1
|
Li M, Ding Y, Wei J, Dong Y, Wang J, Dai X, Yan J, Chu F, Zhang K, Meng F, Ma J, Zhong W, Wang B, Gao Y, Yang R, Liu X, Su X, Cao H. Gut microbiota metabolite indole-3-acetic acid maintains intestinal epithelial homeostasis through mucin sulfation. Gut Microbes 2024; 16:2377576. [PMID: 39068517 PMCID: PMC11285290 DOI: 10.1080/19490976.2024.2377576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
The global incidence and prevalence of inflammatory bowel disease (IBD) are gradually increasing. A high-fat diet (HFD) is known to disrupt intestinal homeostasis and aggravate IBD, yet the underlying mechanisms remain largely undefined. Here, a positive correlation between dietary fat intake and disease severity in both IBD patients and murine colitis models is observed. A HFD induces a significant decrease in indole-3-acetic acid (IAA) and leads to intestinal barrier damage. Furthermore, IAA supplementation enhances intestinal mucin sulfation and effectively alleviates colitis. Mechanistically, IAA upregulates key molecules involved in mucin sulfation, including 3'-phosphoadenosine 5'-phosphosulfate synthase 2 (Papss2) and solute carrier family 35 member B3 (Slc35b3), the synthesis enzyme and the transferase of 3'-phosphoadenosine-5'-phosphosulfate (PAPS), via the aryl hydrocarbon receptor (AHR). More importantly, AHR can directly bind to the transcription start site of Papss2. Oral administration of Lactobacillus reuteri, which can produce IAA, contributes to protecting against colitis and promoting mucin sulfation, while the modified L. reuteri strain lacking the iaaM gene (LactobacillusΔiaaM) and the ability to produce IAA fail to exhibit such effects. Overall, IAA enhances intestinal mucin sulfation through the AHR-Papss2-Slc35b3 pathway, contributing to the protection of intestinal homfeostasis.
Collapse
Affiliation(s)
- Mengfan Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yiyun Ding
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yue Dong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xin Dai
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jing Yan
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Feifei Chu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Kexin Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Fanyi Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jiahui Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Weilong Zhong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
2
|
Ota H, Sato H, Mizumoto S, Wakai K, Yoneda K, Yamamoto K, Nakanishi H, Ikeda JI, Sakamoto S, Ichikawa T, Yamada S, Takahashi S, Ikehara Y, Nishihara S. Switching mechanism from AR to EGFR signaling via 3-O-sulfated heparan sulfate in castration-resistant prostate cancer. Sci Rep 2023; 13:11618. [PMID: 37463954 DOI: 10.1038/s41598-023-38746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Androgen deprivation therapy is given to suppress prostate cancer growth; however, some cells continue to grow hormone-independently as castration-resistant prostate cancer (CRPC). Sulfated glycosaminoglycans promote ligand binding to receptors as co-receptors, but their role in CRPC remains unknown. Using the human prostate cancer cell line C4-2, which can proliferate in hormone-dependent and hormone-independent conditions, we found that epidermal growth factor (EGF)-activated EGFR-ERK1/2 signaling via 3-O-sulfated heparan sulfate (HS) produced by HS 3-O-sulfotransferase 1 (HS3ST1) is activated in C4-2 cells under hormone depletion. Knockdown of HS3ST1 in C4-2 cells suppressed hormone-independent growth, and inhibited both EGF binding to the cell surface and activation of EGFR-ERK1/2 signaling. Gefitinib, an EGFR inhibitor, significantly suppressed C4-2 cell proliferation and growth of a xenografted C4-2 tumor in castrated mouse. Collectively, our study has revealed a mechanism by which cancer cells switch to hormone-independent growth and identified the key regulator as 3-O-sulfated HS.
Collapse
Affiliation(s)
- Hayato Ota
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Hirokazu Sato
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan
| | - Shuji Mizumoto
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Ken Wakai
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kei Yoneda
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuo Yamamoto
- Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hayao Nakanishi
- Laboratory of Pathology and Clinical Research, Aichi Cancer Center Aichi Hospital, Nagoya, Aichi, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichi Sakamoto
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuhei Yamada
- Department of Pathobiochemistry, Faculty of Pharmacy, Meijo University, Nagoya, Aichi, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yuzuru Ikehara
- Department of Pathology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo, Japan.
- Glycan & Life System Integration Center (GaLSIC), Soka University, Tokyo, Japan.
| |
Collapse
|
3
|
Colin-Pierre C, El Baraka O, Danoux L, Bardey V, André V, Ramont L, Brézillon S. Regulation of stem cell fate by HSPGs: implication in hair follicle cycling. NPJ Regen Med 2022; 7:77. [PMID: 36577752 PMCID: PMC9797564 DOI: 10.1038/s41536-022-00267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are part of proteoglycan family. They are composed of heparan sulfate (HS)-type glycosaminoglycan (GAG) chains covalently linked to a core protein. By interacting with growth factors and/or receptors, they regulate numerous pathways including Wnt, hedgehog (Hh), bone morphogenic protein (BMP) and fibroblast growth factor (FGF) pathways. They act as inhibitor or activator of these pathways to modulate embryonic and adult stem cell fate during organ morphogenesis, regeneration and homeostasis. This review summarizes the knowledge on HSPG structure and classification and explores several signaling pathways regulated by HSPGs in stem cell fate. A specific focus on hair follicle stem cell fate and the possibility to target HSPGs in order to tackle hair loss are discussed in more dermatological and cosmeceutical perspectives.
Collapse
Affiliation(s)
- Charlie Colin-Pierre
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France.
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France.
- BASF Beauty Care Solutions France SAS, Pulnoy, France.
