1
|
Milićević A, Popović S, Milovanović V, Karadžić V, Savković Ž, Bjelica V, Krizmanić J, Subakov-Simić G, Jakovljević O. Phototrophs in Unique Habitats of Thermomineral Springs in Central Serbia. Life (Basel) 2025; 15:169. [PMID: 40003578 PMCID: PMC11856916 DOI: 10.3390/life15020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Thermomineral springs are unique aquatic habitats characterized by high temperatures or mineral-rich water and often host specialized microbial communities. In Serbia, these springs represent an important but under-researched ecological resource whose diverse physicochemical properties are shaped by their geological context. In this study, the physical and chemical properties of Serbian thermomineral springs and their relationship with phototrophic communities in different substrates are investigated. Phototrophic biofilms were categorized into fully submerged and splash zone biofilms, with the former showing higher primary production. Cyanobacteria, Chlorophyta, and Bacillariophyta were recorded, with Bacillariophyta being the predominant division in terms of diversity, followed by Cyanobacteria. Among Cyanobacteria, coccoid forms like Aphanocapsa, Chroococcus, Gloeocapsa and Synechococcus dominated splash zones, while trichal forms such as Leptolyngbya, Oscillatoria and Pseudanabaena were abundant in submerged biofilms, forming thick mats. Unique cyanobacterial taxa, including Desertifilum, Elainella, Geitlerinema, Nodosilinea and Wilmottia, were identified through molecular analysis, underscoring the springs' potential as habitats for specialized phototrophs. Diatom communities, dominated by Nitzschia and Navicula, exhibited site-specific species influenced by microenvironmental parameters. Statistical analysis revealed ammonia, total nitrogen, and organic carbon as key factors shaping community composition. This study enhances the understanding of these ecosystems, emphasizing their conservation importance and potential for biotechnological applications.
Collapse
Affiliation(s)
- Ana Milićević
- Department of Algology and Mycology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Slađana Popović
- Department of Algology and Mycology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Vanja Milovanović
- Department of Algology and Mycology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Vesna Karadžić
- Institute of Public Health of Serbia Dr Milan Jovanović Batut, dr Subotića 5, 11000 Belgrade, Serbia
| | - Željko Savković
- Department of Algology and Mycology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Vukašin Bjelica
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Jelena Krizmanić
- Department of Algology and Mycology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Gordana Subakov-Simić
- Department of Algology and Mycology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| | - Olga Jakovljević
- Department of Algology and Mycology, Institute of Botany and Botanical Garden “Jevremovac”, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia
| |
Collapse
|
2
|
Heredia-Velásquez AM, Sarkar S, Thomas FW, Baza AC, Garcia-Pichel F. Urea-based mutualistic transfer of nitrogen in biological soil crusts. THE ISME JOURNAL 2025; 19:wrae246. [PMID: 39673195 PMCID: PMC11844795 DOI: 10.1093/ismejo/wrae246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 12/16/2024]
Abstract
Foundational to the establishment and recovery of biocrusts is a mutualistic exchange of carbon for nitrogen between pioneer cyanobacteria, including the widespread Microcoleus vaginatus, and heterotrophic diazotrophs in its "cyanosphere". In other such mutualisms, nitrogen is transferred as amino acids or ammonium, preventing losses through specialized structures, cell apposition or intracellularity. Yet, in the biocrust symbiosis relative proximity achieved through chemotaxis optimizes the exchange. We posited that further partner specificity may stem from using an unusual nitrogen vehicle, urea. We show that representative mutualist M. vaginatus PCC 9802 possesses genes for urea uptake, two ureolytic systems, and the urea cycle, overexpressing only uptake and the rare urea carboxylase/allophanate hydrolase (uc/ah) when in co-culture with mutualist Massilia sp. METH4. In turn, it overexpresses urea biosynthesis, but neither urease nor urea uptake when in co-culture. On nitrogen-free medium, three cyanosphere isolates release urea in co-culture with M. vaginatus but not in monoculture. Conversely, M. vaginatus PCC 9802 grows on urea down to the low micromolar range. In natural biocrusts, urea is at low and stable concentrations that do not support the growth of most local bacteria, but aggregates of mutualists constitute dynamic microscale urea hotspots, and the cyanobacterium responds chemotactically to urea. The coordinated gene co-regulation, physiology of cultured mutualists, distribution of urea pools in nature, and responses of native microbial populations, all suggest that low-concentration urea is likely the main vehicle for interspecies N transfer, helping attain partner specificity, for which the rare high-affinity uc/ah system of Microcoleus vaginatus is likely central.
Collapse
Affiliation(s)
- Ana Mercedes Heredia-Velásquez
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Soumyadev Sarkar
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Finlay Warsop Thomas
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Ariadna Cairó Baza
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
3
|
Zhou H, Yu K, Deng C, Wu B, Gao Y. Deterministic processes influence bacterial more than fungal community assembly during the development of biological soil crusts in the desert ecosystem. Front Microbiol 2024; 15:1404602. [PMID: 39247695 PMCID: PMC11377341 DOI: 10.3389/fmicb.2024.1404602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Biological soil crusts (biocrusts) constitute a crucial biological component of the soil surface in arid and semi-arid ecosystems. Understanding the variations in soil microbial community assembly across biocrust successional stages is essential for a deeper comprehension of microbial biodiversity and desert ecosystem functioning. However, knowledge about the mechanisms of microbial community assembly and the factors influencing its development remains limited. In this study, we utilized amplicons sequencing to assess the compositions of bacterial and fungal communities in bare sand and three types of biocrusts (light cyanobacterial biocrusts, dark cyanobacterial biocrusts, and moss crusts). Subsequently, we analyzed the ecological processes shaping microbial community composition and structure, along with the influencing factors. Our results revealed a significant increase in bacterial diversity and no significant changes in fungal diversity during biocrust development. The relative abundances of the copiotrophic bacteria (e.g., Actinobacteria, Acidobacteria, and Bacteroidetes) showed significant increases, while oligotrophic bacteria (e.g., Proteobacteria and Firmicutes) decreased over time. Moreover, the relative abundances of Ascomycota, which exhibit strong resistance to adverse environmental conditions, significantly decreased, whereas Basidiomycota, known for their ability to degrade lignin, significantly increased throughout biocrust development. Additionally, stochastic processes (dispersal limitation and drift) predominantly drove the assemblies of both bacterial and fungal communities. However, the relative importance of deterministic processes (homogeneous selection) in bacterial assembly increased during biocrust development. Structural equation modeling indicated that bacterial community assembly was primarily related to soil water content, whereas fungal community assembly was primarily related to total organic carbon. These findings provide a scientific foundation for investigating the formation and development of biocrusts, and further insights into the conservation and sustainable management of biocrust resources under future climate change scenarios.
Collapse
Affiliation(s)
- Hong Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Qinghai Guinan Desert Ecosystem Positioning Observation and Research Station, National Forestry and Grassland Administration, Beijing, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Chunfang Deng
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Bo Wu
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing, China
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| | - Ying Gao
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing, China
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
4
|
Jung P, Brand R, Briegel-Williams L, Werner L, Jost E, Lentendu G, Singer D, Athavale R, Nürnberg DJ, Alfaro FD, Büdel B, Lakatos M. The symbiotic alga Trebouxia fuels a coherent soil ecosystem on the landscape scale in the Atacama Desert. ENVIRONMENTAL MICROBIOME 2024; 19:59. [PMID: 39123247 PMCID: PMC11311966 DOI: 10.1186/s40793-024-00601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Biocrusts represent associations of lichens, green algae, cyanobacteria, fungi and other microorganisms, colonizing soils in varying proportions of principally arid biomes. The so-called grit crust represents a recently discovered type of biocrust situated in the Coastal Range of the Atacama Desert (Chile) made of microorganisms growing on and in granitoid pebbles, resulting in a checkerboard pattern visible to the naked eye on the landscape scale. This specific microbiome fulfills a broad range of ecosystem services, all probably driven by fog and dew-induced photosynthetic activity of mainly micro-lichens. To understand its biodiversity and impact, we applied a polyphasic approach on the phototrophic microbiome of this biocrust, combining isolation and characterization of the lichen photobionts, multi-gene phylogeny of the photobionts and mycobionts based on a direct sequencing and microphotography approach, metabarcoding and determination of chlorophylla+b contents. Metabarcoding showed that yet undescribed lichens within the Caliciaceae dominated the biocrust together with Trebouxia as the most abundant eukaryote in all plots. Together with high mean chlorophylla+b contents exceeding 410 mg m-2, this distinguished the symbiotic algae Trebouxia as the main driver of the grit crust ecosystem. The trebouxioid photobionts could be assigned to the I (T. impressa/gelatinosa) and A (T. arboricola) clades and represented several lineages containing five potential species candidates, which were identified based on the unique phylogenetic position, morphological features, and developmental cycles of the corresponding isolates. These results designate the grit crust as the only known coherent soil layer with significant landscape covering impact of at least 440 km2, predominantly ruled by a single symbiotic algal genus.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany.
| | - Rebekah Brand
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Laura Briegel-Williams
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Lina Werner
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Emily Jost
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Guillaume Lentendu
- Laboratory of Soil Biodiversity, Université de Neuchâtel, Neuchâtel, Switzerland
| | - David Singer
- Soil Science and Environment Group, Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Rujuta Athavale
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Dennis J Nürnberg
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Burkhard Büdel
- Biology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Kaiserslautern, Germany
| | - Michael Lakatos
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| |
Collapse
|
5
|
Sun X, Kong T, Huang D, Chen Z, Zhang Y, Häggblom MM, Soleimani M, Liu H, Ren Y, Wang Y, Huang Y, Li B, Sun W. Microbial Sulfur and Arsenic Oxidation Facilitate the Establishment of Biocrusts during Reclamation of Degraded Mine Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12441-12453. [PMID: 38900020 DOI: 10.1021/acs.est.3c10945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Degraded tailings generated by the mining of metal ores are major environmental threats to the surrounding ecosystems. Tailing reclamation, however, is often impeded due to adverse environmental conditions, with depleted key nutrients (i.e., nitrogen (N) and phosphorus (P)) and elevated sulfur and metal(loid) concentrations. Formation of biocrusts may significantly accelerate nutrient accumulation and is therefore an essential stage for tailing reclamation. Although suggested to play an important role, the microbial community composition and key metabolisms in biocrusts remain largely unknown and are therefore investigated in the current study. The results suggested that sulfur and arsenic oxidation are potential energy sources utilized by members of predominant biocrust bacterial families, including Beijerinckiaceae, Burkholderiaceae, Hyphomicrobiaceae, and Rhizobiaceae. Accordingly, the S and As oxidation potentials are elevated in biocrusts compared to those in their adjacent tailings. Biocrust growth, as proxied by chlorophyll concentrations, is enhanced in treatments supplemented with S and As. The elevated biocrust growth might benefit from nutrient acquisition services (i.e., nitrogen fixation and phosphorus solubilization) fueled by microbial sulfur and arsenic oxidation. The current study suggests that sulfur- and arsenic-oxidizing microorganisms may play important ecological roles in promoting biocrust formation and facilitating tailing reclamation.
