1
|
Park J, Sahyoun C, Frangieh J, Réthoré L, Proux C, Grimaud L, Vessières E, Bourreau J, Mattei C, Henrion D, Marionneau C, Fajloun Z, Legendre C, Legros C. Veratridine Induces Vasorelaxation in Mouse Cecocolic Mesenteric Arteries. Toxins (Basel) 2024; 16:533. [PMID: 39728791 PMCID: PMC11679225 DOI: 10.3390/toxins16120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The vegetal alkaloid toxin veratridine (VTD) is a selective voltage-gated Na+ (NaV) channel activator, widely used as a pharmacological tool in vascular physiology. We have previously shown that NaV channels, expressed in arteries, contribute to vascular tone in mouse mesenteric arteries (MAs). Here, we aimed to better characterize the mechanisms of action of VTD using mouse cecocolic arteries (CAs), a model of resistance artery. Using wire myography, we found that VTD induced vasorelaxation in mouse CAs. This VTD-induced relaxation was insensitive to prazosin, an α1-adrenergic receptor antagonist, but abolished by atropine, a muscarinic receptor antagonist. Indeed, VTD-vasorelaxant effect was totally inhibited by the NaV channel blocker tetrodotoxin (0.3 µM), the NO synthase inhibitor L-NNA (20 µM), and low extracellular Na+ concentration (14.9 mM) and was partially blocked by the NCX1 antagonist SEA0400 (45.4% at 1 µM). Thus, we assumed that the VTD-induced vasorelaxation in CAs was due to acetylcholine release by parasympathetic neurons, which induced NO synthase activation mediated by the NCX1-Ca2+ entry mode in endothelial cells (ECs). We demonstrated NCX1 expression in ECs by RT-qPCR and immunohisto- and western immunolabelling. VTD did not induce an increase in intracellular Ca2+ ([Ca2+]i), while SEA0400 partially blocked acetylcholine-triggered [Ca2+]i elevations in Mile Sven 1 ECs. Altogether, these results illustrate that VTD activates NaV channels in parasympathetic neurons and then vasorelaxation in resistance arteries, which could explain arterial hypotension after VTD intoxication.
Collapse
Affiliation(s)
- Joohee Park
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Christina Sahyoun
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Jacinthe Frangieh
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Léa Réthoré
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Coralyne Proux
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Linda Grimaud
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Emilie Vessières
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Jennifer Bourreau
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - César Mattei
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Daniel Henrion
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Céline Marionneau
- Nantes Université, CNRS, INSERM, l’Institut du thorax, 44000 Nantes, France;
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman Ras Maska, Lebanese University, Tripoli 1352, Lebanon
| | - Claire Legendre
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| | - Christian Legros
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, 49000 Angers, France; (J.P.); (C.S.); (J.F.); (L.R.); (C.P.); (L.G.); (E.V.); (J.B.); (C.M.); (D.H.); (C.L.)
| |
Collapse
|
2
|
Li K, Li Y, Chen Y, Chen T, Yang Y, Li P. Ion Channels Remodeling in the Regulation of Vascular Hyporesponsiveness During Shock. Microcirculation 2024; 31:e12874. [PMID: 39011763 DOI: 10.1111/micc.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/07/2024] [Accepted: 06/16/2024] [Indexed: 07/17/2024]
Abstract
Shock is characterized with vascular hyporesponsiveness to vasoconstrictors, thereby to cause refractory hypotension, insufficient tissue perfusion, and multiple organ dysfunction. The vascular hyporeactivity persisted even though norepinephrine and fluid resuscitation were administrated, it is of critical importance to find new potential target. Ion channels are crucial in the regulation of cell membrane potential and affect vasoconstriction and vasodilation. It has been demonstrated that many types of ion channels including K+ channels, Ca2+ permeable channels, and Na+ channels exist in vascular smooth muscle cells and endothelial cells, contributing to the regulation of vascular homeostasis and vasomotor function. An increasing number of studies suggested that the structural and functional alterations of ion channels located in arteries contribute to vascular hyporesponsiveness during shock, but the underlying mechanisms remained to be fully clarified. Therefore, the expression and functional changes in ion channels in arteries associated with shock are reviewed, to pave the way for further exploring the potential of ion channel-targeted compounds in treating refractory hypotension in shock.
