum of human developmental syndromes known as the “cohesinopathies.” Cohesinopathy disorders include Cornelia de Lange Syndrome and Roberts Syndrome. The discovery of novel roles for chromatid cohesion proteins in regulating gene expression led to the idea that cohesinopathies are caused by dysregulation of multiple genes downstream of mutations in cohesion proteins. Consistent with this idea, Drosophila, mouse, and zebrafish cohesinopathy models all show altered expression of developmental genes. However, there appears to be incomplete overlap among dysregulated genes downstream of mutations in different components of the cohesion apparatus. This is surprising because mutations in all cohesion proteins would be predicted to affect cohesin’s roles in cell division and gene expression in similar ways. Here we review the differences and similarities between genetic pathways downstream of components of the cohesion apparatus, and discuss how such differences might arise, and contribute to the spectrum of cohesinopathy disorders. We propose that mutations in different elements of the cohesion apparatus have distinct developmental outcomes that can be explained by sometimes subtly different molecular effects.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago Dunedin, New Zealand
| | | | | |
Collapse
|
41
|
Mehta GD, Rizvi SMA, Ghosh SK. Cohesin: a guardian of genome integrity. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1324-42. [PMID: 22677545 DOI: 10.1016/j.bbamcr.2012.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 01/05/2023]
Abstract
Ability to reproduce is one of the hallmark features of all life forms by which new organisms are produced from their progenitors. During this process each cell duplicates its genome and passes a copy of its genome to the daughter cells along with the cellular matrix. Unlike bacteria, in eukaryotes there is a definite time gap between when the genome is duplicated and when it is physically separated. Therefore, for precise halving of the duplicated genome into two, it is required that each pair of duplicated chromosomes, termed sister chromatids, should be paired together in a binary fashion from the moment they are generated. This pairing function between the duplicated genome is primarily provided by a multimeric protein complex, called cohesin. Thus, genome integrity largely depends on cohesin as it ensures faithful chromosome segregation by holding the sister chromatids glued together from S phase to anaphase. In this review, we have discussed the life cycle of cohesin during both mitotic and meiotic cell divisions including the structure and architecture of cohesin complex, relevance of cohesin associated proteins, mechanism of cohesin loading onto the chromatin, cohesion establishment and the mechanism of cohesin disassembly during anaphase to separate the sister chromatids. We have also focused on the role of posttranslational modifications in cohesin biology. For better understanding of the complexity of the cohesin regulatory network to the readers, we have presented an interactome profiling of cohesin core subunits in budding yeast during mitosis and meiosis.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | | | | |
Collapse
|
42
|
Whelan G, Kreidl E, Peters JM, Eichele G. The non-redundant function of cohesin acetyltransferase Esco2: some answers and new questions. Nucleus 2012; 3:330-4. [PMID: 22614755 DOI: 10.4161/nucl.20440] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cohesin and cohesin regulatory proteins function in an essential pathway enabling proper cohesion and segregation of sister chromatids. Additionally, these proteins are involved in double-strand break (DSB) repair and transcriptional regulation. Mutations in Establishment of cohesion 1 homolog 2 (Esco2), an evolutionary conserved cohesin acetyltransferase, are the cause of Roberts syndrome (RBS), a human congenital disorder. To explore the mechanism by which the deficiency in Esco2 affects cohesin's functions, we generated a mouse harboring a conditional Esco2 allele. To our surprise and in marked contrast to RBS, mouse Esco2 turns out to be a cell viability factor, the absence of which results in severe chromosome segregation defects and apoptosis. We found that the acetylation of the cohesin subunit Smc3 is significantly reduced in Esco2-deficient cells resulting in a marked reduction of Sororin recruitment to several, but not all cohesin bound loci. Here, we provide evidence that Esco2 is also required for DSB repair, which is consistent with previous studies in RBS cells.