Collapse
Affiliation(s)
- Xiaoxu Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Tianle Kong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Duanyi Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhenyu Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yuxue Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Mohsen Soleimani
- Department of Natural Resources, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Huaqing Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Youhua Ren
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yize Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Huang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Baoqin Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control,Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
6
|
Giraldo-Silva A, Masiello CA. Environmental conditions play a key role in controlling the composition and diversity of Colombian biocrust microbiomes. Front Microbiol 2024; 15:1236554. [PMID: 38725684 PMCID: PMC11081033 DOI: 10.3389/fmicb.2024.1236554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/11/2024] [Indexed: 05/12/2024] Open
Abstract
Drylands soils worldwide are naturally colonized by microbial communities known as biocrusts. These soil microbiomes render important ecosystem services associated with soil fertility, water holding capacity, and stability to the areas they cover. Because of the importance of biocrusts in the global cycling of nutrients, there is a growing interest in describing the many microbial configurations these communities display worldwide. However, comprehensive 16S rRNA genes surveys of biocrust communities do not exist for much of the planet: for example, in the continents of South America and the northern part of Africa. The absence of a global understanding of biocrust biodiversity has lead us to assign a general importance to community members that may, in fact, be regional. Here we report for the first time the presence of biocrusts in Colombia (South America) through 16S rRNA genes surveys across an arid, a semi-arid and a dry subtropical region within the country. Our results constitute the first glance of the Bacterial/Archaeal communities associated with South American biocrust microbiomes. Communities where cyanobacteria other than Microcoleus vaginatus prevail, despite the latter being considered a key species elsewhere, illustrate differentiable results in these surveys. We also find that the coastal biocrust communities in Colombia include halo-tolerant and halophilic species, and that niche preference of some nitrogen fixing organisms deviate from previously described global trends. In addition, we identified a high proportion (ranging from 5 to 70%, in average) of cyanobacterial sequences that did not match any formally described cyanobacterial species. Our investigation of Colombian biocrusts points to highly diverse communities with climatic regions controlling taxonomic configurations. They also highlight an extensive local diversity to be discovered which is central to better design management and restoration strategies for drylands soils currently undergoing disturbances due to land use and global warming. Finally, this field study highlights the need for an improved mechanistic understanding of the response of key biocrust community members to changes in moisture and temperature.
Collapse
Affiliation(s)
- Ana Giraldo-Silva
- Department of Science, Ecology Group and Institute for Multidisciplinary Research in Applied Biology, Public University of Navarre (UPNA), Pamplona, Spain
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
| | - Caroline A. Masiello
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX, United States
| |
Collapse
|
7
|
Stanojković A, Skoupý S, Johannesson H, Dvořák P. The global speciation continuum of the cyanobacterium Microcoleus. Nat Commun 2024; 15:2122. [PMID: 38459017 PMCID: PMC10923798 DOI: 10.1038/s41467-024-46459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Speciation is a continuous process driven by genetic, geographic, and ecological barriers to gene flow. It is widely investigated in multicellular eukaryotes, yet we are only beginning to comprehend the relative importance of mechanisms driving the emergence of barriers to gene flow in microbial populations. Here, we explored the diversification of the nearly ubiquitous soil cyanobacterium Microcoleus. Our dataset consisted of 291 genomes, of which 202 strains and eight herbarium specimens were sequenced for this study. We found that Microcoleus represents a global speciation continuum of at least 12 lineages, which radiated during Eocene/Oligocene aridification and exhibit varying degrees of divergence and gene flow. The lineage divergence has been driven by selection, geographical distance, and the environment. Evidence of genetic divergence and selection was widespread across the genome, but we identified regions of exceptional differentiation containing candidate genes associated with stress response and biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Aleksandar Stanojković
- Palacký University Olomouc, Faculty of Sciences, Department of Botany, Olomouc, Czech Republic
| | - Svatopluk Skoupý
- Palacký University Olomouc, Faculty of Sciences, Department of Botany, Olomouc, Czech Republic
| | - Hanna Johannesson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- The Royal Swedish Academy of Sciences, Stockholm, Sweden
| | - Petr Dvořák
- Palacký University Olomouc, Faculty of Sciences, Department of Botany, Olomouc, Czech Republic.
| |
Collapse
|
8
|
Singh PR, Gupta A, Singh AP, Jaiswal J, Sinha RP. Effects of ultraviolet radiation on cellular functions of the cyanobacterium Synechocystis sp. PCC 6803 and its recovery under photosynthetically active radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112866. [PMID: 38364711 DOI: 10.1016/j.jphotobiol.2024.112866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Cyanobacteria are photosynthetic organisms and challenged by large number of stresses, especially by ultraviolet radiation (UVR). UVR primarily impacts lipids, proteins, DNA, photosynthetic performance, which lowers the fitness and production of cyanobacteria. UVR has a catastrophic effect on cyanobacterial cells and eventually leads to cell death. UVR tolerance in the Synechocystis was poorly studied. Therefore, we irradiated Synechocystis sp. PCC 6803 to varying hours of photosynthetically active radiations (PAR), PAR + UV-A (PA), and PAR + UV-A + UV-B (PAB) for 48 h. To study the tolerance of Synechocystis sp. PCC 6803 against different UVR. The study shows that Chl a and total carotenoids content increased up to 36 h in PAR and PA, after 36 h a decrease was observed. PC increased up to 4-fold in 48 h of PA irradiation compared to 12 h. Maximum increase in ROS was observed under 48 h PAB i.e., 5.8-fold. Flowcytometry (FCM) based analysis shows that 25% of cells do not give fluorescence of Chl a and H2DCFH. In case of cell viability 10% cells were found to be non-viable in 48 h of PAB irradiance compared to 12 h. From the above study it was found that FCM-based approaches would provide a better understanding of the variations that occurred within the Synechocystis cells compared to fluorescence microscopy-based methods.
Collapse
Affiliation(s)
- Prashant R Singh
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashish P Singh
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Jyoti Jaiswal
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Nelson C, Dadi P, Shah DD, Garcia-Pichel F. Spatial organization of a soil cyanobacterium and its cyanosphere through GABA/Glu signaling to optimize mutualistic nitrogen fixation. THE ISME JOURNAL 2024; 18:wrad029. [PMID: 38366166 PMCID: PMC10881301 DOI: 10.1093/ismejo/wrad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 02/18/2024]
Abstract
Soil biocrusts are characterized by the spatial self-organization of resident microbial populations at small scales. The cyanobacterium Microcoleus vaginatus, a prominent primary producer and pioneer biocrust former, relies on a mutualistic carbon (C) for nitrogen (N) exchange with its heterotrophic cyanosphere microbiome, a mutualism that may be optimized through the ability of the cyanobacterium to aggregate into bundles of trichomes. Testing both environmental populations and representative isolates, we show that the proximity of mutualistic diazotroph populations results in M. vaginatus bundle formation orchestrated through chemophobic and chemokinetic responses to gamma-aminobutyric acid (GABA) /glutamate (Glu) signals. The signaling system is characterized by: a high GABA sensitivity (nM range) and low Glu sensitivity (μM to mM), the fact that GABA and Glu are produced by the cyanobacterium as an autoinduction response to N deficiency, and by the presence of interspecific signaling by heterotrophs in response to C limitation. Further, it crucially switches from a positive to a negative feedback loop with increasing GABA concentration, thus setting maximal bundle sizes. The unprecedented use of GABA/Glu as an intra- and interspecific signal in the spatial organization of microbiomes highlights the pair as truly universal infochemicals.
Collapse
Affiliation(s)
- Corey Nelson
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
- Instituto Multidisciplinar Para Estudios del Medio “Ramon Margalef”, Universidad de Alicante, San Vicente del Raspeig 03690, Spain
| | - Pavani Dadi
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Dhara D Shah
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, United States
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, United States
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
10
|
Wang L, Huang Y, Yang Q, Mai Z, Xie F, Lyu L, Zhang S, Li J. Biocrust reduces the soil erodibility of coral calcareous sand by regulating microbial community and extracellular polymeric substances on tropical coral island, South China Sea. Front Microbiol 2023; 14:1283073. [PMID: 38152373 PMCID: PMC10751374 DOI: 10.3389/fmicb.2023.1283073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Tropical coral islands assume a pivotal role in the conservation of oceanic ecosystem biodiversity. However, their distinctive environmental attributes and limited vegetation render them highly susceptible to soil erosion. The biological soil crust (biocrust), owing to its significant ecological role in soil stabilization and erosion prevention, is deemed an effective means of mitigating soil erosion on coral island. However, existing research on the mechanisms through which biocrusts resist soil erosion has predominantly concentrated on arid and semi-arid regions. Consequently, this study will specifically delve into elucidating the erosion-resistant mechanisms of biocrusts in tropical coral island environments, South China Sea. Specifically, we collected 16 samples of biocrusts and bare soil from Meiji Island. High-throughput amplicon sequencing was executed to analyze the microbial community, including bacteria, fungi, and archaea. Additionally, quantitative PCR was utilized to assess the abundance of the bacterial 16S rRNA, fungal ITS, archaeal 16S rRNA, and cyanobacterial 16S rRNA genes within these samples. Physicochemical measurements and assessments of extracellular polymeric substances (EPSs) were conducted to characterize the soil properties. The study reported a significantly decreased soil erodibility factor after biocrust formation. Compared to bare soil, soil erodibility factor decreased from 0.280 to 0.190 t h MJ-1 mm-1 in the biocrusts. Mechanistically, we measured the microbial EPS contents and revealed a negative correlation between EPS and soil erodibility factor. Consistent with increased EPS, the abundance of bacteria, fungi, archaea, and cyanobacteria were also detected significantly increased with biocrust formation. Correlation analysis detected Cyanobacteria, Chloroflexi, Deinococcota, and Crenarchaeota as potential microbials promoting EPSs and reducing soil erosion. Together, our study presents the evidence that biocrust from tropical coral island in the South China Sea promotes resistance to soil erosion, pinpointing key EPSs-producing microbials against soil erosion. The findings would provide insights for island soil restoration.
Collapse
Affiliation(s)
- Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Zheng Q, Hu Y, Kosina SM, Van Goethem MW, Tringe SG, Bowen BP, Northen TR. Conservation of beneficial microbes between the rhizosphere and the cyanosphere. THE NEW PHYTOLOGIST 2023; 240:1246-1258. [PMID: 37668195 DOI: 10.1111/nph.19225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/26/2023] [Indexed: 09/06/2023]
Abstract
Biocrusts are phototroph-driven communities inhabiting arid soil surfaces. Like plants, most photoautotrophs (largely cyanobacteria) in biocrusts are thought to exchange fixed carbon for essential nutrients like nitrogen with cyanosphere bacteria. Here, we aim to compare beneficial interactions in rhizosphere and cyanosphere environments, including finding growth-promoting strains for hosts from both environments. To examine this, we performed a retrospective analysis of 16S rRNA gene sequencing datasets, host-microbe co-culture experiments between biocrust communities/biocrust isolates and a model grass (Brachypodium distachyon) or a dominant biocrust cyanobacterium (Microcoleus vaginatus), and metabolomic analysis. All 18 microbial phyla in the cyanosphere were also present in the rhizosphere, with additional 17 phyla uniquely found in the rhizosphere. The biocrust microbes promoted the growth of the model grass, and three biocrust isolates (Bosea sp._L1B56, Pseudarthrobacter sp._L1D14 and Pseudarthrobacter picheli_L1D33) significantly promoted the growth of both hosts. Moreover, pantothenic acid was produced by Pseudarthrobacter sp._L1D14 when grown on B. distachyon exudates, and supplementation of plant growth medium with this metabolite increased B. distachyon biomass by over 60%. These findings suggest that cyanobacteria and other diverse photoautotrophic hosts can be a source for new plant growth-promoting microbes and metabolites.