Collapse
Affiliation(s)
- Keqing Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yinghong Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Tangting Chen
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Yang
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Pengyun Li
- The Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Matthews RM, Bradley E, Hollywood MA, Lundy FT, McGarvey LP, Sergeant GP, Thornbury KD. Modulation of fast sodium current in airway smooth muscle cells by exchange protein directly activated by cAMP. Am J Physiol Cell Physiol 2024; 326:C1-C9. [PMID: 37955124 PMCID: PMC11192474 DOI: 10.1152/ajpcell.00417.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
Airway smooth muscle (ASM) cells from mouse bronchus express a fast sodium current mediated by NaV1.7. We present evidence that this current is regulated by cAMP. ASM cells were isolated by enzymatic dispersal and studied using the whole cell patch clamp technique at room temperature. A fast sodium current, INa, was observed on holding cells under voltage clamp at -100 mV and stepping to -20 mV. This current was reduced in a concentration-dependent manner by denopamine (10 and 30 µM), a β-adrenergic agonist. Forskolin (1 µM), an activator of adenylate cyclase, reduced the current by 35%, but 6-MB-cAMP (300 µM), an activator of protein kinase A (PKA), had no effect. In contrast, 8-pCPT-2-O-Me-cAMP-AM (007-AM, 10 µM), an activator of exchange protein directly activated by cAMP (Epac), reduced the current by 48%. The inhibitory effect of 007-AM was still observed in the presence of dantrolene (10 µM), an inhibitor of ryanodine receptors, and when cytosolic [Ca2+] was buffered by inclusion of 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, Sigma (BAPTA) (50 µM) in the pipette solution, suggesting that the inhibition of INa was not due to Ca2+-release from intracellular stores. When 007-AM was tested on the current-voltage relationship, it reduced the current at potentials from -30 to 0 mV, but had no effect on the steady-state activation curve. However, the steady-state inactivation V1/2, the voltage causing inactivation of 50% of the current, was shifted in the negative direction from -76.6 mV to -89.7 mV. These findings suggest that cAMP regulates INa in mouse ASM via Epac, but not PKA.NEW & NOTEWORTHY β-adrenergic agonists are commonly used in inhalers to treat asthma and chronic obstructive pulmonary disease. These work by causing bronchodilation and reducing inflammation. The present study provides evidence that these drugs have an additional action, namely, to reduce sodium influx into airway smooth muscle cells via fast voltage-dependent channels. This may have the dual effect of promoting bronchodilation and reducing remodeling of the airways, which has a detrimental effect in these diseases.
Collapse
Affiliation(s)
- Ruth M. Matthews
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Eamonn Bradley
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Mark A. Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Fionnuala T. Lundy
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Lorcan P. McGarvey
- School of Medicine, Dentistry and Biomedical Sciences, Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Gerard P. Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Keith D. Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
4
|
Park J, Proux C, Ehanno W, Réthoré L, Vessières E, Bourreau J, Favre J, Kauffenstein G, Mattei C, Tricoire-Leignel H, Henrion D, Legendre C, Legros C. Tetrodotoxin Decreases the Contractility of Mesenteric Arteries, Revealing the Contribution of Voltage-Gated Na + Channels in Vascular Tone Regulation. Mar Drugs 2023; 21:md21030196. [PMID: 36976245 PMCID: PMC10059581 DOI: 10.3390/md21030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Tetrodotoxin (TTX) poisoning through the consumption of contaminated fish leads to lethal symptoms, including severe hypotension. This TTX-induced hypotension is likely due to the downfall of peripheral arterial resistance through direct or indirect effects on adrenergic signaling. TTX is a high-affinity blocker of voltage-gated Na+ (NaV) channels. In arteries, NaV channels are expressed in sympathetic nerve endings, both in the intima and media. In this present work, we aimed to decipher the role of NaV channels in vascular tone using TTX. We first characterized the expression of NaV channels in the aorta, a model of conduction arteries, and in mesenteric arteries (MA), a model of resistance arteries, in C57Bl/6J mice, by Western blot, immunochemistry, and absolute RT-qPCR. Our data showed that these channels are expressed in both endothelium and media of aorta and MA, in which scn2a and scn1b were the most abundant transcripts, suggesting that murine vascular NaV channels consist of NaV1.2 channel subtype with NaVβ1 auxiliary subunit. Using myography, we showed that TTX (1 µM) induced complete vasorelaxation in MA in the presence of veratridine and cocktails of antagonists (prazosin and atropine with or without suramin) that suppressed the effects of neurotransmitter release. In addition, TTX (1 µM) strongly potentiated the flow-mediated dilation response of isolated MA. Altogether, our data showed that TTX blocks NaV channels in resistance arteries and consecutively decreases vascular tone. This could explain the drop in total peripheral resistance observed during mammal tetrodotoxications.
