1
|
van Linge CC, Hulme KD, Peters-Sengers H, Kullberg RF, de Jong MD, Russell CA, de Vos AF, van der Poll T. mTOR inhibition impacts the flagellin-augmented inflammatory and antimicrobial response of human airway epithelial cells to Pseudomonas aeruginosa. PLoS One 2025; 20:e0321462. [PMID: 40338861 PMCID: PMC12061179 DOI: 10.1371/journal.pone.0321462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/06/2025] [Indexed: 05/10/2025] Open
Abstract
OBJECTIVE The airway epithelium provides a first line of defense against pathogens by release of antimicrobial factors and neutrophil-attracting chemokines. Pseudomonas (P.) aeruginosa, a Gram-negative bacterium that expresses flagellin as an important virulence factor, is a common cause of injurious airway inflammation. The aim of our study was to determine the contribution of flagellin to the inflammatory, antimicrobial, and metabolic responses of the airway epithelium to P. aeruginosa. Furthermore, as we previously showed that targeting mTOR limited the glycolytic and inflammatory response induced by flagellin, we assessed the effect of rapamycin on human bronchial epithelial (HBE) cells stimulated with flagellated and non-flagellated P. aeruginosa. METHODS Primary pseudostratified HBE cells, cultured on an air-liquid-interface, were treated on the basolateral side with medium, vehicle or rapamycin, exposed on the apical side with flagellated or flagellin-deficient P. aeruginosa, and analyzed for their inflammatory, antimicrobial, and glycolytic responses. RESULTS Flagellin augmented the P. aeruginosa-induced expression of antimicrobial factors and secretion of chemokines by HBE cells but did not further increase the glycolytic response. Treatment of HBE cells with rapamycin inhibited mTOR activation in general and flagellin-augmented mTOR activation in particular, but did not affect the glycolytic response. Rapamycin, however, diminished the flagellin-augmented inflammatory and antimicrobial response induced by Pseudomonas. CONCLUSIONS These results demonstrate that flagellin is a significant factor that augments the inflammatory and antimicrobial response of human airway epithelial cells upon exposure to P. aeruginosa and suggest that mTOR inhibition by rapamycin in the airway epithelium diminishes these exaggerated responses.
Collapse
Affiliation(s)
- Christine C.A. van Linge
- Center for Infection and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Katina D. Hulme
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Infection and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Robert F.J. Kullberg
- Center for Infection and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A. Russell
- Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Global Health, School of Public Health, Boston University, Boston, Massachusetts, United States of America
| | - Alex F. de Vos
- Center for Infection and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Infection and Molecular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Born-Bony M, Cornu C, Villeret B, Gratio V, Voulhoux R, Sallenave JM. Intrapulmonary-administered myeloid derived suppressor cells rescue mice from Pseudomonas aeruginosa infection and promote a regulatory/repair phenotype. Mucosal Immunol 2025:S1933-0219(25)00027-3. [PMID: 40107423 DOI: 10.1016/j.mucimm.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Pseudomonas aeruginosa (P.aeruginosa) is a pathogenic opportunistic bacterium, classified as a priority by the WHO for the research of new treatments. As this bacterium is harmful through the inflammation and tissue damage it causes, we investigated the role of Myeloid Derived Suppressor Cells (MDSC) in P.aeruginosa infections and their potential as a therapeutic tool. Using both 'classically' obtained MDSC (through mice bone-marrow differentiation), and a new procedure developed here (using the ER-Hoxb8 hematopoietic cell line), we observed that after administering intra-nasally a lethal dose of P.aeruginosa (PAO1), intra-pulmonary transfer of MDSC, in both prophylactic and therapeutic protocols, markedly improves survival of P.aeruginosa infected animals. Mechanistically, with a sub-lethal dose of P.aeruginosa, we observed that MDSC transfer modulated lung tissue injury, down-regulated inflammatory responses and elicited lung repair. We further showed that WT-PAO1 and MDSC (and their subtypes PMN-MDSC and M-MDSC) could interact directly in vitro and in vivo, and that both PMN- and M-MDSC gene expression (assessed through RNA sequencing) was modulated after in vitro P.aeruginosa infection, and that WT-PAO1 (but not ΔFlic-PAO1) infection led to inhibition of T cell proliferation and promoted epithelial cell wound healing. Furthermore, we showed that the transcription factor Nr4A1 was up-regulated in both PMN- and M-MDSC- infected cells and may be an important mediator in the process. Altogether, we highlight a potential beneficial role of MDSC in P.aeruginosa infection responses and suggest that the unique properties of these cells make them attractive potential new therapeutic tools for patients with acute or chronic inflammatory diseases.
Collapse
Affiliation(s)
- Maëlys Born-Bony
- Institut National de la Santé et de la Recherche Médicale, U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, 16 rue Henri Huchard, 75018 Paris, France
| | - Clémentine Cornu
- Institut National de la Santé et de la Recherche Médicale, U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, 16 rue Henri Huchard, 75018 Paris, France
| | - Bérengère Villeret
- Institut National de la Santé et de la Recherche Médicale, U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, 16 rue Henri Huchard, 75018 Paris, France
| | - Valérie Gratio
- INSERM UMR1149/Inflammation ResearchCenter (CRI), 16 rue Henri Huchard, 75018 Paris, France; INSERM UMR1149/Inflammation ResearchCenter (CRI), Flow Cytometry Platform (CytoCRI), 16 rue Henri Huchard, 75018 Paris, France
| | - Romé Voulhoux
- Laboratoire de Chimie Bactérienne LCB-UMR7283, CNRS, Aix Marseille Université, IMM, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Jean-Michel Sallenave
- Institut National de la Santé et de la Recherche Médicale, U1152, Physiopathologie et Épidémiologie des Maladies Respiratoires, Université Paris-Cité, 16 rue Henri Huchard, 75018 Paris, France.
| |
Collapse
|
3
|
Lim PN, Cervantes MM, Pham LK, Doherty SR, Tufts A, Dubey D, Mai D, Aderem A, Diercks AH, Rothchild AC. Absence of c-Maf and IL-10 enables type I IFN enhancement of innate responses to LPS in alveolar macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae029. [PMID: 40073087 PMCID: PMC11952875 DOI: 10.1093/jimmun/vkae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/19/2024] [Indexed: 03/14/2025]
Abstract
Alveolar macrophages (AMs) are lung-resident myeloid cells and airway sentinels for inhaled pathogens and environmental particles. While AMs can be highly inflammatory in response to respiratory viruses, they do not mount proinflammatory responses to all airborne pathogens. For example, we previously showed that AMs fail to mount a robust proinflammatory response to Mycobacterium tuberculosis. Here, we address this discrepancy by investigating the capacity of murine AMs for direct innate immune sensing, using LPS as a model. Use of LPS-coated fluorescent beads enabled us to distinguish between directly exposed and bystander cells to measure transcriptional responses, by RNA-sequencing after cell sorting, and cytokine responses, by flow cytometry. We find that AMs have decreased proinflammatory responses to low-dose LPS compared to other macrophage types (bone marrow-derived macrophages, peritoneal macrophages), as measured by TNF, IL-6, Ifnb, and Ifit3. The reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4. We also find that AMs do not produce IL-10 in response to a variety of stimuli due to low expression of the transcription factor c-Maf, while exogenous c-Maf expression restores IL-10 production in AMs. Lastly, we show that lack of IL-10 enables type I IFN enhancement of AM responses to LPS. Overall, we demonstrate AMs have a cell-intrinsic hyporesponsiveness to LPS, which makes them uniquely tolerant to low-dose exposure. Regulation of AM innate responses by distinct CD14, c-Maf, and IL-10 expression patterns has important implications for both respiratory infections and environmental airborne exposures.
Collapse
Affiliation(s)
- Pamelia N Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Maritza M Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Linh K Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Animal Biotechnology & Biomedical Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Sydney R Doherty
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Ankita Tufts
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Divya Dubey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alan H Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alissa C Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
4
|
Fukuda R, Beppu S, Hinata D, Kamada Y, Okiyoneda T. Perturbation of EPHA2 and EFNA1 trans binding amplifies inflammatory response in airway epithelial cells. iScience 2025; 28:111872. [PMID: 39991543 PMCID: PMC11847143 DOI: 10.1016/j.isci.2025.111872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 06/07/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
The interactions between EPH receptors and ephrin (EFN) ligands play a crucial role in maintaining epithelial integrity and aiding in defense against infections. However, it remains unclear how the EPH-EFN trans-binding changes during infections and how this alteration affects inflammatory response. Here we report that pathogen-associated molecular patterns (PAMPs) disrupt the EPHA2-EFNA1 trans-binding in airway epithelial cells (AECs). Mechanistically, flagellin induces the TLR5-dependent EFNA1 cleavage through the metalloproteinase ADAM9 concomitant with the activation of ligand-independent EPHA2 signaling. We found that the ablation of EPHA2 reduced the responsiveness of respiratory inflammation induced by flagellin and Pseudomonas aeruginosa both in vitro and in vivo. Notably, even in the absence of PAMPs, the inflammatory response in AECs was stimulated by forcibly induced EFNA1 shedding. These findings illustrate that the perturbation of the EPHA2-EFNA1 trans-binding acts as a sensing mechanism for infections and amplifies the inflammatory response, providing a defense mechanism for respiratory epithelia.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Shiori Beppu
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Daichi Hinata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Yuka Kamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Hyogo 669-1330, Japan
| |
Collapse
|
5
|
Lee J, Jin Y, Wu W, Lee Y, Ha UH. Pseudomonas aeruginosa-derived DnaJ induces TLR2 expression through TLR10-mediated activation of the PI3K-SGK1 pathway in macrophages. Microbes Infect 2025:105481. [PMID: 39978578 DOI: 10.1016/j.micinf.2025.105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
TLR2 is a key component of the innate immune system, responsible for recognizing Gram-positive bacterial components and initiating inflammatory signaling cascades that activate defense responses. However, little is known about the regulatory effects of Pseudomonas aeruginosa (P. aeruginosa) on TLR2 expression. In this study, we investigated the potential link between P. aeruginosa-derived DnaJ and TLR2 expression in macrophages, as well as the activation of downstream signaling pathways. Our findings revealed that DnaJ significantly induced TLR2 expression in a dose- and time-dependent manner, predominantly affecting TLR2 with minimal impact on other TLRs, such as TLR4 and TLR5, which detect bacterial PAMPs. The DnaJ-mediated TLR2 induction was driven by activation of the PI3K-SGK1 signaling pathway, with TLR10 playing a crucial role in facilitating these effects. This increase in TLR2 expression led to enhanced production of inflammatory cytokines in response to secondary Staphylococcus aureus infections, indicating a role in boosting host defense mechanisms. In conclusion, these findings suggest that P. aeruginosa-derived DnaJ promotes TLR2 expression via TLR10-mediated activation of the PI3K-SGK1 pathway, thereby enhancing host immune responses against Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Jaehoo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, Nankai University, Tianjin, 300071, China
| | - Yeji Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea.
| | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
6
|
Martín-Faivre L, Prince L, Cornu C, Villeret B, Sanchez-Guzman D, Rouzet F, Sallenave JM, Garcia-Verdugo I. Pulmonary delivery of silver nanoparticles prevents influenza infection by recruiting and activating lymphoid cells. Biomaterials 2025; 312:122721. [PMID: 39106817 DOI: 10.1016/j.biomaterials.2024.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Silver nanoparticles (AgNPs) are a potential antiviral agent due to their ability to disrupt the viral particle or alter the virus metabolism inside the host cell. In vitro, AgNPs exhibit antiviral activity against the most common human respiratory viruses. However, their capacity to modulate immune responses during respiratory viral infections has yet to be explored. This study demonstrates that administering AgNPs directly into the lungs prior to infection can reduce viral loads and therefore virus-induced cytokines in mice infected with influenza virus or murine pneumonia virus. The prophylactic effect was diminished in mice with depleted lymphoid cells. We showed that AgNPs-treatment resulted in the recruitment and activation of lymphocytes in the lungs, particularly natural killer (NK) cells. Mechanistically, AgNPs enhanced the ability of alveolar macrophages to promote both NK cell migration and IFN-γ production. By contrast, following infection, in mice treated with AgNPs, NK cells exhibited decreased activation, indicating that these nanoparticles can regulate the potentially deleterious activation of these cells. Overall, the data suggest that AgNPs may possess prophylactic antiviral properties by recruiting and controlling the activation of lymphoid cells through interaction with alveolar macrophages.