Collapse
Affiliation(s)
- Qing Zheng
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuntao Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marc W Van Goethem
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Susannah G Tringe
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint Genome Institute, Berkeley, CA, 94720, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint Genome Institute, Berkeley, CA, 94720, USA
| |
Collapse
|
12
|
Yadav P, Singh RP, Hashem A, Abd_Allah EF, Santoyo G, Kumar A, Gupta RK. Enhancing Biocrust Development and Plant Growth through Inoculation of Desiccation-Tolerant Cyanobacteria in Different Textured Soils. Microorganisms 2023; 11:2507. [PMID: 37894165 PMCID: PMC10609203 DOI: 10.3390/microorganisms11102507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
In recent years, there has been a burgeoning interest in the utilization of cyanobacteria for the purpose of land rehabilitation via enhancements in soil fertility, prevent erosion, and counter desertification. This study evaluated the ability of Nostoc calcicola BOT1, Scytonema sp. BOT2, and their consortia to form biocrusts on the substrate of coarse sand, fine sand, and loamy soil. A nutrient- and water-deficient substrate was inoculated with cyanobacteria to facilitate biocrust formation and evaluate their impact on agriculture. Cyanobacteria inoculation resulted in significant improvements in soil fertility, especially in coarse and fine sand, which initially had the lowest fertility. The findings of this investigation underscore that the consortium of cyanobacteria exhibited greater efficacy than individual strains in enhancing soil fertility and stimulating plant growth. The loamy soil treated with the consortium had the highest plant growth across all soil types, in contrast to the individual strains. The consortium of cyanobacteria showed promising results in promoting biocrust formation and fostering rice seedling growth in fine sand. This study provides empirical evidence supporting the potential utility of cyanobacterial consortia as a valuable tool for the rehabilitation of degraded land. Furthermore, the results indicate that cyanobacterial species can persist in soil environments even following prolonged periods of desiccation.
Collapse
Affiliation(s)
- Priya Yadav
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (P.Y.); (R.P.S.)
| | - Rahul Prasad Singh
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (P.Y.); (R.P.S.)
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.H.)
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (E.F.A.)
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico; (G.S.)
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida 201313, India
| | - Rajan Kumar Gupta
- Laboratory of Algal Research, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India; (P.Y.); (R.P.S.)
| |
Collapse
|
13
|
Abstract
Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.
Collapse
Affiliation(s)
- Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|
14
|
Kurth JK, Albrecht M, Glaser K, Karsten U, Vestergaard G, Armbruster M, Kublik S, Schmid CAO, Schloter M, Schulz S. Biological soil crusts on agricultural soils of mesic regions promote microbial cross-kingdom co-occurrences and nutrient retention. Front Microbiol 2023; 14:1169958. [PMID: 37520365 PMCID: PMC10382179 DOI: 10.3389/fmicb.2023.1169958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Biological soil crusts (biocrusts) are known as biological hotspots on undisturbed, nutrient-poor bare soil surfaces and until now, are mostly observed in (semi-) arid regions but are currently poorly understood in agricultural systems. This is a crucial knowledge gap because managed sites of mesic regions can quickly cover large areas. Thus, we addressed the questions (i) if biocrusts from agricultural sites of mesic regions also increase nutrients and microbial biomass as their (semi-) arid counterparts, and (ii) how microbial community assemblage in those biocrusts is influenced by disturbances like different fertilization and tillage regimes. Methods We compared phototrophic biomass, nutrient concentrations as well as the abundance, diversity and co-occurrence of Archaea, Bacteria, and Fungi in biocrusts and bare soils at a site with low agricultural soil quality. Results and Discussion Biocrusts built up significant quantities of phototrophic and microbial biomass and stored more nutrients compared to bare soils independent of the fertilizer applied and the tillage management. Surprisingly, particularly low abundant Actinobacteria were highly connected in the networks of biocrusts. In contrast, Cyanobacteria were rarely connected, which indicates reduced importance within the microbial community of the biocrusts. However, in bare soil networks, Cyanobacteria were the most connected bacterial group and, hence, might play a role in early biocrust formation due to their ability to, e.g., fix nitrogen and thus induce hotspot-like properties. The microbial community composition differed and network complexity was reduced by conventional tillage. Mineral and organic fertilizers led to networks that are more complex with a higher percentage of positive correlations favoring microbe-microbe interactions. Our study demonstrates that biocrusts represent a microbial hotspot on soil surfaces under agricultural use, which may have important implications for sustainable management of such soils in the future.
Collapse
Affiliation(s)
- Julia Katharina Kurth
- Chair for Environmental Microbiology, TUM School of Life Science, Technical University Munich, Freising, Germany
- Environmental Health Centre, Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Martin Albrecht
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Karin Glaser
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Ulf Karsten
- Department of Applied Ecology and Phycology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Gisle Vestergaard
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Armbruster
- Agricultural Analytical and Research Institute Speyer (LUFA Speyer), Speyer, Germany
| | - Susanne Kublik
- Environmental Health Centre, Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Christoph A. O. Schmid
- Environmental Health Centre, Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Michael Schloter
- Chair for Environmental Microbiology, TUM School of Life Science, Technical University Munich, Freising, Germany
- Environmental Health Centre, Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| | - Stefanie Schulz
- Environmental Health Centre, Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany
| |
Collapse
|
15
|
Kamada S, Wakabayashi R, Naganuma T. Phylogenetic Revisit to a Review on Predatory Bacteria. Microorganisms 2023; 11:1673. [PMID: 37512846 PMCID: PMC10385382 DOI: 10.3390/microorganisms11071673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Predatory bacteria, along with the biology of their predatory behavior, have attracted interest in terms of their ecological significance and industrial applications, a trend that has been even more pronounced since the comprehensive review in 2016. This mini-review does not cover research trends, such as the role of outer membrane vesicles in myxobacterial predation, but provides an overview of the classification and newly described taxa of predatory bacteria since 2016, particularly with regard to phylogenetic aspects. Among them, it is noteworthy that in 2020 there was a major phylogenetic reorganization that the taxa hosting Bdellovibrio and Myxococcus, formerly classified as Deltaproteobacteria, were proposed as the new phyla Bdellovibrionota and Myxococcota, respectively. Predatory bacteria have been reported from other phyla, especially from the candidate divisions. Predatory bacteria that prey on cyanobacteria and predatory cyanobacteria that prey on Chlorella have also been found. These are also covered in this mini-review, and trans-phylum phylogenetic trees are presented.
Collapse
Affiliation(s)
- Saki Kamada
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Ryoka Wakabayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan
| |
Collapse
|
16
|
Hansen FA, James DK, Anderson JP, Meredith CS, Dominguez AJ, Pombubpa N, Stajich JE, Romero-Olivares AL, Salley SW, Pietrasiak N. Landscape characteristics shape surface soil microbiomes in the Chihuahuan Desert. Front Microbiol 2023; 14:1135800. [PMID: 37350785 PMCID: PMC10282155 DOI: 10.3389/fmicb.2023.1135800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/02/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Soil microbial communities, including biological soil crust microbiomes, play key roles in water, carbon and nitrogen cycling, biological weathering, and other nutrient releasing processes of desert ecosystems. However, our knowledge of microbial distribution patterns and ecological drivers is still poor, especially so for the Chihuahuan Desert. Methods This project investigated the effects of trampling disturbance on surface soil microbiomes, explored community composition and structure, and related patterns to abiotic and biotic landscape characteristics within the Chihuahuan Desert biome. Composite soil samples were collected in disturbed and undisturbed areas of 15 long-term ecological research plots in the Jornada Basin, New Mexico. Microbial diversity of cross-domain microbial groups (total Bacteria, Cyanobacteria, Archaea, and Fungi) was obtained via DNA amplicon metabarcode sequencing. Sequence data were related to landscape characteristics including vegetation type, landforms, ecological site and state as well as soil properties including gravel content, soil texture, pH, and electrical conductivity. Results Filamentous Cyanobacteria dominated the photoautotrophic community while Proteobacteria and Actinobacteria dominated among the heterotrophic bacteria. Thaumarchaeota were the most abundant Archaea and drought adapted taxa in Dothideomycetes and Agaricomycetes were most abundant fungi in the soil surface microbiomes. Apart from richness within Archaea (p = 0.0124), disturbed samples did not differ from undisturbed samples with respect to alpha diversity and community composition (p ≥ 0.05), possibly due to a lack of frequent or impactful disturbance. Vegetation type and landform showed differences in richness of Bacteria, Archaea, and Cyanobacteria but not in Fungi. Richness lacked strong relationships with soil variables. Landscape features including parent material, vegetation type, landform type, and ecological sites and states, exhibited stronger influence on relative abundances and microbial community composition than on alpha diversity, especially for Cyanobacteria and Fungi. Soil texture, moisture, pH, electrical conductivity, lichen cover, and perennial plant biomass correlated strongly with microbial community gradients detected in NMDS ordinations. Discussion Our study provides first comprehensive insights into the relationships between landscape characteristics, associated soil properties, and cross-domain soil microbiomes in the Chihuahuan Desert. Our findings will inform land management and restoration efforts and aid in the understanding of processes such as desertification and state transitioning, which represent urgent ecological and economical challenges in drylands around the world.
Collapse
Affiliation(s)
- Frederick A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Darren K. James
- Jornada Experimental Range Department, New Mexico State University, Las Cruces, NM, United States
| | - John P. Anderson
- Jornada Experimental Range Department, New Mexico State University, Las Cruces, NM, United States
| | | | - Andrew J. Dominguez
- Plant and Environmental Sciences Department, New Mexico State University, Las Cruces, NM, United States
| | - Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA, United States
| | | | - Shawn W. Salley
- U.S. Department of Agriculture-Natural Resources Conservation Service, Jornada Experimental Range, Las Cruces, NM, United States
| | - Nicole Pietrasiak
- Plant and Environmental Sciences Department, New Mexico State University, Las Cruces, NM, United States
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
17
|
Zhou H, Li L, Liu Y. Biological soil crust development affects bacterial communities in the Caragana microphylla community in alpine sandy areas. Front Microbiol 2023; 14:1106739. [PMID: 37007529 PMCID: PMC10050341 DOI: 10.3389/fmicb.2023.1106739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionBiological soil crusts (BSCs) constitute a substantial portion of primary production in dryland ecosystems. They successionally mature to deliver a series of ecosystem services. Bacteria, as an important community in BSCs, play critical roles in maintaining the structure and functions of BSCs. However, the process by which bacterial diversity and community are altered with BSC development is not fully understood.MethodsIn this study, amplicons sequencing was used to investigate bacterial diversity and community compositions across five developmental stages of BSCs (bare sand, microbial crusts, algae crusts, lichen crusts, and moss crusts) and their relationship with environmental variables in the Gonghe basin sandy land in Qinghai-Tibet Plateau, northwestern China.ResultsThe results showed that Proteobacteria, Actinobacteria, Cyanobacteria, Acidobacteria, Bacteroidetes, and Firmicutes were predominant in different developmental stages of BSCs, accounting for more than 77% of the total relative abundance. The phyla of Acidobacteria and Bacteroidetes were abundant in this region. With BSC development, bacterial diversity significantly increased, and the taxonomic community composition significantly altered. The relative abundance of copiotrophic bacteria, such as Actinobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia, Planctomycetes, and Gemmatimonadetes significantly increased, whereas the relative abundance of oligotrophic bacteria, such as Proteobacteria and Firmicutes significantly decreased. The relative abundance of Cyanobacteria in the algae crusts was significantly higher than that in the other developmental stages (p < 0.05).ConclusionVariations in bacterial composition suggested that the potential ecological functions of the bacterial community were altered with BSC development. The functions varied from enhancing soil surface stability by promoting soil particle cementation in the early stages to promoting material circulation of the ecosystem by fixing carbon and nitrogen and decomposing litter in the later stages of BSC development. Bacterial community is a sensitive index of water and nutrient alterations during BSC development. SWC, pH value, TC, TOC, TN, NO3−, TP and soil texture were the primary environmental variables that promoted changes in the bacterial community composition of BSCs.