Collapse
Affiliation(s)
- Joohee Park
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
| | - Coralyne Proux
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
| | - William Ehanno
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
| | - Léa Réthoré
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
| | - Emilie Vessières
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
| | - Jennifer Bourreau
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
| | - Julie Favre
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
- UMR INSERM 1121, CRBS, Strasbourg University, 67000 Strasbourg, France
| | - Gilles Kauffenstein
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
- UMR INSERM 1260, CRBS, Strasbourg University, 67084 Strasbourg, France
| | - César Mattei
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
| | | | - Daniel Henrion
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
| | - Claire Legendre
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Equipe CarME, SFR ICAT, University Angers, 49000 Angers, France
| |
Collapse
|
5
|
Paradoxical Changes of Cutaneous Microcirculation and Sympathetic Fibers of Rat Hind Limbs after Sciatic Nerve Compression. Plast Reconstr Surg 2023; 151:245-254. [PMID: 36696318 DOI: 10.1097/prs.0000000000009842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Recent studies show evidence that surgical nerve decompression could improve cutaneous blood flow (CBF), which might benefit ulcer healing. However, the change of CBF and sympathetic fibers after nerve compression is poorly understood. In the current study, a unilateral sciatic nerve compression model was created in Sprague-Dawley rats. METHODS A laser Doppler imaging system was applied to assess the CBF of the regions below the ankles. Immunohistochemistry and transmission electron microscopy were used to investigate the histopathologic changes of sympathetic fibers in sciatic nerve samples. RESULTS Laser Doppler imaging revealed decreased CBF of both the lesional limb and the contralesional limb, which occurred earlier in the lesional side, indicating an enhanced sympathetic tone on vasomotor function. Intraneural density of sympathetic fibers decreased on both sides and the ultrastructure of unmyelinated fibers of both sides degenerated in a nonsynchronized manner. CONCLUSIONS The study revealed nonsynchronized reduced CBF of bilateral hind limbs with paradoxically degenerated and diminished sympathetic fibers in bilateral sciatic nerves after unilateral sciatic nerve compression. These results may validate the importance of and broaden the indications for surgical nerve decompression in preventing or treating foot ulcers.
Collapse
|
6
|
Involvement of Vasopressin in Tissue Hypoperfusion during Cardiogenic Shock Complicating Acute Myocardial Infarction in Rats. Int J Mol Sci 2023; 24:ijms24021325. [PMID: 36674841 PMCID: PMC9866678 DOI: 10.3390/ijms24021325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/04/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Acute heart failure (AHF) due to acute myocardial infarction (AMI) is likely to involve cardiogenic shock (CS), with neuro-hormonal activation. A relationship between AHF, CS and vasopressin response is suspected. This study aimed to investigate the implication of vasopressin on hemodynamic parameters and tissue perfusion at the early phase of CS complicating AMI. Experiments were performed on male Wistar rats submitted or not to left coronary artery ligation (AMI and Sham). Six groups were studied Sham and AMI treated or not with either a vasopressin antagonist SR-49059 (Sham-SR, AMI-SR) or agonist terlipressin (Sham-TLP, AMI-TLP). Animals were sacrificed one day after surgery (D1) and after hemodynamic parameters determination. Vascular responses to vasopressin were evaluated, ex vivo, on aorta. AHF was defined by a left ventricular ejection fraction below 40%. CS was defined by AHF plus tissue hypoperfusion evidenced by elevated serum lactate level or low mesenteric oxygen saturation (SmO2) at D1. Mortality rates were 40% in AMI, 0% in AMI-SR and 33% in AMI-TLP. Immediately after surgery, a sharp decrease in SmO2 was observed in all groups. At D1, SmO2 recovered in Sham and in SR-treated animals while it remained low in AMI and further decreased in TLP-treated groups. The incidence of CS among AHF animals was 72% in AMI or AMI-TLP while it was reduced to 25% in AMI-SR. Plasma copeptin level was increased by AMI. Maximal contractile response to vasopressin was decreased in AMI (32%) as in TLP- and SR- treated groups regardless of ligation. Increased vasopressin secretion occurring in the early phase of AMI may be responsible of mesenteric hypoperfusion resulting in tissue hypoxia. Treatment with a vasopressin antagonist enhanced mesenteric perfusion and improve survival. This could be an interesting therapeutic strategy to prevent progression to cardiogenic shock.
Collapse
|
7
|
Impact of Highly Saturated versus Unsaturated Fat Intake on Carbohydrate Metabolism and Vascular Reactivity in Rat. Biochem Res Int 2022; 2022:8753356. [PMID: 36033104 PMCID: PMC9417764 DOI: 10.1155/2022/8753356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Palm olein (PO) and lard are considered harmful to health because of their highly saturated fatty acid content. On the contrary, olive oil (OO) with its high level of polyunsaturated fatty acids is considered healthier. This study aims to evaluate the effects of high consumption of these oils on carbohydrate metabolism and vascular function. Male Wistar rats were fed ad libitum for 12 weeks with different high fat diets (HFD) containing 30% of each oil. Systemic glycemia, insulinemia, and lipidemia were assessed by routine methods or by ELISA. GLUT4 muscular expression and hepatic and muscular Akt phosphorylation were analyzed by western blot. Vascular function was evaluated, ex vivo, on aortic rings and on the variations of isometric tensions. The results show that fasting blood glucose was increased with PO and OO diets and decreased with lard. Compared to control diet, this increase was significant only with PO diet. The area under the curve of IPGTT was increased in all HFD groups. Compared to control diet, this increase was significant only with PO. In contrast, stimulation of the pathway with insulin showed a significant decrease in Akt phosphorylation in all HFD compared to control diet. KCl and phenylephrine induced strong, dose-dependent vasoconstriction of rat aortas in all groups, but KCl EC50 values were increased with lard and OO diets. The inhibitory effect of tempol was absent in PO and lard and attenuated in OO. Vascular insulin sensitivity was decreased in all HFD groups. This decreased sensitivity of insulin was more important with PO and lard when compared to OO diet. In conclusion, the results of this study clearly show that high consumption of palm olein, olive oil, and lard can compromise glucose tolerance and thus insulin sensitivity. Furthermore, palm olein and lard have a more deleterious effect than olive oil on the contractile function of the aorta. Excessive consumption of saturated or unsaturated fatty acids is harmful to health, regardless of their vegetable or animal origin.