Collapse
Affiliation(s)
- Gabriela Whelan
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | | | |
Collapse
|
43
|
Bose T, Lee KK, Lu S, Xu B, Harris B, Slaughter B, Unruh J, Garrett A, McDowell W, Box A, Li H, Peak A, Ramachandran S, Seidel C, Gerton JL. Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells. PLoS Genet 2012; 8:e1002749. [PMID: 22719263 PMCID: PMC3375231 DOI: 10.1371/journal.pgen.1002749] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
Cohesin is a protein complex known for its essential role in chromosome segregation. However, cohesin and associated factors have additional functions in transcription, DNA damage repair, and chromosome condensation. The human cohesinopathy diseases are thought to stem not from defects in chromosome segregation but from gene expression. The role of cohesin in gene expression is not well understood. We used budding yeast strains bearing mutations analogous to the human cohesinopathy disease alleles under control of their native promoter to study gene expression. These mutations do not significantly affect chromosome segregation. Transcriptional profiling reveals that many targets of the transcriptional activator Gcn4 are induced in the eco1-W216G mutant background. The upregulation of Gcn4 was observed in many cohesin mutants, and this observation suggested protein translation was reduced. We demonstrate that the cohesinopathy mutations eco1-W216G and smc1-Q843Δ are associated with defects in ribosome biogenesis and a reduction in the actively translating fraction of ribosomes, eiF2α-phosphorylation, and (35)S-methionine incorporation, all of which indicate a deficit in protein translation. Metabolic labeling shows that the eco1-W216G and smc1-Q843Δ mutants produce less ribosomal RNA, which is expected to constrain ribosome biogenesis. Further analysis shows that the production of rRNA from an individual repeat is reduced while copy number remains unchanged. Similar defects in rRNA production and protein translation are observed in a human Roberts syndrome cell line. In addition, cohesion is defective specifically at the rDNA locus in the eco1-W216G mutant, as has been previously reported for Roberts syndrome. Collectively, our data suggest that cohesin proteins normally facilitate production of ribosomal RNA and protein translation, and this is one way they can influence gene expression. Reduced translational capacity could contribute to the human cohesinopathies.
Collapse
Affiliation(s)
- Tania Bose
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kenneth K. Lee
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Shuai Lu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Baoshan Xu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Bethany Harris
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Brian Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Alexander Garrett
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William McDowell
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Andrew Box
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Hua Li
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison Peak
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sree Ramachandran
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jennifer L. Gerton
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
44
|
Abstract
The cohesin complex, named for its key role in sister chromatid cohesion, also plays critical roles in gene regulation and DNA repair. It performs all three functions in single cell eukaryotes such as yeasts, and in higher organisms such as man. Minor disruption of cohesin function has significant consequences for human development, even in the absence of measurable effects on chromatid cohesion or chromosome segregation. Here we survey the roles of cohesin in gene regulation and DNA repair, and how these functions vary from yeast to man.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| | | |
Collapse
|
45
|
Whelan G, Kreidl E, Wutz G, Egner A, Peters JM, Eichele G. Cohesin acetyltransferase Esco2 is a cell viability factor and is required for cohesion in pericentric heterochromatin. EMBO J 2012; 31:71-82. [PMID: 22101327 PMCID: PMC3252581 DOI: 10.1038/emboj.2011.381] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 09/22/2011] [Indexed: 01/25/2023] Open
Abstract
Sister chromatid cohesion, mediated by cohesin and regulated by Sororin, is essential for chromosome segregation. In mammalian cells, cohesion establishment and Sororin recruitment to chromatin-bound cohesin depends on the acetyltransferases Esco1 and Esco2. Mutations in Esco2 cause Roberts syndrome, a developmental disease in which mitotic chromosomes have a 'railroad' track morphology. Here, we show that Esco2 deficiency leads to termination of mouse development at pre- and post-implantation stages, indicating that Esco2 functions non-redundantly with Esco1. Esco2 is transiently expressed during S-phase when it localizes to pericentric heterochromatin (PCH). In interphase, Esco2 depletion leads to a reduction in cohesin acetylation and Sororin recruitment to chromatin. In early mitosis, Esco2 deficiency causes changes in the chromosomal localization of cohesin and its protector Sgo1. Our results suggest that Esco2 is needed for cohesin acetylation in PCH and that this modification is required for the proper distribution of cohesin on mitotic chromosomes and for centromeric cohesion.