Collapse
Affiliation(s)
- Lydie Martín-Faivre
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Lisa Prince
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Clémentine Cornu
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Bérengère Villeret
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Daniel Sanchez-Guzman
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - François Rouzet
- Nuclear Medicine Department, Hôpital Bichat-Claude Bernard, AP-HP, Université Paris Cité and Inserm U1148, F-75018, Paris, France
| | - Jean-Michel Sallenave
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France
| | - Ignacio Garcia-Verdugo
- Université Paris Cité, Inflamex Excellence Laboratory, INSERM UMR-1152-PHERE, F-75018, Paris, France.
| |
Collapse
|
7
|
Eghbalpoor F, Gorji M, Alavigeh MZ, Moghadam MT. Genetically engineered phages and engineered phage-derived enzymes to destroy biofilms of antibiotics resistance bacteria. Heliyon 2024; 10:e35666. [PMID: 39170521 PMCID: PMC11336853 DOI: 10.1016/j.heliyon.2024.e35666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
"An impregnable stronghold where one or more warrior clans can evade enemy attacks" may serve as a description of bacterial biofilm on a smaller level than human conflicts. Consider this hypothetical conflict: who would emerge victorious? The occupants of secure trenches or those carrying out relentless assault? Either faction has the potential for triumph; the defenders will prevail if they can fortify the trench with unwavering resolve, while the assailants will succeed if they can devise innovative means to breach the trench. Hence, bacterial biofilms pose a significant challenge and are formidable adversaries for medical professionals, often leading to the failure of antibiotic treatments in numerous hospital infections. Phage engineering has become the foundation for the targeted enhancement of various phage properties, facilitating the eradication of biofilms. Researchers across the globe have studied the impact of engineered phages and phage-derived enzymes on biofilms formed by difficult-to-treat bacteria. These novel biological agents have shown promising results in addressing biofilm-related challenges. The compilation of research findings highlights the impressive capabilities of engineered phages in combating antibiotic-resistant bacteria, superbugs, and challenging infections. Specifically, these engineered phages exhibit enhanced biofilm destruction, penetration, and prevention capabilities compared to their natural counterparts. Additionally, the engineered enzymes derived from phages demonstrate improved effectiveness in addressing bacterial biofilms. As a result, these novel solutions, which demonstrate high penetration, destruction, and inhibition of biofilms, can be regarded as a viable option for addressing infectious biofilms in the near future.
Collapse
Affiliation(s)
- Fatemeh Eghbalpoor
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdieh Gorji
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Zamani Alavigeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
9
|
Zborowsky S, Seurat J, Balacheff Q, Ecomard S, Nguyen Ngoc Minh C, Titécat M, Evrard E, Rodriguez-Gonzalez RA, Marchi J, Weitz JS, Debarbieux L. Macrophage-induced reduction of bacteriophage density limits the efficacy of in vivo pulmonary phage therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575879. [PMID: 38293203 PMCID: PMC10827109 DOI: 10.1101/2024.01.16.575879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The rise of antimicrobial resistance has led to renewed interest in evaluating phage therapy. In murine models highly effective treatment of acute pneumonia caused by Pseudomonas aeruginosa relies on the synergistic antibacterial activity of bacteriophages with neutrophils. Here, we show that depletion of alveolar macrophages (AM) shortens the survival of mice without boosting the P. aeruginosa load in the lungs. Unexpectedly, upon bacteriophage treatment, pulmonary levels of P. aeruginosa were significantly lower in AM-depleted than in immunocompetent mice. To explore potential mechanisms underlying the benefit of AM-depletion in treated mice, we developed a mathematical model of phage, bacteria, and innate immune system dynamics. Simulations from the model fitted to data suggest that AM reduce bacteriophage density in the lungs. We experimentally confirmed that the in vivo decay of bacteriophage is faster in immunocompetent compared to AM-depleted animals. These findings demonstrate the involvement of feedback between bacteriophage, bacteria, and the immune system in shaping the outcomes of phage therapy in clinical settings.
Collapse
Affiliation(s)
- Sophia Zborowsky
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
- These authors contributed equally
| | - Jérémy Seurat
- Institut de Biologie, Ecole Normale Supérieure, Paris 75005, France
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA 30332, USA
- These authors contributed equally
| | - Quentin Balacheff
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
- CHU Felix Guyon, Service des maladies respiratoires, La Réunion, France
| | - Solène Ecomard
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
- DGA, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Chau Nguyen Ngoc Minh
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Marie Titécat
- Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille 59000, France
| | - Emma Evrard
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
| | - Rogelio A. Rodriguez-Gonzalez
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA 30332, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta GA 30332, USA
| | - Jacopo Marchi
- Department of Biology, University of Maryland, College Park MD 20742, USA
| | - Joshua S. Weitz
- Institut de Biologie, Ecole Normale Supérieure, Paris 75005, France
- School of Biological Sciences, Georgia Institute of Technology, Atlanta GA 30332, USA
- Department of Biology, University of Maryland, College Park MD 20742, USA
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, Bacteriophage Bacterium Host, Paris 75015, France
| |
Collapse
|
10
|
Lim PN, Cervantes MM, Pham LK, Doherty S, Tufts A, Dubey D, Mai D, Aderem A, Diercks AH, Rothchild AC. Absence of c-Maf and IL-10 enables Type I IFN enhancement of innate responses to low-dose LPS in alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.594428. [PMID: 38826239 PMCID: PMC11142172 DOI: 10.1101/2024.05.22.594428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Alveolar macrophages (AMs) are lower-airway resident myeloid cells and are among the first to respond to inhaled pathogens. Here, we interrogate AM innate sensing to Pathogen Associated Molecular Patterns (PAMPs) and determine AMs have decreased responses to low-dose LPS compared to other macrophages, as measured by TNF, IL-6, Ifnb, and Ifit3. We find the reduced response to low-dose LPS correlates with minimal TLR4 and CD14 surface expression, despite sufficient internal expression of TLR4. Additionally, we find that AMs do not produce IL-10 in response to a variety of PAMPs due to low expression of transcription factor c-Maf and that lack of IL-10 production contributes to an enhancement of pro-inflammatory responses by Type I IFN. Our findings demonstrate that AMs have cell-intrinsic dampened responses to LPS, which is enhanced by type I IFN exposure. These data implicate conditions where AMs may have reduced or enhanced sentinel responses to bacterial infections.
Collapse
Affiliation(s)
- Pamelia N. Lim
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Maritza M. Cervantes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Linh K. Pham
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Animal Biotechnology & Biomedical Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Sydney Doherty
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Ankita Tufts
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| | - Divya Dubey
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
- Graduate Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Dat Mai
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alan H. Diercks
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98019
| | - Alissa C. Rothchild
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
11
|
Murphy RA, Pizzato J, Cuthbertson L, Sabnis A, Edwards AM, Nolan LM, Vorup-Jensen T, Larrouy-Maumus G, Davies JC. Antimicrobial peptide glatiramer acetate targets Pseudomonas aeruginosa lipopolysaccharides to breach membranes without altering lipopolysaccharide modification. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:4. [PMID: 39843948 PMCID: PMC11702655 DOI: 10.1038/s44259-024-00022-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2025]
Abstract
Antimicrobial peptides (AMPs) are key components of innate immunity across all domains of life. Natural and synthetic AMPs are receiving renewed attention in efforts to combat the antimicrobial resistance (AMR) crisis and the loss of antibiotic efficacy. The gram-negative pathogen Pseudomonas aeruginosa is one of the most concerning infecting bacteria in AMR, particularly in people with cystic fibrosis (CF) where respiratory infections are difficult to eradicate and associated with increased morbidity and mortality. Cationic AMPs exploit the negatively charged lipopolysaccharides (LPS) on P. aeruginosa to bind and disrupt bacterial membrane(s), causing lethal damage. P. aeruginosa modifies its LPS to evade AMP killing. Free-LPS is also a component of CF sputum and feeds pro-inflammatory cycles. Glatiramer acetate (GA) is a random peptide co-polymer-of glycine, lysine, alanine, tyrosine-used as a drug in treatment of multiple sclerosis (MS); we have previously shown GA to be an AMP which synergises with tobramycin against CF P. aeruginosa, functioning via bacterial membrane disruption. Here, we demonstrate GA's direct binding and sequestration/neutralisation of P. aeruginosa LPS, in keeping with GA's ability to disrupt the outer membrane. At CF-relevant LPS concentrations, however, membrane disruption by GA was not strongly inhibited. Furthermore, exposure to GA did not result in increased Lipid A modification of LPS or in increased gene expression of systems involved in AMP sensing and LPS modification. Therefore, despite the electrostatic targeting of LPS by GA as part of its activity, P. aeruginosa does not demonstrate LPS modification in its defence.
Collapse
Affiliation(s)
- Ronan A Murphy
- National Heart and Lung Institute, Imperial College London, London, UK.
| | - Jade Pizzato
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Leah Cuthbertson
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Akshay Sabnis
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Andrew M Edwards
- Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Laura M Nolan
- National Heart and Lung Institute, Imperial College London, London, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | | | | | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| |
Collapse
|
12
|
Janas PP, Chauché C, Shearer P, Perona-Wright G, McSorley HJ, Schwarze J. Cold dispase digestion of murine lungs improves recovery and culture of airway epithelial cells. PLoS One 2024; 19:e0297585. [PMID: 38271372 PMCID: PMC10810513 DOI: 10.1371/journal.pone.0297585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Airway epithelial cells (AECs) play a key role in maintaining lung homeostasis, epithelium regeneration and the initiation of pulmonary immune responses. To isolate and study murine AECs investigators have classically used short and hot (1h 37°C) digestion protocols. Here, we present a workflow for efficient AECs isolation and culture, utilizing long and cold (20h 4°C) dispase II digestion of murine lungs. This protocol yields a greater number of viable AECs compared to an established 1h 37°C dispase II digestion. Using a combination of flow cytometry and immunofluorescent microscopy, we demonstrate that compared to the established method, the cold digestion allows for recovery of a 3-fold higher number of CD45-CD31-EpCAM+ cells from murine lungs. Their viability is increased compared to established protocols, they can be isolated in larger numbers by magnetic-activated cell sorting (MACS), and they result in greater numbers of distal airway stem cell (DASC) KRT5+p63+ colonies in vitro. Our findings demonstrate that temperature and duration of murine lung enzymatic digestion have a considerable impact on AEC yield, viability, and ability to form colonies in vitro. We believe this workflow will be helpful for studying lung AECs and their role in the biology of lung.