Collapse
|
8
|
Caffeine Consumption Influences Lidocaine Action via Pain-Related Voltage-Gated Sodium Channels: An In Vivo Animal Study. Pain Res Manag 2022; 2022:6107292. [PMID: 35027984 PMCID: PMC8752303 DOI: 10.1155/2022/6107292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
Several factors might influence the duration and efficiency of local anesthesia. This study investigates the effect of habitual caffeine intake on lidocaine action and explores the potential involvement of voltage-gated sodium channels in the interaction effect. Wistar rats were divided into four groups: (i) control (Ctrl), (ii) lidocaine intraplantar injection (LIDO), (iii) habitual caffeine intake (CAF), and (iv) lidocaine intraplantar injection and habitual caffeine intake (LIDO + CAF). Behavioral assessments, consisting of a paw pressure test for mechanical pressure sensation and a paw withdrawal latency test for thermal pain sensation, were performed at 0, 30, 60, and 90 minutes following lidocaine injection and after 10, 11, and 12 weeks of CAF intake. Pressure sensation was significantly reduced in the LIDO + CAF group compared with the control group. Moreover, the LIDO + CAF group exhibited reduced sensation compared to LIDO alone group. The LIDO + CAF combination exerted a synergistic effect at 30 and 60 minutes compared with the control. This synergistic effect was noted at 60 minutes (11 weeks of CAF intake) and at 30 minutes (12 weeks of CAF intake) compared with LIDO alone. Augmented thermal pain-relieving effects were observed in the LIDO + CAF group at all weeks compared to the control group and at 10 weeks compared to LIDO alone group. The molecular analysis of dorsal root ganglia suggested that CAF upregulated the mRNA expression of the Nav1.3, Nav1.7, and Nav1.8 sodium channel subtypes. Chronic caffeine consumption potentiates the local anesthetic action of lidocaine in an experimental animal model through mechanisms that involve the upregulation of voltage-gated sodium channels in the dorsal root ganglia.
Collapse
|
9
|
Ranolazine: An Old Drug with Emerging Potential; Lessons from Pre-Clinical and Clinical Investigations for Possible Repositioning. Pharmaceuticals (Basel) 2021; 15:ph15010031. [PMID: 35056088 PMCID: PMC8777683 DOI: 10.3390/ph15010031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is a significant public health problem with high mortality and morbidity. Extensive scientific investigations from basic sciences to clinics revealed multilevel alterations from metabolic imbalance, altered electrophysiology, and defective Ca2+/Na+ homeostasis leading to lethal arrhythmias. Despite the recent identification of numerous molecular targets with potential therapeutic interest, a pragmatic observation on the current pharmacological R&D output confirms the lack of new therapeutic offers to patients. By contrast, from recent trials, molecules initially developed for other fields of application have shown cardiovascular benefits, as illustrated with some anti-diabetic agents, regardless of the presence or absence of diabetes, emphasizing the clear advantage of “old” drug repositioning. Ranolazine is approved as an antianginal agent and has a favorable overall safety profile. This drug, developed initially as a metabolic modulator, was also identified as an inhibitor of the cardiac late Na+ current, although it also blocks other ionic currents, including the hERG/Ikr K+ current. The latter actions have been involved in this drug’s antiarrhythmic effects, both on supraventricular and ventricular arrhythmias (VA). However, despite initial enthusiasm and promising development in the cardiovascular field, ranolazine is only authorized as a second-line treatment in patients with chronic angina pectoris, notwithstanding its antiarrhythmic properties. A plausible reason for this is the apparent difficulty in linking the clinical benefits to the multiple molecular actions of this drug. Here, we review ranolazine’s experimental and clinical knowledge on cardiac metabolism and arrhythmias. We also highlight advances in understanding novel effects on neurons, the vascular system, skeletal muscles, blood sugar control, and cancer, which may open the way to reposition this “old” drug alone or in combination with other medications.
