1
|
Bao Y, Tong C, Xiong X. CXCL3: A key player in tumor microenvironment and inflammatory diseases. Life Sci 2024; 348:122691. [PMID: 38714265 DOI: 10.1016/j.lfs.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
CXCL3 (C-X-C Motif Chemokine 3), a member of the C-X-C chemokine subfamily, operates as a potent chemoattractant for neutrophils, thereby orchestrating the recruitment and migration of leukocytes alongside eliciting an inflammatory response. Recent inquiries have shed light on the pivotal roles of CXCL3 in the context of carcinogenesis. In the tumor microenvironment, CXCL3 emanating from both tumor and stromal cells intricately modulates cellular behaviors through autocrine and paracrine actions, primarily via interaction with its receptor CXCR2. Activation of signaling cascades such as ERK/MAPK, AKT, and JAK2/STAT3 underscores CXCL3's propensity to favor tumorigenic processes. However, CXCL3 exhibits dualistic behaviors, as evidenced by its capacity to exert anti-tumor effects under specific conditions. Additionally, the involvement of CXCL3 extends to inflammatory disorders like eclampsia, obesity, and asthma. This review encapsulates the structural attributes, biological functionalities, and molecular underpinnings of CXCL3 across both tumorigenesis and inflammatory diseases.
Collapse
Affiliation(s)
- Yuxuan Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Queen Mary School of Nanchang University, Nanchang 330006, China
| | - Chang Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Xiangyang Xiong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
2
|
Vozenin MC, Alaghband Y, Drayson OGG, Piaget F, Leavitt R, Allen BD, Doan NL, Rostomyan T, Stabilini A, Reggiani D, Hajdas W, Yukihara EG, Norbury JW, Bailat C, Desorgher L, Baulch JE, Limoli CL. More May Not be Better: Enhanced Spacecraft Shielding May Exacerbate Cognitive Decrements by Increasing Pion Exposures during Deep Space Exploration. Radiat Res 2024; 201:93-103. [PMID: 38171489 DOI: 10.1667/rade-23-00241.1.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The pervasiveness of deep space radiation remains a confounding factor for the transit of humans through our solar system. Spacecraft shielding both protects astronauts but also contributes to absorbed dose through galactic cosmic ray interactions that produce secondary particles. The resultant biological effects drop to a minimum for aluminum shielding around 20 g/cm2 but increase with additional shielding. The present work evaluates for the first time, the impact of secondary pions on central nervous system functionality. The fractional pion dose emanating from thicker shielded spacecraft regions could contribute up to 10% of the total absorbed radiation dose. New results from the Paul Scherrer Institute have revealed that low dose exposures to 150 MeV positive and negative pions, akin to a Mars mission, result in significant, long-lasting cognitive impairments. These surprising findings emphasize the need to carefully evaluate shielding configurations to optimize safe exposure limits for astronauts during deep space travel.
Collapse
Affiliation(s)
- Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Yasaman Alaghband
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Filippo Piaget
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Ron Leavitt
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Ngoc-Lien Doan
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | | | | | | | | | | | | | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California 92697-2695
| |
Collapse
|
3
|
Micheli L, D'Andrea G, Creanza TM, Volpe D, Ancona N, Scardigli R, Tirone F. Transcriptome analysis reveals genes associated with stem cell activation by physical exercise in the dentate gyrus of aged p16Ink4a knockout mice. Front Cell Dev Biol 2023; 11:1270892. [PMID: 37928906 PMCID: PMC10621069 DOI: 10.3389/fcell.2023.1270892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Throughout adulthood neural stem cells divide in neurogenic niches-the dentate gyrus of the hippocampus and the subventricular zone-producing progenitor cells and new neurons. Stem cells self-renew, thus preserving their pool. Furthermore, the number of stem/progenitor cells in the neurogenic niches decreases with age. We have previously demonstrated that the cyclin-dependent kinase inhibitor p16Ink4a maintains, in aged mice, the pool of dentate gyrus stem cells by preventing their activation after a neurogenic stimulus such as exercise (running). We showed that, although p16Ink4a ablation by itself does not activate stem/progenitor cells, exercise strongly induced stem cell proliferation in p16Ink4a knockout dentate gyrus, but not in wild-type. As p16Ink4a regulates stem cell self-renewal during aging, we sought to profile the dentate gyrus transcriptome from p16Ink4a wild-type and knockout aged mice, either sedentary or running for 12 days. By pairwise comparisons of differentially expressed genes and by correlative analyses through the DESeq2 software, we identified genes regulated by p16Ink4a deletion, either without stimulus (running) added, or following running. The p16Ink4a knockout basic gene signature, i.e., in sedentary mice, involves upregulation of apoptotic, neuroinflammation- and synaptic activity-associated genes, suggesting a reactive cellular state. Conversely, another set of 106 genes we identified, whose differential expression specifically reflects the pattern of proliferative response of p16 knockout stem cells to running, are involved in processes that regulate stem cell activation, such as synaptic function, neurotransmitter metabolism, stem cell proliferation control, and reactive oxygen species level regulation. Moreover, we analyzed the regulation of these stem cell-specific genes after a second running stimulus. Surprisingly, the second running neither activated stem cell proliferation in the p16Ink4a knockout dentate gyrus nor changed the expression of these genes, confirming that they are correlated to the stem cell reactivity to stimulus, a process where they may play a role regulating stem cell activation.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Teresa Maria Creanza
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Daniel Volpe
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Nicola Ancona
- CNR-Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Bari, Italy
| | - Raffaella Scardigli
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- European Brain Research Institute (EBRI), Rome, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| |
Collapse
|
4
|
Velayutham N, Calderon MU, Alfieri CM, Padula SL, van Leeuwen FN, Scheijen B, Yutzey KE. Btg1 and Btg2 regulate neonatal cardiomyocyte cell cycle arrest. J Mol Cell Cardiol 2023; 179:30-41. [PMID: 37062247 PMCID: PMC10192094 DOI: 10.1016/j.yjmcc.2023.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Rodent cardiomyocytes undergo mitotic arrest in the first postnatal week. Here, we investigate the role of transcriptional co-regulator Btg2 (B-cell translocation gene 2) and functionally-similar homolog Btg1 in postnatal cardiomyocyte cell cycling and maturation. Btg1 and Btg2 (Btg1/2) are expressed in neonatal C57BL/6 mouse left ventricles coincident with cardiomyocyte cell cycle arrest. Btg1/2 constitutive double knockout (DKO) mouse hearts exhibit increased pHH3+ mitotic cardiomyocytes compared to Wildtype at postnatal day (P)7, but not at P30. Similarly, neonatal AAV9-mediated Btg1/2 double knockdown (DKD) mouse hearts exhibit increased EdU+ mitotic cardiomyocytes compared to Scramble AAV9-shRNA controls at P7, but not at P14. In neonatal rat ventricular myocyte (NRVM) cultures, siRNA-mediated Btg1/2 single and double knockdown cohorts showed increased EdU+ cardiomyocytes compared to Scramble siRNA controls, without increase in binucleation or nuclear DNA content. RNAseq analyses of Btg1/2-depleted NRVMs support a role for Btg1/2 in inhibiting cell proliferation, and in modulating reactive oxygen species response pathways, implicated in neonatal cardiomyocyte cell cycle arrest. Together, these data identify Btg1 and Btg2 as novel contributing factors in mammalian cardiomyocyte cell cycle arrest after birth.
Collapse
Affiliation(s)
- Nivedhitha Velayutham
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Maria Uscategui Calderon
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christina M Alfieri
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stephanie L Padula
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | - Katherine E Yutzey
- Molecular and Developmental Biology Graduate Program, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Yin F, Liu Z, Zhang D, Shen Z, Niu Z, Guo L. Identification of key genes involved in neural regeneration and the repairing effect of BDNF-overexpressed BMSCs on spinal cord ischemia-reperfusion injury in rats. Biomed Pharmacother 2023; 160:114293. [PMID: 36736275 DOI: 10.1016/j.biopha.2023.114293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) can repair spinal cord ischemia-reperfusion injury (SCII); however, only a few BMSCs are usually located in the injured spinal cord. Since the brain-derived neurotrophic factor (BDNF) can promote neural development and maturation, we hypothesised that BDNF-overexpressed BMSCs can ameliorate SCII more effectively than BMSCs alone. To determine the effect of BDNF overexpression on SCII repair, BDNF-overexpressed BMSCs and BMSCs were transplanted into SCII rats. Our results revealed that BDNF-overexpressed BMSCs can better promote the recovery of damaged spinal cords than BMSCs alone. Gene chip detection of spinal cord tissues showed 803 differentially expressed genes in all groups. BTG anti-proliferation factor 2 (Btg2), FOS like 2 (Fosl2), early growth response protein 1 (Egr1), and serpin family E member 1 (Serpine1) were identified as key interrelated genes based on their expression trends, as validated via quantitative PCR and protein-protein interaction network analysis. A co-expression network was constructed to further explore the role of the candidate key genes using Pearson correlation analysis. Cluster 5 was identified as the key cluster using community discovery algorithms. Functional analysis of Cluster 5 genes revealed that this cluster was mainly involved in the stress-activated MAPK cascade, p38MAPK cascade, and apoptosis. Notably, Egr1 may play an important role in SCII repair as the top hub gene in Cluster 5. Therefore, the repair activity of transplanted BDNF-overexpressed BMSCs in SCII rats is better than that of BMSCs alone, which may be regulated by the interactions between Btg2, Fosl2, Egr1, Serpine1, and BDNF.