Collapse
Affiliation(s)
- Piotr Pawel Janas
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Caroline Chauché
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Patrick Shearer
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Georgia Perona-Wright
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jürgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Gu M, Su W, Dai J, Wang J, Jia X, Yao J, Zhang G, Zhu Q, Pang Z. Jingfang granule alleviates Pseudomonas aeruginosa-induced acute lung inflammation through suppression of STAT3/IL-17/NF-κB pathway based on network pharmacology analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116899. [PMID: 37454750 DOI: 10.1016/j.jep.2023.116899] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the second leading cause of hospital-acquired pneumonia. Jingfang granule (JFG) is an herbal formula of Traditional Chinese medicine (TCM) widely used in treatment of acute respiratory tract infections in China. However, the molecular mechanisms of JFG in treatment of P. aeruginosa-induced acute pneumonia are not clear. AIM OF STUDY This study aimed to investigate the mechanisms underlying the effects of JFG on P. aeruginosa-induced acute inflammation using a mouse model of bacterial acute pneumonia. MATERIALS AND METHODS The chemical components and targets of JFG were retrieved from Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the P. aeruginosa pneumonia-related targets were obtained from the disease databases, including Online Mendelian Inheritance in Man (OMIM), GeneCards and DisGeNet. The protein-protein interaction (PPI) network was constructed using STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Molecular docking was performed using AutoDockTools 1.5.6. Further in vivo experiments employed a mouse model of P. aeruginosa acute pneumonia to verify the target proteins and signaling pathways affected by JFG, which were predicted by the network pharmacology analysis. RESULTS A total of 218 active components and 257 targets of JFG were retrieved from TCMSP database. Moreover, 99 intersectant targets were obtained between the 257 JFG targets and 694 disease targets. Among the intersectant targets, STAT3, IL-6, AKT1, TNF, MAPK1, MAPK3 and EGFR were identified to be the key therapeutic targets through PPI network analysis, and STAT3 was in the center of the network, which is a key regulator of IL-17 expression. KEGG pathway enrichment analysis suggested that IL-17 signaling pathway was one of the crucial inflammatory pathways affected by JFG in treatment of P. aeruginosa pneumonia. Furthermore, the in vivo experiments demonstrated that the JFG-treated mice displayed reduced proinflammatory cytokine production (IL-17, IL-1β, IL-6 and TNF), diminished neutrophil infiltration and decreased mortality, compared with the non-drug-treated mice during P. aeruginosa lung infection. Moreover, the expression or phosphorylation levels of the key regulators in STAT3/IL-17/NF-κB axis including STAT3, ERK1/2 (MAPK3/1), AKT, NF-κB p65 and RORγt were significantly reduced in the lung tissues of the JFG-treated mice. CONCLUSION JFG was effective in treatment of P. aeruginosa acute lung infection, which reduced inflammatory responses through suppressing STAT3/IL-17/NF-κB pathway.
Collapse
Affiliation(s)
- Mengdi Gu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiangqin Dai
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jue Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xiaolei Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zheng Pang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
14
|
Cangui-Panchi SP, Ñacato-Toapanta AL, Enríquez-Martínez LJ, Salinas-Delgado GA, Reyes J, Garzon-Chavez D, Machado A. Battle royale: Immune response on biofilms – host-pathogen interactions. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100057. [PMID: 37025390 PMCID: PMC10070391 DOI: 10.1016/j.crimmu.2023.100057] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The research interest of the scientific community in biofilm-forming microorganisms is growing due to the problems caused by their infections affecting humans and animals, mainly because of the difficulty of the host immune system in eradicating these microbial complex communities and the increasing antimicrobial resistance rates worldwide. This review describes the virulence factors and their interaction with the microbial communities of four well-known and highly biofilm-forming pathogens, more exactly, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus spp., and Candida spp. The innate and adaptive immune responses caused by the infection with these microorganisms and their evasion to the host immune system by biofilm formation are discussed in the present work. The relevance of the differences in the expression of certain virulence factors and the immune response in biofilm-associated infections when compared to planktonic infections is usually described as the biofilm architecture protects the pathogen and alters the host immune responses, here we extensively discussed these mechanisms.
Collapse
Affiliation(s)
- Sandra Pamela Cangui-Panchi
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Anahí Lizbeth Ñacato-Toapanta
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Leonardo Joshué Enríquez-Martínez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Gabriela Alexandra Salinas-Delgado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Jorge Reyes
- Hospital del Instituto Ecuatoriano de Seguridad Social (IESS) Quito-Sur, Quito, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito, Ecuador
| | - Daniel Garzon-Chavez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Quito, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
- Corresponding author.
| |
Collapse
|
15
|
Tanner L, Bergwik J, Bhongir RKV, Puthia M, Lång P, Ali MN, Welinder C, Önnerfjord P, Erjefält JS, Palmberg L, Andersson G, Egesten A. Tartrate resistant acid phosphatase 5 (TRAP5) mediates immune cell recruitment in a murine model of pulmonary bacterial infection. Front Immunol 2022; 13:1079775. [PMID: 36569898 PMCID: PMC9779928 DOI: 10.3389/fimmu.2022.1079775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction During airway infection, upregulation of proinflammatory cytokines and subsequent immune cell recruitment is essential to mitigate bacterial infection. Conversely, during prolonged and non-resolving airway inflammation, neutrophils contribute to tissue damage and remodeling. This occurs during diseases including cystic fibrosis (CF) and COPD where bacterial pathogens, not least Pseudomonas aeruginosa, contribute to disease progression through long-lasting infections. Tartrate-resistant acid phosphatase (TRAP) 5 is a metalloenzyme expressed by alveolar macrophages and one of its target substrates is the phosphoglycoprotein osteopontin (OPN). Methods We used a knockout mouse strain (Trap5-/-) and BALB/c-Tg (Rela-luc)31Xen mice paired with siRNA administration or functional protein add-back to elucidate the role of Trap5 during bacterial infection. In a series of experiments, Trap5-/- and wild-type control mice received intratracheal administration of P.aerugniosa (Xen41) or LPS, with mice monitored using intravital imaging (IVIS). In addition, multiplex cytokine immunoassays, flow cytometry, multispectral analyses, histological staining were performed. Results In this study, we found that Trap5-/- mice had impaired clearance of P. aeruginosa airway infection and reduced recruitment of immune cells (i.e. neutrophils and inflammatory macrophages). Trap5 knockdown using siRNA resulted in a decreased activation of the proinflammatory transcription factor NF-κB in reporter mice and a subsequent decrease of proinflammatory gene expression. Add-back experiments of enzymatically active TRAP5 to Trap5-/- mice restored immune cell recruitment and bacterial killing. In human CF lung tissue, TRAP5 of alveolar macrophages was detected in proximity to OPN to a higher degree than in normal lung tissue, indicating possible interactions. Discussion Taken together, the findings of this study suggest a key role for TRAP5 in modulating airway inflammation. This could have bearing in diseases such as CF and COPD where excessive neutrophilic inflammation could be targeted by pharmacological inhibitors of TRAP5.
Collapse
Affiliation(s)
- Lloyd Tanner
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jesper Bergwik
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K. V. Bhongir
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Manoj Puthia
- Department of Dermatology and Venereology, Lund University and Skåne University Hospital, Lund, Sweden,Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mohamad N. Ali
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Charlotte Welinder
- Swedish National Infrastructure for Biological Mass Spectrometry (BioMS), Lund University, Lund, Sweden
| | - Patrik Önnerfjord
- Molecular Skeletal Biology, Section for Rheumatology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jonas S. Erjefält
- Unit of Airway Inflammation, Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Lena Palmberg
- Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden,*Correspondence: Arne Egesten,
| |
Collapse
|
16
|
Pseudomonas aeruginosa Alters Critical Lung Epithelial Cell Functions through Activation of ADAM17. Cells 2022; 11:cells11152303. [PMID: 35892600 PMCID: PMC9331763 DOI: 10.3390/cells11152303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023] Open
Abstract
Severe epithelial dysfunction is one major hallmark throughout the pathophysiological progress of bacterial pneumonia. Junctional and cellular adhesion molecules (e.g., JAMA-A, ICAM-1), cytokines (e.g., TNFα), and growth factors (e.g., TGFα), controlling proper lung barrier function and leukocyte recruitment, are proteolytically cleaved and released into the extracellular space through a disintegrin and metalloproteinase (ADAM) 17. In cell-based assays, we could show that the protein expression, maturation, and activation of ADAM17 is upregulated upon infection of lung epithelial cells with Pseudomonas aeruginosa and Exotoxin A (ExoA), without any impact of infection by Streptococcus pneumoniae. The characterization of released extracellular vesicles/exosomes and the comparison to heat-inactivated bacteria revealed that this increase occurred in a cell-associated and toxin-dependent manner. Pharmacological targeting and gene silencing of ADAM17 showed that its activation during infection with Pseudomonas aeruginosa was critical for the cleavage of junctional adhesion molecule A (JAM-A) and epithelial cell survival, both modulating barrier integrity, epithelial regeneration, leukocyte adhesion and transepithelial migration. Thus, site-specific targeting of ADAM17 or blockage of the activating toxins may constitute a novel anti-infective therapeutic option in Pseudomonas aeruginosa lung infection preventing severe epithelial and organ dysfunctions and stimulating future translational studies.
Collapse
|
17
|
Sen-Kilic E, Huckaby AB, Damron FH, Barbier M. P. aeruginosa type III and type VI secretion systems modulate early response gene expression in type II pneumocytes in vitro. BMC Genomics 2022; 23:345. [PMID: 35508983 PMCID: PMC9068226 DOI: 10.1186/s12864-022-08554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung airway epithelial cells are part of innate immunity and the frontline of defense against bacterial infections. During infection, airway epithelial cells secrete proinflammatory mediators that participate in the recruitment of immune cells. Virulence factors expressed by bacterial pathogens can alter epithelial cell gene expression and modulate this response. Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, expresses numerous virulence factors to facilitate establishment of infection and evade the host immune response. This study focused on identifying the role of two major P. aeruginosa virulence factors, type III (T3SS) and type VI (T6SS) secretion systems, on the early transcriptome response of airway epithelial cells in vitro. RESULTS We performed RNA-seq analysis of the transcriptome response of type II pneumocytes during infection with P. aeruginosa in vitro. We observed that P. aeruginosa differentially upregulates immediate-early response genes and transcription factors that induce proinflammatory responses in type II pneumocytes. P. aeruginosa infection of type II pneumocytes was characterized by up-regulation of proinflammatory networks, including MAPK, TNF, and IL-17 signaling pathways. We also identified early response genes and proinflammatory signaling pathways whose expression change in response to infection with P. aeruginosa T3SS and T6SS mutants in type II pneumocytes. We determined that T3SS and T6SS modulate the expression of EGR1, FOS, and numerous genes that are involved in proinflammatory responses in epithelial cells during infection. T3SS and T6SS were associated with two distinct transcriptomic signatures related to the activation of transcription factors such as AP1, STAT1, and SP1, and the secretion of pro-inflammatory cytokines such as IL-6 and IL-8. CONCLUSIONS Taken together, transcriptomic analysis of epithelial cells indicates that the expression of immediate-early response genes quickly changes upon infection with P. aeruginosa and this response varies depending on bacterial viability and injectosomes. These data shed light on how P. aeruginosa modulates host epithelial transcriptome response during infection using T3SS and T6SS.
Collapse
Affiliation(s)
- Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Annalisa B Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA.,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA. .,Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, USA.
| |
Collapse
|
18
|
Isthmin 1 is Expressed by Progenitor-Like Cells in the Lung: Phenotypical Analysis of Isthmin 1+ Hematopoietic Stem-Like Cells in Homeostasis and during Infection. J Immunol Res 2022; 2022:2909487. [PMID: 35402623 PMCID: PMC8993550 DOI: 10.1155/2022/2909487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 01/22/2023] Open
Abstract
The process by which blood cells are generated has been widely studied in homeostasis and during pathogen-triggered inflammatory response. Recently, murine lungs have been shown to be a significant source of hematopoietic progenitors in a process known as extramedullary hematopoiesis. Using multiparametric flow cytometry, we have identified mesenchymal, endothelial, and hematopoietic progenitor cells that express the secreted small protein Isthmin 1 (ISM1). Further characterization of hematopoietic progenitor cells indicated that ISM1+ Lineage− Sca-1+ c-kit+ (ISM1+ LSK) cells are enriched in short-term hematopoietic stem cells (ST-HSCs). Moreover, most Sca-1+ ISM1+ cells express the residence marker CD49a, and this correlated with their localization in the extravascular region of the lung, indicating that ISM1+ cells are lung-resident cells. We also observed that ISM1+ cells express TLR4, TLR5, and TLR9, and, in a mouse model of sepsis induced by P. aeruginosa, we observed that all the LSK and ISM1+LSK cells were affected. We conclude that ISM1 is a novel biomarker associated with progenitor-like cells. ISM1+ cells are involved in the response to a bacterial challenge, suggesting an association between ISM1-producing cells and dangerous inflammatory responses like sepsis.