Collapse
|
10
|
Lim XR, Bradley E, Griffin CS, Hollywood MA, Sergeant GP, Thornbury KD. Fast voltage-dependent sodium (Na V ) currents are functionally expressed in mouse corpus cavernosum smooth muscle cells. Br J Pharmacol 2021; 179:1082-1101. [PMID: 34767251 DOI: 10.1111/bph.15728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Corpus cavernosum smooth muscle (CCSM) exhibits phasic contractions that are coordinated by ion channels. Mouse models are commonly used to study erectile dysfunction, but there are few published electrophysiological studies of mouse CCSM. We describe, for the first time, voltage-dependent sodium (NaV ) currents in mouse CCSM and investigate their function. EXPERIMENTAL APPROACH Electrophysiological, pharmacological, and immunocytochemical studies on isolated CCSM cells. Tension measurements in whole tissue. KEY RESULTS A fast, voltage-dependent sodium current was induced by depolarising steps. Steady-state activation and inactivation curves revealed a window current between -60 and -30 mV. Two populations of NaV currents, ('TTX-sensitive') and ('TTX-insensitive'), were distinguished. TTX-sensitive current showed 48% block with the NaV -subtype-specific blockers ICA-121431 (NaV 1.1-1.3), PF-05089771 (NaV 1.7), and 4,9-anhydro-TTX (NaV 1.6). TTX-insensitive current was insensitive to A803467, a NaV 1.8 blocker. Immunocytochemistry confirmed the expression of NaV 1.5 and NaV 1.4 in freshly dispersed CCSM cells. Veratridine, a NaV activator, reduced time-dependent inactivation of the current and increased the duration of evoked action potentials. Veratridine induced phasic contractions in CCSM strips. This effect was reversible with TTX and nifedipine but not by KB-R7943. CONCLUSION AND IMPLICATIONS We report, for the first time, a fast voltage-dependent sodium current in mouse CCSM. Stimulation of this current increases the contractility of corpus cavernosum in vitro, suggesting that it may contribute to the mechanisms of detumescence, and potentially serve as a clinically relevant target for pharmaceutical intervention in erectile dysfunction. Further work will be necessary to define its role.
Collapse
Affiliation(s)
| | | | | | | | | | - Keith D Thornbury
- Smooth Muscle Research Centre Dundalk Institute of Technology, Dublin, Ireland
| |
Collapse
|
11
|
Hypoxic Conditions Promote Rhythmic Contractile Oscillations Mediated by Voltage-Gated Sodium Channels Activation in Human Arteries. Int J Mol Sci 2021; 22:ijms22052570. [PMID: 33806419 PMCID: PMC7961413 DOI: 10.3390/ijms22052570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/17/2022] Open
Abstract
Arterial smooth muscle exhibits rhythmic oscillatory contractions called vasomotion and believed to be a protective mechanism against tissue hypoperfusion or hypoxia. Oscillations of vascular tone depend on voltage and follow oscillations of the membrane potential. Voltage-gated sodium channels (Nav), responsible for the initiation and propagation of action potentials in excitable cells, have also been evidenced both in animal and human vascular smooth muscle cells (SMCs). For example, they contribute to arterial contraction in rats, but their physiopathological relevance has not been established in human vessels. In the present study, we investigated the functional role of Nav in the human artery. Experiments were performed on human uterine arteries obtained after hysterectomy and on SMCs dissociated from these arteries. In SMCs, we recorded a tetrodotoxin (TTX)-sensitive and fast inactivating voltage-dependent INa current. Various Nav genes, encoding α-subunit isoforms sensitive (Nav 1.2; 1.3; 1.7) and resistant (Nav 1.5) to TTX, were detected both in arterial tissue and in SMCs. Nav channels immunostaining showed uniform distribution in SMCs and endothelial cells. On arterial tissue, we recorded variations of isometric tension, ex vivo, in response to various agonists and antagonists. In arterial rings placed under hypoxic conditions, the depolarizing agent KCl and veratridine, a specific Nav channels agonist, both induced a sustained contraction overlaid with rhythmic oscillations of tension. After suppression of sympathetic control either by blocking the release of catecholamine or by antagonizing the target adrenergic response, rhythmic activity persisted while the sustained contraction was abolished. This rhythmic activity of the arteries was suppressed by TTX but, in contrast, only attenuated by antagonists of calcium channels, Na+/Ca2+ exchanger, Na+/K+-ATPase and the cardiac Nav channel. These results highlight the role of Nav as a novel key element in the vasomotion of human arteries. Hypoxia promotes activation of Nav channels involved in the initiation of rhythmic oscillatory contractile activity.