Collapse
Affiliation(s)
- Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Zhiming Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Ding Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Zhubin Shen
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Zefeng Niu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, NO.126 Xiantai Street, Changchun, Jilin 130033, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, NO.1163 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|
6
|
Narendra S, Klengel C, Hamzeh B, Patel D, Otten J, Lardenoije R, Newman EL, Miczek KA, Klengel T, Ressler KJ, Suh J. Genome-wide transcriptomics of the amygdala reveals similar oligodendrocyte-related responses to acute and chronic alcohol drinking in female mice. Transl Psychiatry 2022; 12:476. [PMID: 36371333 PMCID: PMC9653459 DOI: 10.1038/s41398-022-02231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/13/2022] Open
Abstract
Repeated excessive alcohol consumption is a risk factor for alcohol use disorder (AUD). Although AUD has been more common in men than women, women develop more severe behavioral and physical impairments. However, relatively few new therapeutics targeting development of AUD, particularly in women, have been validated. To gain a better understanding of molecular mechanisms underlying alcohol intake, we conducted a genome-wide RNA-sequencing analysis in female mice exposed to different modes (acute vs chronic) of ethanol drinking. We focused on transcriptional profiles in the amygdala including the central and basolateral subnuclei, brain areas previously implicated in alcohol drinking and seeking. Surprisingly, we found that both drinking modes triggered similar changes in gene expression and canonical pathways, including upregulation of ribosome-related/translational pathways and myelination pathways, and downregulation of chromatin binding and histone modification. In addition, analyses of hub genes and upstream regulatory pathways revealed that voluntary ethanol consumption affects epigenetic changes via histone deacetylation pathways, oligodendrocyte and myelin function, and the oligodendrocyte-related transcription factor, Sox17. Furthermore, a viral vector-assisted knockdown of Sox17 gene expression in the amygdala prevented a gradual increase in alcohol consumption during repeated accesses. Overall, these results suggest that the expression of oligodendrocyte-related genes in the amygdala is sensitive to voluntary alcohol drinking in female mice. These findings suggest potential molecular targets for future therapeutic approaches to prevent the development of AUD, due to repeated excessive alcohol consumption, particularly in women.
Collapse
Affiliation(s)
- Sharvari Narendra
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Claudia Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Bilal Hamzeh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Drasti Patel
- Department of Bioinformatics, Northeastern University, Boston, MA, 02115, USA
| | - Joy Otten
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Roy Lardenoije
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Emily L Newman
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Klaus A Miczek
- Psychology and Neuroscience Departments, Tufts University, Medford, MA, 02155, USA
| | - Torsten Klengel
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kerry J Ressler
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Junghyup Suh
- Division of Depression and Anxiety Disorders, McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
7
|
Affiliation(s)
- Sang Hyeon Kim
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In Ryeong Jung
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Seok Hwang
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Chronic Intractable Disease Systems Medicine Research Center, Institute of Genetic Science, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
8
|
Shang M, Hu Y, Cao H, Lin Q, Yi N, Zhang J, Gu Y, Yang Y, He S, Lu M, Peng L, Li L. Concordant and Heterogeneity of Single-Cell Transcriptome in Cardiac Development of Human and Mouse. Front Genet 2022; 13:892766. [PMID: 35832197 PMCID: PMC9271823 DOI: 10.3389/fgene.2022.892766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
Normal heart development is vital for maintaining its function, and the development process is involved in complex interactions between different cell lineages. How mammalian hearts develop differently is still not fully understood. In this study, we identified several major types of cardiac cells, including cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), ECs/FBs, epicardial cells (EPs), and immune cells (macrophage/monocyte cluster, MACs/MONOs), based on single-cell transcriptome data from embryonic hearts of both human and mouse. Then, species-shared and species-specific marker genes were determined in the same cell type between the two species, and the genes with consistent and different expression patterns were also selected by constructing the developmental trajectories. Through a comparison of the development stage similarity of CMs, FBs, and ECs/FBs between humans and mice, it is revealed that CMs at e9.5 and e10.5 of mice are most similar to those of humans at 7 W and 9 W, respectively. Mouse FBs at e10.5, e13.5, and e14.5 are correspondingly more like the same human cells at 6, 7, and 9 W. Moreover, the e9.5-ECs/FBs of mice are most similar to that of humans at 10W. These results provide a resource for understudying cardiac cell types and the crucial markers able to trace developmental trajectories among the species, which is beneficial for finding suitable mouse models to detect human cardiac physiology and related diseases.
Collapse
Affiliation(s)
- Mengyue Shang
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Huaming Cao
- Department of Cardiology, Shanghai Shibei Hospital, Shanghai, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Na Yi
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Junfang Zhang
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yanqiong Gu
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Yujie Yang
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Siyu He
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
| | - Min Lu
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Institute of Medical Genetics, Tongji University, Shanghai, China
- Department of Medical Genetics, Tongji University School of Medicine, Shanghai, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Andhika Rhaditya PA, Oishi K, Nishimura YV, Motoyama J. [Ca 2+] i fluctuation mediated by T-type Ca 2+ channel is required for the differentiation of cortical neural progenitor cells. Dev Biol 2022; 489:84-97. [PMID: 35690104 DOI: 10.1016/j.ydbio.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/17/2022]
Abstract
The fluctuation of intracellular calcium concentration ([Ca2+]i) is known to be involved in various processes in the development of central nervous system, such as the proliferation of neural progenitor cells (NPCs), migration of intermediate progenitor cells (IPCs) from the ventricular zone (VZ) to the subventricular zone (SVZ), and migration of immature neurons from the SVZ to cortical plate. However, the roles of [Ca2+]i fluctuation in NPC development, especially in the differentiation of the self-renewing NPCs into neuron-generating NPCs and immature neurons have not been elucidated. Using calcium imaging of acute cortical slices and cells isolated from mouse embryonic cortex, we examined temporal changes in the pattern of [Ca2+]i fluctuations in VZ cells from E12 to E16. We observed intracellular Ca2+ levels in Pax6-positive self-renewing NPCs decreased with their neural differentiation. In E11, Pax6-positive NPCs and Tuj1-positive immature neurons exhibited characteristic [Ca2+]i fluctuations; few Pax6-positive NPCs exhibited [Ca2+]i transient, but many Tuj1-positive immature neurons did, suggesting that the change in pattern of [Ca2+]i fluctuation correlate to their differentiation. The [Ca2+]i fluctuation during NPCs development was mostly mediated by the T-type calcium channel and blockage of T-type calcium channel in neurosphere cultures increased the number of spheres and inhibited neuronal differentiation. Consistent with this finding, knockdown of Cav3.1 by RNAi in vivo maintained Pax6-positive cells as self-renewing NPCs, and simultaneously suppressing their neuronal differentiation of NPCs into Tbr1-positive immature neurons. These results reveal that [Ca2+]i fluctuation mediated by Cav3.1 is required for the neural differentiation of Pax6-positive self-renewing NPCs.
Collapse
Affiliation(s)
- Putu Adi Andhika Rhaditya
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Koji Oishi
- Organization of Advanced Research and Education, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Yoshiaki V Nishimura
- Organization of Advanced Research and Education, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan; Division of Neuroscience, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, Miyagi, 983-8536, Japan
| | - Jun Motoyama
- Laboratory of Developmental Neurobiology, Graduate School of Brain Science, Doshisha University, 1-3, Tatara-miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
| |
Collapse
|
10
|
Zhang XZ, Chen MJ, Fan PM, Jiang W, Liang SX. BTG2 Serves as a Potential Prognostic Marker and Correlates with Immune Infiltration in Lung Adenocarcinoma. Int J Gen Med 2022; 15:2727-2745. [PMID: 35300128 PMCID: PMC8922043 DOI: 10.2147/ijgm.s340565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background B-cell translocation gene 2 (BTG2) has been revealed to be involved in the occurrence and development of multiple cancers. However, the role of BTG2 in lung adenocarcinoma (LUAD) is still ambiguous. Thus, this study aims to investigate the prognostic value of BTG2 and its correlation with immune infiltration in LUAD. Methods The expression of BTG2 in LUAD was analyzed using the TIMER and UALCAN databases. The correlations between BTG2 expression and clinicopathological factors were investigated using the UALCAN databases. The Kaplan–Meier plotter, GEPIA, and TCGA databases were employed to assess the prognostic value of BTG2. The STRING database and Cytoscape software were used to construct an interaction network and mine co-expression genes. The TISIDB database was examined for a correlation between BTG2 and driver genes in LUAD. Enrichment analysis of co-expressed genes and BTG2 was performed using the LinkedOmics database. Finally, the correlations between BTG2 and immune infiltrates were investigated using the TIMER, GEO, and TISIDB database. Results BTG2 was significantly downregulated in LUAD. The decreased expression of BTG2 in LUAD was significantly correlated with higher cancer stages and shorter duration of overall survival. The expressions of BTG2-related co-expression genes were associated with the prognosis in LUAD. The expression of BTG2 was closely associated with the mutations of TP53 and ROS1. Enrichment analysis revealed that BTG2 was significantly correlated with immune‐associated signaling pathways and function. In addition, the expression of BTG2 was found to be closely related to immune infiltration, multiple gene markers of immune cells, chemokines, and chemokine receptors. Conclusion Our findings have effectively demonstrated that BTG2 expression was downregulated in LUAD, indicating poor prognosis. Closely relating to immune cell infiltration, BTG2 may be a promising immune-related biomarker and molecular target for patients with LUAD.