| | | | - Louis Danoux
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | | | - Valérie André
- BASF Beauty Care Solutions France SAS, Pulnoy, France
| | - Laurent Ramont
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
- CHU de Reims, Service Biochimie-Pharmacologie-Toxicologie, Reims, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, SFR CAP-Santé (FED 4231), Laboratoire de Biochimie Médicale et Biologie Moléculaire, Reims, France
- CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire-MEDyC, Reims, France
| |
Collapse
|
4
|
Uezato A, Jitoku D, Shimazu D, Yamamoto N, Kurumaji A, Iwayama Y, Toyota T, Yoshikawa T, Haroutunian V, Bentea E, Meller J, Sullivan CR, Meador-Woodruff JH, McCullumsmith RE, Nishikawa T. Differential genetic associations and expression of PAPST1/SLC35B2 in bipolar disorder and schizophrenia. J Neural Transm (Vienna) 2022; 129:913-924. [PMID: 35501530 DOI: 10.1007/s00702-022-02503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/12/2022] [Indexed: 11/27/2022]
Abstract
Lithium's inhibitory effect on enzymes involved in sulfation process, such as inhibition of 3'(2')-phosphoadenosine 5'-phosphate (PAP) phosphatase, is a possible mechanism of its therapeutic effect for bipolar disorder (BD). 3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is translocated from cytosol to Golgi lumen by PAPS transporter 1 (PAPST1/SLC35B2), where it acts as a sulfa donor. Since SLC35B2 was previously recognized as a molecule that facilitates the release of D-serine, a co-agonist of N-methyl-D-aspartate type glutamate receptor, altered function of SLC35B2 might be associated with the pathophysiology of BD and schizophrenia (SCZ). We performed genetic association analyses of the SLC35B2 gene using Japanese cohorts with 366 BD cases and 370 controls and 2012 SCZ cases and 2170 controls. We then investigated expression of SLC35B2 mRNA in postmortem brains by QPCR using a Caucasian cohort with 33 BD and 34 SCZ cases and 34 controls and by in situ hybridization using a Caucasian cohort with 37 SCZ and 29 controls. We found significant associations between three SNPs (rs575034, rs1875324, and rs3832441) and BD, and significantly reduced SLC35B2 mRNA expression in postmortem dorsolateral prefrontal cortex (DLPFC) of BD. Moreover, we observed normalized SLC35B2 mRNA expression in BD subgroups who were medicated with lithium. While there was a significant association of SLC35B2 with SCZ (SNP rs2233437), its expression was not changed in SCZ. These findings indicate that SLC35B2 might be differentially involved in the pathophysiology of BD and SCZ by influencing the sulfation process and/or glutamate system in the central nervous system.
Collapse
Affiliation(s)
- Akihito Uezato
- School of Health and Welfare, International University of Health and Welfare, Tochigi, Japan
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisuke Jitoku
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dai Shimazu
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Musashishinjo-Kokorono Clinic, Kanagawa, Japan
| | - Naoki Yamamoto
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Basic Medical Research, and School of Pharmaceutical Sciences, International University of Health and Welfare, Tochigi, Japan
| | - Akeo Kurumaji
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Shimousa-Nakayama Mental Clinic, Chiba, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Laboratory for Molecular Pathology of Psychiatric Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Saitama, Japan
- Office of the Center Director, RIKEN Center for Brain Science, Saitama, Japan
| | - Vahram Haroutunian
- Department of Psychiatry and Neuroscience, The Icahn School of Medicine at Mount Sinai, Bronx, NY, USA
| | - Eduard Bentea
- Neurosciences TA Biology, UCB BioPharma SPRL, Braine-l'Alleud, Belgium
| | - Jarek Meller
- Departments of Environmental Health, Electrical Engineering and Computing Systems and Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - James H Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Alabama, USA
| | - Robert E McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH, USA
- Promedica, Toledo, OH, USA
| | - Toru Nishikawa
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.
- Department of Pharmacology, Faculty of Medicine, and Pharmacological Research Center, Showa University, 1-5-8, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
5
|
Ogura C, Nishihara S. Dermatan-4- O-Sulfotransferase-1 Contributes to the Undifferentiated State of Mouse Embryonic Stem Cells. Front Cell Dev Biol 2021; 9:733964. [PMID: 34631712 PMCID: PMC8495257 DOI: 10.3389/fcell.2021.733964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) have the properties of self-renewal and pluripotency. Various signals and growth factors maintain their undifferentiated state and also regulate their differentiation. Glycosaminoglycans are present on the cell surface and in the cell matrix as proteoglycans. Previously, we and other groups reported that the glycosaminoglycan heparan sulfate contributes to both maintenance of undifferentiated state and regulation of mESC differentiation. It has been shown that chondroitin sulfate is needed for pluripotency and differentiation of mESCs, while keratan sulfate is a known marker of human ESCs or induced pluripotent stem cells. We also found that DS promotes neuronal differentiation from mESCs and human neural stem cells; however, the function of DS in the maintenance of mESCs has not yet been revealed. Here, we investigated the role of DS in mESCs by knockdown (KD) or overexpression (O/E) of the dermatan-4-O-sulfotransferase-1 (D4ST1) gene. We found that the activity of the ESC self-renewal marker alkaline phosphatase was reduced in D4ST1 KD mESCs, but, in contrast, increased in D4ST1 O/E mESCs. D4ST1 KD promoted endodermal differentiation, as indicated by an increase in Cdx2 expression. Conversely, Cdx2 expression was decreased by D4ST1 O/E. Wnt signaling, which is also involved in endodermal differentiation, was activated by D4ST1 KD and suppressed by D4ST1 O/E. Collectively, these results demonstrate that D4ST1 contributes to the undifferentiated state of mESCs. Our findings provide new insights into the function of DS in mESCs.
Collapse
Affiliation(s)
- Chika Ogura
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Japan
| | - Shoko Nishihara
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Japan.,Glycan and Life System Integration Center (GaLSIC), Soka University, Hachioji, Japan
| |
Collapse
|
6
|
Regulation of 3-O-Sulfation of Heparan Sulfate During Transition from the Naïve to the Primed State in Mouse Embryonic Stem Cells. Methods Mol Biol 2021. [PMID: 34626399 DOI: 10.1007/978-1-0716-1398-6_35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Mouse embryonic stem cells (mESCs), which are established from the inner cell mass of pre-implantation mouse blastocysts, rapidly expand and form dome-shaped colonies. The pluripotent state of mESCs has been defined as the "naïve" state. On the other hand, characteristics of mouse epiblast stem cells (mEpiSCs), which are derived from the epiblast of mouse post-implantation blastocysts, has been described as the "primed" state. Human embryonic stem cells/induced pluripotent stem cells (hESCs/iPSCs) are also defined as primed state cells because their gene expression pattern and signal requirement are similar to those of mEpiSCs. Both mEpiSCs and hESCs/iPSCs proliferate slowly and form flat colonies. It is therefore difficult to genetically modify primed state cells and apply them to regenerative medicine. Therefore, stable methods of reversion from the primed to the naïve state are required. Clarifying the molecular mechanisms that underpin the primed-to-naïve transition is essential for the use of such cells in basic research and regenerative medicine applications. However, this is a challenging task, since the mechanisms involved in the transition from the naïve to the primed state are still unclear. Here, we induced mEpiSC-like cells (mEpiSCLCs) from mESCs. During induction of mEpiSCLCs, we suppressed expression of 3-O-sulfated heparan sulfate (HS), the HS4C3 epitope, by shRNA-mediated knockdown of HS 3-O-sulfotransferases-5 (3OST-5, formally Hs3st5). The reduction in the level of HS 3-O-sulfation was confirmed by immunostaining with an anti-HS4C3 antibody. This protocol provides an efficient method for stable gene knockdown in mESCs and for the differentiation of mESCs to mEpiSCLCs.