Collapse
|
19
|
Kheir S, Villeret B, Garcia-Verdugo I, Sallenave JM. IL-6-elafin genetically modified macrophages as a lung immunotherapeutic strategy against Pseudomonas aeruginosa infections. Mol Ther 2022; 30:355-369. [PMID: 34371178 PMCID: PMC8753374 DOI: 10.1016/j.ymthe.2021.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/28/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Pseudomonas aeruginosa (P.a) infections are a major public health issue in ventilator-associated pneumoniae, cystic fibrosis, and chronic obstructive pulmonary disease exacerbations. P.a is multidrug resistant, and there is an urgent need to develop new therapeutic approaches. Here, we evaluated the effect of direct pulmonary transplantation of gene-modified (elafin and interleukin [IL]-6) syngeneic macrophages in a mouse model of acute P.a infection. Wild-type (WT) or Elafin-transgenic (eTg) alveolar macrophages (AMs) or bone marrow-derived macrophages (BMDMs) were recovered from bronchoalveolar lavage or generated from WT or eTg mouse bone marrow. Cells were modified with adenovirus IL-6 (Ad-IL-6), characterized in vitro, and transferred by oropharyngeal instillation in the lungs of naive mice. The protective effect was assessed during P.a acute infection (survival studies, mechanistic studies of the inflammatory response). We show that a single bolus of genetically modified syngeneic AMs or BMDMs provided protection in our P.a-induced model. Mechanistically, Elafin-modified AMs had an IL-6-IL-10-IL-4R-IL-22-antimicrobial molecular signature that, in synergy with IL-6, enhanced epithelial cell proliferation and tissue repair in the alveolar unit. We believe that this innovative cell therapy strategy could be of value in acute bacterial infections in the lung.
Collapse
Affiliation(s)
- Saadé Kheir
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France
| | - Bérengère Villeret
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France
| | - Ignacio Garcia-Verdugo
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France
| | - Jean-Michel Sallenave
- INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France,Corresponding author: Jean-Michel Sallenave, INSERM U1152, Laboratoire d’Excellence Inflamex, Université de Paris, Hôpital Bichat—Claude-Bernard, Paris 75014, France.
| |
Collapse
|
20
|
Watkinson RL, Looi K, Laing IA, Cianferoni A, Kicic A. Viral Induced Effects on a Vulnerable Epithelium; Lessons Learned From Paediatric Asthma and Eosinophilic Oesophagitis. Front Immunol 2021; 12:773600. [PMID: 34912343 PMCID: PMC8666438 DOI: 10.3389/fimmu.2021.773600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/05/2021] [Indexed: 01/07/2023] Open
Abstract
The epithelium is integral to the protection of many different biological systems and for the maintenance of biochemical homeostasis. Emerging evidence suggests that particular children have epithelial vulnerabilities leading to dysregulated barrier function and integrity, that resultantly contributes to disease pathogenesis. These epithelial vulnerabilities likely develop in utero or in early life due to various genetic, epigenetic and environmental factors. Although various epithelia are uniquely structured with specific function, prevalent allergic-type epithelial diseases in children potentially have common or parallel disease processes. These include inflammation and immune response dysregulation stemming from atypical epithelial barrier function and integrity. Two diseases where aetiology and pathogenesis are potentially linked to epithelial vulnerabilities include Paediatric Asthma and Eosinophilic Oesophagitis (EoE). For example, rhinovirus C (RV-C) is a known risk factor for paediatric asthma development and is known to disrupt respiratory epithelial barrier function causing acute inflammation. In addition, EoE, a prevalent atopic condition of the oesophageal epithelium, is characterised by similar innate immune and epithelial responses to viral injury. This review examines the current literature and identifies the gaps in the field defining viral-induced effects on a vulnerable respiratory epithelium and resulting chronic inflammation, drawing from knowledge generated in acute wheezing illness, paediatric asthma and EoE. Besides highlighting the importance of epithelial structure and barrier function in allergic disease pathogenesis regardless of specific epithelial sub-types, this review focuses on the importance of examining other parallel allergic-type disease processes that may uncover commonalities driving disease pathogenesis. This in turn may be beneficial in the development of common therapeutics for current clinical management and disease prevention in the future.
Collapse
Affiliation(s)
- Rebecca L Watkinson
- Division of Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia.,Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Kevin Looi
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia
| | - Ingrid A Laing
- Division of Paediatrics, Medical School, The University of Western Australia, Nedlands, WA, Australia.,Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Antonella Cianferoni
- Pediatrics Department, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anthony Kicic
- Wal-Yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Bentley, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
21
|
Tomlinson KL, Prince AS, Wong Fok Lung T. Immunometabolites Drive Bacterial Adaptation to the Airway. Front Immunol 2021; 12:790574. [PMID: 34899759 PMCID: PMC8656696 DOI: 10.3389/fimmu.2021.790574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are both opportunistic pathogens that are frequently associated with chronic lung infections. While bacterial virulence determinants are critical in initiating infection, the metabolic flexibility of these bacteria promotes their persistence in the airway. Upon infection, these pathogens induce host immunometabolic reprogramming, resulting in an airway milieu replete with immune-signaling metabolites. These metabolites are often toxic to the bacteria and create a steep selection pressure for the emergence of bacterial isolates adapted for long-term survival in the inflamed lung. In this review, we discuss the main differences in the host immunometabolic response to P. aeruginosa and S. aureus, as well as how these pathogens alter their own metabolism to adapt to airway metabolites and cause persistent lung infections.
Collapse
Affiliation(s)
| | | | - Tania Wong Fok Lung
- Department of Pediatrics, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
22
|
Bertelsen A, Elborn JS, Schock BC. Microbial interaction: Prevotella spp. reduce P. aeruginosa induced inflammation in cystic fibrosis bronchial epithelial cells. J Cyst Fibros 2021; 20:682-691. [PMID: 34112603 DOI: 10.1016/j.jcf.2021.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND In Cystic Fibrosis (CF) airways, the dehydrated, thick mucus promotes the establishment of persistent polymicrobial infections and drives chronic airways inflammation. This also predisposes the airways to further infections, the vicious, self-perpetuating cycle causing lung damage and progressive lung function decline. The airways are a poly-microbial environment, containing both aerobic and anaerobic bacterial species. Pseudomonas aeruginosa (P. aeruginosa) infections contribute to the excessive inflammatory response in CF, but the role of anaerobic Prevotella spp., frequently found in CF airways, is not known. MATERIALS We assessed innate immune signalling in CF airway epithelial cells in response to clinical strains of P. histicola, P. nigresens and P. aeruginosa. CFBE41o- cells were infected with P. aeruginosa (MOI 100, 2h) followed by infection with P. histicola or P. nigrescens (MOI 100, 2h). Cells were incubated under anaerobic conditions for the duration of the experiments. RESULTS Our study shows that P. histicola and P. nigresens can reduce the growth of P. aeruginosa and dampen the inflammatory response in airway epithelial cells. We specifically illustrate that the presence of the investigated Prevotella spp. reduces Toll-like-receptor (TLR)-4, MAPK, NF-κB(p65) signalling and cytokine release (Interleukin (IL)-6, IL-8) in mixed infections. CONCLUSION Our work, for the first time, strongly indicates a relationship between P. aeruginosa and anaerobic Prevotella spp.. The observed modified NF-κB and MAPK signalling indicates some mechanisms underlying this interaction that could offer a novel therapeutic approach to combat chronic P. aeruginosa infection in people with CF.
Collapse
Affiliation(s)
- Anne Bertelsen
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Lisburn Road, Belfast, UK; Department of Medicine, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK
| | - J Stuart Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Lisburn Road, Belfast, UK; Imperial College London, London, UK
| | - Bettina C Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Lisburn Road, Belfast, UK.
| |
Collapse
|
23
|
Cho DY, Zhang S, Lazrak A, Skinner D, Thompson HM, Grayson J, Guroji P, Aggarwal S, Bebok Z, Rowe SM, Matalon S, Sorscher EJ, Woodworth BA. LPS decreases CFTR open probability and mucociliary transport through generation of reactive oxygen species. Redox Biol 2021; 43:101998. [PMID: 33971543 PMCID: PMC8129928 DOI: 10.1016/j.redox.2021.101998] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022] Open
Abstract
Lipopolysaccharide (LPS) serves as the interface between gram-negative bacteria (GNB) and the innate immune response in respiratory epithelial cells (REC). Herein, we describe a novel biological role of LPS that permits GNB to persist in the respiratory tract through inducing CFTR and mucociliary dysfunction. LPS reduced cystic fibrosis transmembrane conductance regulater (CFTR)-mediated short-circuit current in mammalian REC in Ussing chambers and nearly abrogated CFTR single channel activity (defined as forskolin-activated Cl- currents) in patch clamp studies, effects of which were blocked with toll-like receptor (TLR)-4 inhibitor. Unitary conductance and single-channel amplitude of CFTR were unaffected, but open probability and number of active channels were markedly decreased. LPS increased cytoplasmic and mitochondrial reactive oxygen species resulting in CFTR carbonylation. All effects of exposure were eliminated when reduced glutathione was added in the medium along with LPS. Functional microanatomy parameters, including mucociliary transport, in human sinonasal epithelial cells in vitro were also decreased, but restored with co-incubation with glutathione or TLR-4 inhibitor. In vivo measurements, following application of LPS in the nasal cavities showed significant decreases in transepithelial Cl- secretion as measured by nasal potential difference (NPD) – an effect that was nullified with glutathione and TLR-4 inhibitor. These data provide definitive evidence that LPS-generated reactive intermediates downregulate CFTR function in vitro and in vivo which results in cystic fibrosis-type disease. Findings have implications for therapeutic approaches intent on stimulating Cl- secretion and/or reducing oxidative stress to decrease the sequelae of GNB airway colonization and infection.
Collapse
Affiliation(s)
- Do Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Division of Otolaryngology, Department of Surgery, Veterans Affairs, Birmingham, AL, USA
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ahmed Lazrak
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harrison M Thompson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jessica Grayson
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Purushotham Guroji
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Saurabh Aggarwal
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zsuzsanna Bebok
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sadis Matalon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Bradford A Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Knowles A, Campbell S, Cross N, Stafford P. Bacterial Manipulation of the Integrated Stress Response: A New Perspective on Infection. Front Microbiol 2021; 12:645161. [PMID: 33967983 PMCID: PMC8100032 DOI: 10.3389/fmicb.2021.645161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Host immune activation forms a vital line of defence against bacterial pathogenicity. However, just as hosts have evolved immune responses, bacteria have developed means to escape, hijack and subvert these responses to promote survival. In recent years, a highly conserved group of signalling cascades within the host, collectively termed the integrated stress response (ISR), have become increasingly implicated in immune activation during bacterial infection. Activation of the ISR leads to a complex web of cellular reprogramming, which ultimately results in the paradoxical outcomes of either cellular homeostasis or cell death. Therefore, any pathogen with means to manipulate this pathway could induce a range of cellular outcomes and benefit from favourable conditions for long-term survival and replication. This review aims to outline what is currently known about bacterial manipulation of the ISR and present key hypotheses highlighting areas for future research.
Collapse
Affiliation(s)
- Alex Knowles
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Susan Campbell
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Neil Cross
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| | - Prachi Stafford
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
25
|
Qin W, Brands X, van’t Veer C, F. de Vos A, Sirard JC, J. T. H. Roelofs J, P. Scicluna B, van der Poll T. Bronchial epithelial DNA methyltransferase 3b dampens pulmonary immune responses during Pseudomonas aeruginosa infection. PLoS Pathog 2021; 17:e1009491. [PMID: 33793661 PMCID: PMC8043394 DOI: 10.1371/journal.ppat.1009491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/13/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
DNA methyltransferase (Dnmt)3b mediates de novo DNA methylation and modulation of Dnmt3b in respiratory epithelial cells has been shown to affect the expression of multiple genes. Respiratory epithelial cells provide a first line of defense against pulmonary pathogens and play a crucial role in the immune response during pneumonia caused by Pseudomonas (P.) aeruginosa, a gram-negative bacterium that expresses flagellin as an important virulence factor. We here sought to determine the role of Dntm3b in respiratory epithelial cells in immune responses elicited by P. aeruginosa. DNMT3B expression was reduced in human bronchial epithelial (BEAS-2B) cells as well as in primary human and mouse bronchial epithelial cells grown in air liquid interface upon exposure to P. aeruginosa (PAK). Dnmt3b deficient human bronchial epithelial (BEAS-2B) cells produced more CXCL1, CXCL8 and CCL20 than control cells when stimulated with PAK, flagellin-deficient PAK (PAKflic) or flagellin. Dnmt3b deficiency reduced DNA methylation at exon 1 of CXCL1 and enhanced NF-ĸB p65 binding to the CXCL1 promoter. Mice with bronchial epithelial Dntm3b deficiency showed increased Cxcl1 mRNA expression in bronchial epithelium and CXCL1 protein release in the airways during pneumonia caused by PAK, which was associated with enhanced neutrophil recruitment and accelerated bacterial clearance; bronchial epithelial Dnmt3b deficiency did not modify responses during pneumonia caused by PAKflic or Klebsiella pneumoniae (an un-flagellated gram-negative bacterium). Dnmt3b deficiency in type II alveolar epithelial cells did not affect mouse pulmonary defense against PAK infection. These results suggest that bronchial epithelial Dnmt3b impairs host defense during Pseudomonas induced pneumonia, at least in part, by dampening mucosal responses to flagellin.