Collapse
Affiliation(s)
- Hong Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, China
| | - Lun Li
- Qilian Mountain National Park Qinghai Service Guarantee Center, Xining, China
| | - Yunxiang Liu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Agricultural and Forestry Sciences, Xining, China
- *Correspondence: Yunxiang Liu,
| |
Collapse
|
18
|
Kamptonema animale (Microcoleaceae), terrestrial cyanobacterium colonizing geoglossoid fungi (Central Slovakia). Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
19
|
Roncero-Ramos B, Román JR, Acién G, Cantón Y. Towards large scale biocrust restoration: Producing an efficient and low-cost inoculum of N-fixing cyanobacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157704. [PMID: 35908695 DOI: 10.1016/j.scitotenv.2022.157704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Dryland soil degradation is increasing due to global change and traditional restoration methods are not successful due to water scarcity. Thus, an alternative technology based on inoculating biocrust-forming cyanobacteria on degraded soils has emerged. Biocrusts are communities of mosses, lichens, cyanobacteria or fungi that colonize soil surface forming a stable and fertile layer. Previous studies have shown the benefits of inoculating cyanobacteria to restore soils at a small scale. However, to face field restoration projects, it is necessary to produce high quantities of biomass at an affordable cost. In this work, we analyze if the previously tested cyanobacteria Scytonema hyalinum, Tolypothrix distorta (heterocystous strains) and Trichocoleus desertorum (a bundle-forming one) can be produced with agricultural fertilizers. Different culture media were used: two containing pure chemicals (BG11 and BG110, this N-free medium was used just for heterocystous strains) and two containing fertilizers (BG11-F and MM-F). The performance of the cultures was monitored by measuring the biomass concentration and photosynthetic stress. Afterwards, we analyzed their capacity to induce biocrusts and improve soil properties by inoculating the biomass on a mine substrate indoors and measuring, three months later, the albedo, chlorophyll a and organic carbon content. Results show that the bundle-forming cyanobacterium was unable to grow in the media tested, whereas both heterocystous cyanobacteria grew in all of them and induced the formation of biocrusts improving the organic carbon substrate content. The best results for S. hyalinum were found using the MM-F medium, and for T. distorta using a medium containing pure chemicals (BG11). However, results were also positive when using a medium containing fertilizers (BG11-F). Thus, agricultural fertilizers can be used to undertake the production of heterocystous cyanobacteria for large scale restoration in drylands. On the other hand, more research is needed to find sustainable techniques to produce biomass of bundle-forming cyanobacteria.
Collapse
Affiliation(s)
- Beatriz Roncero-Ramos
- Department of Life Sciences, InBios-Center for Protein Engineering, University of Liège, Belgium; Agronomy Department, University of Almería, Spain.
| | - José Raúl Román
- Agronomy Department, University of Almería, Spain; Department of Ecosystem Science and Management, The Pennsylvania State University, State College, PA, USA
| | - Gabriel Acién
- Chemical Engineering Department, University of Almería, Spain
| | - Yolanda Cantón
- Agronomy Department, University of Almería, Spain; Research Centre for Scientific Collections from the University of Almeria (CECOUAL), Spain
| |
Collapse
|
20
|
Nelson C, Giraldo-Silva A, Warsop Thomas F, Garcia-Pichel F. Spatial self-segregation of pioneer cyanobacterial species drives microbiome organization in biocrusts. ISME COMMUNICATIONS 2022; 2:114. [PMID: 37938289 PMCID: PMC9723579 DOI: 10.1038/s43705-022-00199-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2023]
Abstract
Microbial communities are typically characterized by some degree of self-organization. In biological soil crust (biocrust) communities, vertical organization of resident populations at the mm scale is driven by organismal adaptations to physicochemical microniches. However, the extent of horizontal organization and its driving processes are unknown. Using a combination of observational and genetic mapping, we provide evidence for a highly defined, horizontal self-organization (patchiness) at the mm to cm scale in a successionally early biocrust community dominated by the pioneer cyanobacteria, Microcoleus vaginatus (Microcoleaceae) and Parifilum sp. (Coleofasciculaceae). Experiments with representative isolates of each species demonstrate that the phenomenon is driven by active spatial segregation based on cross-species sensing through the exometabolome acted upon with motility responses. Further, we show that both species share the ability to enrich for specialized cyanospheres of heterotrophic bacteria at smaller scales, and that these cyanospheres are characterized by compositional host-specificity, thus expanding the reach of spatial patchiness beyond primary producers. Our results highlight the importance of specific microbial interactions in the emergence of microbiome compositional architecture and the enhancement of microbial diversity.
Collapse
Affiliation(s)
- Corey Nelson
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Ana Giraldo-Silva
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Finlay Warsop Thomas
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
21
|
Oliveira MF, Maciel-Silva AS. Biological soil crusts and how they might colonize other worlds: insights from these Brazilian ecosystem engineers. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4362-4379. [PMID: 35522077 DOI: 10.1093/jxb/erac162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
When bryophytes, lichens, eukaryotic algae, cyanobacteria, bacteria, and fungi live interacting intimately with the most superficial particles of the soil, they form a complex community of organisms called the biological soil crust (BSC or biocrust). These biocrusts occur predominantly in drylands, where they provide important ecological services such as soil aggregation, moisture retention, and nitrogen fixation. Unfortunately, many BSC communities remain poorly explored, especially in the tropics. This review summarizes studies about BSCs in Brazil, a tropical megadiverse country, and shows the importance of ecological, physiological, and taxonomic knowledge of biocrusts. We also compare Brazilian BSC communities with others around the world, describe why BSCs can be considered ecosystem engineers, and propose their use in the colonization of other worlds.
Collapse
Affiliation(s)
- Mateus Fernandes Oliveira
- Universidade Federal de Minas Gerais, Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Adaíses Simone Maciel-Silva
- Universidade Federal de Minas Gerais, Laboratório de Sistemática Vegetal, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
22
|
Fernandes VMC, Rudgers JA, Collins SL, Garcia-Pichel F. Rainfall pulse regime drives biomass and community composition in biological soil crusts. Ecology 2022; 103:e3744. [PMID: 35522227 DOI: 10.1002/ecy.3744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 03/30/2022] [Indexed: 11/07/2022]
Abstract
Future climates will alter the frequency and size of rain events in drylands, potentially affecting soil microbes that generate carbon feedbacks to climate, but field tests are rare. Topsoils in drylands are commonly colonized by biological soil crusts (biocrusts), photosynthesis-based communities that provide services ranging from soil fertilization to stabilization against erosion. We quantified responses of biocrust microbial communities to twelve years of altered rainfall regimes, with 60 mm of additional rain per year delivered either as small (5 mm) weekly rains or large (20 mm) monthly rains during the summer monsoon season. Rain addition promoted microbial diversity, suppressed the dominant cyanobacterium, Microcoleus vaginatus, and enhanced nitrogen-fixing taxa, but did not consistently increase microbial biomass. The addition of many small rain events increased microbial biomass, whereas few, large events did not. These results alter the physiological paradigm that biocrusts are most limited by the amount of rainfall and instead predict that regimes enriched in small rain events will boost cyanobacterial biocrusts and enhance their beneficial services to drylands. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vanessa M C Fernandes
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, and School of Life Sciences, Arizona State University, AZ, USA.,Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, and School of Life Sciences, Arizona State University, AZ, USA
| |
Collapse
|
23
|
Xiao J, Lan S, Zhang Z, Yang L, Qian L, Xia L, Song S, Farías ME, Torres RM, Wu L. Physical Disturbance Reduces Cyanobacterial Relative Abundance and Substrate Metabolism Potential of Biological Soil Crusts on a Gold Mine Tailing of Central China. Front Microbiol 2022; 13:811039. [PMID: 35464943 PMCID: PMC9019783 DOI: 10.3389/fmicb.2022.811039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
As the critical ecological engineers, biological soil crusts (biocrusts) are considered to play essential roles in improving substrate conditions during ecological rehabilitation processes. Physical disturbance, however, often leads to the degradation of biocrusts, and it remains unclear how the physical disturbance affects biocrust microorganisms and their related metabolism. In this study, the photosynthetic biomass (indicated by chlorophyll a), nutrients, enzyme activities, and bacterial communities of biocrusts were investigated in a gold mine tailing of Central China to evaluate the impact of physical disturbance on biocrusts during the rehabilitation process of gold mine tailings. The results show that physical disturbance significantly reduced the photosynthetic biomass, nutrient contents (organic carbon, ammonium nitrogen, nitrate nitrogen, and total phosphorus), and enzyme activities (β-glucosidase, sucrase, nitrogenase, neutral phosphatase, and urease) of biocrusts in the mine tailings. Furthermore, 16S rDNA sequencing showed that physical disturbance strongly changed the composition, structure, and interactions of the bacterial community, leading to a shift from a cyanobacteria dominated community to a heterotrophic bacteria (proteobacteria, actinobacteria, and acidobacteria) dominated community and a more complex bacterial network (higher complexity, nodes, and edges). Altogether, our results show that the biocrusts dominated by cyanobacteria could also develop in the tailings of humid region, and the dominants (e.g., Microcoleus) were the same as those from dryland biocrusts; nevertheless, physical disturbance significantly reduced cyanobacterial relative abundance in biocrusts. Based on our findings, we propose the future work on cyanobacterial inoculation (e.g., Microcoleus), which is expected to promote substrate metabolism and accumulation, ultimately accelerating the development of biocrusts and the subsequent ecological restoration of tailings.
Collapse
Affiliation(s)
- Jingshang Xiao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Shubin Lan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zulin Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China.,The James Hutton Institute, Aberdeen, United Kingdom
| | - Lie Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Long Qian
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Ling Xia
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| | - María E Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), Centro Científico Tecnológico (CCT), Consejo Nacional de Investigaciones Científicas y Técnicas, San Miguel de Tucumán, Argentina
| | - Rosa María Torres
- CETMIC- CONICET- CCT La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA), La Plata, Argentina
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
24
|
Cano-Díaz C, Maestre FT, Wang J, Li J, Singh BK, Ochoa V, Gozalo B, Delgado-Baquerizo M. Effects of vegetation on soil cyanobacterial communities through time and space. THE NEW PHYTOLOGIST 2022; 234:435-448. [PMID: 35088410 DOI: 10.1111/nph.17996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Photoautotrophic soil cyanobacteria play essential ecological roles and are known to exhibit large changes in their diversity and abundance throughout early succession. However, much less is known about how and why soil cyanobacterial communities change as soil develops over centuries and millennia, and the effects that vegetation have on such communities. We combined an extensive field survey, including 16 global soil chronosequences across contrasting ecosystems (from deserts to tropical forests), with molecular analyses to investigate how the diversity and abundance of photosynthetic and nonphotosynthetic soil cyanobacteria are affected by vegetation change during soil development, over time periods from hundreds to thousands of years. We show that, in most chronosequences, the abundance, species richness and community composition of soil cyanobacteria are relatively stable as soil develops (from centuries to millennia). Regardless of soil age, forest chronosequences were consistently dominated by nonphotosynthetic cyanobacteria (Vampirovibrionia), while grasslands and shrublands were dominated by photosynthetic cyanobacteria. Chronosequences undergoing drastic vegetation shifts (e.g. transitions from grasslands to forests) experienced significant changes in the composition of soil cyanobacterial communities. Our results advance our understanding of the ecology of cyanobacterial classes, and of the understudied nonphotosynthetic cyanobacteria in particular, and highlight the key role of vegetation as a major driver of their temporal dynamics as soil develops.