Collapse
Affiliation(s)
- Xiao Zhen Zhang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Mao Jian Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, People’s Republic of China
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ping Ming Fan
- Department of Breast-Thoracic Tumor Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, 570102, Hainan, People’s Republic of China
| | - Wei Jiang
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Shi Xiong Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Correspondence: Shi Xiong Liang; Wei Jiang, Email ;
| |
Collapse
|
11
|
Urinary Exosomal miRNAs as biomarkers of bladder Cancer and experimental verification of mechanism of miR-93-5p in bladder Cancer. BMC Cancer 2021; 21:1293. [PMID: 34861847 PMCID: PMC8641206 DOI: 10.1186/s12885-021-08926-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background Bladder cancer (BC) is one of the most common malignancies globally. Early diagnosis of it can significantly improve patients’ survival and quality of life. Urinary exosomes (UEs)-derived miRNAs might be a promising biomarker for BC detection. Method A total of 12 patients with BC and 4 non-cancerous participants (as healthy control) were recruited from a single center between March 2018 and December 2019 as the discovery set. Midstream urine samples from each participants were collected and high-throughput sequencing and differentially expression analysis were conducted. Combined with miRNA expression profile of BC tissue from The Cancer Genome Atlas (TCGA), miRNAs biomarkers for BC were determined. Candidate miRNAs as biomarkers were selected followed by verification with a quantitative reverse-transcription polymerase chain reaction assay in an independent validation cohort consisting of 53 BC patients and 51 healthy controls. The receiver-operating characteristic (ROC) curve was established to evaluate the diagnostic performance of UE-derived miRNAs. The possible mechanism of miRNAs were revealed by bioinformatic analysis and explored in vitro experiments. Results We identified that miR-93-5p, miR-516a-5p were simultaneously significantly increased both in UEs from BC compared with healthy control and BC tissue compared with normal tissue, which were verified by RT-qPCR in the validation cohort. Subsequently, the performance to discover BC of the miR-93-5p, miR-516a-5p was further verified with an area under ROC curve (AUC) of 0.838 and 0.790, respectively, which was significantly higher than that of urine cytology (AUC = 0.630). Moreover, miR-93-5p was significantly increased in muscle-invasive BC compared with non-muscle-invasive BC with an AUC of 0.769. Bioinformatic analysis revealed that B-cell translocation gene 2(BTG2) gene may be the hub target gene of miR-93-5p. In vitro experiments verified that miR-93-5p suppressed BTG2 expression and promoted BC cells proliferation, invasion and migration. Conclusion Urine derived exosomes have a distinct miRNA profile in BC patients, and urinary exosomal miRNAs could be used as a promising non-invasive tool to detect BC. In vitro experiments suggested that miR-93-5p overexpression may contribute to BC progression via suppressing BTG2 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08926-x.
Collapse
|
12
|
Shirvani-Farsani Z, Maloum Z, Bagheri-Hosseinabadi Z, Vilor-Tejedor N, Sadeghi I. DNA methylation signature as a biomarker of major neuropsychiatric disorders. J Psychiatr Res 2021; 141:34-49. [PMID: 34171761 DOI: 10.1016/j.jpsychires.2021.06.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023]
Abstract
DNA methylation is a broadly-investigated epigenetic modification that has been considered as a heritable and reversible change. Previous findings have indicated that DNA methylation regulates gene expression in the central nervous system (CNS). Also, disturbance of DNA methylation patterns has been associated with destructive consequences that lead to human brain diseases such as neuropsychiatric disorders (NPDs). In this review, we comprehensively discuss the mechanism and function of DNA methylation and its most recent associations with the pathology of NPDs-including major depressive disorder (MDD), schizophrenia (SZ), autism spectrum disorder (ASD), bipolar disorder (BD), and attention/deficit hyperactivity disorder (ADHD). We also discuss how heterogeneous findings demand further investigations. Finally, based on the recent studies we conclude that DNA methylation status may have implications in clinical diagnostics and therapeutics as a potential epigenetic biomarker of NPDs.
Collapse
Affiliation(s)
- Zeinab Shirvani-Farsani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Maloum
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G.C., Tehran, IR, Iran.
| | - Zahra Bagheri-Hosseinabadi
- Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Natalia Vilor-Tejedor
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain; Erasmus University Medical Center, Department of Clinical Genetics, Rotterdam, the Netherlands; Pompeu Fabra University, Barcelona, Spain.
| | - Iman Sadeghi
- BarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Carrer Wellington 30, 08005, Barcelona, Spain; Center for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
| |
Collapse
|
13
|
Hita FJ, Bekinschtein P, Ledda F, Paratcha G. Leucine-rich repeats and immunoglobulin-like domains 1 deficiency affects hippocampal dendrite complexity and impairs cognitive function. Dev Neurobiol 2021; 81:774-785. [PMID: 34114331 DOI: 10.1002/dneu.22840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Leucine-rich repeat (LRR) transmembrane proteins have been directly linked to neurodevelopmental and cognitive disorders. We have previously shown that the LRR transmembrane protein, leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1), is a physiological regulator of dendrite complexity of hippocampal pyramidal neurons and social behavior. In this study, we performed a battery of behavioral tests to evaluate spatial memory and cognitive capabilities in Lrig1 mutant mice. The cognitive assessment demonstrated deficits in recognition and spatial memory, evaluated by novel object recognition and object location tests. Moreover, we found that Lrig1-deficient mice present specific impairments in the processing of similar but not dissimilar locations in a spatial pattern separation task, which was correlated with an enhanced dendritic growth and branching of Doublecortin-positive immature granule cells of the dentate gyrus. Altogether, these findings indicate that Lrig1 plays an essential role in controlling morphological and functional plasticity in the hippocampus.
Collapse
Affiliation(s)
- Francisco Javier Hita
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Instituto de Neurología Cognitiva (INECO), Universidad Favaloro, Buenos Aires, Argentina
| | - Fernanda Ledda
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Paratcha
- Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis"(IBCN)- CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.,Facultad de Medicina, I° U.A. Histología, Embriología, Biología Celular y Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Suzuki K, Shinohara M, Uno Y, Tashiro Y, Gheni G, Yamamoto M, Fukumori A, Shindo A, Mashimo T, Tomimoto H, Sato N. Deletion of B-cell translocation gene 2 (BTG2) alters the responses of glial cells in white matter to chronic cerebral hypoperfusion. J Neuroinflammation 2021; 18:86. [PMID: 33812385 PMCID: PMC8019185 DOI: 10.1186/s12974-021-02135-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/19/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Subcortical ischemic vascular dementia, one of the major subtypes of vascular dementia, is characterized by lacunar infarcts and white matter lesions caused by chronic cerebral hypoperfusion. In this study, we used a mouse model of bilateral common carotid artery stenosis (BCAS) to investigate the role of B-cell translocation gene 2 (BTG2), an antiproliferation gene, in the white matter glial response to chronic cerebral hypoperfusion. METHODS Btg2-/- mice and littermate wild-type control mice underwent BCAS or sham operation. Behavior phenotypes were assessed by open-field test and Morris water maze test. Brain tissues were analyzed for the degree of white matter lesions and glial changes. To further confirm the effects of Btg2 deletion on proliferation of glial cells in vitro, BrdU incorporation was investigated in mixed glial cells derived from wild-type and Btg2-/- mice. RESULTS Relative to wild-type mice with or without BCAS, BCAS-treated Btg2-/- mice exhibited elevated spontaneous locomotor activity and poorer spatial learning ability. Although the severities of white matter lesions did not significantly differ between wild-type and Btg2-/- mice after BCAS, the immunoreactivities of GFAP, a marker of astrocytes, and Mac2, a marker of activated microglia and macrophages, in the white matter of the optic tract were higher in BCAS-treated Btg2-/- mice than in BCAS-treated wild-type mice. The expression level of Gfap was also significantly elevated in BCAS-treated Btg2-/- mice. In vitro analysis showed that BrdU incorporation in mixed glial cells in response to inflammatory stimulation associated with cerebral hypoperfusion was higher in Btg2-/- mice than in wild-type mice. CONCLUSION BTG2 negatively regulates glial cell proliferation in response to cerebral hypoperfusion, resulting in behavioral changes.
Collapse
Affiliation(s)
- Kaoru Suzuki
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Uno
- Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshitaka Tashiro
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Ghupurjan Gheni
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Miho Yamamoto
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
| | - Akio Fukumori
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akihiko Shindo
- Department of Neurology, Graduate School of Medicine, Mie University, 174, Edobashi 2-chome, Tsu, Mie, 514-8507, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Graduate School of Medicine, Mie University, 174, Edobashi 2-chome, Tsu, Mie, 514-8507, Japan
| | - Naoyuki Sato
- Department of Aging Neurobiology, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, 7-430, Morioka, Obu, Aichi, 474-8511, Japan.
- Department of Aging Neurobiology, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
De Micheli AJ, Laurilliard EJ, Heinke CL, Ravichandran H, Fraczek P, Soueid-Baumgarten S, De Vlaminck I, Elemento O, Cosgrove BD. Single-Cell Analysis of the Muscle Stem Cell Hierarchy Identifies Heterotypic Communication Signals Involved in Skeletal Muscle Regeneration. Cell Rep 2021; 30:3583-3595.e5. [PMID: 32160558 DOI: 10.1016/j.celrep.2020.02.067] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/12/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Muscle regeneration relies on the regulation of muscle stem cells (MuSCs) through paracrine signaling interactions. We analyzed muscle regeneration in mice using single-cell RNA sequencing (scRNA-seq) and generated over 34,000 single-cell transcriptomes spanning four time-points. We identified 15 distinct cell types including heterogenous populations of muscle stem and progenitor cells. We resolved a hierarchical map of these myogenic cells by trajectory inference and observed stage-specific regulatory programs within this continuum. Through ligand-receptor interaction analysis, we identified over 100 candidate regeneration-associated paracrine communication pairs between MuSCs and non-myogenic cells. We show that myogenic stem/progenitor cells exhibit heterogeneous expression of multiple Syndecan proteins in cycling myogenic cells, suggesting that Syndecans may coordinate myogenic fate regulation. We performed ligand stimulation in vitro and confirmed that three paracrine factors (FGF2, TGFβ1, and RSPO3) regulate myogenic cell proliferation in a Syndecan-dependent manner. Our study provides a scRNA-seq reference resource to investigate cell communication interactions in muscle regeneration.