Collapse
|
12
|
Pinto DP, Coutinho DDS, Carvalho KIMD, Ferrero MR, Silva LVD, Silveira GPE, Silva DMD, Araújo JFG, Silva ACA, Pereira HM, Fonseca LBD, Faria RX, Souza MVND, Silva ETD, Santos-Filho OA, Costa JCSD, Amendoeira FC, Martins MA. Pharmacological profiling of JME-173, a novel mexiletine derivative combining dual anti-inflammatory/anti-spasmodic functions and limited action in Na + channels. Eur J Pharmacol 2020; 885:173367. [PMID: 32750364 DOI: 10.1016/j.ejphar.2020.173367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Existing evidence suggests that the local anaesthetic mexiletine can be beneficial for patients with asthma. However, caution is required since anaesthesia of the airways inhibits protective bronchodilator neuronal reflexes, limiting applications in conditions of hyperirritable airways. Here, we describe the synthesis of a new series of mexiletine analogues, which were screened for reduced activity in Na+ channels and improved smooth muscle relaxant effects, that were evaluated using the patch-clamp technique and an isolated tracheal organ bath, respectively. JME-173 (1-(4-bromo-3,5-dimethylphenoxy)propan-2-amine) was the most effective among the four mexiletine analogues investigated. JME-173 was then studied in vivo using a murine model of lung inflammation induced by cigarette smoke (CS) and in vitro using neutrophil chemotaxis and mast cell degranulation assays. Finally, the JME-173 pharmacokinetic profile was assessed using HPLC-MS/MS bioanalytical method. JME-173 directly inhibited IL-8 (CXCL8)- and FMLP-induced human neutrophil chemotaxis and allergen-induced mast cell degranulation. After oral administration 1 h before CS exposure, JME-173 (50 mg/kg) strongly reduced the increased number of macrophages and neutrophils recovered in the bronchoalveolar effluent without altering lymphocyte counts. Pharmacokinetic experiments of JME-173 (10 mg/kg, orally) showed values of maximum concentration (Cmax), maximum time (Tmax), area under the blood concentration-time curve (AUC0-t) and area under the blood concentration-time curve from 0-Inf (AUC0-inf) of 163.3 ± 38.3 ng/mL, 1.2 ± 0.3 h, 729.4 ± 118.3 ng*h/ml and 868.9 ± 117.1 ng*h/ml (means ± S.E.M.), respectively. Collectively, these findings suggest that JME-173 has the potential to be an effective oral treatment for diseases associated with bronchoconstriction and inflammation.
Collapse
Affiliation(s)
- Douglas Pereira Pinto
- Laboratory of Pharmacokinetics, Vice Presidency of Research and Innovation in Health - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Diego de Sá Coutinho
- Laboratory of Inflammation, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Maximiliano R Ferrero
- Laboratory of Inflammation, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Letícia Vallim da Silva
- Laboratory of Pharmacokinetics, Vice Presidency of Research and Innovation in Health - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Diego Medeiros da Silva
- Laboratory of Pharmacokinetics, Vice Presidency of Research and Innovation in Health - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - João Felipe Garcia Araújo
- Laboratory of Pharmacokinetics, Vice Presidency of Research and Innovation in Health - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Aline C A Silva
- Laboratory of Pharmacokinetics, Vice Presidency of Research and Innovation in Health - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Heliana Martins Pereira
- Laboratory of Pharmacokinetics, Vice Presidency of Research and Innovation in Health - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Laís Bastos da Fonseca
- Laboratory of Pharmacokinetics, Vice Presidency of Research and Innovation in Health - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Robson Xavier Faria
- Laboratory of Toxoplasmosis and Other Protozoans, Oswaldo Cruz Institute, Brazil
| | - Marcus Vinicius Nora de Souza
- Laboratory of Organic Synthesis, Institute of Technology in Drugs, Farmanguinhos - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Emerson Teixeira da Silva
- Laboratory of Organic Synthesis, Institute of Technology in Drugs, Farmanguinhos - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Osvaldo Andrade Santos-Filho
- Laboratory of Molecular Modeling and Computational Structural Biology, Instituto de Pesquisas de Produtos Naturais - Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fábio Coelho Amendoeira
- Department of Pharmacology and Toxicology, National Institute of Quality Control in Health - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Instituto Oswaldo Cruz - Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.
| |
Collapse
|
13
|
Zhang XY, Bi RY, Zhang P, Gan YH. Veratridine modifies the gating of human voltage-gated sodium channel Nav1.7. Acta Pharmacol Sin 2018; 39:1716-1724. [PMID: 29950616 DOI: 10.1038/s41401-018-0065-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 06/05/2018] [Indexed: 01/22/2023]
Abstract
Veratridine is a lipid-soluble neurotoxin derived from plants in the family Liliaceae. It has been broadly investigated for its action as a sodium channel agonist. However, the effects of veratridine on subtypes of sodium channels, especially Nav1.7, remain to be studied. Here, we investigated the effects of veratridine on human Nav1.7 ectopically expressed in HEK293A cells and recorded Nav1.7 currents from the cells using whole-cell patch clamp technique. We found that veratridine exerted a dose-dependent inhibitory effect on the peak current of Nav1.7, with the half-maximal inhibition concentration (IC50) of 18.39 µM. Meanwhile, veratridine also elicited tail current (linearly) and sustained current [half-maximal concentration (EC50): 9.53 µM], also in a dose-dependent manner. Veratridine (75 µM) shifted the half-maximal activation voltage of the Nav1.7 activation curve in the hyperpolarized direction, from -21.64 ± 0.75 mV to -28.14 ± 0.66 mV, and shifted the half-inactivation voltage of the steady-state inactivation curve from -59.39 ± 0.39 mV to -73.78 ± 0.5 mV. An increased frequency of stimulation decreased the peak and tail currents of Nav1.7 for each pulse along with pulse number, and increased the accumulated tail current at the end of train stimulation. These findings reveal the different modulatory effects of veratridine on the Nav1.7 peak current and tail current.