Collapse
Affiliation(s)
- Wanhai Qin
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xanthe Brands
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van’t Veer
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Alex F. de Vos
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Jean-Claude Sirard
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Joris J. T. H. Roelofs
- Department of Pathology, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Brendon P. Scicluna
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center of Experimental & Molecular Medicine, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
26
|
Lei X, Palomero J, de Rink I, de Wit T, van Baalen M, Xiao Y, Borst J. Flagellin/TLR5 Stimulate Myeloid Progenitors to Enter Lung Tissue and to Locally Differentiate Into Macrophages. Front Immunol 2021; 12:621665. [PMID: 33815375 PMCID: PMC8017192 DOI: 10.3389/fimmu.2021.621665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/24/2021] [Indexed: 11/30/2022] Open
Abstract
Toll-like receptor 5 (TLR5) is the receptor of bacterial Flagellin. Reportedly, TLR5 engagement helps to combat infections, especially at mucosal sites, by evoking responses from epithelial cells and immune cells. Here we report that TLR5 is expressed on a previously defined bipotent progenitor of macrophages (MΦs) and osteoclasts (OCs) that resides in the mouse bone marrow (BM) and circulates at low frequency in the blood. In vitro, Flagellin promoted the generation of MΦs, but not OCs from this progenitor. In vivo, MΦ/OC progenitors were recruited from the blood into the lung upon intranasal inoculation of Flagellin, where they rapidly differentiated into MΦs. Recruitment of the MΦ/OC progenitors into the lung was likely promoted by the CCL2/CCR2 axis, since the progenitors expressed CCR2 and type 2 alveolar epithelial cells (AECs) produced CCL2 upon stimulation by Flagellin. Moreover, CCR2 blockade reduced migration of the MΦ/OC progenitors toward lung lavage fluid (LLF) from Flagellin-inoculated mice. Our study points to a novel role of the Flagellin/TLR5 axis in recruiting circulating MΦ/OC progenitors into infected tissue and stimulating these progenitors to locally differentiate into MΦs. The progenitor pathway to produce MΦs may act, next to monocyte recruitment, to fortify host protection against bacterial infection at mucosal sites.
Collapse
Affiliation(s)
- Xin Lei
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Jara Palomero
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Iris de Rink
- Genomics Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Tom de Wit
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Martijn van Baalen
- Flow Cytometry Facility, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yanling Xiao
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Immunology and Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
27
|
Moser C, Jensen PØ, Thomsen K, Kolpen M, Rybtke M, Lauland AS, Trøstrup H, Tolker-Nielsen T. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol 2021; 12:625597. [PMID: 33692800 PMCID: PMC7937708 DOI: 10.3389/fimmu.2021.625597] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a key pathogen of chronic infections in the lungs of cystic fibrosis patients and in patients suffering from chronic wounds of diverse etiology. In these infections the bacteria congregate in biofilms and cannot be eradicated by standard antibiotic treatment or host immune responses. The persistent biofilms induce a hyper inflammatory state that results in collateral damage of the adjacent host tissue. The host fails to eradicate the biofilm infection, resulting in hindered remodeling and healing. In the present review we describe our current understanding of innate and adaptive immune responses elicited by P. aeruginosa biofilms in cystic fibrosis lung infections and chronic wounds. This includes the mechanisms that are involved in the activation of the immune responses, as well as the effector functions, the antimicrobial components and the associated tissue destruction. The mechanisms by which the biofilms evade immune responses, and potential treatment targets of the immune response are also discussed.
Collapse
Affiliation(s)
- Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Rybtke
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Sofie Lauland
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hannah Trøstrup
- Department of Plastic Surgery and Breast Surgery, Zealand University Hospital, Roskilde, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Pittet JF, Hu PJ, Honavar J, Brandon AP, Evans CA, Muthalaly R, Ding Q, Wagener BM. Estrogen Alleviates Sex-Dependent Differences in Lung Bacterial Clearance and Mortality Secondary to Bacterial Pneumonia after Traumatic Brain Injury. J Neurotrauma 2020; 38:989-999. [PMID: 33203297 DOI: 10.1089/neu.2020.7327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of injury-related death and disability in patients under the age of 46 years. Survivors of the initial injury often endure systemic complications such as pulmonary infection, and Pseudomonas aeruginosa is one of the most common causes of nosocomial pneumonia in intensive care units. Female patients are less likely to develop secondary pneumonia after TBI, and pre-clinical studies have revealed a salutary role for estrogen after trauma. Therefore, we hypothesized that female mice would experience less mortality after post-TBI pneumonia with P. aeruginosa. We employed a mouse model of TBI followed by P. aeruginosa pneumonia. Male mice had greater mortality and impaired lung bacterial clearance after post-TBI pneumonia compared with female mice. This was confirmed as a difference in sex hormones, as oophorectomized wild-type mice had mortality and lung bacterial clearance similar to male mice. There were differences in tumor necrosis factor-α secretion in male and female alveolar macrophages after P. aeruginosa infection. Finally, injection of male or oophorectomized wild-type female mice with estrogen restored lung bacterial clearance and prevented mortality. Our model of TBI followed by P. aeruginosa pneumonia is among the first to reveal sex dimorphism in secondary, long-term TBI complications.
Collapse
Affiliation(s)
- Jean-Francois Pittet
- Divisions of Critical Care Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA.,Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Parker J Hu
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jaideep Honavar
- Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Angela P Brandon
- Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Cilina A Evans
- Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rebekah Muthalaly
- Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qiang Ding
- Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brant M Wagener
- Divisions of Critical Care Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA.,Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine and University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
29
|
The Extracellular Polysaccharide Matrix of Pseudomonas aeruginosa Biofilms Is a Determinant of Polymorphonuclear Leukocyte Responses. Infect Immun 2020; 89:IAI.00631-20. [PMID: 33077623 DOI: 10.1128/iai.00631-20] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/04/2023] Open
Abstract
Bacterial biofilms may cause chronic infections due to their ability to evade clearance by the immune system and antibiotics. The persistent biofilms induce a hyperinflammatory state that damages the surrounding host tissue. Knowledge about the components of biofilms that are responsible for provoking the harmful but inefficient immune response is limited. Flagella are known to stimulate the response of polymorphonuclear leukocytes (PMNs) to planktonic solitary bacteria. However, we provide evidence that flagella are not a prerequisite for the response of PMNs to Pseudomonas aeruginosa biofilms. Instead, we found that extracellular matrix polysaccharides in P. aeruginosa biofilms play a role in the response of PMNs toward biofilms. Using a set of P. aeruginosa mutants with the ability to produce a subset of matrix exopolysaccharides, we found that P. aeruginosa biofilms with distinct exopolysaccharide matrix components elicit distinct PMN responses. In particular, the PMNs respond aggressively toward a biofilm matrix consisting of both Psl and alginate exopolysaccharides. These findings are relevant for therapeutic strategies aimed at dampening the collateral damage associated with biofilm-based infections.
Collapse
|
30
|
Belo VA, Pereira JA, Souza SFD, Tana FDL, Pereira BP, Lopes DDO, Ceron CS, Novaes RD, Corsetti PP, de Almeida LA. The role of IL-10 in immune responses against Pseudomonas aeruginosa during acute lung infection. Cell Tissue Res 2020; 383:1123-1133. [PMID: 33165659 DOI: 10.1007/s00441-020-03308-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is considered an opportunistic pathogen of great clinical importance. The clearance of this bacterium occurs through recognition of the pathogen by innate immune system receptors, leading to a lung inflammatory response. However, this response must be controlled via immunoregulatory pathways. In this study, we evaluate the role of endogenous murine IL-10 after acute infection with the virulent strain P. aeruginosa PA14. To assess the role of IL-10, intratracheal infection with the PA14 strain was performed in C57BL/6 or IL-10 KO mice. The PA14 strain was recovered in both types of animals, although IL-10 KO mice presented a higher number of viable bacteria in the lung when compared to the C57BL/6 group. Histopathological and stereological analyses showed that IL-10 KO mice had higher tissue damage and inflammatory infiltrate when compared to control animals. The activity of MMP-9 but not MMP-2, as well as IL-6 and TNF-α expression, were augmented in the lungs of infected animals and was much more evident in IL-10 KO animals when compared to the other analyzed groups. This work indicates that endogenous IL-10 control P. aeruginosa infection, the expression of pro-inflammatory genes, MMP-9 activity and histopathological processes of the infectious process in question.
Collapse
Affiliation(s)
- Valéria Aparecida Belo
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Jéssica Assis Pereira
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Sara Franchin D Souza
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Fernanda de Lima Tana
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Bruna P Pereira
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Débora de Oliveira Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João Del-Rei (CCO), Divinópolis, Brazil
| | - Carla S Ceron
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Rômulo D Novaes
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Patrícia Paiva Corsetti
- Laboratório de Imunologia das Doenças Infecciosas E Crônicas, Universidade José Do Rosário Vellano, Alfenas, Minas Gerais, Brazil
| | | |
Collapse
|
31
|
Lara-Reyna S, Holbrook J, Jarosz-Griffiths HH, Peckham D, McDermott MF. Dysregulated signalling pathways in innate immune cells with cystic fibrosis mutations. Cell Mol Life Sci 2020; 77:4485-4503. [PMID: 32367193 PMCID: PMC7599191 DOI: 10.1007/s00018-020-03540-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Cystic fibrosis (CF) is one of the most common life-limiting recessive genetic disorders in Caucasians, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CF is a multi-organ disease that involves the lungs, pancreas, sweat glands, digestive and reproductive systems and several other tissues. This debilitating condition is associated with recurrent lower respiratory tract bacterial and viral infections, as well as inflammatory complications that may eventually lead to pulmonary failure. Immune cells play a crucial role in protecting the organs against opportunistic infections and also in the regulation of tissue homeostasis. Innate immune cells are generally affected by CFTR mutations in patients with CF, leading to dysregulation of several cellular signalling pathways that are in continuous use by these cells to elicit a proper immune response. There is substantial evidence to show that airway epithelial cells, neutrophils, monocytes and macrophages all contribute to the pathogenesis of CF, underlying the importance of the CFTR in innate immune responses. The goal of this review is to put into context the important role of the CFTR in different innate immune cells and how CFTR dysfunction contributes to the pathogenesis of CF, highlighting several signalling pathways that may be dysregulated in cells with CFTR mutations.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Heledd H Jarosz-Griffiths
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
| | - Daniel Peckham
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, LS9 7TF, UK
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK
- Adult Cystic Fibrosis Unit, St James's University Hospital, Leeds, LS9 7TF, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, LS9 7TF, UK.