Collapse
Affiliation(s)
- Andrea J De Micheli
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Emily J Laurilliard
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Charles L Heinke
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Hiranmayi Ravichandran
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Paula Fraczek
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA; WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY 10021, USA
| | - Benjamin D Cosgrove
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
16
|
Golriz Khatami S, Domingo-Fernández D, Mubeen S, Hoyt CT, Robinson C, Karki R, Iyappan A, Kodamullil AT, Hofmann-Apitius M. A Systems Biology Approach for Hypothesizing the Effect of Genetic Variants on Neuroimaging Features in Alzheimer's Disease. J Alzheimers Dis 2021; 80:831-840. [PMID: 33554913 PMCID: PMC8075382 DOI: 10.3233/jad-201397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Neuroimaging markers provide quantitative insight into brain structure and function in neurodegenerative diseases, such as Alzheimer's disease, where we lack mechanistic insights to explain pathophysiology. These mechanisms are often mediated by genes and genetic variations and are often studied through the lens of genome-wide association studies. Linking these two disparate layers (i.e., imaging and genetic variation) through causal relationships between biological entities involved in the disease's etiology would pave the way to large-scale mechanistic reasoning and interpretation. OBJECTIVE We explore how genetic variants may lead to functional alterations of intermediate molecular traits, which can further impact neuroimaging hallmarks over a series of biological processes across multiple scales. METHODS We present an approach in which knowledge pertaining to single nucleotide polymorphisms and imaging readouts is extracted from the literature, encoded in Biological Expression Language, and used in a novel workflow to assist in the functional interpretation of SNPs in a clinical context. RESULTS We demonstrate our approach in a case scenario which proposes KANSL1 as a candidate gene that accounts for the clinically reported correlation between the incidence of the genetic variants and hippocampal atrophy. We find that the workflow prioritizes multiple mechanisms reported in the literature through which KANSL1 may have an impact on hippocampal atrophy such as through the dysregulation of cell proliferation, synaptic plasticity, and metabolic processes. CONCLUSION We have presented an approach that enables pinpointing relevant genetic variants as well as investigating their functional role in biological processes spanning across several, diverse biological scales.
Collapse
Affiliation(s)
- Sepehr Golriz Khatami
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
| | - Sarah Mubeen
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
| | - Christine Robinson
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Reagon Karki
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Anandhi Iyappan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Alpha Tom Kodamullil
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (Fraunhofer SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
17
|
Meng Q, Wang L, Dai R, Wang J, Ren Z, Liu S, Xia Y, Jiang Y, Duan F, Wang K, Liu C, Chen C. Integrative analyses prioritize GNL3 as a risk gene for bipolar disorder. Mol Psychiatry 2020; 25:2672-2684. [PMID: 32826963 DOI: 10.1038/s41380-020-00866-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022]
Abstract
Genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms (SNPs) associated with bipolar disorder (BD), but what the causal variants are and how they contribute to BD is largely unknown. In this study, we used FUMA, a GWAS annotation tool, to pinpoint potential causal variants and genes from the latest BD GWAS findings, and performed integrative analyses, including brain expression quantitative trait loci (eQTL), gene coexpression network, differential gene expression, protein-protein interaction, and brain intermediate phenotype association analysis to identify the functions of a prioritized gene and its connection to BD. Convergent lines of evidence prioritized protein-coding gene G Protein Nucleolar 3 (GNL3) as a BD risk gene, with integrative analyses revealing GNL3's roles in cell proliferation, neuronal functions, and brain phenotypes. We experimentally revealed that BD-related eQTL SNPs rs10865973, rs12635140, and rs4687644 regulate GNL3 expression using dual luciferase reporter assay and CRISPR interference experiment in human neural progenitor cells. We further identified that GNL3 knockdown and overexpression led to aberrant neuronal proliferation and differentiation, using two-dimensional human neural cell cultures and three-dimensional forebrain organoid model. This study gathers evidence that BD-related genetic variants regulate GNL3 expression which subsequently affects neuronal proliferation and differentiation.
Collapse
Affiliation(s)
- Qingtuan Meng
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China.
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China.
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 541001, Guilin, Guangxi, China.
| | - Le Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, , Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA
| | - Rujia Dai
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jiawen Wang
- Guangxi Clinical Research Center for Neurological Diseases, Affiliated Hospital of Guilin Medical University, 541001, Guilin, Guangxi, China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 541001, Guilin, Guangxi, China
| | - Zongyao Ren
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
| | - Sihan Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Yi Jiang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, 37212, USA
| | - Fangyuan Duan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
| | - Kangli Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
- School of Psychology, Shaanxi Normal University, 710000, Xi'an, Shaanxi, China.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
18
|
McCullough KM, Chatzinakos C, Hartmann J, Missig G, Neve RL, Fenster RJ, Carlezon WA, Daskalakis NP, Ressler KJ. Genome-wide translational profiling of amygdala Crh-expressing neurons reveals role for CREB in fear extinction learning. Nat Commun 2020; 11:5180. [PMID: 33057013 PMCID: PMC7560654 DOI: 10.1038/s41467-020-18985-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fear and extinction learning are adaptive processes caused by molecular changes in specific neural circuits. Neurons expressing the corticotropin-releasing hormone gene (Crh) in central amygdala (CeA) are implicated in threat regulation, yet little is known of cell type-specific gene pathways mediating adaptive learning. We translationally profiled the transcriptome of CeA Crh-expressing cells (Crh neurons) after fear conditioning or extinction in mice using translating ribosome affinity purification (TRAP) and RNAseq. Differential gene expression and co-expression network analyses identified diverse networks activated or inhibited by fear vs extinction. Upstream regulator analysis demonstrated that extinction associates with reduced CREB expression, and viral vector-induced increased CREB expression in Crh neurons increased fear expression and inhibited extinction. These findings suggest that CREB, within CeA Crh neurons, may function as a molecular switch that regulates expression of fear and its extinction. Cell-type specific translational analyses may suggest targets useful for understanding and treating stress-related psychiatric illness.
Collapse
Affiliation(s)
- Kenneth M McCullough
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Chris Chatzinakos
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Jakob Hartmann
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Galen Missig
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Rachael L Neve
- Gene Transfer Core, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Robert J Fenster
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - William A Carlezon
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA
| | - Nikolaos P Daskalakis
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| | - Kerry J Ressler
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
19
|
Transcriptome Analysis of iPSC-Derived Neurons from Rubinstein-Taybi Patients Reveals Deficits in Neuronal Differentiation. Mol Neurobiol 2020; 57:3685-3701. [PMID: 32562237 PMCID: PMC7399686 DOI: 10.1007/s12035-020-01983-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare multisystem developmental disorder with moderate to severe intellectual disability caused by heterozygous mutations of either CREBBP or EP300 genes encoding CBP/p300 chromatin regulators. We explored the gene programs and processes underlying the morphological and functional alterations shown by iPSC-derived neurons modeling RSTS to bridge the molecular changes resulting from defective CBP/p300 to cognitive impairment. By global transcriptome analysis, we compared the differentially expressed genes (DEGs) marking the transition from iPSC-derived neural progenitors to cortical neurons (iNeurons) of five RSTS patients carrying private CREBBP/EP300 mutations and manifesting differently graded neurocognitive signs with those of four healthy controls. Our data shows a defective and altered neuroprogenitor to neuron transcriptional program in the cells from RSTS patients. First, transcriptional regulation is weaker in RSTS as less genes than in controls are modulated, including genes of key processes of mature functional neurons, such as those for voltage-gated channels and neurotransmitters and their receptors. Second, regulation is subverted as genes acting at pre-terminal stages of neural differentiation in cell polarity and adhesive functions (members of the cadherin family) and axon extension/guidance (members of the semaphorins and SLIT receptors families) are improperly upregulated. Impairment or delay of RSTS neuronal differentiation program is also evidenced by decreased modulation of the overall number of neural differentiation markers, significantly impacting the initial and final stages of the differentiation cascade. Last, extensive downregulation of genes for RNA/DNA metabolic processes confirms that RSTS is a global transcription disorder, consistent with a syndrome driven by chromatin dysregulation. Interestingly, the morphological and functional alterations we have previously appointed as biomarkers of RSTS iNeurons provide functional support to the herein designed transcriptome profile pointing to key dysregulated neuronal genes as main contributors to patients’ cognitive deficit. The impact of RSTS transcriptome may go beyond RSTS as comparison of dysregulated genes across modeled neurodevelopmental disorders could unveil convergent genes of cognitive impairment.