Collapse
Affiliation(s)
- Concha Cano-Díaz
- Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933, Spain
- CISAS - Centre for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Fernando T Maestre
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
- Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, Alicante, 03690, Spain
| | - Juntao Wang
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Jing Li
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
- Beijing Key Laboratory of Wetland Ecological Function and Restoration, Institute of Wetland Research, Chinese Academy of Forestry, Beijing, 100091, China
| | - Brajesh K Singh
- Global Centre for Land Based Innovation, University of Western Sydney, Penrith, NSW, 2751, Australia
- Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW, 2751, Australia
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio "Ramon Margalef", Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, E-41012, Spain
- Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, 41013, Spain
| |
Collapse
|
25
|
Wang L, Li J, Zhang S. A Comprehensive Network Integrating Signature Microbes and Crucial Soil Properties During Early Biological Soil Crust Formation on Tropical Reef Islands. Front Microbiol 2022; 13:831710. [PMID: 35369528 PMCID: PMC8969229 DOI: 10.3389/fmicb.2022.831710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Biological soil crusts (BSCs/biocrusts), which are distributed across various climatic zones and well-studied in terrestrial drylands, harbor polyextremotolerant microbial topsoil communities and provide ecological service for local and global ecosystem. Here, we evaluated BSCs in the tropical reef islands of the South China Sea. Specifically, we collected 41 BSCs, subsurface, and bare soil samples from the Xisha and Nansha Archipelagos. High-throughput amplicon sequencing was performed to analyze the bacterial, fungal, and archaeal compositions of these samples. Physicochemical measurement and enzyme activity assays were conducted to characterize the soil properties. Advanced computational analysis revealed 47 biocrust-specific microbes and 10 biocrust-specific soil properties, as well as their correlations in BSC microbial community. We highlighted the previously underestimated impact of manganese on fungal community regulation and BSC formation. We provide comprehensive insight into BSC formation networks on tropical reef islands and established a foundation for BSC-directed environmental restoration.
Collapse
Affiliation(s)
- Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Jie Li,
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Si Zhang,
| |
Collapse
|
26
|
OUP accepted manuscript. Bioscience 2022. [DOI: 10.1093/biosci/biac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Lan S, Thomas AD, Rakes JB, Garcia-Pichel F, Wu L, Hu C. Cyanobacterial community composition and their functional shifts associated with biocrust succession in the Gurbantunggut Desert. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:884-898. [PMID: 34533274 DOI: 10.1111/1758-2229.13011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria, as key biocrust components, provide a variety of ecosystem functions in drylands. In this study, to identify whether a cyanobacterial community shift is involved in biocrust succession and whether this is linked to altered ecological functions, we investigated cyanobacterial composition, total carbon and nitrogen contents of biocrusts in the Gurbantunggut Desert. Our findings showed that the biocrust cyanobacteria in the Gurbantunggut desert were mostly filamentous, coexisting with abundant unicellular colonial Chroococcidiopsis. Heterocystous Nostoc, Scytonema and Tolypothrix always represented the majority of biocrust nitrogen-fixing organisms, comprising an average of 92% of the nifH gene reads. Community analysis showed a clear shift in prokaryotic community composition associated with biocrust succession from cyanobacteria- to lichen- and moss-dominated biocrusts, and filamentous non-nitrogen-fixing cyanobacteria-dominated communities were gradually replaced by nitrogen-fixing and unicellular colonial communities. Along the succession, there were concomitant reductions in cyanobacterial relative abundance, whereas Chl-a, total carbon and nitrogen contents increased. Concurrently, distinct carbon and nitrogen stores shifts occurred, implying that the main ecological contribution of cyanobacteria in biocrusts changes from carbon- to nitrogen-fixation along with the succession. Our results suggest that any activity that reverses biocrust succession will influence cyanobacterial community composition and eventually lead to large reductions in soil carbon and nitrogen stores.
Collapse
Affiliation(s)
- Shubin Lan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Andrew David Thomas
- Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
| | - Julie Bethany Rakes
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, 85287, USA
| | - Li Wu
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430072, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| |
Collapse
|
28
|
Desjardins É, Lai S, Payette S, Vézina F, Tam A, Berteaux D. Vascular plant communities in the polar desert of Alert (Ellesmere Island, Canada): Establishment of a baseline reference for the 21st century. ECOSCIENCE 2021. [DOI: 10.1080/11956860.2021.1907974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Émilie Desjardins
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Canada Research Chair on Northern Biodiversity, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Centre for Northern Studies, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Sandra Lai
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Canada Research Chair on Northern Biodiversity, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Centre for Northern Studies, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Serge Payette
- Département de Biologie, Centre for Northern Studies, Université Laval, Quebec City, Quebec, Canada
| | - François Vézina
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Centre for Northern Studies, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| | - Andrew Tam
- Department of National Defence, 8 Wing Canadian Forces Base Trenton, Astra, Ontario, Canada
| | - Dominique Berteaux
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Canada Research Chair on Northern Biodiversity, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Centre for Northern Studies, Université du Québec à Rimouski, Rimouski, Quebec, Canada
- Quebec Centre for Biodiversity Science, Université du Québec à Rimouski, Rimouski, Quebec, Canada
| |
Collapse
|
29
|
Iiames JS, Salls WB, Mehaffey MH, Nash MS, Christensen JR, Schaeffer BA. Modeling Anthropogenic and Environmental Influences on Freshwater Harmful Algal Bloom Development Detected by MERIS Over the Central United States. WATER RESOURCES RESEARCH 2021; 57:e2020WR028946. [PMID: 35860362 PMCID: PMC9285409 DOI: 10.1029/2020wr028946] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 06/21/2021] [Accepted: 09/06/2021] [Indexed: 05/31/2023]
Abstract
Human and ecological health have been threatened by the increase of cyanobacteria harmful algal blooms (cyanoHABs) in freshwater systems. Successful mitigation of this risk requires understanding the factors driving cyanoHABs at a broad scale. To inform management priorities and decisions, we employed random forest modeling to identify major cyanoHAB drivers in 369 freshwater lakes distributed across 15 upper Midwest states during the 2011 bloom season (July-October). We used Cyanobacteria Index (CI_cyano)-A remotely sensed product derived from the MEdium Resolution Imaging Spectrometer (MERIS) aboard the European Space Agency's Envisat satellite-as the response variable to obtain variable importance metrics for 75 landscape and lake physiographic predictor variables. Lakes were stratified into high and low elevation categories to further focus CI_cyano variable importance identification by anthropogenic and natural influences. "High elevation" watershed land cover (LC) was primarily forest or natural vegetation, compared with "low elevation" watersheds LC dominated by anthropogenic landscapes (e.g., agriculture and municipalities). We used the top ranked 25 Random Forest variables to create a classification and regression tree (CART) for both low and high elevation lake designations to identify variable thresholds for possible management mitigation. Mean CI_cyano was 3 times larger for "low elevation" lakes than for "high elevation" lakes, with both mean values exceeding the "High" World Health Organization recreational guidance/action level threshold for cyanobacteria (100,000 cells/mL). Agrarian-related variables were prominent across all 369 lakes and low elevation lakes. High elevation lakes showed more influence of lakeside LC than for the low elevation lakes.
Collapse
Affiliation(s)
- J. S. Iiames
- Center for Public Health and Environmental AssessmentU.S. Environmental Protection AgencyOffice of Research and DevelopmentResearch Triangle ParkNCUSA
| | - W. B. Salls
- Center for Environmental Measurement and ModelingU.S. Environmental Protection AgencyOffice of Research and DevelopmentResearch Triangle ParkNCUSA
| | - M. H. Mehaffey
- Center for Public Health and Environmental AssessmentU.S. Environmental Protection AgencyOffice of Research and DevelopmentResearch Triangle ParkNCUSA
| | - M. S. Nash
- Center for Public Health and Environmental AssessmentU.S. Environmental Protection AgencyOffice of Research and DevelopmentResearch Triangle ParkNCUSA
| | - J. R. Christensen
- Center for Environmental Measurement and ModelingU.S. Environmental Protection AgencyOffice of Research and DevelopmentResearch Triangle ParkNCUSA
| | - B. A. Schaeffer
- Center for Environmental Measurement and ModelingU.S. Environmental Protection AgencyOffice of Research and DevelopmentResearch Triangle ParkNCUSA
| |
Collapse
|
30
|
Moreira C Fernandes V, Giraldo-Silva A, Roush D, Garcia-Pichel F. Coleofasciculaceae, a Monophyletic Home for the Microcoleus steenstrupii Complex and Other Desiccation-tolerant Filamentous Cyanobacteria. JOURNAL OF PHYCOLOGY 2021; 57:1563-1579. [PMID: 34289106 DOI: 10.1111/jpy.13199] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacteria classified as Microcoleus steenstrupii play a significant role as pioneers of biological soil crusts (biocrusts), but this taxon is recognized to constitute a diverse complex of strains and field populations. With the aim of clarifying its systematics, we conducted a polyphasic characterization of this and allied taxa. A 16S ribosomal gene meta-analysis of published environmental sequences showed that the complex encompasses a variety of well supported genus-level clades with clade-specific environmental preferences, indicating significant niche differentiation. Fifteen strains in the M. steenstrupii complex were selected as representative of naturally occurring clades and studied using 16S rRNA gene phylogeny, morphology, and niche delineation with respect to temperature and rainfall. Bayesian phylogenetic reconstructions within a comprehensive, curated database of long 16S rRNA cyanobacterial sequences (1,000 base pairs or more) showed that they all belonged in a monophyletic, family-level clade (91.4% similarity) that included some other known genera of desiccation-resistant, largely terrestrial, filamentous, nonheterocystous cyanobacteria, including Coleofasciculus, the type genus for the family Coleofasciculaceae. To accommodate this biodiversity, we redescribe the Coleofasciculaceae, now composed of 11 genera, among which six are newly described herein (Funiculus, Parifilum, Arizonema, Crassifilum, Crustifilum, and Allocoleopsis), and five were previously recognized (Porphyrosiphon, Coleofasciculus, Pycnacronema, Potamolinea, and Wilmottia). We provide an evaluation of their respective niches and global distributions within biocrusts based on published molecular data. This new systematics treatment should help simplify and improve our understanding of the biology of terrestrial cyanobacteria.
Collapse
Affiliation(s)
- Vanessa Moreira C Fernandes
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| | - Ana Giraldo-Silva
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| | - Daniel Roush
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287, USA
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA
| |
Collapse
|
31
|
Beneficial cyanosphere heterotrophs accelerate establishment of cyanobacterial biocrust. Appl Environ Microbiol 2021; 87:e0123621. [PMID: 34379492 DOI: 10.1128/aem.01236-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biological soil crusts (biocrusts) are communities of microbes that inhabit the surface of arid soils and provide essential services to dryland ecosystems. While resistant to extreme environmental conditions, biocrusts are susceptible to anthropogenic disturbances that can deprive ecosystems of these valuable services for decades. Until recently, culture-based efforts to produce inoculum for cyanobacterial biocrust restoration in the Southwestern US focused on producing and inoculating the most abundant primary producers and biocrust pioneers, Microcoleus vaginatus and members of the family Coleofasciculaceae (aka "Microcoleus streenstrupii complex"). The discovery that a unique microbial community characterized by diazotrophs is intimately associated with M. vaginatus, known as the "cyanosphere", suggests a symbiotic division of labor in which nutrients are traded between phototrophs and heterotrophs. To probe the potential use of such cyanosphere members in the restoration of biocrusts, we performed co-inoculations of soil substrates with cyanosphere constituents. This resulted in more rapid cyanobacterial growth over inoculations with the cyanobacterium alone. Additionally, we found that the mere addition of beneficial heterotrophs enhanced the formation of a cohesive biocrust without the need of additional phototrophic biomass within native soils that contain trace amounts of biocrust cyanobacteria. Our findings support the hitherto unknown role of beneficial heterotrophic bacteria in the establishment and growth of biocrusts and allow us to make recommendations concerning biocrust restoration efforts based on the presence of remnant biocrust communities in disturbed areas. Future biocrust restoration efforts should consider cyanobacteria and their beneficial heterotrophic community as inoculants. Importance The advancement of biocrust restoration methodologies for cyanobacterial biocrusts has been largely achieved through trial and error. Successes and failures could not always be traced back to particular factors. The investigation and application of foundational microbial interactions existing within biocrust communities is a crucial step toward informed and repeatable biocrust restoration methodologies.