Collapse
|
14
|
Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles. PLoS One 2018; 13:e0194980. [PMID: 29694371 PMCID: PMC5919073 DOI: 10.1371/journal.pone.0194980] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/08/2018] [Indexed: 01/14/2023] Open
Abstract
Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 μM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 μM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 μM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling.
Collapse
|
15
|
Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine. Sci Rep 2015; 5:17969. [PMID: 26655634 PMCID: PMC4674695 DOI: 10.1038/srep17969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/10/2015] [Indexed: 12/19/2022] Open
Abstract
Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na+ current (INa), and is known to reduce the Na+-dependent Ca2+ overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na+ channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca2+ calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine.
Collapse
|
16
|
Roger S, Gillet L, Le Guennec JY, Besson P. Voltage-gated sodium channels and cancer: is excitability their primary role? Front Pharmacol 2015; 6:152. [PMID: 26283962 PMCID: PMC4518325 DOI: 10.3389/fphar.2015.00152] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (NaV) are molecular characteristics of excitable cells. Their activation, triggered by membrane depolarization, generates transient sodium currents that initiate action potentials in neurons and muscle cells. Sodium currents were discovered by Hodgkin and Huxley using the voltage clamp technique and reported in their landmark series of papers in 1952. It was only in the 1980's that sodium channel proteins from excitable membranes were molecularly characterized by Catterall and his collaborators. Non-excitable cells can also express NaV channels in physiological conditions as well as in pathological conditions. These NaV channels can sustain biological roles that are not related to the generation of action potentials. Interestingly, it is likely that the abnormal expression of NaV in pathological tissues can reflect the re-expression of a fetal phenotype. This is especially true in epithelial cancer cells for which these channels have been identified and sodium currents recorded, while it was not the case for cells from the cognate normal tissues. In cancers, the functional activity of NaV appeared to be involved in regulating the proliferative, migrative, and invasive properties of cells. This review is aimed at addressing the non-excitable roles of NaV channels with a specific emphasis in the regulation of cancer cell biology.
Collapse
Affiliation(s)
- Sébastien Roger
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours Tours, France ; Département de Physiologie Animale, UFR Sciences and Techniques, Université François-Rabelais de Tours Tours, France
| | - Ludovic Gillet
- Department of Clinical Research, University of Bern Bern, Switzerland
| | | | - Pierre Besson
- Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais de Tours Tours, France
| |
Collapse
|
17
|
Ho WSV, Davis AJ, Chadha PS, Greenwood IA. Effective contractile response to voltage-gated Na+ channels revealed by a channel activator. Am J Physiol Cell Physiol 2013; 304:C739-47. [PMID: 23364266 DOI: 10.1152/ajpcell.00164.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the molecular identity and impact of enhancing voltage-gated Na(+) (Na(V)) channels in the control of vascular tone. In rat isolated mesenteric and femoral arteries mounted for isometric tension recording, the vascular actions of the Na(V) channel activator veratridine were examined. Na(V) channel expression was probed by molecular techniques and immunocytochemistry. In mesenteric arteries, veratridine induced potent contractions (pEC(50) = 5.19 ± 0.20, E(max) = 12.0 ± 2.7 mN), which were inhibited by 1 μM TTX (a blocker of all Na(V) channel isoforms, except Na(V)1.5, Na(V)1.8, and Na(V)1.9), but not by selective blockers of Na(V)1.7 (ProTx-II, 10 nM) or Na(V)1.8 (A-80347, 1 μM) channels. The responses were insensitive to endothelium removal but were partly (~60%) reduced by chemical destruction of sympathetic nerves by 6-hydroxydopamine (2 mM) or antagonism at the α1-adrenoceptor by prazosin (1 μM). KB-R7943, a blocker of the reverse mode of the Na(+)/Ca(2+) exchanger (3 μM), inhibited veratridine contractions in the absence or presence of prazosin. T16A(inh)-A01, a Ca(2+)-activated Cl(-) channel blocker (10 μM), also inhibited the prazosin-resistant contraction to veratridine. Na(V) channel immunoreactivity was detected in freshly isolated mesenteric myocytes, with apparent colocalization with the Na(+)/Ca(2+) exchanger. Veratridine induced similar contractile effects in the femoral artery, and mRNA transcripts for Na(V)1.2 and Na(V)1.3 channels were evident in both vessel types. We conclude that, in addition to sympathetic nerves, NaV channels are expressed in vascular myocytes, where they are functionally coupled to the reverse mode of Na(+)/Ca(2+) exchanger and subsequent activation of Ca(2+)-activated Cl(-) channels, causing contraction. The TTX-sensitive Na(V)1.2 and Na(V)1.3 channels are likely involved in vascular control.