Collapse
|
20
|
Krentz NAJ, Lee MYY, Xu EE, Sproul SLJ, Maslova A, Sasaki S, Lynn FC. Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors. Stem Cell Reports 2019; 11:1551-1564. [PMID: 30540962 PMCID: PMC6294286 DOI: 10.1016/j.stemcr.2018.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 01/06/2023] Open
Abstract
Human embryonic stem cells (hESCs) are a potential unlimited source of insulin-producing β cells for diabetes treatment. A greater understanding of how β cells form during embryonic development will improve current hESC differentiation protocols. All pancreatic endocrine cells, including β cells, are derived from Neurog3-expressing endocrine progenitors. This study characterizes the single-cell transcriptomes of 6,905 mouse embryonic day (E) 15.5 and 6,626 E18.5 pancreatic cells isolated from Neurog3-Cre; Rosa26mT/mG embryos, allowing for enrichment of endocrine progenitors (yellow; tdTomato + EGFP) and endocrine cells (green; EGFP). Using a NEUROG3-2A-eGFP CyT49 hESC reporter line (N5-5), 4,462 hESC-derived GFP+ cells were sequenced. Differential expression analysis revealed enrichment of markers that are consistent with progenitor, endocrine, or previously undescribed cell-state populations. This study characterizes the single-cell transcriptomes of mouse and hESC-derived endocrine progenitors and serves as a resource (https://lynnlab.shinyapps.io/embryonic_pancreas) for improving the formation of functional β-like cells from hESCs. Single-cell transcriptome of embryonic mouse pancreas and hESC-derived cells Identification of novel cell types during mouse pancreas development Pseudotime analysis reveals developmental trajectories of endocrine cell lineage hESC-derived endocrine cells resemble immature β cells
Collapse
Affiliation(s)
- Nicole A J Krentz
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| | - Michelle Y Y Lee
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Eric E Xu
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Shannon L J Sproul
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Alexandra Maslova
- Graduate Program in Bioinformatics, University of British Columbia, 100-570 7(th) Avenue West, Vancouver, BC V5Z 4S6, Canada
| | - Shugo Sasaki
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Departments of Surgery and Cellular and Physiological Sciences, University of British Columbia, 950 28(th) Avenue West, Vancouver, BC V5Z4H4, Canada.
| |
Collapse
|
21
|
What DNA methylation modifications and/or genetic variations interact with childhood maltreatment in the development of depression: A systematic review. J Affect Disord 2019; 252:325-333. [PMID: 30999089 DOI: 10.1016/j.jad.2019.04.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/22/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Child maltreatment predicts a significant risk factor for depression. The relationship between child maltreatment and depression has been shown to vary as a function of genetic factors. There have been very few systematic reviews conducted to date to synthesize what DNA methylations and/ or genetic variations interact with childhood maltreatment in the course of depression. This systematic review aimed to provide an overview of DNA methylation modifications with/without genetic variations associated with childhood maltreatment in depression. METHODS Computerized and manual search on six databases (EMBASE, HealthStar, PsychoInfo, Medline, PubMed and Cochrane Library) and grey literature up to June 30th 2018 were conducted. Studies were critically evaluated for their eligibility and study quality. RESULTS The initial search resulted in 196 articles. Five articles met the eligibility criteria being included in this review. All the selected studies were from the United States and published within the last five years. Changes in ID3, TPPP, GRIN1, and OXTR DNA methylation sites were found to be involved in the childhood maltreatment-depression relationship. LIMITATIONS The number of eligible articles included in this review was small. Selected articles had small sample sizes. A high degree of heterogeneity was found. It is difficult to conclude what the roles of DNA methylation modifications are in the relationship between maltreatment and depression. Population stratification has not been extensively studied so far and should be considered in the further research. CONCLUSIONS This review synthesizes an overview of the interaction between childhood maltreatment, DNA methylation modifications and genetic variations in depression. Findings of this review highlight an urgent need for genetic and epigenetic research in the area of childhood maltreatment and depression. Future etiological explorations should target on the above identified sites.
Collapse
|
22
|
Harris RM, Kao HY, Alarcon JM, Hofmann HA, Fenton AA. Hippocampal transcriptomic responses to enzyme-mediated cellular dissociation. Hippocampus 2019; 29:876-882. [PMID: 31087609 DOI: 10.1002/hipo.23095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 11/08/2022]
Abstract
Single-neuron gene expression studies may be especially important for understanding nervous system structure and function because of the neuron-specific functionality and plasticity that defines functional neural circuits. Cellular dissociation is a prerequisite technical manipulation for single-cell and single cell-population studies, but the extent to which the cellular dissociation process affects neural gene expression has not been determined. This information is necessary for interpreting the results of experimental manipulations that affect neural function such as learning and memory. The goal of this research was to determine the impact of cellular dissociation on brain transcriptomes. We compared gene expression of microdissected samples from the dentate gyrus (DG), CA3, and CA1 subfields of the mouse hippocampus either prepared by a standard tissue homogenization protocol or subjected to enzymatic digestion used to dissociate cells within tissues. We report that compared to homogenization, enzymatic dissociation alters about 350 genes or 2% of the hippocampal transcriptome. While only a few genes canonically implicated in long-term potentiation and fear memory change expression levels in response to the dissociation procedure, these data indicate that sample preparation can affect gene expression profiles, which might confound interpretation of results depending on the research question. This study is important for the investigation of any complex tissues as research effort moves from subfield level analysis to single cell analysis of gene expression.
Collapse
Affiliation(s)
- Rayna M Harris
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Hsin-Yi Kao
- Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, Massachusetts.,Center for Neural Science, New York University, New York, New York
| | - Juan Marcos Alarcon
- Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Pathology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.,The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Hans A Hofmann
- Department of Integrative Biology, Center for Computational Biology and Bioinformatics, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas.,Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - André A Fenton
- Neural Systems and Behavior Course, Marine Biological Laboratory, Woods Hole, Massachusetts.,Center for Neural Science, New York University, New York, New York.,The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, New York.,Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York, USA.,Neuroscience Institute at the New York University Langone Medical Center, New York University, New York, New York
| |
Collapse
|
23
|
Dard RF, Dahan L, Rampon C. Targeting hippocampal adult neurogenesis using transcription factors to reduce Alzheimer's disease-associated memory impairments. Hippocampus 2018; 29:579-586. [DOI: 10.1002/hipo.23052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/10/2018] [Accepted: 10/05/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Robin F. Dard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI); Université de Toulouse, UPS; CNRS; Toulouse France
- Master BioSciences; ENS de Lyon, Université de Lyon; France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI); Université de Toulouse, UPS; CNRS; Toulouse France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI); Université de Toulouse, UPS; CNRS; Toulouse France
| |
Collapse
|
24
|
Yuniati L, Scheijen B, van der Meer LT, van Leeuwen FN. Tumor suppressors BTG1 and BTG2: Beyond growth control. J Cell Physiol 2018; 234:5379-5389. [PMID: 30350856 PMCID: PMC6587536 DOI: 10.1002/jcp.27407] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 08/22/2018] [Indexed: 01/21/2023]
Abstract
Since the identification of B‐cell translocation gene 1 (BTG1) and BTG2 as antiproliferation genes more than two decades ago, their protein products have been implicated in a variety of cellular processes including cell division, DNA repair, transcriptional regulation and messenger RNA stability. In addition to affecting differentiation during development and in the adult, BTG proteins play an important role in maintaining homeostasis under conditions of cellular stress. Genomic profiling of B‐cell leukemia and lymphoma has put BTG1 and BTG2 in the spotlight, since both genes are frequently deleted or mutated in these malignancies, pointing towards a role as tumor suppressors. Moreover, in solid tumors, reduced expression of BTG1 or BTG2 is often correlated with malignant cell behavior and poor treatment outcome. Recent studies have uncovered novel roles for BTG1 and BTG2 in genotoxic and integrated stress responses, as well as during hematopoiesis. This review summarizes what is currently known about the roles of BTG1 and BTG2 in these and other cellular processes. In addition, we will highlight the molecular mechanisms and biological consequences of BTG1 and BTG2 deregulation during cancer progression and elaborate on the potential clinical implications of these findings.
Collapse
Affiliation(s)
- Laurensia Yuniati
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Blanca Scheijen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens T van der Meer
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank N van Leeuwen
- Laboratory of Pediatric Oncology, Radboud Institute for Molecular Life Science, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
25
|
Presutti D, Ceccarelli M, Micheli L, Papoff G, Santini S, Samperna S, Lalli C, Zentilin L, Ruberti G, Tirone F. Tis21-gene therapy inhibits medulloblastoma growth in a murine allograft model. PLoS One 2018. [PMID: 29538458 PMCID: PMC5851620 DOI: 10.1371/journal.pone.0194206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB), the tumor of the cerebellum, is the most frequent brain cancer in childhood and a major cause of pediatric mortality. Based on gene profiling, four MB subgroups have been identified, i.e., Wnt or Sonic Hedgehog (Shh) types, and subgroup 3 or 4. The Shh-type MB has been shown to arise from the cerebellar precursors of granule neurons (GCPs), where a hyperactivation of the Shh pathway leads to their neoplastic transformation. We have previously shown that the gene Tis21 (PC3/Btg2) inhibits the proliferation and promotes the differentiation and migration of GCPs. Moreover, the overexpression or the deletion of Tis21 in Patched1 heterozygous mice, a model of spontaneous Shh-type MB, highly reduces or increases, respectively, the frequency of MB. Here we tested whether Tis21 can inhibit MB allografts. Athymic nude mice were subcutaneously grafted with MB cells explanted from Patched1 heterozygous mice. MB allografts were then injected with adeno-associated viruses either carrying Tis21 (AAV-Tis21) or empty (AAV-CBA). We observed that the treatment with AAV-Tis21 significantly inhibited the growth of tumor nodules, as judged by their volume, and reduced the number of proliferating tumor cells (labeled with Ki67 or BrdU), relative to AAV-CBA-treated control mice. In parallel, AAV-Tis21 increased significantly tumor cells labeled with early and late neural differentiation markers. Overall the results suggest that Tis21-gene therapy slows down MB tumor growth through inhibition of proliferation and enhancement of neural differentiation. These results validate Tis21 as a relevant target for MB therapy.