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
32
|
Lee MK, Lee Y, Huh JW, Chen H, Wu W, Ha UH. The Pseudomonas aeruginosa HSP90-like protein HtpG regulates IL-8 expression through NF-κB/p38 MAPK and CYLD signaling triggered by TLR4 and CD91. Microbes Infect 2020; 22:558-566. [DOI: 10.1016/j.micinf.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 01/04/2023]
|
33
|
Kolbe U, Yi B, Poth T, Saunders A, Boutin S, Dalpke AH. Early Cytokine Induction Upon Pseudomonas aeruginosa Infection in Murine Precision Cut Lung Slices Depends on Sensing of Bacterial Viability. Front Immunol 2020; 11:598636. [PMID: 33250899 PMCID: PMC7673395 DOI: 10.3389/fimmu.2020.598636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 01/06/2023] Open
Abstract
Breathing allows a multitude of airborne microbes and microbial compounds to access the lung. Constant exposure of the pulmonary microenvironment to immunogenic particles illustrates the need for proper control mechanisms ensuring the differentiation between threatening and harmless encounters. Discrimination between live and dead bacteria has been suggested to be such a mechanism. In this study, we performed infection studies of murine precision cut lung slices (PCLS) with live or heat-killed P. aeruginosa, in order to investigate the role of viability for induction of an innate immune response. We demonstrate that PCLS induce a robust transcriptomic rewiring upon infection with live but not heat-killed P. aeruginosa. Using mutants of the P. aeruginosa clinical isolate CHA, we show that the viability status of P. aeruginosa is assessed in PCLS by TLR5-independent sensing of flagellin and recognition of the type three secretion system. We further demonstrate that enhanced cytokine expression towards live P. aeruginosa is mediated by uptake of viable but not heat-killed bacteria. Finally, by using a combined approach of receptor blockage and genetically modified PCLS we report a redundant involvement of MARCO and CD200R1 in the uptake of live P. aeruginosa in PCLS. Altogether, our results show that PCLS adapt the extent of cytokine expression to the viability status of P. aeruginosa by specifically internalizing live bacteria.
Collapse
Affiliation(s)
- Ulrike Kolbe
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Buqing Yi
- Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| | - Tanja Poth
- CMCP-Center for Model System and Comparative Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amy Saunders
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Science, Faculty of Biology, Medicine and Health, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Alexander H Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany.,Institute of Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
34
|
Bertelsen A, Elborn SJ, Schock BC. Toll like Receptor signalling by Prevotella histicola activates alternative NF-κB signalling in Cystic Fibrosis bronchial epithelial cells compared to P. aeruginosa. PLoS One 2020; 15:e0235803. [PMID: 33031374 PMCID: PMC7544055 DOI: 10.1371/journal.pone.0235803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF), caused by mutations affecting the CFTR gene, is characterised by viscid secretions in multiple organ systems. CF airways contain thick mucus, creating a gradient of hypoxia, which promotes the establishment of polymicrobial infection. Such inflammation predisposes to further infection, a self-perpetuating cycle in mediated by NF-κB. Anaerobic Gram-negative Prevotella spp. are found in sputum from healthy volunteers and CF patients and in CF lungs correlate with reduced levels of inflammation. Prevotella histicola (P. histicola) can suppress murine lung inflammation, however, no studies have examined the role of P. histicola in modulating infection and inflammation in the CF airways. We investigated innate immune signalling and NF-kB activation in CF epithelial cells CFBE41o- in response to clinical stains of P. histicola and Pseudomonas aeruginosa (P. aeruginosa). Toll-Like Receptor (TLR) expressing HEK-293 cells and siRNA assays for TLRs and IKKα were used to confirm signalling pathways. We show that P. histicola infection activated the alternative NF-kB signalling pathway in CF bronchial epithelial cells inducing HIF-1α protein. TLR5 signalling was responsible for the induction of the alternative NF-kB pathway through phosphorylation of IKKα. The induction of transcription factor HIF-1α was inversely associated with the induction of the alternative NF-kB pathway and knockdown of IKKα partially restored canonical NF-kB activation in response to P. histicola. This study demonstrates that different bacterial species in the respiratory microbiome can contribute differently to inflammation, either by activating inflammatory cascades (P. aeruginosa) or by muting the inflammatory response by modulating similar or related pathways (P. histicola). Further work is required to assess the complex interactions of the lung microbiome in response to mixed bacterial infections and their effects in people with CF.
Collapse
Affiliation(s)
- Anne Bertelsen
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Stuart J. Elborn
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- Imperial College London, London, United Kingdom
| | - Bettina C. Schock
- Wellcome-Wolfson Institute for Experimental Medicine, Queens University Belfast, Belfast, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Luscher A, Simonin J, Falconnet L, Valot B, Hocquet D, Chanson M, Resch G, Köhler T, van Delden C. Combined Bacteriophage and Antibiotic Treatment Prevents Pseudomonas aeruginosa Infection of Wild Type and cftr- Epithelial Cells. Front Microbiol 2020; 11:1947. [PMID: 32983005 PMCID: PMC7479825 DOI: 10.3389/fmicb.2020.01947] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
With the increase of infections due to multidrug resistant bacterial pathogens and the shortage of antimicrobial molecules with novel targets, interest in bacteriophages as a therapeutic option has regained much attraction. Before the launch of future clinical trials, in vitro studies are required to better evaluate the efficacies and potential pitfalls of such therapies. Here we studied in an ex vivo human airway epithelial cell line model the efficacy of phage and ciprofloxacin alone and in combination to treat infection by Pseudomonas aeruginosa. The Calu-3 cell line and the isogenic CFTR knock down cell line (cftr-) infected apically with P. aeruginosa strain PAO1 showed a progressive reduction in transepithelial resistance during 24 h. Administration at 6 h p.i. of single phage, phage cocktails or ciprofloxacin alone prevented epithelial layer destruction at 24 h p.i. Bacterial regrowth, due to phage resistant mutants harboring mutations in LPS synthesis genes, occurred thereafter both in vitro and ex vivo. However, co-administration of two phages combined with ciprofloxacin efficiently prevented PAO1 regrowth and maintained epithelial cell integrity at 72 p.i. The phage/ciprofloxacin treatment did not induce an inflammatory response in the tested cell lines as determined by nanoString® gene expression analysis. We conclude that combination of phage and ciprofloxacin efficiently protects wild type and cftr- epithelial cells from infection by P. aeruginosa and emergence of phage resistant mutants without inducing an inflammatory response. Hence, phage-antibiotic combination should be a safe and promising anti-Pseudomonas therapy for future clinical trials potentially including cystic fibrosis patients.
Collapse
Affiliation(s)
- Alexandre Luscher
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Juliette Simonin
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Léna Falconnet
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Benoît Valot
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté-Bourgogne, Besançon, France
- Bioinformatique et Big Data au Service de la Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
| | - Didier Hocquet
- UMR CNRS 6249 Chrono-Environnement, University of Franche-Comté-Bourgogne, Besançon, France
- Bioinformatique et Big Data au Service de la Santé, UFR Santé, Université de Bourgogne Franche-Comté, Besançon, France
- Department of Infection Control, University Hospital of Besançon, Besançon, France
| | - Marc Chanson
- Department of Pediatrics, Gynecology and Obstetrics, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Grégory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Thilo Köhler
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Christian van Delden
- Transplant Infectious Diseases Unit, Geneva University Hospitals, Geneva, Switzerland
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
36
|
Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, Van Belleghem JD, Haddock N, Copeland C, Michaels LA, de Vries CR, Chen Q, Pourtois J, Wheeler TJ, Milla CE, Bollyky PL. Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections. Front Immunol 2020; 11:244. [PMID: 32153575 PMCID: PMC7047154 DOI: 10.3389/fimmu.2020.00244] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.
Collapse
Affiliation(s)
- Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| | - Elizabeth B. Burgener
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - M. Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Valery Roman-Cruz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Medeea Popescu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Naomi Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Conner Copeland
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Julie Pourtois
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Travis J. Wheeler
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Carlos E. Milla
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
37
|
Xiu D, Cheng M, Zhang W, Ma X, Liu L. Pseudomonas aeruginosa-mannose-sensitive hemagglutinin inhibits chemical-induced skin cancer through suppressing hedgehog signaling. Exp Biol Med (Maywood) 2020; 245:213-220. [PMID: 31903775 DOI: 10.1177/1535370219897240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PAM) is an inactivate P. aeruginosa with mannose-sensitive hemagglutinin. Recently, the anticancer properties of PAM against many cancers have been reported across a range of studies. However, the exact mechanism through which PAM prevents skin cancer remains unclear. The aim of this study is to show to what extent PAM could inhibit the dimethylbenzanthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin cancer. JB6 cells were treated by TPA so as to establish an in vitro model. The effects of PAM on proliferation of the cells were analyzed using cell counting kit-8 assays. Effects on epithelial–mesenchymal transition (EMT) were assayed by real-time PCR and Western blotting. A DMBA/TPA-induced skin cancer mouse model was also established. The results showed that TPA promoted EMT changes through the activation of the hedgehog (Hh) pathway, which was reversed by PAM. Moreover, PAM inhibited the cancer growth and Hh pathway in vivo. These data indicate that PAM may serve as a potential anticancer agent for the treatment of skin cancer. Impact statement Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PAM) restrained the chemical-induced skin cancer cells in vitro and in vivo partly through suppressing the Hh signaling pathway, indicating that PAM may be a promising anticancer agent for treating skin cancer.
Collapse
Affiliation(s)
- Dianhui Xiu
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Min Cheng
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Wenlei Zhang
- Department of Interventional Therapy, First Hospital of Jilin University, Changchun 13021, China
| | - Xibo Ma
- Department of Otorhinolaryngology, Jilin Province People's Hospital, Changchun 130000, China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| |
Collapse
|
38
|
Strong toll-like receptor responses in cystic fibrosis patients are associated with higher lung function. J Cyst Fibros 2019; 19:608-613. [PMID: 31813753 DOI: 10.1016/j.jcf.2019.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cystic fibrosis (CF) airways disease varies widely among patients with identical cystic fibrosis transmembrane conductance regulator (CFTR) genotypes. Robust airway inflammation is thought to be deleterious in CF; inter-individual variation in Toll-like receptor (TLR)-mediated innate immune inflammatory responses (TMIIR) might account for a portion of the phenotypic variation. We tested if TMIIR in people with CF are different than those of healthy controls, and whether higher TMIIR in people with CF are associated with reduced lung function. METHODS We cultured whole blood from clinically stable subjects with CF (n = 76) and healthy controls (n = 45) with TLR agonists, and measured cytokine production and expression of TLR-associated genes. We tested for differences in TLR-stimulated cytokine levels between subjects with CF and healthy subjects, and for associations between cytokine and gene expression levels with baseline lung function (forced expiratory volume in one second percent predicted (FEV1%)) and decline in FEV1% over time. RESULTS TMIIR in blood from subjects with CF were lower than in healthy controls. Expression of TLR regulators SARM1, TOLLIP, and AKT1 were downregulated in CF. In subjects with CF we found that lower TLR4-agonist-induced IL-8 was associated with lower FEV1% at enrollment (p<0.001) and with greater five year FEV1% decline (p<0.001). CONCLUSIONS TMIIR were lower in people with CF relative to healthy controls; however, unexpectedly, greater whole blood TMIIR were positively associated with lung function in people with CF. These findings suggest a complex interaction between inflammation and disease in people with CF.