Collapse
Affiliation(s)
- W-S Vanessa Ho
- Division of Biomedical Sciences, St. George's University of London, Cranmer Terrace, London SW17 0RE, UK.
| | | | | | | |
Collapse
|
18
|
Tykocki NR, Jackson WF, Watts SW. Reverse-mode Na+/Ca2+ exchange is an important mediator of venous contraction. Pharmacol Res 2012; 66:544-54. [PMID: 22974823 DOI: 10.1016/j.phrs.2012.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 11/25/2022]
Abstract
The Na(+)/Ca(2+) exchanger (NCX) is a bi-directional regulator of cytosolic Ca(2+), causing Ca(2+) efflux in forward-mode and Ca(2+) influx in reverse-mode. We hypothesized that reverse-mode NCX is a means of Ca(2+) entry in rat aorta (RA) and vena cava (RVC). NCX protein in RA and RVC was confirmed by immunoprecipitation. To assess NCX function, isometric contraction and intracellular Ca(2+) was measured in RA and RVC rings in response to low extracellular Na(+), endothelin-1 (ET-1), and KCl, in the presence or absence of the NCX antagonist KB-R7943. In RVC, low extracellular Na(+) caused vasoconstriction and an increase in intracellular Ca(2+) that was attenuated by 10μM KB-R7943. KB-R7943 (10 μM) attenuated maximal contraction to ET-1 in RVC (53 ± 9% of control), but not RA (91±1% of control). KB-R7943 (10 μM) reduced the maximal contraction to KCl in RA (48 ± 5%) and nearly abolished it in RVC (9 ± 2%), suggesting that voltage-dependent Ca(2+) influx may be inhibited by KB-R7943 as well. However, the L-type Ca(2+) channel inhibitor nifedipine (1 μM) did not alter ET-1-induced contraction. Our findings suggest that reverse-mode NCX is an important mechanism of Ca(2+) influx in RVC but not RA, especially during ET-1-induced contraction. Also, the effects of KB-R7943 on ET-1-induced contraction of RA and RVC are predominantly mediated by reverse-mode NCX inhibition and not due to off-target inhibition of Ca(2+) channels.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue St. Rooms B-420 and B-445, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
19
|
Dechanet C, Fort A, Barbero-Camps E, Dechaud H, Richard S, Virsolvy A. Endothelin-dependent vasoconstriction in human uterine artery: application to preeclampsia. PLoS One 2011; 6:e16540. [PMID: 21298073 PMCID: PMC3027698 DOI: 10.1371/journal.pone.0016540] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 01/03/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Reduced uteroplacental perfusion, the initiating event in preeclampsia, is associated with enhanced endothelin-1 (ET-1) production which feeds the vasoconstriction of uterine artery. Whether the treatments of preeclampsia were effective on ET-1 induced contraction and could reverse placental ischemia is the question addressed in this study. We investigated the effect of antihypertensive drugs used in preeclampsia and of ET receptor antagonists on the contractile response to ET-1 on human uterine arteries. METHODOLOGY/PRINCIPAL FINDINGS Experiments were performed, ex vivo, on human uterine artery samples obtained after hysterectomy. We studied variations in isometric tension of arterial rings in response to the vasoconstrictor ET-1 and evaluated the effects of various vasodilators and ET-receptor antagonists on this response. Among antihypertensive drugs, only dihydropyridines were effective in blocking and reversing the ET-1 contractile response. Their efficiency, independent of the concentration of ET-1, was only partial. Hydralazine, alpha-methyldopa and labetalol had no effect on ET-1 induced contraction which is mediated by both ET(A) and ET(B) receptors in uterine artery. ET receptors antagonists, BQ-123 and BQ-788, slightly reduced the amplitude of the response to ET-1. Combination of both antagonists was more efficient, but it was not possible to reverse the maximal ET-1-induced contraction with antagonists used alone or in combination. CONCLUSION Pharmacological drugs currently used in the context of preeclampsia, do not reverse ET-1 induced contraction. Only dihydropyridines, which partially relax uterine artery previously contracted with ET-1, might offer interesting perspectives to improve placental perfusion.
Collapse
|
20
|
Suh JH, Virsolvy A, Goux A, Cassan C, Richard S, Cristol JP, Teissèdre PL, Rouanet JM. Polyphenols prevent lipid abnormalities and arterial dysfunction in hamsters on a high-fat diet: a comparative study of red grape and white persimmon wines. Food Funct 2011; 2:555-61. [DOI: 10.1039/c1fo10066a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|