Collapse
Affiliation(s)
- Dario Presutti
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
| | - Giuliana Papoff
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Simonetta Santini
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Simone Samperna
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Cristiana Lalli
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, Trieste, Italy
| | - Giovina Ruberti
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Monterotondo, Rome, Italy
- * E-mail: (GR); (FT)
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council (IBCN-CNR), Fondazione Santa Lucia, Rome, Italy
- * E-mail: (GR); (FT)
| |
Collapse
|
26
|
De Sanctis C, Bellenchi GC, Viggiano D. A meta-analytic approach to genes that are associated with impaired and elevated spatial memory performance. Psychiatry Res 2018; 261:508-516. [PMID: 29395873 DOI: 10.1016/j.psychres.2018.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Spatial memory deficits are a common hallmark of psychiatric conditions, possibly due to a genetic predisposition. Thus, unravelling the relationship between genes and memory might suggest novel therapeutic targets and pathogenetic pathways. Genetic deletions are known to lead to memory deficits (post-deletion "forgetfulness" genes, PDF), or, in few instances to improve spatial memory (post-deletion "hypermnesic" genes, PDH). To assess this topic, we performed a meta-analytic approach on memory behavior in knock-out mice. We screened 300 studies from PubMed and retrieved 87 genes tested for possible effects on spatial memory. This database was crossed with the Allen Brain Atlas (brain distribution) and the Enrichr (gene function) databases. The results show that PDF genes have higher expression level in several ventral brain structures, particularly the encephalic trunk and in the hypothalamus. Moreover, part of these genes are implicated in synaptic functions. Conversely, the PDH genes are associated to G-protein coupled receptors downstream signalling. Some candidate drugs were also found to interfere with some of the PDH genes, further suggesting that this approach might help in identifying drugs to improve memory performance in psychiatric conditions.
Collapse
Affiliation(s)
- Claudia De Sanctis
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy.
| |
Collapse
|
27
|
Fanibunda SE, Desouza LA, Kapoor R, Vaidya RA, Vaidya VA. Thyroid Hormone Regulation of Adult Neurogenesis. VITAMINS AND HORMONES 2018; 106:211-251. [DOI: 10.1016/bs.vh.2017.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Encinas JM, Fitzsimons CP. Gene regulation in adult neural stem cells. Current challenges and possible applications. Adv Drug Deliv Rev 2017; 120:118-132. [PMID: 28751200 DOI: 10.1016/j.addr.2017.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
Abstract
Adult neural stem and progenitor cells (NSPCs) offer a unique opportunity for neural regeneration and niche modification in physiopathological conditions, harnessing the capability to modify from neuronal circuits to glial scar. Findings exposing the vast plasticity and potential of NSPCs have accumulated over the past years and we currently know that adult NSPCs can naturally give rise not only to neurons but also to astrocytes and reactive astrocytes, and eventually to oligodendrocytes through genetic manipulation. We can consider NSPCs as endogenous flexible tools to fight against neurodegenerative and neurological disorders and aging. In addition, NSPCs can be considered as active agents contributing to chronic brain alterations and as relevant cell populations to be preserved, so that their main function, neurogenesis, is not lost in damage or disease. Altogether we believe that learning to manipulate NSPC is essential to prevent, ameliorate or restore some of the cognitive deficits associated with brain disease and injury, and therefore should be considered as target for future therapeutic strategies. The first step to accomplish this goal is to target them specifically, by unveiling and understanding their unique markers and signaling pathways.
Collapse
Affiliation(s)
- Juan Manuel Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 205, 48170 Zamudio, Spain; Ikerbasque, The Basque Science Foundation, María Díaz de Haro 3, 6(th) Floor, 48013 Bilbao, Spain; University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, SciencePark 904, 1098XH Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Micheli L, Ceccarelli M, Gioia R, D'Andrea G, Farioli-Vecchioli S, Costanzi M, Saraulli D, Cestari V, Tirone F. Terminal Differentiation of Adult Hippocampal Progenitor Cells Is a Step Functionally Dissociable from Proliferation and Is Controlled by Tis21, Id3 and NeuroD2. Front Cell Neurosci 2017; 11:186. [PMID: 28740463 PMCID: PMC5502263 DOI: 10.3389/fncel.2017.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine), the other cognitive (the Morris water maze (MWM) training). Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rate.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Roberta Gioia
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Marco Costanzi
- Department of Human Sciences, Libera Università Maria SS. Assunta (LUMSA)Rome, Italy
| | - Daniele Saraulli
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy.,Department of Human Sciences, Libera Università Maria SS. Assunta (LUMSA)Rome, Italy
| | - Vincenzo Cestari
- Department of Psychology, Sapienza Università di RomaRome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, Consiglio Nazionale delle Ricerche (CNR), Fondazione Santa Lucia (IRCCS)Rome, Italy
| |
Collapse
|
30
|
Micheli L, D'Andrea G, Leonardi L, Tirone F. HDAC1, HDAC4, and HDAC9 Bind to PC3/Tis21/Btg2 and Are Required for Its Inhibition of Cell Cycle Progression and Cyclin D1 Expression. J Cell Physiol 2017; 232:1696-1707. [PMID: 27333946 DOI: 10.1002/jcp.25467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023]
Abstract
PC3/Tis21 is a transcriptional cofactor that inhibits proliferation in several cell types, including neural progenitors. Here, we report that PC3/Tis21 associates with HDAC1, HDAC4, and HDAC9 in vivo, in fibroblast cells. Furthermore, when HDAC1, HDAC4, or HDAC9 are silenced in fibroblasts or in a line of cerebellar progenitor cells, the ability of PC3/Tis21 to inhibit proliferation is significantly reduced. Overexpression of HDAC1, HDAC4, or HDAC9 in fibroblasts and in cerebellar precursor cells synergizes with PC3/Tis21 in inhibiting the expression of cyclin D1, a cyclin selectively inhibited by PC3/Tis21. Conversely, the depletion of HDAC1 or HDAC4 (but not HDAC9) in fibroblasts and in cerebellar precursor cells significantly impairs the ability of PC3/Tis21 to inhibit cyclin D1 expression. An analysis of HDAC4 deletion mutants shows that both the amino-terminal moiety and the catalytic domain of HDAC4 associate to PC3/Tis21, but neither alone is sufficient to potentiate the inhibition of cyclin D1 by PC3/Tis21. As a whole, our findings indicate that PC3/Tis21 inhibits cell proliferation in a way dependent on the presence of HDACs, in fibroblasts as well as in neural cells. Considering that several reports have demonstrated that HDACs can act as transcriptional corepressors on the cyclin D1 promoter, our data suggest that the association of PC3/Tis21 to HDACs is functional to recruit them to target genes, such as cyclin D1, for repression of their expression. J. Cell. Physiol. 232: 1696-1707, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Giorgio D'Andrea
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Luca Leonardi
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
31
|
Simon R, Baumann L, Fischer J, Seigfried FA, De Bruyckere E, Liu P, Jenkins NA, Copeland NG, Schwegler H, Britsch S. Structure-function integrity of the adult hippocampus depends on the transcription factor Bcl11b/Ctip2. GENES BRAIN AND BEHAVIOR 2016; 15:405-19. [PMID: 26915960 PMCID: PMC4832350 DOI: 10.1111/gbb.12287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/31/2022]
Abstract
The dentate gyrus is one of the only two brain regions where adult neurogenesis occurs. Throughout life, cells of the neuronal stem cell niche undergo proliferation, differentiation and integration into the hippocampal neural circuitry. Ongoing adult neurogenesis is a prerequisite for the maintenance of adult hippocampal functionality. Bcl11b, a zinc finger transcription factor, is expressed by postmitotic granule cells in the developing as well as adult dentate gyrus. We previously showed a critical role of Bcl11b for hippocampal development. Whether Bcl11b is also required for adult hippocampal functions has not been investigated. Using a tetracycline‐dependent inducible mouse model under the control of the forebrain‐specific CaMKIIα promoter, we show here that the adult expression of Bcl11b is essential for survival, differentiation and functional integration of adult‐born granule cell neurons. In addition, Bcl11b is required for survival of pre‐existing mature neurons. Consequently, loss of Bcl11b expression selectively in the adult hippocampus results in impaired spatial working memory. Together, our data uncover for the first time a specific role of Bcl11b in adult hippocampal neurogenesis and function.