Collapse
|
39
|
Pseudomonas aeruginosa Regulatory Protein AnvM Controls Pathogenicity in Anaerobic Environments and Impacts Host Defense. mBio 2019; 10:mBio.01362-19. [PMID: 31337721 PMCID: PMC6650552 DOI: 10.1128/mbio.01362-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Infections by Pseudomonas aeruginosa, one of the most frequently isolated human pathogens, can create huge financial burdens. However, knowledge of the molecular mechanisms involved in the pathogenesis of P. aeruginosa remains elusive. We identified AnvM as a novel regulator of virulence in P. aeruginosa. Deletion of anvM altered the expression levels of more than 700 genes under aerobic and anaerobic conditions, including quorum sensing system genes and oxidative stress resistance genes. AnvM directly interacted with MvfR and Anr, thus regulating their downstream genes. More importantly, AnvM directly bound to TLR2 and TLR5, which turn on the host immune response. These findings provide insights into the significance of AnvM homologs in pathogenic bacteria and suggest a potential drug target against bacterial infection. Pseudomonas aeruginosa, one of the most common pathogens in hospital-acquired infections, is tightly controlled by a multilayered regulatory network, including the quorum sensing system (QS), the type VI secretion system (T6SS), and resistance to host immunity. We found that the P. aeruginosa 3880 (PA3880) gene, which encodes an unknown protein, acts as a regulator of anaerobic metabolism in response to oxidative stress and virulence in P. aeruginosa. More than 30 PA3880 homologs were found in other bacterial genomes, indicating that PA3880 is widely distributed in the Bacteria kingdom as a highly conserved gene. Deletion of the PA3880 gene changed the expression levels of more than 700 genes, including a group of virulence genes, under both aerobic and anaerobic conditions. To further study the mechanisms of PA3880-mediated regulation in virulence, we utilized a bacterial two-hybrid assay and found that the PA3880 protein interacted directly with QS regulator MvfR and anaerobic regulator Anr. Loss of the PA3880 protein significantly blunted the pathogenicity of P. aeruginosa, resulting in increased host survival, decreased bacterial burdens, reduced inflammatory responses, and fewer lung injuries in challenged mice hosts. Mechanistically, we found that Cys44 was a critical site for the full function of PA3880 in influencing alveolar macrophage phagocytosis and bacterial clearance. We also found that AnvM directly interacted with host receptors Toll-like receptor 2 (TLR2) and TLR5, which might lead to activation of the host immune response. Hence, we gave the name AnvM (anaerobic and virulence modulator) to the PA3880 protein. This characterization of AnvM could help to uncover new targets and strategies to treat P. aeruginosa infections.
Collapse
|
40
|
Wei X, Ran D, Campeau A, Xiao C, Zhou J, Dehaini D, Jiang Y, Kroll AV, Zhang Q, Gao W, Gonzalez DJ, Fang RH, Zhang L. Multiantigenic Nanotoxoids for Antivirulence Vaccination against Antibiotic-Resistant Gram-Negative Bacteria. NANO LETTERS 2019. [PMID: 31184899 DOI: 10.1021/acs.nanolett.9b0184410.1021/acs.nanolett.9b01844.s001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Infections caused by multidrug-resistant Gram-negative bacteria have emerged as a major threat to public health worldwide. The high mortality and prevalence, along with the slow pace of new antibiotic discovery, highlight the necessity for new disease management paradigms. Here, we report on the development of a multiantigenic nanotoxoid vaccine based on macrophage membrane-coated nanoparticles for eliciting potent immunity against pathogenic Pseudomonas aeruginosa. The design of this biomimetic nanovaccine leverages the specific role of macrophages in clearing pathogens and their natural affinity for various virulence factors secreted by the bacteria. It is demonstrated that the macrophage nanotoxoid is able to display a wide range of P. aeruginosa antigens, and the safety of the formulation is confirmed both in vitro and in vivo. When used to vaccinate mice via different administration routes, the nanotoxoid is capable of eliciting strong humoral immune responses that translate into enhanced protection against live bacterial infection in a pneumonia model. Overall, the work presented here provides new insights into the design of safe, multiantigenic antivirulence vaccines using biomimetic nanotechnology and the application of these nanovaccines toward the prevention of difficult-to-treat Gram-negative infections.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Danni Ran
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Anaamika Campeau
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States
| | - Crystal Xiao
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Jiarong Zhou
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Diana Dehaini
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Yao Jiang
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Ashley V Kroll
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Qiangzhe Zhang
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - David J Gonzalez
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program , University of California San Diego , La Jolla , California 92093 , United States
- Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
41
|
Wei X, Ran D, Campeau A, Xiao C, Zhou J, Dehaini D, Jiang Y, Kroll AV, Zhang Q, Gao W, Gonzalez DJ, Fang RH, Zhang L. Multiantigenic Nanotoxoids for Antivirulence Vaccination against Antibiotic-Resistant Gram-Negative Bacteria. NANO LETTERS 2019; 19:4760-4769. [PMID: 31184899 PMCID: PMC6711367 DOI: 10.1021/acs.nanolett.9b01844] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Infections caused by multidrug-resistant Gram-negative bacteria have emerged as a major threat to public health worldwide. The high mortality and prevalence, along with the slow pace of new antibiotic discovery, highlight the necessity for new disease management paradigms. Here, we report on the development of a multiantigenic nanotoxoid vaccine based on macrophage membrane-coated nanoparticles for eliciting potent immunity against pathogenic Pseudomonas aeruginosa. The design of this biomimetic nanovaccine leverages the specific role of macrophages in clearing pathogens and their natural affinity for various virulence factors secreted by the bacteria. It is demonstrated that the macrophage nanotoxoid is able to display a wide range of P. aeruginosa antigens, and the safety of the formulation is confirmed both in vitro and in vivo. When used to vaccinate mice via different administration routes, the nanotoxoid is capable of eliciting strong humoral immune responses that translate into enhanced protection against live bacterial infection in a pneumonia model. Overall, the work presented here provides new insights into the design of safe, multiantigenic antivirulence vaccines using biomimetic nanotechnology and the application of these nanovaccines toward the prevention of difficult-to-treat Gram-negative infections.
Collapse
Affiliation(s)
- Xiaoli Wei
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Danni Ran
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Anaamika Campeau
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Crystal Xiao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Jiarong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Diana Dehaini
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Yao Jiang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Ashley V. Kroll
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Qiangzhe Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - David J. Gonzalez
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| | - Ronnie H. Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA 92093
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
42
|
Integrin αvβ6 mediates epithelial-mesenchymal transition in human bronchial epithelial cells induced by lipopolysaccharides of Pseudomonas aeruginosa via TGF-β1-Smad2/3 signaling pathway. Folia Microbiol (Praha) 2019; 65:329-338. [PMID: 31243731 PMCID: PMC7048708 DOI: 10.1007/s12223-019-00728-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Lower respiratory tract infection due to Pseudomonas aeruginosa has become increasingly challenging, resulting in a worse morbidity and mortality. Airway remodeling is a common phenomenon in this process, to which epithelial-mesenchymal transition (EMT) may contribute as an important promoter. Previous studies showed that epithelium-specific integrin αvβ6-mediated EMT was involved in pulmonary fibrosis via transforming growth factor-β1 (TGF-β1) signaling, but whether integrin αvβ6 plays a role in the P. aeruginosa-associated airway remodeling remains unknown. BEAS-2B cells were incubated with lipopolysaccharide (LPS) from P. aeruginosa in the presence or the absence of integrin αvβ6-blocking antibodies. Morphologic changes were observed by an inverted microscopy. The EMT markers were detected using Western blotting and immunofluorescence. The activation of TGF-β1-Smad2/3 signaling pathway was assessed. Furthermore, matrix metalloproteinase (MMP)-2 and -9 in the medium were measured using ELISA. P. aeruginosa's LPS decreased the expression of the epithelial marker E-cadherin and promoted the mesenchymal markers, vimentin and α-smooth muscle actin in BEAS-2B cells. The expression of integrin αvβ6 was significantly increased during EMT process. Blocking integrin αvβ6 could attenuate P. aeruginosa's LPS-induced EMT markers' expression via TGF-β1-Smad2/3 signaling pathway. Furthermore, blocking integrin αvβ6 could prevent morphologic changes and oversecretion of MMP-2 and -9. Integrin αvβ6 mediates epithelial-mesenchymal transition in human bronchial epithelial cells induced by lipopolysaccharides of P. aeruginosa via TGF-β1-Smad2/3 signaling pathway and might be a promising therapeutic target for P. aeruginosa-associated airway remodeling.
Collapse
|
43
|
Gopala Krishnan GK, Sethumadhavan A, Vellaichamy P, Mani M. Pseudomonas aeruginosa infection stimulates mitogen-activated protein kinases signaling pathway in human megakaryocytes. Microbiol Immunol 2019; 63:229-237. [PMID: 31041998 DOI: 10.1111/1348-0421.12685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and contributes to higher mortality in hospitalized individuals. Infection by P. aeruginosa triggers host immune response through activation of pathogen recognition receptors, which are present in innate cells. Several studies have reported the mechanism of P. aeruginosa induced innate immunity in multiple cell types. But so far there is no reports on response of megakaryocytes to P. aeruginosa infection. Hence, our aim was to investigate the precise role and signaling mechanism of megakaryocytes during P. aeruginosa infection. In this study, we used Mo7e cells as representatives of human megakaryocyte and found that P. aeruginosa infection induces cytotoxicity in these cells. We further demonstrated that P. aeruginosa infection modulates p38 and extracellular signal regulated kinase pathways in Mo7e cells. Protein expression profiling in P. aeruginosa lipopolysaccharide-treated Mo7e cells revealed upregulation of importin subunit β and downregulation of metabolic enzymes. Our results suggest that P. aeruginosa infection regulates mitogen-activated protein kinases signaling pathway and importin in Mo7e cells and that this is a potential mechanism for nuclear translocation of nuclear factor binding near the κ light-chain gene in B cells and c-Jun N-terminal kinases to induce cell cytotoxicity.
Collapse
Affiliation(s)
- Gopi Krishnan Gopala Krishnan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Aiswarya Sethumadhavan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Pavithra Vellaichamy
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Maheswaran Mani
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
44
|
Abstract
Pneumonia is a type of acute lower respiratory infection that is common and severe. The outcome of lower respiratory infection is determined by the degrees to which immunity is protective and inflammation is damaging. Intercellular and interorgan signaling networks coordinate these actions to fight infection and protect the tissue. Cells residing in the lung initiate and steer these responses, with additional immunity effectors recruited from the bloodstream. Responses of extrapulmonary tissues, including the liver, bone marrow, and others, are essential to resistance and resilience. Responses in the lung and extrapulmonary organs can also be counterproductive and drive acute and chronic comorbidities after respiratory infection. This review discusses cell-specific and organ-specific roles in the integrated physiological response to acute lung infection, and the mechanisms by which intercellular and interorgan signaling contribute to host defense and healthy respiratory physiology or to acute lung injury, chronic pulmonary disease, and adverse extrapulmonary sequelae. Pneumonia should no longer be perceived as simply an acute infection of the lung. Pneumonia susceptibility reflects ongoing and poorly understood chronic conditions, and pneumonia results in diverse and often persistent deleterious consequences for multiple physiological systems.
Collapse
Affiliation(s)
- Lee J Quinton
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Allan J Walkey
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| | - Joseph P Mizgerd
- Pulmonary Center, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
45
|
Rashid MI, Ali A, Andleeb S. Functional Annotation and Analysis of Dual Oxidase 1 (DUOX1): a Potential Anti-pyocyanin Immune Component. Interdiscip Sci 2018; 11:597-610. [PMID: 30483939 DOI: 10.1007/s12539-018-0308-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 11/27/2022]
Abstract
Dual Oxidase 1 (DUOX1) is a prominent immune system component primarily expressed in esophagus, lungs, skin, and urinary bladder including others. DUOX1 is involved in lactoperoxidase-mediated innate immunity at mucosal surfaces by generation of antimicrobial hypothiocyanite at the apical surface of epithelial lining. Upon detection of bacterial pathogens mainly Pseudomonas aeruginosa, DUOX1 is activated in bronchial epithelial cells. Both the host and pathogen enter a redox dual with DUOX1 and hypothiocyanite from host and Pyocyanin (PCN) as a redox active virulence factor from P. aeruginosa. The synergy of the both enzymes permanently oxidizes PCN and thus holds the potential to prevent PCN-induced virulence, which otherwise paves the way for establishment of persistent chronic infection. In this study, we structurally and functionally annotated the DUOX1, predicted its 3d structure, physio-chemical properties, post-translational modifications, and genetic polymorphism analysis with subsequent disease-associated single-nucleotide variations and their impact on DUOX1 functionality by employing in silico approaches. DUOX1 holds greater homology with gorilla and chimpanzee than other primates. The localization signal peptide was present at the beginning of the peptide with cleavage site at 22 aa position. Three distinct functional domains were observed based on homology: An_peroxidase, FRQ1, and oxido-reductase domains. Polymorphism analysis revealed > 60 SNPs associated with different cancers with probable damaging effects. No cancer-associated methylated island was observed for DUOX1. Three-dimensional structure was developed via homology modeling strategy. The proper annotation will help in characterization of DUOX1 and enhance our knowledge of its functionality and biological roles.