Collapse
|
32
|
Tang K, Yuan B, Jia L, Pan X, Feng F, Jin K. Spatial and temporal distribution of aerobic anoxygenic phototrophic bacteria: key functional groups in biological soil crusts. Environ Microbiol 2021; 23:3554-3567. [PMID: 33687799 DOI: 10.1111/1462-2920.15459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/07/2021] [Indexed: 11/27/2022]
Abstract
Several significant ecosystem services are performed by biological soil crusts (BSCs) in drylands, wherein photoautotrophic microorganisms are commonly critical contributors. However, aerobic anoxygenic phototrophic bacteria (AAnPB) are rarely reported in BSCs, despite being the second major branch of Earth's phototrophic microbes. Here, we collected different types of BSCs and their subsoils from temperate deserts, investigated distributions of AAnPB communities among BSCs using cultivation and high-throughput sequencing approaches, predicted keystone species by co-occurrence network analysis, and verified their effects on BSCs formation through microcosm experiments. The absolute abundances and diversity of AAnPB were higher in BSCs and were closely related with BSCs successional stages, as well as soil organic carbon contents. AAnPB communities in both BSCs and their subsoils were dominated by Proteobacteria and Alphaproteobacteria, specifically Acetobacteraceae, Rhodospirillaceae, Roseiflexaceae, Sphingomonadaceae and Caulobacteraceae families. Mean annual precipitation, pH and available nutrients were the primary factors that shaped AAnPB community structures. The predicted keystone species belonged to the families Acetobacteraceae, Rhodospirillaceae and Sphingomonadanceae. Microcosm experiments demonstrated that inoculation with strains from the three families greatly accelerated the formation and development of BSCs. These observations suggest that AAnPB are likely important functional groups in BSCs that significantly contribute to their formation and important ecosystem services.
Collapse
Affiliation(s)
- Kai Tang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Hohhot, 010010, China.,Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Bo Yuan
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.,College of Life Science, Inner Mongolia Normal University, Hohhot, 010018, China
| | - Lijuan Jia
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Hohhot, 010010, China.,Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xin Pan
- College of Computer and information Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Fuying Feng
- Institute for Applied and Environmental Microbiology, College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Ke Jin
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Key Laboratory of Grassland Ecology and Restoration, Ministry of Agriculture, Hohhot, 010010, China
| |
Collapse
|
33
|
Wietrzyk-Pełka P, Rola K, Patchett A, Szymański W, Węgrzyn MH, Björk RG. Patterns and drivers of cryptogam and vascular plant diversity in glacier forelands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144793. [PMID: 33497901 DOI: 10.1016/j.scitotenv.2020.144793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Vascular and nonvascular plants are affected by environmental factors determining their distribution and shaping their diversity and cover. Despite the cryptogam commonness in Arctic communities, previous studies have often focused on limited number of factors and their impact on only selected species of vascular plants or cryptogams. Our study aimed to investigate in detail the differences in species diversity and cover of cryptogams and vascular plants in the glacier forelands and mature tundra on Svalbard. Furthermore, we determined the biotic and abiotic factors that affected diversity, cover and distribution of cryptogam and vascular plant species. In 2017, we established 201 plots in eight locations (each including habitat type of foreland and mature tundra) and surveyed species abundance, sampled soils and environmental data. Results revealed that diversity and cover of analysed groups differed significantly between locations and habitat types, except for cryptogam cover in mature tundra in terms of location. Distance to the glacier terminus, slope, soil conductivity, nutrient content, and clay content impacted both plant groups' diversity. In contrast, distance to the glacier terminus, nutrient content and soil pH affected their cover. In addition, for cryptogam diversity and cover, foreland location and vascular plant cover were also important, while for vascular plant cover time elapsed after glacier retreat was significant. Distribution of both groups' species in forelands was associated with time elapsed after glacier retreat, soil pH, and nutrient contents. Soil texture and distance to the glacier terminus additionally influenced cryptogam distribution. The positive impact of vascular plants on cryptogam diversity and cover indicates complex relationships between these groups, even in forelands' relatively simple communities. As the cryptogam diversity in the polar areas is high but still largely unknown, future studies on species ecology and climate change impact on vegetation should consider both vascular plants and cryptogams and interactions between these groups.
Collapse
Affiliation(s)
- Paulina Wietrzyk-Pełka
- Professor Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland; Department of Earth Sciences, University of Gothenburg, P.O. Box 460, SE-405 30 Gothenburg, Sweden.
| | - Kaja Rola
- Department of Plant Ecology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| | - Aurora Patchett
- Department of Earth Sciences, University of Gothenburg, P.O. Box 460, SE-405 30 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| | - Wojciech Szymański
- Department of Pedology and Soil Geography, Institute of Geography and Spatial Management, Faculty of Geography and Geology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Michał H Węgrzyn
- Professor Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
| | - Robert G Björk
- Department of Earth Sciences, University of Gothenburg, P.O. Box 460, SE-405 30 Gothenburg, Sweden; Gothenburg Global Biodiversity Centre, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
34
|
Gweon HS, Bowes MJ, Moorhouse HL, Oliver AE, Bailey MJ, Acreman MC, Read DS. Contrasting community assembly processes structure lotic bacteria metacommunities along the river continuum. Environ Microbiol 2021; 23:484-498. [PMID: 33258525 PMCID: PMC7898806 DOI: 10.1111/1462-2920.15337] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 01/26/2023]
Abstract
The heterogeneous nature of lotic habitats plays an important role in the complex ecological and evolutionary processes that structure the microbial communities within them. Due to such complexity, our understanding of lotic microbial ecology still lacks conceptual frameworks for the ecological processes that shape these communities. We explored how bacterial community composition and underlying ecological assembly processes differ between lotic habitats by examining community composition and inferring community assembly processes across four major habitat types (free-living, particle-associated, biofilm on benthic stones and rocks, and sediment). This was conducted at 12 river sites from headwater streams to the main river in the River Thames, UK. Our results indicate that there are distinct differences in the bacterial communities between four major habitat types, with contrasting ecological processes shaping their community assembly processes. While the mobile free-living and particle-associated communities were consistently less diverse than the fixed sediment and biofilm communities, the latter two communities displayed higher homogeneity across the sampling sites. This indicates that the relative influence of deterministic environmental filtering is elevated in sediment and biofilm communities compared with free-living and particle-associated communities, where stochastic processes play a larger role.
Collapse
Affiliation(s)
- Hyun S. Gweon
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
- School of Biological SciencesUniversity of ReadingReadingRG6 6EXUK
| | - Michael J. Bowes
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
| | - Heather L. Moorhouse
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
- Lancaster Environment CentreLancaster UniversityLibrary Avenue, LancasterLA1 4YQUK
| | - Anna E. Oliver
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
| | - Mark J. Bailey
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
| | | | - Daniel S. Read
- UK Centre for Ecology & HydrologyWallingford, OxfordshireOX10 8BBUK
| |
Collapse
|
35
|
A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus vaginatus. ISME JOURNAL 2020; 15:282-292. [PMID: 32968213 DOI: 10.1038/s41396-020-00781-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 02/01/2023]
Abstract
Microcoleus vaginatus plays a prominent role as both primary producer and pioneer in biocrust communities from dryland soils. And yet, it cannot fix dinitrogen, essential in often nitrogen-limited drylands. But a diazotroph-rich "cyanosphere" has been described in M. vaginatus, hinting that there exists a C for N exchange between the photoautotroph and heterotrophic diazotrophs. We provide evidence for this by establishing such a symbiosis in culture and by showing that it is selective and dependent on nitrogen availability. In natural populations, provision of nitrogen resulted in loss of diazotrophs from the cyanosphere of M. vaginatus compared to controls, but provision of phosphorus did not. Co-culturing of pedigreed cyanosphere diazotroph isolates with axenic M. vaginatus resulted in copious growth in C and N-free medium, but co-culture with non-cyanosphere diazotrophs or other heterotrophs did not. Unexpectedly, bundle formation in M. vaginatus, diacritical to the genus but not seen in axenic culture, was restored in vitro by imposed nitrogen limitation or, even more strongly, by co-culture with diazotrophic partners, implicating this trait in the symbiosis. Our findings provide direct evidence for a symbiotic relationship between M. vaginatus and its cyanosphere and help explain how it can be a global pioneer in spite of its genetic shortcomings.
Collapse
|
36
|
Román JR, Chilton AM, Cantón Y, Muñoz-Rojas M. Assessing the viability of cyanobacteria pellets for application in arid land restoration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 270:110795. [PMID: 32721290 DOI: 10.1016/j.jenvman.2020.110795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/23/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The role of cyanobacteria from soil biocrusts in restoring degraded land is gaining interest in recent years because of their critical role in enhancing soil fertility and preventing erosion. However, soil restoration through cyanobacterial inoculation remains a challenge for large-scale restoration efforts and new methodologies for effective cyanobacterial application need to be developed. Here, we propose a bioenvironmental approach to inoculate soils with pelletized cyanobacteria from soil biocrusts. Fresh cultures of three soil native cyanobacteria strains from two representative N-fixing genera (Nostoc and Scytonema) and a non-heterocystous filamentous genus (Leptolyngbya) were added into a substrate composed of commercial bentonite powder and sand (1:10 wt ratio) and extruded into pellets. Then, in two multifactorial microcosm experiments under glasshouse conditions, we evaluated (i) the survival and establishment over time of the cyanobacteria encapsulated in pellets, and ii) the viability of pelletized cyanobacteria after drying and storing for 30 d, on soils from three arid regions in Australia. Our results showed that pellets can dissolve completely and spread out in all treatments. Scytonema and the consortium of the three cyanobacteria species showed significant (P < 0.001) deeper CR680 peaks, higher chlorophyll a contents and lower albedo compared to the other inoculation treatments. Storing the pellets for 30 d significantly affected the viability of the cyanobacteria inoculum with reductions of approximately 50% in chlorophyll a content (a proxy for cyanobacteria biomass). Overall, our results showed that some cyanobacteria species can be successfully incorporated into extruded pellets and survive on degraded soils. This technology opens a wide range of opportunities for application in large scale restoration programs although further testing and refining through field trials is recommended.