Collapse
|
7
|
Migliorini E, Guevara-Garcia A, Albiges-Rizo C, Picart C. Learning from BMPs and their biophysical extracellular matrix microenvironment for biomaterial design. Bone 2020; 141:115540. [PMID: 32730925 PMCID: PMC7614069 DOI: 10.1016/j.bone.2020.115540] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/19/2023]
Abstract
It is nowadays well-accepted that the extracellular matrix (ECM) is not a simple reservoir for growth factors but is an organization center of their biological activity. In this review, we focus on the ability of the ECM to regulate the biological activity of BMPs. In particular, we survey the role of the ECM components, notably the glycosaminoglycans and fibrillary ECM proteins, which can be promoters or repressors of the biological activities mediated by the BMPs. We examine how a process called mechano-transduction induced by the ECM can affect BMP signaling, including BMP internalization by the cells. We also focus on the spatio-temporal regulation of the BMPs, including their release from the ECM, which enables to modulate their spatial localization as well as their local concentration. We highlight how biomaterials can recapitulate some aspects of the BMPs/ECM interactions and help to answer fundamental questions to reveal previously unknown molecular mechanisms. Finally, the design of new biomaterials inspired by the ECM to better present BMPs is discussed, and their use for a more efficient bone regeneration in vivo is also highlighted.
Collapse
Affiliation(s)
- Elisa Migliorini
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| | - Amaris Guevara-Garcia
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France; Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Corinne Albiges-Rizo
- Université Grenoble Alpes, Institut for Advances Biosciences, Institute Albert Bonniot, INSERM U1209, CNRS 5309, La Tronche, France
| | - Catherine Picart
- CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016 Grenoble, France; CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Biomimetism and Regenerative Medicine Lab, ERL 5000, Université Grenoble-Alpes (UGA)/CEA/CNRS, Grenoble France.
| |
Collapse
|
8
|
Pecori F, Akimoto Y, Hanamatsu H, Furukawa JI, Shinohara Y, Ikehara Y, Nishihara S. Mucin-type O-glycosylation controls pluripotency in mouse embryonic stem cells via Wnt receptor endocytosis. J Cell Sci 2020; 133:jcs245845. [PMID: 32973111 DOI: 10.1242/jcs.245845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) can differentiate into a range of cell types during development, and this pluripotency is regulated by various extrinsic and intrinsic factors. Mucin-type O-glycosylation has been suggested to be a potential factor in the control of ESC pluripotency, and is characterized by the addition of N-acetylgalactosamine (GalNAc) to serine or threonine residues of membrane-anchored proteins and secreted proteins. To date, the relationship between mucin-type O-glycosylation and signaling in ESCs remains undefined. Here, we identify the elongation pathway via C1GalT1 that synthesizes T antigen (Galβ1-3GalNAc) as the most prominent among mucin-type O-glycosylation modifications in ESCs. Moreover, we show that mucin-type O-glycosylation on the Wnt signaling receptor frizzled-5 (Fzd5) regulates its endocytosis via galectin-3 binding to T antigen, and that reduction of T antigen results in the exit of the ESCs from pluripotency via canonical Wnt signaling activation. Our findings reveal a novel regulatory mechanism that modulates Wnt signaling and, consequently, ESC pluripotency.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Federico Pecori
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Yasuro Shinohara
- Department of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan
| | - Yuzuru Ikehara
- Department of Molecular and Tumor Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Graduate School of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
- Glycan & Life System Integration Center (GaLSIC), Faculty of Science and Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
9
|
Meisen WH, Nejad ZB, Hardy M, Zhao H, Oliverio O, Wang S, Hale C, Ollmann MM, Collins PJ. Pooled Screens Identify GPR108 and TM9SF2 as Host Cell Factors Critical for AAV Transduction. Mol Ther Methods Clin Dev 2020; 17:601-611. [PMID: 32280726 PMCID: PMC7139131 DOI: 10.1016/j.omtm.2020.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/12/2020] [Indexed: 12/19/2022]
Abstract
Adeno-associated virus (AAV) has been used extensively as a vector for gene therapy. Despite its widespread use, the mechanisms by which AAV enters the cell and is trafficked to the nucleus are poorly understood. In this study, we performed two pooled, genome-wide screens to identify positive and negative factors modulating AAV2 transduction. Genome-wide libraries directed against all human genes with four designs per gene or eight designs per gene were transduced into U-2 OS cells. These pools were transduced with AAV2 encoding EGFP and sorted based on the intensity of EGFP expression. Analysis of enriched and depleted barcodes in the sorted samples identified several genes that putatively decreased AAV2 transduction. A subset of screen hits was validated in flow cytometry and imaging studies. In addition to KIAA0319L (AAVR), we confirmed the role of two genes, GPR108 and TM9SF2, in mediating viral transduction in eight different AAV serotypes. Interestingly, GPR108 displayed serotype selectivity and was not required for AAV5 transduction. Follow-up studies suggested that GPR108 localized primarily to the Golgi, where it may interact with AAV and play a critical role in mediating virus escape or trafficking. Cumulatively, these results expand our understanding of the process of AAV transduction in different cell types and serotypes.
Collapse
Affiliation(s)
- W. Hans Meisen
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | | | - Miki Hardy
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Huiren Zhao
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Oliver Oliverio
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Songli Wang
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Christopher Hale
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | | | | |
Collapse
|
10
|
Highly sulfated hyaluronic acid maintains human induced pluripotent stem cells under feeder-free and bFGF-free conditions. Biochem Biophys Res Commun 2019; 518:506-512. [PMID: 31439376 DOI: 10.1016/j.bbrc.2019.08.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
Human induced pluripotent stem (hiPS) cells are attracting attention as a tool for regenerative medicine. However, several problems need to be overcome for their widespread and safe use, for example, the high cost of maintaining hiPS cells and the possibility of xenogeneic cell contamination in hiPS cell cultures. One of the main contributors to the high cost of maintaining hiPS cells is basic fibroblast growth factor (bFGF), which is essential for such cultures. Xenogeneic contamination can occur because of the use of mouse-derived feeder cells to culture hiPS cells. To overcome the problems of cell culture cost and xenogeneic contamination, we have developed a novel culture method in which the undifferentiated state and pluripotency of hiPS cells can be maintained under feeder-free and bFGF-free conditions. Our new approach involves the addition to the culture medium of highly sulfated hyaluronic acid (HA-HS), in which the hydroxyl groups of d-glucuronic acid (GlcA) and N-acetyl-d-glucosamine (GlcNAc) are chemically sulfated. HA-HS promotes bFGF signaling and maintains the undifferentiated state and pluripotency of hiPS cells under feeder-free and bFGF-free conditions. By contrast, non-sulfated hyaluronic acid and low sulfated hyaluronic acid do not maintain the undifferentiated state and pluripotency of hiPS cells. These results indicate that the maintenance of hiPS cells under feeder-free and bFGF-free conditions is an HA-HS specific effect. This study is the first to demonstrate the effects of sulfated hyaluronic acid on mammalian pluripotent stem cells, and provides a novel method for maintaining hiPS cells using HA-HS.