Collapse
Affiliation(s)
- Muhammad Ibrahim Rashid
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Amjad Ali
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Saadia Andleeb
- Department of Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
46
|
Oliveira VR, Uriarte JJ, Falcones B, Zin WA, Navajas D, Farré R, Almendros I. Escherichia coli lipopolysaccharide induces alveolar epithelial cell stiffening. J Biomech 2018; 83:315-318. [PMID: 30527389 DOI: 10.1016/j.jbiomech.2018.11.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Application of lipopolysaccharide (LPS) is a widely employed model to mimic acute respiratory distress syndrome (ARDS). Available data regarding LPS-induced biomechanical changes on pulmonary epithelial cells are limited only to P. aeruginosa LPS. Considering that LPS from different bacteria could promote a specific mechanical response in epithelial cells, we aim to assess the effect of E. coli LPS, widely employed as a model of ARDS, in the biomechanics of alveolar epithelial cells. METHODS Young's modulus (E) of alveolar epithelial cells (A549) was measured by atomic force microscopy every 5 min throughout 60 min of experiment after treatment with LPS from E. coli (100 μg/mL). The percentage of cells presenting actin stress fibers (F-actin staining) was also evaluated. Control cells were treated with culture medium and the values obtained were compared with LPS-treated cells for each time-point. RESULTS Application of LPS induced significant increase in E after 20 min (77%) till 60 min (104%) in comparison to controls. Increase in lung epithelial cell stiffness induced by LPS was associated with a higher number of cells presenting cytoskeletal remodeling. CONCLUSIONS The observed effects of E. coli LPS on alveolar epithelial cells suggest that this widely-used LPS is able to promote a quick formation of actin stress fibers and stiffening cells, thereby facilitating the disruption of the pulmonary epithelial barrier.
Collapse
Affiliation(s)
- Vinícius Rosa Oliveira
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Laboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juan José Uriarte
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias CIBERES, Madrid, Spain
| | - Bryan Falcones
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Walter Araujo Zin
- Laboratório de Fisiologia da Respiração, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias CIBERES, Madrid, Spain; Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias CIBERES, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer IDIBAPS, Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias CIBERES, Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer IDIBAPS, Barcelona, Spain.
| |
Collapse
|
47
|
Bastaert F, Kheir S, Saint-Criq V, Villeret B, Dang PMC, El-Benna J, Sirard JC, Voulhoux R, Sallenave JM. Pseudomonas aeruginosa LasB Subverts Alveolar Macrophage Activity by Interfering With Bacterial Killing Through Downregulation of Innate Immune Defense, Reactive Oxygen Species Generation, and Complement Activation. Front Immunol 2018; 9:1675. [PMID: 30083156 PMCID: PMC6064941 DOI: 10.3389/fimmu.2018.01675] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/06/2018] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa (P.a) is a pathogen causing significant morbidity and mortality, in particular, in hospital patients undergoing ventilation and in patients with cystic fibrosis. Among the virulence factors secreted or injected into host cells, the physiopathological relevance of type II secretions system (T2SS) is less studied. Although there is extensive literature on the destructive role of LasB in vitro on secreted innate immune components and on some stromal cell receptors, studies on its direct action on myeloid cells are scant. Using a variety of methods, including the use of bacterial mutants, gene-targeted mice, and proteomics technology, we show here, using non-opsonic conditions (thus mimicking resting and naïve conditions in the alveolar space), that LasB, an important component of the P.a T2SS is highly virulent in vivo, and can subvert alveolar macrophage (AM) activity and bacterial killing, in vitro and in vivo by downregulating important secreted innate immune molecules (complement factors, cytokines, etc.) and receptors (IFNAR, Csf1r, etc.). In particular, we show that LasB downregulates the production of C3 and factor B complement molecules, as well as the activation of reactive oxygen species production by AM. In addition, we showed that purified LasB impaired significantly the ability of AM to clear an unrelated bacterium, namely Streptococcus pneumoniae. These data provide a new mechanism of action for LasB, potentially partly explaining the early onset of P.a, alone, or with other bacteria, within the alveolar lumen in susceptible individuals, such as ventilated, chronic obstructive pulmonary disease and cystic fibrosis patients.
Collapse
Affiliation(s)
- Fabien Bastaert
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Saadé Kheir
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Vinciane Saint-Criq
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bérengère Villeret
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pham My-Chan Dang
- INSERM UMR1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jamel El-Benna
- INSERM UMR1149, ERL 8252 CNRS, Centre de Recherche sur l'Inflammation, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Paris, France
| | - Jean-Claude Sirard
- Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, INSERM, U1019, Lille, CNRS, UMR 8204, Université de Lille, Lille, France
| | - Romé Voulhoux
- CNRS & Aix-Marseille Université, Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), Institut de Microbiologie de la Méditerranée (IMM), Marseille, France
| | - Jean-Michel Sallenave
- INSERM, UMR1152, Paris, France.,Laboratoire d'Excellence Inflamex, Département Hospitalo-Universtaire FIRE (Fibrosis, Inflammation and Remodeling), University Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
48
|
Alhazmi A. Spleen Tyrosine Kinase as a Target Therapy for Pseudomonas aeruginosa Infection. J Innate Immun 2018; 10:255-263. [PMID: 29925062 DOI: 10.1159/000489863] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/29/2018] [Indexed: 12/11/2022] Open
Abstract
Spleen tyrosine kinase (SYK) is a nonreceptor tyrosine kinase which associates directly with extracellular receptors, and is critically involved in signal transduction pathways in a variety of cell types for the regulation of cellular responses. SYK is expressed ubiquitously in immune and nonimmune cells, and has a much wider biological role than previously recognized. Several studies have highlighted SYK as a key player in the pathogenesis of a multitude of diseases. Pseudomonas aeruginosa is an opportunistic gram-negative pathogen, which is responsible for systemic infections in immunocompromised individuals, accounting for a major cause of severe chronic lung infection in cystic fibrosis patients and subsequently resulting in a progressive deterioration of lung function. Inhibition of SYK activity has been explored as a therapeutic option in several allergic disorders, autoimmune diseases, and hematological malignancies. This review focuses on SYK as a therapeutic target, and describes the possibility of how current knowledge could be translated for therapeutic purposes to regulate the immune response to the opportunistic pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Alaa Alhazmi
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.,Department of Medical Laboratory Technology, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
49
|
Villeret B, Dieu A, Straube M, Solhonne B, Miklavc P, Hamadi S, Le Borgne R, Mailleux A, Norel X, Aerts J, Diallo D, Rouzet F, Dietl P, Sallenave JM, Garcia-Verdugo I. Silver Nanoparticles Impair Retinoic Acid-Inducible Gene I-Mediated Mitochondrial Antiviral Immunity by Blocking the Autophagic Flux in Lung Epithelial Cells. ACS NANO 2018; 12:1188-1202. [PMID: 29357226 DOI: 10.1021/acsnano.7b06934] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Silver nanoparticles (AgNPs) are microbicidal agents which could be potentially used as an alternative to antivirals to treat human infectious diseases, especially influenza virus infections where antivirals have generally proven unsuccessful. However, concerns about the use of AgNPs on humans arise from their potential toxicity, although mechanisms are not well-understood. We show here, in the context of an influenza virus infection of lung epithelial cells, that AgNPs down-regulated influenza induced CCL-5 and -IFN-β release (two cytokines important in antiviral immunity) through RIG-I inhibition, while enhancing IL-8 production, a cytokine important for mobilizing host antibacterial responses. AgNPs activity was independent of coating and was not observed with gold nanoparticles. Down-stream analysis indicated that AgNPs disorganized the mitochondrial network and prevented the antiviral IRF-7 transcription factor influx into the nucleus. Importantly, we showed that the modulation of RIG-I-IRF-7 pathway was concomitant with inhibition of either classical or alternative autophagy (ATG-5- and Rab-9 dependent, respectively), depending on the epithelial cell type used. Altogether, this demonstration of a AgNPs-mediated functional dichotomy (down-regulation of IFN-dependent antiviral responses and up-regulation of IL-8-dependent antibacterial responses) may have practical implications for their use in the clinic.
Collapse
Affiliation(s)
- Berengere Villeret
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Alexandra Dieu
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Marjolene Straube
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Brigitte Solhonne
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Pika Miklavc
- Biomedical Research Centre, School of Environment and Life Sciences, University of Salford , Salford, United Kingdom
| | - Sena Hamadi
- Université Paris Est, ICMPE (UMR7182), CNRS, UPEC , F-94320 Thiais, France
| | - Rémi Le Borgne
- ImagoSeine, Electron Microscopy Facility, Institut Jacques Monod, CNRS UMR 7592, Université Paris Diderot , Sorbonne Paris Cité, 75205 Cedex 13 Paris, France
| | - Arnaud Mailleux
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Xavier Norel
- Inserm U1148, UMR-S1148, University Paris Nord , 75018 Paris, France
| | - Joel Aerts
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Médecine Nucléaire, Université Denis Diderot-Paris 7, U1148, Inserm , 75013 Paris, France
| | - Devy Diallo
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Médecine Nucléaire, Université Denis Diderot-Paris 7, U1148, Inserm , 75013 Paris, France
| | - Francois Rouzet
- AP-HP, Groupe Hospitalier Bichat-Claude Bernard, Service de Médecine Nucléaire, Université Denis Diderot-Paris 7, U1148, Inserm , 75013 Paris, France
| | - Paul Dietl
- Institute of General Physiology, University of Ulm , Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Jean-Michel Sallenave
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| | - Ignacio Garcia-Verdugo
- INSERM, UMR U1152, Laboratoire d'Excellence Inflamex, Département Hospitalo-Universitaire FIRE (Fibrosis, Inflammation, and Remodeling), University Paris Diderot , Sorbonne Paris Cité, 75018 Paris, France
| |
Collapse
|
50
|
Pestrak MJ, Chaney SB, Eggleston HC, Dellos-Nolan S, Dixit S, Mathew-Steiner SS, Roy S, Parsek MR, Sen CK, Wozniak DJ. Pseudomonas aeruginosa rugose small-colony variants evade host clearance, are hyper-inflammatory, and persist in multiple host environments. PLoS Pathog 2018; 14:e1006842. [PMID: 29394295 PMCID: PMC5812653 DOI: 10.1371/journal.ppat.1006842] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/14/2018] [Accepted: 12/22/2017] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa causes devastating infections in immunocompromised individuals. Once established, P. aeruginosa infections become incredibly difficult to treat due to the development of antibiotic tolerant, aggregated communities known as biofilms. A hyper-biofilm forming clinical variant of P. aeruginosa, known as a rugose small-colony variant (RSCV), is frequently isolated from chronic infections and is correlated with poor clinical outcome. The development of these mutants during infection suggests a selective advantage for this phenotype, but it remains unclear how this phenotype promotes persistence. While prior studies suggest RSCVs could survive by evading the host immune response, our study reveals infection with the RSCV, PAO1ΔwspF, stimulated an extensive inflammatory response that caused significant damage to the surrounding host tissue. In both a chronic wound model and acute pulmonary model of infection, we observed increased bacterial burden, host tissue damage, and a robust neutrophil response during RSCV infection. Given the essential role of neutrophils in P. aeruginosa-mediated disease, we investigated the impact of the RSCV phenotype on neutrophil function. The RSCV phenotype promoted phagocytic evasion and stimulated neutrophil reactive oxygen species (ROS) production. We also demonstrate that bacterial aggregation and TLR-mediated pro-inflammatory cytokine production contribute to the immune response to RSCVs. Additionally, RSCVs exhibited enhanced tolerance to neutrophil-produced antimicrobials including H2O2 and the antimicrobial peptide LL-37. Collectively, these data indicate RSCVs elicit a robust but ineffective neutrophil response that causes significant host tissue damage. This study provides new insight on RSCV persistence, and indicates this variant may have a critical role in the recurring tissue damage often associated with chronic infections.
Collapse
Affiliation(s)
- Matthew J. Pestrak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Sarah B. Chaney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Heather C. Eggleston
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Sheri Dellos-Nolan
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Sriteja Dixit
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Sashwati Roy
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Chandan K. Sen
- Department of Surgery, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|