Collapse
Affiliation(s)
- R Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm
| | - L Baumann
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm.,Institute of Pathology and Neuropathology, University of Tübingen, Tübingen
| | - J Fischer
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm
| | - F A Seigfried
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm.,Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - E De Bruyckere
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm
| | - P Liu
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - N A Jenkins
- Houston Methodist Research Institute, Houston, TX, USA
| | - N G Copeland
- Houston Methodist Research Institute, Houston, TX, USA
| | - H Schwegler
- Institute of Anatomy, Otto-von-Guericke-University, Magdeburg, Germany
| | - S Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Ulm
| |
Collapse
|
32
|
Stupfler B, Birck C, Séraphin B, Mauxion F. BTG2 bridges PABPC1 RNA-binding domains and CAF1 deadenylase to control cell proliferation. Nat Commun 2016; 7:10811. [PMID: 26912148 PMCID: PMC4773420 DOI: 10.1038/ncomms10811] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
While BTG2 plays an important role in cellular differentiation and cancer, its precise molecular function remains unclear. BTG2 interacts with CAF1 deadenylase through its APRO domain, a defining feature of BTG/Tob factors. Our previous experiments revealed that expression of BTG2 promoted mRNA poly(A) tail shortening through an undefined mechanism. Here we report that the APRO domain of BTG2 interacts directly with the first RRM domain of the poly(A)-binding protein PABPC1. Moreover, PABPC1 RRM and BTG2 APRO domains are sufficient to stimulate CAF1 deadenylase activity in vitro in the absence of other CCR4–NOT complex subunits. Our results unravel thus the mechanism by which BTG2 stimulates mRNA deadenylation, demonstrating its direct role in poly(A) tail length control. Importantly, we also show that the interaction of BTG2 with the first RRM domain of PABPC1 is required for BTG2 to control cell proliferation. BTG2 promotes mRNA poly(A) tail shortening and regulates cellular differentiation. Here, Stupfler et al. show that the BTG2 APRO domain interacts with PABPC1 RRM1, allowing the former to recruit and stimulate the poly(A) tail shortening activity of CAF1 deadenylase and to control cell proliferation.
Collapse
Affiliation(s)
- Benjamin Stupfler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Catherine Birck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Bertrand Séraphin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| | - Fabienne Mauxion
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France.,Centre National de la Recherche Scientifique UMR7104, 67404 Illkirch, France.,Institut National de la Santé et de la Recherche Médicale U964, 67404 Illkirch, France.,Université de Strasbourg, 67404 Illkirch, France
| |
Collapse
|
33
|
Xiang FL, Guo M, Yutzey KE. Overexpression of Tbx20 in Adult Cardiomyocytes Promotes Proliferation and Improves Cardiac Function After Myocardial Infarction. Circulation 2016; 133:1081-92. [PMID: 26841808 DOI: 10.1161/circulationaha.115.019357] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 01/28/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND Adult mammalian cardiomyocytes (CMs) have the potential to proliferate, but this is not sufficient to generate adequate CMs after myocardial infarction (MI). The transcription factor Tbx20 is required for CM proliferation during development and adult CM homeostasis. The ability of Tbx20 overexpression (Tbx20(OE)) to promote adult CM proliferation and to improve cardiac function after MI was examined. METHODS AND RESULTS Tbx20(OE) was induced specifically in adult mouse differentiated CMs. Increased CM proliferation and fetal-like characteristics were found in Tbx20(OE) hearts compared with controls without causing pathology 4 weeks after Tbx20(OE) at baseline. Moreover, Tbx20(OE) in adult CM after MI significantly improved survival, cardiac function, and infarct size 4 weeks after MI. Improved cardiac repair, as indicated by increased CM proliferation and capillary density, was observed in the MI border zone of Tbx20(OE) hearts compared with controls. Expression of proliferation activator (cyclin D1, E1, and IGF1) and fetal contractile protein (ssTNI, βMHC) mRNA was increased whereas negative cell-cycle regulators (p21, Meis1) were decreased in Tbx20(OE) hearts compared with controls under both baseline and MI conditions. Tbx20(OE) in adult hearts activates multiple proproliferation pathways, including Akt, YAP and BMP. Interestingly, p21, Meis1, and a novel cell-cycle inhibitory gene, Btg2, are directly bound and repressed by Tbx20 with induction of proliferation in neonatal CM. CONCLUSIONS Tbx20(OE), specifically in adult CM, activates multiple cardiac proliferative pathways, directly represses cell-cycle inhibitory genes p21, Meis1, and Btg2, promotes adult CM proliferation; and preserves cardiac performance after MI.
Collapse
Affiliation(s)
- Fu-Li Xiang
- From Heart Institute, Cincinnati Children's Medical Center, OH (F.-l.X., K.E.Y.); and Department of Electrical Engineering and Computing Systems, University of Cincinnati, OH (M.G.)
| | - Minzhe Guo
- From Heart Institute, Cincinnati Children's Medical Center, OH (F.-l.X., K.E.Y.); and Department of Electrical Engineering and Computing Systems, University of Cincinnati, OH (M.G.)
| | - Katherine E Yutzey
- From Heart Institute, Cincinnati Children's Medical Center, OH (F.-l.X., K.E.Y.); and Department of Electrical Engineering and Computing Systems, University of Cincinnati, OH (M.G.).
| |
Collapse
|
34
|
B cell translocation gene 2 (Btg2) is regulated by Stat3 signaling and inhibits adipocyte differentiation. Mol Cell Biochem 2016; 413:145-53. [DOI: 10.1007/s11010-015-2648-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/23/2015] [Indexed: 11/26/2022]
|
35
|
Ceccarelli M, Micheli L, D'Andrea G, De Bardi M, Scheijen B, Ciotti M, Leonardi L, Luvisetto S, Tirone F. Altered cerebellum development and impaired motor coordination in mice lacking the Btg1 gene: Involvement of cyclin D1. Dev Biol 2015; 408:109-25. [DOI: 10.1016/j.ydbio.2015.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
|
36
|
Farioli-Vecchioli S, Tirone F. Control of the Cell Cycle in Adult Neurogenesis and its Relation with Physical Exercise. Brain Plast 2015; 1:41-54. [PMID: 29765834 PMCID: PMC5928538 DOI: 10.3233/bpl-150013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the adult brain the neurogenesis is mainly restricted to two neurogenic regions: newly generated neurons arise at the subventricular zone (SVZ) of the lateral ventricle and at the subgranular zone of the hippocampal subregion named the dentate gyrus. The hippocampus is involved in learning and memory paradigms and the generation of new hippocampal neurons has been hypothesized to be a pivotal form of plasticity involved in the process. Moreover the dysregulation of hippocampal adult neurogenesis has been recognized and could anticipate several varieties of brain disease such as Alzheimer disease, epilepsy and depression. Over the last few decades numerous intrinsic, epigenetic and environmental factors have been revealed to deeply influence the process of adult neurogenesis, although the underlying mechanisms remain largely unknown. Growing evidence indicates that physical exercise represents one of the main extrinsic factor able to profoundly increase hippocampal adult neurogenesis, by altering neurochemistry and function of newly generated neurons. The present review surveys how neurogenesis can be modulated by cell cycle kinetics and highlights the putative role of the cell cycle length as a key component of the beneficial effect of running for hippocampal adult neurogenesis, both in physiological conditions and in the presence of defective neurogenesis.
Collapse
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Rome, Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology, National Research Council, Fondazione S.Lucia, Rome, Italy
| |
Collapse
|
37
|
Beckervordersandforth R, Zhang CL, Lie DC. Transcription-Factor-Dependent Control of Adult Hippocampal Neurogenesis. Cold Spring Harb Perspect Biol 2015; 7:a018879. [PMID: 26430216 DOI: 10.1101/cshperspect.a018879] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adult-generated dentate granule neurons have emerged as major contributors to hippocampal plasticity. New neurons are generated from neural stem cells through a complex sequence of proliferation, differentiation, and maturation steps. Development of the new neuron is dependent on the precise temporal activity of transcription factors, which coordinate the expression of stage-specific genetic programs. Here, we review current knowledge in transcription factor-mediated regulation of mammalian neural stem cells and neurogenesis and will discuss potential mechanisms of how transcription factor networks, on one hand, allow for precise execution of the developmental sequence and, on the other hand, allow for adaptation of the rate and timing of adult neurogenesis in response to complex stimuli. Understanding transcription factor-mediated control of neuronal development will provide new insights into the mechanisms underlying neurogenesis-dependent plasticity in health and disease.
Collapse
Affiliation(s)
- Ruth Beckervordersandforth
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Chun-Li Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dieter Chichung Lie
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
38
|
Micheli L, Ceccarelli M, Farioli-Vecchioli S, Tirone F. Control of the Normal and Pathological Development of Neural Stem and Progenitor Cells by the PC3/Tis21/Btg2 and Btg1 Genes. J Cell Physiol 2015; 230:2881-90. [DOI: 10.1002/jcp.25038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council; Fondazione S.Lucia Rome Italy
| |
Collapse
|
39
|
Kaufman J, Gelernter J, Hudziak J, Tyrka AR, Coplan JD. The Research Domain Criteria (RDoC) Project and Studies of Risk and Resilience in Maltreated Children. J Am Acad Child Adolesc Psychiatry 2015; 54. [PMID: 26210330 PMCID: PMC4515569 DOI: 10.1016/j.jaac.2015.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The Research Domain Criteria (RDoC) project was initiated to develop, for research purposes, new ways of classifying mental disorders based on dimensions of observable behavior and neurobiological measures. This article reviews the rationale behind the RDoC program, its goals, and central tenets; discusses application of an RDoC framework to research with maltreated children; and highlights some clinical implications of this work. METHOD Published RDoC papers were reviewed, together with relevant preclinical and clinical studies that guide our work on risk and resilience in maltreated children. RESULTS The ultimate long-term goal of the RDoC initiative is precision medicine in psychiatry. In the interim, the RDoC initiative provides a framework to organize research to help develop the database required to derive a new psychiatric nomenclature that can appropriately match treatments to patients. The primary focus of RDoC is on neural circuitry, with levels of analyses that span from molecules to behavior. There has been some concern that the RDoC framework is reductionist, with an overemphasis on neural circuits and genetics; however, the briefly reviewed, burgeoning literature on neuroplasticity and epigenetics highlights that this concern is unwarranted, as one cannot study neural circuits and genetics without considering experience. CONCLUSION The study of maltreated children has a number of advantages for the RDoC project, including the following: study of a subset of patients who are often not responsive to standard interventions; examination of a relatively homogenous sample with onset of psychopathology proposed to be associated with stress-related mechanisms; and well-established, relevant animal models to facilitate translational research.