Collapse
|
11
|
Nishihara S. Glycans in stem cell regulation: from
Drosophila
tissue stem cells to mammalian pluripotent stem cells. FEBS Lett 2018; 592:3773-3790. [DOI: 10.1002/1873-3468.13167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Shoko Nishihara
- Laboratory of Cell Biology Department of Bioinformatics Graduate School of Engineering Soka University Hachioji Japan
| |
Collapse
|
12
|
Ageing affects chondroitin sulfates and their synthetic enzymes in the intervertebral disc. Signal Transduct Target Ther 2017; 2:17049. [PMID: 29263929 PMCID: PMC5661628 DOI: 10.1038/sigtrans.2017.49] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/19/2017] [Accepted: 07/27/2017] [Indexed: 01/07/2023] Open
Abstract
The depletion of chondroitin sulfates (CSs) within the intervertebral disc (IVD) during degenerative disc disease (DDD) results in a decrease in tissue hydration, a loss of fluid movement, cell apoptosis, a loss of nerve growth inhibition and ultimately, the loss of disc function. To date, little is known with regards to the structure and content of chondroitin sulfates (CSs) during IVD ageing. The behavior of glycosaminoglycans (GAGs), specifically CSs, as well as xylosyltransferase I (XT-I) and glucuronyltransferase I (GT-I), two key enzymes involved in CS synthesis as a primer of glycosaminoglycan (GAG) chain elongation and GAG synthesis in the nucleus pulposus (NP), respectively, were evaluated in a bovine ageing IVD model. Here, we showed significant changes in the composition of GAGs during the disc ageing process (6-month-old, 2-year-old and 8-year-old IVDs representing the immature to mature skeleton). The CS quantity and composition of annulus fibrosus (AF) and NP were determined. The expression of both XT-I and GT-I was detected using immunohistochemistry. A significant decrease in GAGs was observed during the ageing process. CSs are affected at both the structural and quantitative levels with important changes in sulfation observed upon maturity, which correlated with a decrease in the expression of both XT-I and GT-I. A progressive switch of the sulfation profile was noted in both NP and AF tissues from 6 months to 8 years. These changes give an appreciation of the potential impact of CSs on the disc biology and the development of therapeutic approaches for disc regeneration and repair.
Collapse
|
13
|
Langford R, Hurrion E, Dawson PA. Genetics and pathophysiology of mammalian sulfate biology. J Genet Genomics 2017; 44:7-20. [DOI: 10.1016/j.jgg.2016.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 12/23/2022]
|
14
|
Glycans define the stemness of naïve and primed pluripotent stem cells. Glycoconj J 2016; 34:737-747. [PMID: 27796614 DOI: 10.1007/s10719-016-9740-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Cell surface glycans are tissue-specific and developmentally regulated. They function as essential modulators in cell-cell interactions, cell-extracellular matrix interactions, and ligand-receptor interactions, binding to various ligands, including Wnt, fibroblast growth factors, and bone morphogenetic proteins. Embryonic stem (ES) cells, originally derived from the inner cell mass of blastocysts, have the essential characteristics of pluripotency and self-renewal. Recently, it has been proposed that mouse and human conventional ES cells are present in different developmental stages, namely pre-implantation blastocyst and post-implantation blastocyst stages, also called the naïve state and the primed state, respectively. They therefore require different extrinsic signals for the maintenance of self-renewal and pluripotency, and also appear to require different surface glycans. Understanding of molecular mechanisms involving glycans in self-renewal and pluripotency of ES cells is increasingly important for potential clinical applications, as well as for basic research. This review focuses on the roles of glycans in the two different states of pluripotent stem cells, namely the naïve state and the primed state, and the transition between these two states.
Collapse
|
15
|
Orellana A, Moraga C, Araya M, Moreno A. Overview of Nucleotide Sugar Transporter Gene Family Functions Across Multiple Species. J Mol Biol 2016; 428:3150-3165. [PMID: 27261257 DOI: 10.1016/j.jmb.2016.05.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/19/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022]
Abstract
Glycoproteins and glycolipids are crucial in a number of cellular processes, such as growth, development, and responses to external cues, among others. Polysaccharides, another class of sugar-containing molecules, also play important structural and signaling roles in the extracellular matrix. The additions of glycans to proteins and lipids, as well as polysaccharide synthesis, are processes that primarily occur in the Golgi apparatus, and the substrates used in this biosynthetic process are nucleotide sugars. These proteins, lipids, and polysaccharides are also modified by the addition of sulfate groups in the Golgi apparatus in a series of reactions where nucleotide sulfate is needed. The required nucleotide sugar substrates are mainly synthesized in the cytosol and transported into the Golgi apparatus by nucleotide sugar transporters (NSTs), which can additionally transport nucleotide sulfate. Due to the critical role of NSTs in eukaryotic organisms, any malfunction of these could change glycan and polysaccharide structures, thus affecting function and altering organism physiology. For example, mutations or deletion on NST genes lead to pathological conditions in humans or alter cell walls in plants. In recent years, many NSTs have been identified and functionally characterized, but several remain unanalyzed. This study examined existing information on functionally characterized NSTs and conducted a phylogenetic analysis of 257 NSTs predicted from nine animal and plant model species, as well as from protists and fungi. From this analysis, relationships between substrate specificity and the primary NST structure can be inferred, thereby advancing understandings of nucleotide sugar gene family functions across multiple species.
Collapse
Affiliation(s)
- Ariel Orellana
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| | - Carol Moraga
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Macarena Araya
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile.
| | - Adrian Moreno
- Centro de Biotecnología Vegetal, Universidad Andres Bello, Av. República 217, Santiago, RM 837-0146, Chile; FONDAP Center for Genome Regulation, Santiago, RM,Chile.
| |
Collapse
|
16
|
Dou W, Xu Y, Pagadala V, Pedersen LC, Liu J. Role of Deacetylase Activity of N-Deacetylase/N-Sulfotransferase 1 in Forming N-Sulfated Domain in Heparan Sulfate. J Biol Chem 2015; 290:20427-37. [PMID: 26109066 DOI: 10.1074/jbc.m115.664409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Indexed: 01/03/2023] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide that plays important physiological roles. The biosynthesis of HS involves a series of enzymes, including glycosyltransferases (or HS polymerase), epimerase, and sulfotransferases. N-Deacetylase/N-Sulfotransferase isoform 1 (NDST-1) is a critical enzyme in this pathway. NDST-1, a bifunctional enzyme, displays N-deacetylase and N-sulfotransferase activities to convert an N-acetylated glucosamine residue to an N-sulfo glucosamine residue. Here, we report the cooperative effects between N-deacetylase and N-sulfotransferase activities. Using baculovirus expression in insect cells, we obtained three recombinant proteins: full-length NDST-1 and the individual N-deacetylase and N-sulfotransferase domains. Structurally defined oligosaccharide substrates were synthesized to test the substrate specificities of the enzymes. We discovered that N-deacetylation is the limiting step and that interplay between the N-sulfotransferase and N-deacetylase accelerates the reaction. Furthermore, combining the individually expressed N-deacetylase and N-sulfotransferase domains produced different sulfation patterns when compared with that made by the NDST-1 enzyme. Our data demonstrate the essential role of domain cooperation within NDST-1 in producing HS with specific domain structures.