Collapse
Affiliation(s)
- J R Román
- Agronomy Department, University of Almería, Almería, Spain; Centro de Investigación de Colecciones Científicas de La Universidad de Almería (CECOUAL), University of Almería, Almería, Spain.
| | - A M Chilton
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, 2052, Sydney, NSW, Australia
| | - Y Cantón
- Agronomy Department, University of Almería, Almería, Spain; Centro de Investigación de Colecciones Científicas de La Universidad de Almería (CECOUAL), University of Almería, Almería, Spain
| | - M Muñoz-Rojas
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Sydney, 2052, Sydney, NSW, Australia; School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia; Kings Park Science, Department of Biodiversity, Conservation and Attractions, Kings Park, Western Australia, 6005, Australia.
| |
Collapse
|
37
|
Davies JC, Midgley A, Carlsson E, Donohue S, Bruce IN, Beresford MW, Hedrich CM. Urine and serum S100A8/A9 and S100A12 associate with active lupus nephritis and may predict response to rituximab treatment. RMD Open 2020; 6:e001257. [PMID: 32723832 PMCID: PMC7722276 DOI: 10.1136/rmdopen-2020-001257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/27/2020] [Accepted: 06/07/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Approximately 30% of patients with the systemic autoimmune/inflammatory disorder systemic lupus erythematosus (SLE) develop lupus nephritis (LN) that affects treatment and prognosis. Easily accessible biomarkers do not exist to reliably predict renal disease. The Maximizing SLE Therapeutic Potential by Application of Novel and Systemic Approaches and the Engineering Consortium aims to identify indicators of treatment responses in SLE. This study tested the applicability of calcium-binding S100 proteins in serum and urine as biomarkers for disease activity and response to treatment with rituximab (RTX) in LN. METHODS S100A8/A9 and S100A12 proteins were quantified in the serum and urine of 243 patients with SLE from the British Isles Lupus Assessment Group Biologics Register (BILAG-BR) study and 48 controls matched for age using Meso Scale Discovery's technology to determine whether they perform as biomarkers for active LN and/or may be used to predict response to treatment with RTX. Renal disease activity and response to treatment was based on BILAG-BR scores and changes in response to treatment. RESULTS Serum S100A12 (p<0.001), and serum and urine S100A8/A9 (p<0.001) levels are elevated in patients with SLE. While serum and urine S100 levels do not correlate with global disease activity (SLE Disease Activity Index), levels in urine and urine/serum ratios are elevated in patients with active LN. S100 proteins perform better as biomarkers for active LN involvement in patients with SLE who tested positive for anti-double-stranded DNA antibodies. Binary logistic regression and area under the curve analyses suggest the combination of serum S100A8/A9 and S100A12 can predict response to RTX treatment in LN after 6 months. CONCLUSIONS Findings from this study show promise for clinical application of S100 proteins to predict active renal disease in SLE and response to treatment with RTX.
Collapse
Affiliation(s)
- Jennifer C Davies
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Angela Midgley
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Emil Carlsson
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Sean Donohue
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Ian N Bruce
- Arc Epidemiology Unit, University of Manchester, Manchester, UK
| | - Michael W Beresford
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Department of Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
38
|
A Fog-Irrigated Soil Substrate System Unifies and Optimizes Cyanobacterial Biocrust Inoculum Production. Appl Environ Microbiol 2020; 86:AEM.00624-20. [PMID: 32358005 DOI: 10.1128/aem.00624-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/23/2020] [Indexed: 02/01/2023] Open
Abstract
Biological soil crusts (biocrusts) are globally important microbial communities inhabiting the top layer of soils. They provide multiple services to dryland ecosystems but are particularly vulnerable to anthropogenic disturbance from which they naturally recover only slowly. Assisted inoculation with cyanobacteria is held as a promising approach to promote biocrust regeneration. Two different methodologies have been developed for this purpose: mass cultivation of biocrust pioneer species (such as the cyanobacteria Microcoleus spp.) on cellulose supports, and polymicrobial cultivation of biocrusts in soils within greenhouse settings. Here, we aimed to test a novel method to grow cyanobacterial biocrust inoculum based on fog irrigation of soil substrates (FISS) that can be used with either culture-based or mixed-community approaches. We found that the FISS system presents clear advantages over previous inoculum production methodologies; overall, FISS eliminates the need for specialized facilities and decreases user effort. Specifically, there were increased microbial yields and simplification of design compared to those of the culture-based and mixed-community approaches, respectively. Its testing also allows us to make recommendations on underexplored aspects of biocrust restoration: (i) field inoculation levels should be equal to or greater than the biomass found in the substrate and (ii) practices regarding evaluation of cyanobacterial biomass should, under certain circumstances, include proxies additional to chlorophyll a IMPORTANCE Biocrust inoculum production for use in dryland rehabilitation is a powerful tool in combating the degradation of dryland ecosystems. However, the facilities and effort required to produce high-quality inoculum are often a barrier to effective large-scale implementation by land managers. By unifying and optimizing the two foremost methods for cyanobacterial biocrust inoculum production, our work improves on the ease and cost with which biocrust restoration technology can be translated to practical widespread implementation.
Collapse
|
39
|
Wietrzyk-Pełka P, Rola K, Szymański W, Węgrzyn MH. Organic carbon accumulation in the glacier forelands with regard to variability of environmental conditions in different ecogenesis stages of High Arctic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:135151. [PMID: 31839323 DOI: 10.1016/j.scitotenv.2019.135151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Recently deglaciated surfaces of glacier forelands are subjected to a variety of biotic and abiotic factors that lead to continuous soil formation. Until now, no attempt has been taken to analyse multiple factors that might affect soil development in the Arctic forelands. The main aim of this research was to determine the factors that influence soil development in the eight forelands of Svalbard. Moreover, the effects of both habitat type (glacier foreland and mature tundra) and geographical location on environmental variables treated as potential factors influencing soil formation were tested. In 2017, at each location a series of 1 m2 plots was established; all 168 plots were investigated in terms of soil properties, spatial data, biological soil crusts (BSCs) properties, percent cover of BSCs and vascular plants. Stepwise multiple linear regression analysis using forward variable selection showed that soil development was significantly associated with six of fifteen analysed factors, i.e. BSC cover, carbon and nitrogen content in BSCs, soil pH, Topographic Wetness Index and foreland location. Two-way analysis of variance followed by Tukey's test revealed significant differences in studied environmental variables between habitat types and studied locations, showing that foreland soils still retain particular initial characters to differentiate them from tundra soil.
Collapse
Affiliation(s)
- Paulina Wietrzyk-Pełka
- Professor Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland.
| | - Kaja Rola
- Department of Plant Ecology, Institute of Botany, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland.
| | - Wojciech Szymański
- Department of Pedology and Soil Geography, Institute of Geography and Spatial Management, Faculty of Geography and Geology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Michał Hubert Węgrzyn
- Professor Z. Czeppe Department of Polar Research and Documentation, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland.
| |
Collapse
|
40
|
Giraldo-Silva A, Fernandes VMC, Bethany J, Garcia-Pichel F. Niche Partitioning with Temperature among Heterocystous Cyanobacteria ( Scytonema spp., Nostoc spp., and Tolypothrix spp.) from Biological Soil Crusts. Microorganisms 2020; 8:microorganisms8030396. [PMID: 32178304 PMCID: PMC7142793 DOI: 10.3390/microorganisms8030396] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Heterocystous cyanobacteria of biocrusts are key players for biological fixation in drylands, where nitrogen is only second to water as a limiting resource. We studied the niche partitioning among the three most common biocrust heterocystous cyanobacteria sts using enrichment cultivation and the determination of growth responses to temperature in 30 representative isolates. Isolates of Scytonema spp. were most thermotolerant, typically growing up to 40 °C, whereas only those of Tolypothrix spp. grew at 4 °C. Nostoc spp. strains responded well at intermediate temperatures. We could trace the heat sensitivity in Nostoc spp. and Tolypothrix spp. to N2-fixation itself, because the upper temperature for growth increased under nitrogen replete conditions. This may involve an inability to develop heterocysts (specialized N2-fixing cells) at high temperatures. We then used a meta-analysis of biocrust molecular surveys spanning four continents to test the relevance of this apparent niche partitioning in nature. Indeed, the geographic distribution of the three types was clearly constrained by the mean local temperature, particularly during the growth season. This allows us to predict a potential shift in dominance in many locales as a result of global warming, to the benefit of Scytonema spp. populations.
Collapse
Affiliation(s)
- Ana Giraldo-Silva
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Vanessa M. C. Fernandes
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Julie Bethany
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Ferran Garcia-Pichel
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; (A.G.-S.); (J.B.)
- Center for Fundamental and Applied Microbiomics (CFAM), Biodesing Institute, Arizona State University, Tempe, AZ 85287, USA
- Correspondence: , Tel.: +1-4807270498
| |
Collapse
|
41
|
Kheirfam H, Roohi M. Accelerating the formation of biological soil crusts in the newly dried-up lakebeds using the inoculation-based technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136036. [PMID: 31846874 DOI: 10.1016/j.scitotenv.2019.136036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
The disappearance of water bodies and the emergence of dry lakebeds have intensified global environmental challenges such as dust source regions and moving dunes. The rapid formation of biological soil crusts (biocrusts) in these new ecosystems can help to accelerate their sustainability. Thus, we assessed how an inoculation-based technique (IBT) could contribute to the formation of biocrusts in a simulated sandy soil profile collected from the dried region of Lake Urmia, in the northwest of Iran. To this end, a full factorial combination of native bacteria, cyanobacteria, and a combination of the two were inoculated onto an experimental soil. After 120 days, the soil surface properties were measured, and the differences between the treatments were tested. The results showed that microbial inoculation, especially cyanobacteria, accelerated the biocrusts formation and the soil surface stability. Inoculated micro-organisms improved the biocrusts indicators including carbon (225%; p < 0.01) and nitrogen (3200%; p < 0.01) content, available phosphorus (70%; p < 0.01) and potassium (19%; p < 0.05), cation exchange capacity (9.3%; p < 0.05), pH (-1.2%; p < 0.01), electrical conductivity (-23%; p < 0.01), soil moisture (15.7%; p < 0.05), bulk density (-2.5%; p < 0.05), surface roughness (34.8%; p < 0.01), and aggregate stability (133%; p < 0.01), as compared to the non-inoculated soil. Analysis of the scanning electron microscopy images obtained from the soil surface also confirmed the ability of cyanobacteria to create strong bonding between soil particles. Overall, the IBT could be considered as a fast and eco-friendly way for creating/restoring biocrusts in newly dried-up/degraded lands.