Collapse
Affiliation(s)
- Gabriela Whelan
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Emanuel Kreidl
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Gordana Wutz
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Alexander Egner
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | - Gregor Eichele
- Genes and Behavior Department, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| |
Collapse
|
46
|
Wang AC, Gemmete JJ, Keegan CE, Witt CE, Muraszko KM, Than KD, Maher CO. Spontaneous intracranial hemorrhage and multiple intracranial aneurysms in a patient with Roberts/SC phocomelia syndrome. J Neurosurg Pediatr 2011; 8:460-3. [PMID: 22044369 DOI: 10.3171/2011.8.peds11117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Roberts/SC phocomelia syndrome (RBS) is a rare but distinct genetic disorder with an autosomal recessive inheritance pattern. It has been associated with microcephaly, craniofacial malformation, cavernous hemangioma, encephalocele, and hydrocephalus. There are no previously reported cases of RBS with intracranial aneurysms. The authors report on a patient with a history of RBS who presented with a spontaneous posterior fossa hemorrhage. Multiple small intracranial aneurysms were noted on a preoperative CT angiogram. The patient underwent emergency craniotomy for evacuation of the hemorrhage. A postoperative angiogram confirmed the presence of multiple, distal small intracranial aneurysms.
Collapse
Affiliation(s)
- Anthony C Wang
- Departments of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Genome instability is a hallmark of cancer cells and how it arises is still not completely understood. Correct chromosome segregation is a pre-requisite for preserving genome integrity. Cohesin helps to ensure faithful chromosome segregation during cell cycle, however, much evidence regarding its functions have come to light over the last few years and suggest that cohesin plays multiple roles in the maintenance of genome stability. Here we review our rapidly increasing knowledge on the involvement of cohesin pathway in genome stability and cancer.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Richerche, Pisa, Italy
| | | |
Collapse
|
48
|
Chien R, Zeng W, Ball AR, Yokomori K. Cohesin: a critical chromatin organizer in mammalian gene regulation. Biochem Cell Biol 2011; 89:445-58. [PMID: 21851156 PMCID: PMC4056987 DOI: 10.1139/o11-039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cohesins are evolutionarily conserved essential multi-protein complexes that are important for higher-order chromatin organization. They play pivotal roles in the maintenance of genome integrity through mitotic chromosome regulation, DNA repair and replication, as well as gene regulation critical for proper development and cellular differentiation. In this review, we will discuss the multifaceted functions of mammalian cohesins and their apparent functional hierarchy in the cell, with particular focus on their actions in gene regulation and their relevance to human developmental disorders.
Collapse
Affiliation(s)
- Richard Chien
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Alexander R. Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
49
|
Barresi MJF, Burton S, Dipietrantonio K, Amsterdam A, Hopkins N, Karlstrom RO. Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis. Dev Dyn 2011; 239:2603-18. [PMID: 20806318 DOI: 10.1002/dvdy.22393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of the central nervous system depends on the coordinated development of neural and glial cell types that arise from a common precursor. Using an existing group of zebrafish mutants generated by viral insertion, we performed a "shelf-screen" to identify genes necessary for astroglial development and axon scaffold formation. We screened 274 of 315 viral insertion lines using antibodies that label axons (anti-Acetylated Tubulin) and astroglia (anti-Gfap) and identified 25 mutants with defects in gliogenesis, glial patterning, neurogenesis, and axon guidance. We also identified a novel class of mutants affecting radial glial cell numbers. Defects in astroglial patterning were always associated with axon defects, supporting an important role for axon-glial interactions during axon scaffold development. The genes disrupted in these viral lines have all been identified, providing a powerful new resource for the study of axon guidance, glio- and neurogenesis, and neuron-glial interactions during development of the vertebrate CNS.
Collapse
|
50
|
Abstract
Cohesin is a conserved multisubunit protein complex with diverse cellular roles, making key contributions to the coordination of chromosome segregation, the DNA damage response and chromatin regulation by epigenetic mechanisms. Much has been learned in recent years about the roles of cohesin in a physiological context, whereas its potential and emerging role in tumour initiation and/or progression has received relatively little attention. In this Opinion article we examine how cohesin deregulation could contribute to cancer development on the basis of its physiological roles.
Collapse
Affiliation(s)
- Huiling Xu
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia
| | | | | |
Collapse
|