Collapse
Affiliation(s)
- Wenfang Dou
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, the Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China, and
| | - Yongmei Xu
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Vijayakanth Pagadala
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Lars C Pedersen
- the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Jian Liu
- From the Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599,
| |
Collapse
|
17
|
Xu Q, Pan Y, Li L, Zhou Z, Huang Q, Pang JC, Zhu X, Ren Y, Yang H, Ohgaki H, Lv S. MiR-22 is frequently downregulated in medulloblastomas and inhibits cell proliferation via the novel target PAPST1. Brain Pathol 2014; 24:568-83. [PMID: 24576181 PMCID: PMC8029063 DOI: 10.1111/bpa.12136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/25/2014] [Indexed: 01/05/2023] Open
Abstract
Medulloblastoma is the most frequent malignant central nervous system tumor in children. MicroRNAs (miRs) are small, non-coding RNAs that target protein-coding and non-coding RNAs, and play roles in a variety of cellular processes through regulation of multiple targets. In the present study, we analyzed miR-22 expression and its effect in cell proliferation and apoptosis in medulloblastomas. Quantitative reverse transcription PCR (RT-PCR) revealed significantly lower expression of miR-22 in 19 out of 27 (70%) medulloblastomas, D341, DAOY, ONS-76 medulloblastoma cell lines, compared with normal cerebellum. Forced expression of miR-22 by lentiviral vector transfection reduced cell proliferation and induced apoptosis, while knockdown of miR-22 increased proliferative activity in DAOY and ONS-76 cells. DAOY cells with miR-22 overexpression in nude mice yielded tumors smaller than those originated from control DAOY cells. Microarray analysis in DAOY cells with forced miR-22 expression showed significant changes in expression profiles, PAPST1 being the most significantly (10 folds) downregulated gene. Quantitative RT-PCR revealed PAPST1 mRNA upregulation in 18 out of 27 (67%) medulloblastomas. In addition, a luciferase reporter assay in ONS-76 and DAOY cells suggested that miR-22 directly targets the PAPST1 gene, and lentivirus-mediated knockdown of PAPST1 suppressed proliferation of DAOY and ONS-76 medulloblastoma cells. These results suggest that frequently downregulated miR-22 expression is associated with cell proliferation in medulloblastomas, and this may be at least in part via PAPST1, which is a novel target of miR-22.
Collapse
Affiliation(s)
- Qing‐Fu Xu
- Department of NeurosurgeryXinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Ya‐Wen Pan
- Department of NeurosurgeryThe Second HospitalLanzhou UniversityLanzhouChina
| | - Li‐Chao Li
- Department of NeurosurgeryThe First HospitalLanzhou UniversityLanzhouChina
| | - Zheng Zhou
- Department of NeurosurgeryXinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Qi‐Lin Huang
- Department of NeurosurgeryXinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Jesse Chung‐sean Pang
- Department of Anatomical and Cellular PathologyThe Chinese University of Hong KongHong Kong
| | - Xiao‐Peng Zhu
- Department of NeurosurgeryXinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Yong Ren
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalThird Military Medical UniversityChongqingChina
| | - Hui Yang
- Department of NeurosurgeryXinqiao HospitalThird Military Medical UniversityChongqingChina
| | - Hiroko Ohgaki
- Section of Molecular PathologyInternational Agency for Research on CancerLyonFrance
| | - Sheng‐Qing Lv
- Department of NeurosurgeryXinqiao HospitalThird Military Medical UniversityChongqingChina
| |
Collapse
|
18
|
Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2014; 169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future.
Collapse
|
19
|
Dick G, Akslen-Hoel LK, Grøndahl F, Kjos I, Maccarana M, Prydz K. PAPST1 regulates sulfation of heparan sulfate proteoglycans in epithelial MDCK II cells. Glycobiology 2014; 25:30-41. [PMID: 25138304 DOI: 10.1093/glycob/cwu084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteoglycan (PG) sulfation depends on activated nucleotide sulfate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS). Transporters in the Golgi membrane translocate PAPS from the cytoplasm into the organelle lumen where PG sulfation occurs. Silencing of PAPS transporter (PAPST) 1 in epithelial MDCK cells reduced PAPS uptake into Golgi vesicles. Surprisingly, at the same time sulfation of heparan sulfate (HS) was stimulated. The effect was pathway specific in polarized epithelial cells. Basolaterally secreted proteoglycans (PGs) displayed an altered HS sulfation pattern and increased growth factor binding capacity. In contrast, the sulfation pattern of apically secreted PGs was unchanged while the secretion was reduced. Regulation of PAPST1 allows epithelial cells to prioritize between PG sulfation in the apical and basolateral secretory routes at the level of the Golgi apparatus. This provides sulfation patterns that ensure PG functions at the extracellular level, such as growth factor binding.
Collapse
Affiliation(s)
- Gunnar Dick
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| | | | - Frøy Grøndahl
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| | - Marco Maccarana
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Kristian Prydz
- Department of Biosciences, University of Oslo, PO Box 1066, 0316 Oslo, Norway
| |
Collapse
|
20
|
Kraushaar DC, Dalton S, Wang L. Heparan sulfate: a key regulator of embryonic stem cell fate. Biol Chem 2014; 394:741-51. [PMID: 23370908 DOI: 10.1515/hsz-2012-0353] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/23/2013] [Indexed: 12/11/2022]
Abstract
Heparan sulfate (HS) belongs to a class of glycosaminoglycans and is a highly sulfated, linear polysaccharide. HS biosynthesis and modification involves numerous enzymes. HS exists as part of glycoproteins named HS proteoglycans, which are expressed abundantly on the cell surface and in the extracellular matrix. HS interacts with numerous proteins, including growth factors, morphogens, and adhesion molecules, and thereby regulates important developmental processes in invertebrates and vertebrates. Embryonic stem cells (ESCs) are distinguished by their characteristics of self-renewal and pluripotency. Self-renewal allows ESCs to proliferate indefinitely in their undifferentiated state, whereas pluripotency implies their capacity to differentiate into the three germ layers and ultimately all cell types of the adult body. Both traits are tightly regulated by numerous cell signaling pathways. Recent studies have highlighted the importance of HS in the modulation of ESC functions, specifically their lineage fate. Here, we review the current advances that have been made in understanding the structural changes of HS during ESC differentiation and in deciphering the molecular mechanisms by which HS modulates cell fate. Finally, we discuss the applications of heparinoids and chemical inhibitors of HS biosynthesis for the manipulation of ESC culture and directed differentiation.