Collapse
Affiliation(s)
- Hossein Kheirfam
- Department of Range and Watershed Management, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran; Department of Environmental Sciences, Urmia Lake Research Institute, Urmia University, Urmia, Iran.
| | - Maryam Roohi
- Microbiology Laboratory Expert, Artemia & Aquaculture Research Institute, Urmia University, Urmia, Iran
| |
Collapse
|
42
|
Ayuso SV, Giraldo‐Silva A, Barger NN, Garcia‐Pichel F. Microbial inoculum production for biocrust restoration: testing the effects of a common substrate versus native soils on yield and community composition. Restor Ecol 2020. [DOI: 10.1111/rec.13127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sergio Velasco Ayuso
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA‐CONICET), Facultad de Agronomía, Universidad de Buenos Aires Buenos Aires C1417DSE Argentina
| | - Ana Giraldo‐Silva
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85287 U.S.A
| | - Nichole N. Barger
- Department of Ecology and Evolutionary BiologyUniversity of Colorado Boulder CO 80309 U.S.A
| | - Ferran Garcia‐Pichel
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85287 U.S.A
| |
Collapse
|
43
|
Faist AM, Antoninka AJ, Belnap J, Bowker MA, Duniway MC, Garcia‐Pichel F, Nelson C, Reed SC, Giraldo‐Silva A, Velasco‐Ayuso S, Barger NN. Inoculation and habitat amelioration efforts in biological soil crust recovery vary by desert and soil texture. Restor Ecol 2020. [DOI: 10.1111/rec.13087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Akasha M. Faist
- Department of Animal and Range SciencesNew Mexico State University Las Cruces NM 88003 U.S.A
| | | | - Jayne Belnap
- Southwest Biological Science CenterU.S. Geological Survey Moab UT 84532 U.S.A
| | - Matthew A. Bowker
- School of ForestryNorthern Arizona University Flagstaff AZ 86011 U.S.A
| | - Michael C. Duniway
- Southwest Biological Science CenterU.S. Geological Survey Moab UT 84532 U.S.A
| | - Ferran Garcia‐Pichel
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85281 U.S.A
| | - Corey Nelson
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85281 U.S.A
| | - Sasha C. Reed
- Southwest Biological Science CenterU.S. Geological Survey Moab UT 84532 U.S.A
| | - Ana Giraldo‐Silva
- School of Life Sciences and Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85281 U.S.A
| | - Sergio Velasco‐Ayuso
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de AgronomíaUniversidad de Buenos Aires, Ciudad Autónoma de Buenos Aires Buenos Aires C1417DSE Argentina
| | - Nichole N. Barger
- Department of Ecology and Evolutionary BiologyUniversity of Colorado Boulder CO 80309 U.S.A
| |
Collapse
|
44
|
Machado-de-Lima NM, Fernandes VMC, Roush D, Velasco Ayuso S, Rigonato J, Garcia-Pichel F, Branco LHZ. The Compositionally Distinct Cyanobacterial Biocrusts From Brazilian Savanna and Their Environmental Drivers of Community Diversity. Front Microbiol 2019; 10:2798. [PMID: 31921007 PMCID: PMC6929519 DOI: 10.3389/fmicb.2019.02798] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/18/2019] [Indexed: 02/01/2023] Open
Abstract
The last decade was marked by efforts to define and identify the main cyanobacterial players in biological crusts around the world. However, not much is known about biocrusts in Brazil’s tropical savanna (cerrado), despite the existence of environments favorable to their development and ecological relevance. We examined the community composition of cyanobacteria in biocrusts from six sites distributed in the Southeast of the country using high throughput sequencing of 16S rRNA and phylogenetic placement in the wider context of biocrusts from deserts. Sequences ascribable to 22 genera of cyanobacteria were identified. Although a significant proportion of sequences did not match those of known cyanobacteria, several clades of Leptolyngbya and Porphyrosiphon were found to be the most abundant. We identified significant differences in dominance and overall composition among the cerrado sites, much larger than within-site variability. The composition of cerrado cyanobacterial communities was distinct from those known in biocrusts from North American deserts. Among several environmental drivers considered, the opposing trend of annual precipitation and mean annual temperature best explained the variability in community composition within Brazilian biocrusts. Their compositional uniqueness speaks of the need for dedicated efforts to study the ecophysiology of tropical savanna biocrust and their roles in ecosystem function for management and preservation.
Collapse
Affiliation(s)
- Náthali Maria Machado-de-Lima
- Microbiology Graduation Program, Department of Zoology and Botany, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Daniel Roush
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Sergio Velasco Ayuso
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Janaina Rigonato
- Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, Brazil
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Luis Henrique Zanini Branco
- Microbiology Graduation Program, Department of Zoology and Botany, São Paulo State University (UNESP), São Paulo, Brazil
| |
Collapse
|
45
|
Giraldo‐Silva A, Nelson C, Penfold C, Barger NN, Garcia‐Pichel F. Effect of preconditioning to the soil environment on the performance of 20 cyanobacterial strains used as inoculum for biocrust restoration. Restor Ecol 2019. [DOI: 10.1111/rec.13048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana Giraldo‐Silva
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85287 U.S.A
| | - Corey Nelson
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85287 U.S.A
| | - Cory Penfold
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
| | - Nichole N. Barger
- Department of Ecology and Evolutionary BiologyUniversity of Colorado Boulder CO 80309 U.S.A
| | - Ferran Garcia‐Pichel
- School of Life SciencesArizona State University Tempe AZ 85287 U.S.A
- Center for Fundamental and Applied Microbiomics, Biodesign InstituteArizona State University Tempe AZ 85287 U.S.A
| |
Collapse
|
46
|
Warren SD, Clair LL, Stark LR, Lewis LA, Pombubpa N, Kurbessoian T, Stajich JE, Aanderud ZT. Reproduction and Dispersal of Biological Soil Crust Organisms. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Condon LA, Pietrasiak N, Rosentreter R, Pyke DA. Passive restoration of vegetation and biological soil crusts following 80 years of exclusion from grazing across the Great Basin. Restor Ecol 2019. [DOI: 10.1111/rec.13021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lea A. Condon
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis OR 97331 U.S.A
| | - Nicole Pietrasiak
- Plant and Environmental Sciences Department New Mexico State University Las Cruces New Mexico 88003 U.S.A
| | | | - David A. Pyke
- Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Corvallis OR 97331 U.S.A
| |
Collapse
|
48
|
Reed SC, Delgado-Baquerizo M, Ferrenberg S. Biocrust science and global change. THE NEW PHYTOLOGIST 2019; 223:1047-1051. [PMID: 31304606 DOI: 10.1111/nph.15992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Sasha C Reed
- US Geological Survey, Southwest Biological Science Center, Moab, UT, 84532, USA
| | - Manuel Delgado-Baquerizo
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Calle Tulipán Sin Número, Móstoles, 28933, Spain
| | - Scott Ferrenberg
- Department of Biology, New Mexico State University, Las Cruces, NM, 88001, USA
| |
Collapse
|
49
|
Optimizing the Production of Nursery-Based Biological Soil Crusts for Restoration of Arid Land Soils. Appl Environ Microbiol 2019; 85:AEM.00735-19. [PMID: 31152015 PMCID: PMC6643228 DOI: 10.1128/aem.00735-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
Biocrust communities provide important ecosystem services for arid land soils, such as soil surface stabilization promoting erosion resistance and contributing to overall soil fertility. Anthropogenic degradation to biocrust communities (through livestock grazing, agriculture, urban sprawl, and trampling) is common and significant, resulting in a loss of those ecosystem services. Losses impact both the health of the native ecosystem and the public health of local populations due to enhanced dust emissions. Because of this, approaches for biocrust restoration are being developed worldwide. Here, we present optimization of a nursery-based approach to scaling up the production of biocrust inoculum for field restoration with respect to temporal dynamics and reuse of biological materials. Unexpectedly, we also report on complex population dynamics, significant spatial variability, and lower than expected yields that we ascribe to the demonstrable presence of cyanobacterial pathogens, the spread of which may be enhanced by some of the nursery production standard practices. Biological soil crusts (biocrusts) are topsoil communities formed by cyanobacteria or other microbial primary producers and are typical of arid and semiarid environments. Biocrusts promote a range of ecosystem services, such as erosion resistance and soil fertility, but their degradation by often anthropogenic disturbance brings about the loss of these services. This has prompted interest in developing restoration techniques. One approach is to source biocrust remnants from the area of interest for scale-up cultivation in a microbial “nursery” that produces large quantities of high-quality inoculum for field deployment. However, growth dynamics and the ability to reuse the produced inoculum for continued production have not been assessed. To optimize production, we followed nursery growth dynamics of biocrusts from cold (Great Basin) and hot (Chihuahuan) deserts. Peak phototrophic biomass was attained between 3 and 7 weeks in cold desert biocrusts and at 12 weeks in those from hot deserts. We also reused the resultant biocrust inoculum to seed successive incubations, tracking both phototroph biomass and cyanobacterial community structure using 16S rRNA gene amplicon sequencing. Hot desert biocrusts showed little to no viability upon reinoculation, while cold desert biocrusts continued to grow, but at the expense of progressive shifts in species composition. This leads us to discourage the reuse of nursery-grown inoculum. Surprisingly, growth was highly variable among replicates, and overall yields were low, a fact that we attribute to the demonstrable presence of virulent and stochastically distributed but hitherto unknown cyanobacterial pathogens. We provide recommendations to avoid pathogen incidence in the process. IMPORTANCE Biocrust communities provide important ecosystem services for arid land soils, such as soil surface stabilization promoting erosion resistance and contributing to overall soil fertility. Anthropogenic degradation to biocrust communities (through livestock grazing, agriculture, urban sprawl, and trampling) is common and significant, resulting in a loss of those ecosystem services. Losses impact both the health of the native ecosystem and the public health of local populations due to enhanced dust emissions. Because of this, approaches for biocrust restoration are being developed worldwide. Here, we present optimization of a nursery-based approach to scaling up the production of biocrust inoculum for field restoration with respect to temporal dynamics and reuse of biological materials. Unexpectedly, we also report on complex population dynamics, significant spatial variability, and lower than expected yields that we ascribe to the demonstrable presence of cyanobacterial pathogens, the spread of which may be enhanced by some of the nursery production standard practices.
Collapse
|
50
|
Becerra-Absalón I, Muñoz-Martín MÁ, Montejano G, Mateo P. Differences in the Cyanobacterial Community Composition of Biocrusts From the Drylands of Central Mexico. Are There Endemic Species? Front Microbiol 2019; 10:937. [PMID: 31130933 PMCID: PMC6510263 DOI: 10.3389/fmicb.2019.00937] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
In drylands worldwide, biocrusts, topsoil microbial communities, are prevalent, contributing to the biostabilization of soils and allowing the subsequent establishment and growth of vascular plants. In early successional biocrusts, cyanobacteria are the first dominant colonizers of bare ground, largely determining their functioning. However, there are large gaps in our knowledge of the cyanobacterial diversity in biocrusts, particularly in understudied geographic regions, such as the tropical latitudes. We analyzed the diversity of the cyanobacteria inhabiting the biocrusts of semideserts from Central Mexico in two localities belonging to the same desert system (Chihuahuan Desert) that are separated by a cordillera that crosses the center of Mexico. Morphological identification of the cyanobacteria was carried out after cultivation in parallel with the direct observation of the environmental samples and was supported by genetic characterization through analysis of the 16S rRNA gene of the isolated strains and by next-generation sequencing of the soil samples. Taxonomic assignment revealed a clear dominance of heterocystous cyanobacteria at one of the studied locations (Actopan, Hidalgo state). Although heterocystous forms were abundant at the other location (Atexcac, Puebla state), almost a third of the cyanobacterial phylotypes were represented by unicellular/colonial cyanobacteria, mostly Chroococcidiopsis spp. Only 28.4% of the phylotypes were found to be common to both soils. Most of the other taxa, however, were biocrust-type specific, and approximately 35% of the phylotypes were found to be unique to the soil they were collected in. In addition, differences in the abundances of the shared cyanobacteria between the locations were also found. These differences in the cyanobacterial distribution were supported by the distinct responses of the isolated strains representative of the sites to extreme heat and desiccation in bioassays. Some cyanobacteria with high abundance or only present at the hottest Actopan site, such as Scytonema hyalinum, Scytonema crispum, Nostoc commune, Nostoc sp., and Calothrix parietina, survived extreme heat and desiccation. However, Tolypothrix distorta and Chroococcidiopsis spp. were clearly sensitive to these extreme conditions in relation to their lower abundances at Actopan as opposed to Atexcac. Since novel biocrust-associated phylotypes were also found, the emergence of endemic cyanobacterial taxa is discussed.
Collapse
Affiliation(s)
- Itzel Becerra-Absalón
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - M. Ángeles Muñoz-Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Gustavo Montejano
- Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pilar Mateo
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|