Collapse
Affiliation(s)
- Daniel C Kraushaar
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
21
|
Hirano K, Nishihara S. Function of Heparan Sulfate in Pluripotent Stem Cells. TRENDS GLYCOSCI GLYC 2014. [DOI: 10.4052/tigg.26.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Song Z. Roles of the nucleotide sugar transporters (SLC35 family) in health and disease. Mol Aspects Med 2013; 34:590-600. [PMID: 23506892 DOI: 10.1016/j.mam.2012.12.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/10/2012] [Indexed: 12/29/2022]
Abstract
Nucleotide sugars and adenosine 3'-phospho 5'-phosphosulfate (PAPS) are transported from the cytosol to the endoplasmic reticulum (ER) and the Golgi apparatus where they serve as substrates for the glycosylation and sulfation of proteins, lipids and proteoglycans. The translocation is accomplished by the nucleotide sugar transporters (NSTs), a family of highly conserved hydrophobic proteins with multiple transmembrane domains that are part of the solute carrier family 35 (SLC35). NSTs are antiporters responsible not only for transporting nucleotide sugars and PAPS into the Golgi, but also for the transport of the reaction products back to the cytosol. The initial reaction products - the nucleoside diphosphates - must be first converted to nucleoside monophosphates by a group of enzymes called ectonucleoside triphosphate diphosphohydrolases (ENTPDs) before they can exit the Golgi. The transport role of NSTs is essential to glycosylation and development. Mutations in two NST genes, SLC35A1 and SLC35C1, have been related to congenital disorder of glycosylation II (CDG II).
Collapse
Affiliation(s)
- Zhiwei Song
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A∗STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.
| |
Collapse
|
23
|
Abstract
Sulphate contributes to numerous processes in mammalian physiology, particularly during development. Sulphotransferases mediate the sulphate conjugation (sulphonation) of numerous compounds, including steroids, glycosaminoglycans, proteins, neurotransmitters and xenobiotics, transforming their biological activities. Importantly, the ratio of sulphonated to unconjugated molecules plays a significant physiological role in many of the molecular events that regulate mammalian growth and development. In humans, the fetus is unable to generate its own sulphate and therefore relies on sulphate being supplied from maternal circulation via the placenta. To meet the gestational needs of the growing fetus, maternal blood sulphate concentrations double from mid-gestation. Maternal hyposulphataemia has been linked to fetal sulphate deficiency and late gestational fetal loss in mice. Disorders of sulphonation have also been linked to a number of developmental disorders in humans, including skeletal dysplasias and premature adrenarche. While recognised as an important nutrient in mammalian physiology, sulphate is largely unappreciated in clinical settings. In part, this may be due to technical challenges in measuring sulphate with standard pathology equipment and hence the limited findings of perturbed sulphate homoeostasis affecting human health. This review article is aimed at highlighting the importance of sulphate in mammalian development, with basic science research being translated through animal models and linkage to human disorders.
Collapse
|
24
|
Hirano K, Van Kuppevelt TH, Nishihara S. The transition of mouse pluripotent stem cells from the naïve to the primed state requires Fas signaling through 3-O sulfated heparan sulfate structures recognized by the HS4C3 antibody. Biochem Biophys Res Commun 2012; 430:1175-81. [PMID: 23232116 DOI: 10.1016/j.bbrc.2012.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
The characteristics of pluripotent embryonic stem cells of human and mouse are different. The properties of human embryonic stem cells (hESCs) are similar to those of mouse epiblast stem cells (mEpiSCs), which are in a later developmental pluripotency state, the so-called "primed state" compared to mouse embryonic stem cells (mESCs) which are in a naïve state. As a result of the properties of the primed state, hESCs proliferate slowly, cannot survive as single cells, and can only be transfected with genes at low efficiency. Generating hESCs in the naïve state is necessary to overcome these problems and allow their application in regenerative medicine. Therefore, clarifying the mechanism of the transition between the naïve and primed states in pluripotent stem cells is important for the establishment of stable methods of generating naïve state hESCs. However, the signaling pathways which contribute to the transition between the naïve and primed states are still unclear. In this study, we carried out induction from mESCs to mEpiSC-like cells (mEpiSCLCs), and observed an increase in the activation of Fas signaling during the induction. The expression of Fgf5, an epiblast marker, was diminished by inhibition of Fas signaling using the caspase-8 and -3 blocking peptides, IETD and DEVD, respectively. Furthermore, during the induction, we observed increased expression of 3-O sulfated heparan sulfate (HS) structures synthesized by HS 3-O-sulfotransferase (3OST), which are recognized by the HS4C3 antibody (HS4C3-binding epitope). Knockdown of 3OST-5 reduced Fas signaling and the potential for the transition to mEpiSCLCs. This indicates that the HS4C3-binding epitope is necessary for the transition to the primed state. We propose that Fas signaling through the HS4C3-binding epitope contributes to the transition from the naïve state to the primed state.
Collapse
Affiliation(s)
- Kazumi Hirano
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | |
Collapse
|
25
|
Hirano K, Sasaki N, Ichimiya T, Miura T, Van Kuppevelt TH, Nishihara S. 3-O-sulfated heparan sulfate recognized by the antibody HS4C3 contributes [corrected] to the differentiation of mouse embryonic stem cells via fas signaling. PLoS One 2012; 7:e43440. [PMID: 22916262 PMCID: PMC3420900 DOI: 10.1371/journal.pone.0043440] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 07/23/2012] [Indexed: 12/28/2022] Open
Abstract
Maintenance of self-renewal and pluripotency in mouse embryonic stem cells (mESCs) is regulated by the balance between several extrinsic signaling pathways. Recently, we demonstrated that heparan sulfate (HS) chains play important roles in the maintenance and differentiation of mESCs by regulating extrinsic signaling. Sulfated HS structures are modified by various sulfotransferases during development. However, the significance of specific HS structures during development remains unclear. Here, we show that 3-O-sulfated HS structures synthesized by HS 3-O-sulfotransferases (3OSTs) and recognized by the antibody HS4C3 increase during differentiation of mESCs. Furthermore, expression of Fas on the cell surface of the differentiated cells also increased. Overexpression of the HS4C3-binding epitope in mESCs induced apoptosis and spontaneous differentiation even in the presence of LIF and serum. These data showed that the HS4C3-binding epitope was required for differentiation of mESCs. Up-regulation of the HS4C3-binding epitope resulted in the recruitment of Fas from the cytoplasm to lipid rafts on the cell surface followed by activation of Fas signaling. Indeed, the HS4C3-binding epitope interacted with a region that included the heparin-binding domain (KLRRRVH) of Fas. Reduced self-renewal capability in cells overexpressing 3OST resulted from the degradation of Nanog by activated caspase-3, which is downstream of Fas signaling, and was rescued by the inhibition of Fas signaling. We also found that knockdown of 3OST and inhibition of Fas signaling reduced the potential for differentiation into the three germ layers during embryoid body formation. This is the first demonstration that activation of Fas signaling is mediated by an increase in the HS4C3-binding epitope and indicates a novel signaling pathway for differentiation in mESCs.
Collapse
Affiliation(s)
- Kazumi Hirano
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Norihiko Sasaki
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Tomomi Ichimiya
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Taichi Miura
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Toin H. Van Kuppevelt
- Nijmegen Centre for Molecular Life Sciences, Department of Biochemistry, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Shoko Nishihara
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
- * E-mail:
| |
Collapse
|
26
|
Karus M, Samtleben S, Busse C, Tsai T, Dietzel ID, Faissner A, Wiese S. Normal sulfation levels regulate spinal cord neural precursor cell proliferation and differentiation. Neural Dev 2012; 7:20. [PMID: 22681904 PMCID: PMC3423038 DOI: 10.1186/1749-8104-7-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/06/2012] [Indexed: 12/26/2022] Open
Abstract
Background Sulfated glycosaminoglycan chains are known for their regulatory functions during neural development and regeneration. However, it is still unknown whether the sulfate residues alone influence, for example, neural precursor cell behavior or whether they act in concert with the sugar backbone. Here, we provide evidence that the unique 473HD-epitope, a representative chondroitin sulfate, is expressed by spinal cord neural precursor cells in vivo and in vitro, suggesting a potential function of sulfated glycosaminoglycans for spinal cord development. Results Thus, we applied the widely used sulfation inhibitor sodium chlorate to analyze the importance of normal sulfation levels for spinal cord neural precursor cell biology in vitro. Addition of sodium chlorate to spinal cord neural precursor cell cultures affected cell cycle progression accompanied by changed extracellular signal-regulated kinase 1 or 2 activation levels. This resulted in a higher percentage of neurons already under proliferative conditions. In contrast, the relative number of glial cells was largely unaffected. Strikingly, both morphological and electrophysiological characterization of neural precursor cell-derived neurons demonstrated an attenuated neuronal maturation in the presence of sodium chlorate, including a disturbed neuronal polarization. Conclusions In summary, our data suggest that sulfation is an important regulator of both neural precursor cell proliferation and maturation of the neural precursor cell progeny in the developing mouse spinal cord.
Collapse
Affiliation(s)
- Michael Karus
- Group for Molecular Cell Biology, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Attachment of Chlamydia trachomatis L2 to host cells requires sulfation. Proc Natl Acad Sci U S A 2012; 109:10059-64. [PMID: 22675117 DOI: 10.1073/pnas.1120244109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chlamydia trachomatis is a pathogen responsible for a prevalent sexually transmitted disease. It is also the most common cause of infectious blindness in the developing world. We performed a loss-of-function genetic screen in human haploid cells to identify host factors important in C. trachomatis L2 infection. We identified and confirmed B3GAT3, B4GALT7, and SLC35B2, which encode glucuronosyltransferase I, galactosyltransferase I, and the 3'-phosphoadenosine 5'-phosphosulfate transporter 1, respectively, as important in facilitating Chlamydia infection. Knockout of any of these three genes inhibits Chlamydia attachment. In complementation studies, we found that the introduction of functional copies of these three genes into the null clones restored full susceptibility to Chlamydia infection. The degree of attachment of Chlamydia strongly correlates with the level of sulfation of the host cell, not simply with the amount of heparan sulfate. Thus, other, as-yet unidentified sulfated macromolecules must contribute to infection. These results demonstrate the utility of screens in haploid cells to study interactions of human cells with bacteria. Furthermore, the human null clones generated can be used to investigate the role of heparan sulfate and sulfation in other settings not limited to infectious disease.
Collapse
|
28
|
Kraushaar DC, Rai S, Condac E, Nairn A, Zhang S, Yamaguchi Y, Moremen K, Dalton S, Wang L. Heparan sulfate facilitates FGF and BMP signaling to drive mesoderm differentiation of mouse embryonic stem cells. J Biol Chem 2012; 287:22691-700. [PMID: 22556407 DOI: 10.1074/jbc.m112.368241] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) has been implicated in regulating cell fate decisions during differentiation of embryonic stem cells (ESCs) into advanced cell types. However, the necessity and the underlying molecular mechanisms of HS in early cell lineage differentiation are still largely unknown. In this study, we examined the potential of EXT1(-/-) mouse ESCs (mESCs), that are deficient in HS, to differentiate into primary germ layer cells. We observed that EXT1(-/-) mESCs lost their differentiation competence and failed to differentiate into Pax6(+)-neural precursor cells and mesodermal cells. More detailed analyses highlighted the importance of HS for the induction of Brachyury(+) pan-mesoderm as well as normal gene expression associated with the dorso-ventral patterning of mesoderm. Examination of developmental cell signaling revealed that EXT1 ablation diminished FGF and BMP but not Wnt signaling. Furthermore, restoration of FGF and BMP signaling each partially rescued mesoderm differentiation defects. We further show that BMP4 is more prone to degradation in EXT1(-/-) mESCs culture medium compared with that of wild type cells. Therefore, our data reveal that HS stabilizes BMP ligand and thereby maintains the BMP signaling output required for normal mesoderm differentiation. In summary, our study demonstrates that HS is required for ESC pluripotency, in particular lineage specification into mesoderm through facilitation of FGF and BMP signaling.
Collapse
Affiliation(s)
- Daniel C Kraushaar
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sasaki N, Nishihara S. Gene silencing in mouse embryonic stem cells. Methods Mol Biol 2012; 836:53-61. [PMID: 22252627 DOI: 10.1007/978-1-61779-498-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Embryonic stem cells (ESCs) are promising tools for regenerative medicine as well as for biotechnological research. However, to exploit ESCs for clinical purposes, a better understanding of the molecular mechanisms that control the pluripotency and differentiation of ESCs is required. Several extrinsic signaling pathways contribute to the maintenance of pluripotency, as well as induction of differentiation, in ESCs. However, the mechanisms that regulate extrinsic signaling in ESCs are largely unknown. Heparan sulfate (HS) is present ubiquitously as a component of cell surface proteoglycans and is known to play crucial roles in the regulation of several signaling pathways. We have validated that RNA interference (RNAi) is a useful method for the functional analysis of some target genes in mouse ESCs (mESCs). Indeed, we have investigated the functions of HS in mESCs by using RNAi and have demonstrated that HS on mESCs is involved in regulating signaling pathways that are important for the maintenance of mESCs. In this chapter, we describe detailed methods for the gene silencing of proteoglycan-related genes in mESCs by RNAi.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Department of Bioinformatics, Laboratory of Cell Biology, Soka University, Tokyo, Japan
| | | |
Collapse
|
30
|
Sasaki N, Shinomi M, Hirano K, Ui-Tei K, Nishihara S. LacdiNAc (GalNAcβ1-4GlcNAc) contributes to self-renewal of mouse embryonic stem cells by regulating leukemia inhibitory factor/STAT3 signaling. Stem Cells 2011; 29:641-50. [PMID: 21305673 DOI: 10.1002/stem.615] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Self-renewal of mouse embryonic stem cells (mESCs) is maintained by leukemia inhibitory factor (LIF)/signal transducer and activator of transcription (STAT3) signaling. However, this signaling control does not function in neither mouse epiblast stem cells (mEpiSCs) nor human ESCs (hESCs) or human induced pluripotent stem cells (hiPSCs). To date, the underlying molecular mechanisms that determine this differential LIF-responsiveness have not been clarified. Here, we show that the cell surface glycan LacdiNAc (GalNAcβ1-4GlcNAc) is required for LIF/STAT3 signaling. Undifferentiated state mESCs expressed LacdiNAc at a higher level than differentiated state cells. Knockdown of β4GalNAc-T3 reduced LacdiNAc expression and caused a decrease in LIF/STAT3 signaling that lessened the rate of self-renewal of mESCs. A biochemical analysis showed that LacdiNAc expression on LIF receptor (LIFR) and gp130 was required for the stable localization of the receptors with lipid raft/caveolar components, such as caveolin-1. This localization is required for transduction of a sufficiently strong LIF/STAT3 signal. In primed state pluripotent stem cells, such as hiPSCs and mEpiSC-like cells produced from mESCs, LacdiNAc expression on LIFR and gp130 was extremely weak and the level of localization of these receptors on rafts/caveolae was also low. Furthermore, knockdown of β4GalNAc-T3 decreased LacdiNAc expression and reduced the efficiency of reversion of primed state mEpiSC-like cells into naïve state mESCs. These findings show that the different LIF-responsiveness of naïve state (mESCs) and primed state (mEpiSCs, hESCs, and hiPSCs) cells is dependent on the expression of LacdiNAc on LIFR and gp130 and that this expression is required for the induction and maintenance of the naïve state.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | | | | | | | | |
Collapse
|
31
|
Piecewicz S, Sengupta S. The Dynamic Glycome Microenvironment and Stem Cell Differentiation into Vasculature. Stem Cells Dev 2011; 20:749-58. [DOI: 10.1089/scd.2010.0454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Stephanie Piecewicz
- Harvard-MIT Division of HST, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Shiladitya Sengupta
- Harvard-MIT Division of HST, Department of Medicine, Center for Regenerative Therapeutics, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
| |
Collapse
|
32
|
Kamiyama S, Ichimiya T, Ikehara Y, Takase T, Fujimoto I, Suda T, Nakamori S, Nakamura M, Nakayama F, Irimura T, Nakanishi H, Watanabe M, Narimatsu H, Nishihara S. Expression and the role of 3'-phosphoadenosine 5'-phosphosulfate transporters in human colorectal carcinoma. Glycobiology 2011; 21:235-46. [PMID: 20978009 DOI: 10.1093/glycob/cwq154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sulfation represents an essential modification for various molecules and regulates many biological processes. The sulfation of glycans requires a specific transporter for 3'-phosphoadenosine 5'-phosphosulfate (PAPS) on the Golgi apparatus. This study investigated the expression of PAPS transporter genes in colorectal carcinomas and the significance of Golgi-specific sulfation in the proliferation of colorectal carcinoma cells. The relative amount of PAPST1 transcripts was found to be higher than those of PAPST2 in colorectal cancerous tissues. Immunohistochemically, the enhanced expression of PAPST1 was observed in fibroblasts in the vicinity of invasive cancer cells, whereas the expression of PAPST2 was decreased in the epithelial cells. RNA interference of either of the two PAPS transporter genes reduced the extent of sulfation of cellular proteins and cellular proliferation of DLD-1 human colorectal carcinoma cells. Silencing the PAPS transporter genes reduced fibroblast growth factor signaling in DLD-1 cells. These findings indicate that PAPS transporters play a role in the proliferation of colorectal carcinoma cells themselves and take part in a desmoplastic reaction to support cancer growth by controlling their sulfation status.
Collapse
Affiliation(s)
- Shin Kamiyama
- Department of Bioinformatics, Soka University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sasaki N, Hirano T, Kobayashi K, Toyoda M, Miyakawa Y, Okita H, Kiyokawa N, Akutsu H, Umezawa A, Nishihara S. Chemical inhibition of sulfation accelerates neural differentiation of mouse embryonic stem cells and human induced pluripotent stem cells. Biochem Biophys Res Commun 2010; 401:480-6. [PMID: 20875394 DOI: 10.1016/j.bbrc.2010.09.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 09/21/2010] [Indexed: 12/21/2022]
Abstract
Pluripotency of embryonic stem cells (ESCs) is maintained by the balancing of several signaling pathways, such as Wnt, BMP, and FGF, and differentiation of ESCs into a specific lineage is induced by the disruption of this balance. Sulfated glycans are considered to play important roles in lineage choice of ESC differentiation by regulating several signalings. We examined whether reduction of sulfation by treatment with the chemical inhibitor chlorate can affect differentiation of ESCs. Chlorate treatment inhibited mesodermal differentiation of mouse ESCs, and then induced ectodermal differentiation and accelerated further neural differentiation. This could be explained by the finding that several signaling pathways involved in the induction of mesodermal differentiation (Wnt, BMP, and FGF) or inhibition of neural differentiation (Wnt and BMP) were inhibited in chlorate-treated embryoid bodies, presumably due to reduced sulfation on heparan sulfate and chondroitin sulfate. Furthermore, neural differentiation of human induced pluripotent stem cells (hiPSCs) was also accelerated by chlorate treatment. We propose that chlorate could be used to induce efficient neural differentiation of hiPSCs instead of specific signaling inhibitors, such as Noggin.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-cho, Hachioji, Tokyo 192-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|