Collapse
Affiliation(s)
- Joan Kaufman
- Yale University School of Medicine and Veteran's Administration Connecticut Health Care Center, New Haven, CT; Kennedy Krieger Institute and Johns Hopkins School of Medicine, Baltimore.
| | | | - James Hudziak
- Vermont Center for Children, Youth, and Families, University of Vermont, Burlington
| | - Audrey R. Tyrka
- Butler Hospital Mood Disorders Research Program, Laboratory for Clinical and Translational Neuroscience, and the Alpert Medical School of Brown University, Providence, RI
| | - Jeremy D. Coplan
- State University of New York Downstate Medical Center, New York City
| |
Collapse
|
40
|
Parchem RJ, Moore N, Fish JL, Parchem JG, Braga TT, Shenoy A, Oldham MC, Rubenstein JLR, Schneider RA, Blelloch R. miR-302 Is Required for Timing of Neural Differentiation, Neural Tube Closure, and Embryonic Viability. Cell Rep 2015. [PMID: 26212322 PMCID: PMC4741278 DOI: 10.1016/j.celrep.2015.06.074] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The evolutionarily conserved miR-302 family of microRNAs is expressed during early mammalian embryonic development. Here, we report that deletion of miR-302a-d in mice results in a fully penetrant late embryonic lethal phenotype. Knockout embryos have an anterior neural tube closure defect associated with a thickened neuroepithelium. The neuroepithelium shows increased progenitor proliferation, decreased cell death, and precocious neuronal differentiation. mRNA profiling at multiple time points during neurulation uncovers a complex pattern of changing targets over time. Overexpression of one of these targets, Fgf15, in the neuroepithelium of the chick embryo induces precocious neuronal differentiation. Compound mutants between mir-302 and the related mir-290 locus have a synthetic lethal phenotype prior to neurulation. Our results show that mir-302 helps regulate neurulation by suppressing neural progenitor expansion and precocious differentiation. Furthermore, these results uncover redundant roles for mir-290 and mir-302 early in development.
Collapse
Affiliation(s)
- Ronald J Parchem
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nicole Moore
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jennifer L Fish
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jacqueline G Parchem
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tarcio T Braga
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Archana Shenoy
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael C Oldham
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Richard A Schneider
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Urology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
41
|
Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in breast cancer cells. Sci Rep 2015; 5:11999. [PMID: 26179713 PMCID: PMC4503981 DOI: 10.1038/srep11999] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/14/2015] [Indexed: 12/26/2022] Open
Abstract
The analysis of CAGE (Cap Analysis of Gene Expression) time-course has been proposed by the FANTOM5 Consortium to extend the understanding of the sequence of events facilitating cell state transition at the level of promoter regulation. To identify the most prominent transcriptional regulations induced by growth factors in human breast cancer, we apply here the Complexity Invariant Dynamic Time Warping motif EnRichment (CIDER) analysis approach to the CAGE time-course datasets of MCF-7 cells stimulated by epidermal growth factor (EGF) or heregulin (HRG). We identify a multi-level cascade of regulations rooted by the Serum Response Factor (SRF) transcription factor, connecting the MAPK-mediated transduction of the HRG stimulus to the negative regulation of the MAPK pathway by the members of the DUSP family phosphatases. The finding confirms the known primary role of FOS and FOSL1, members of AP-1 family, in shaping gene expression in response to HRG induction. Moreover, we identify a new potential regulation of DUSP5 and RARA (known to antagonize the transcriptional regulation induced by the estrogen receptors) by the activity of the AP-1 complex, specific to HRG response. The results indicate that a divergence in AP-1 regulation determines cellular changes of breast cancer cells stimulated by ErbB receptors.
Collapse
|
42
|
Aceto J, Nourizadeh-Lillabadi R, Marée R, Dardenne N, Jeanray N, Wehenkel L, Aleström P, van Loon JJWA, Muller M. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity. PLoS One 2015; 10:e0126928. [PMID: 26061167 PMCID: PMC4465622 DOI: 10.1371/journal.pone.0126928] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.
Collapse
Affiliation(s)
- Jessica Aceto
- Laboratory for Organogenesis and Regeneration, GIGA- Research, University of Liège, B-4000, Liège, Sart-Tilman, Belgium
| | | | - Raphael Marée
- GIGA & Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Nadia Dardenne
- Unité de soutien méth. en Biostatistique et Epidémiologie, University of Liège, B23, Sart Tilman, Liège, Belgium
| | - Nathalie Jeanray
- Laboratory for Organogenesis and Regeneration, GIGA- Research, University of Liège, B-4000, Liège, Sart-Tilman, Belgium
| | - Louis Wehenkel
- GIGA & Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Peter Aleström
- BasAM, Norwegian University of Life Sciences, Vetbio, 0033 Dep, Oslo, Norway
| | - Jack J. W. A. van Loon
- DESC (Dutch Experiment Support Center), Department of Oral and Maxillofacial Surgery / Oral Pathology, VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- ESA-ESTEC, TEC-MMG, NL-2200 AG, Noordwijk, The Netherlands
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA- Research, University of Liège, B-4000, Liège, Sart-Tilman, Belgium
| |
Collapse
|
43
|
Peixoto LL, Wimmer ME, Poplawski SG, Tudor JC, Kenworthy CA, Liu S, Mizuno K, Garcia BA, Zhang NR, Giese K, Abel T. Memory acquisition and retrieval impact different epigenetic processes that regulate gene expression. BMC Genomics 2015; 16 Suppl 5:S5. [PMID: 26040834 PMCID: PMC4460846 DOI: 10.1186/1471-2164-16-s5-s5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background A fundamental question in neuroscience is how memories are stored and retrieved in the brain. Long-term memory formation requires transcription, translation and epigenetic processes that control gene expression. Thus, characterizing genome-wide the transcriptional changes that occur after memory acquisition and retrieval is of broad interest and importance. Genome-wide technologies are commonly used to interrogate transcriptional changes in discovery-based approaches. Their ability to increase scientific insight beyond traditional candidate gene approaches, however, is usually hindered by batch effects and other sources of unwanted variation, which are particularly hard to control in the study of brain and behavior. Results We examined genome-wide gene expression after contextual conditioning in the mouse hippocampus, a brain region essential for learning and memory, at all the time-points in which inhibiting transcription has been shown to impair memory formation. We show that most of the variance in gene expression is not due to conditioning and that by removing unwanted variance through additional normalization we are able provide novel biological insights. In particular, we show that genes downregulated by memory acquisition and retrieval impact different functions: chromatin assembly and RNA processing, respectively. Levels of histone 2A variant H2AB are reduced only following acquisition, a finding we confirmed using quantitative proteomics. On the other hand, splicing factor Rbfox1 and NMDA receptor-dependent microRNA miR-219 are only downregulated after retrieval, accompanied by an increase in protein levels of miR-219 target CAMKIIγ. Conclusions We provide a thorough characterization of coding and non-coding gene expression during long-term memory formation. We demonstrate that unwanted variance dominates the signal in transcriptional studies of learning and memory and introduce the removal of unwanted variance through normalization as a necessary step for the analysis of genome-wide transcriptional studies in the context of brain and behavior. We show for the first time that histone variants are downregulated after memory acquisition, and splicing factors and microRNAs after memory retrieval. Our results provide mechanistic insights into the molecular basis of cognition by highlighting the differential involvement of epigenetic mechanisms, such as histone variants and post-transcriptional RNA regulation, after acquisition and retrieval of memory.
Collapse
|
44
|
Kapoor R, Fanibunda SE, Desouza LA, Guha SK, Vaidya VA. Perspectives on thyroid hormone action in adult neurogenesis. J Neurochem 2015; 133:599-616. [DOI: 10.1111/jnc.13093] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Richa Kapoor
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Sashaina E. Fanibunda
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Lynette A. Desouza
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Suman K. Guha
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| | - Vidita A. Vaidya
- Department of Biological Sciences; Tata Institute of Fundamental Research; Mumbai India
| |
Collapse
|
45
|
Richetin K, Leclerc C, Toni N, Gallopin T, Pech S, Roybon L, Rampon C. Genetic manipulation of adult-born hippocampal neurons rescues memory in a mouse model of Alzheimer's disease. ACTA ACUST UNITED AC 2014; 138:440-55. [PMID: 25518958 DOI: 10.1093/brain/awu354] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In adult mammals, neural progenitors located in the dentate gyrus retain their ability to generate neurons and glia throughout lifetime. In rodents, increased production of new granule neurons is associated with improved memory capacities, while decreased hippocampal neurogenesis results in impaired memory performance in several memory tasks. In mouse models of Alzheimer's disease, neurogenesis is impaired and the granule neurons that are generated fail to integrate existing networks. Thus, enhancing neurogenesis should improve functional plasticity in the hippocampus and restore cognitive deficits in these mice. Here, we performed a screen of transcription factors that could potentially enhance adult hippocampal neurogenesis. We identified Neurod1 as a robust neuronal determinant with the capability to direct hippocampal progenitors towards an exclusive granule neuron fate. Importantly, Neurod1 also accelerated neuronal maturation and functional integration of new neurons during the period of their maturation when they contribute to memory processes. When tested in an APPxPS1 mouse model of Alzheimer's disease, directed expression of Neurod1 in cycling hippocampal progenitors conspicuously reduced dendritic spine density deficits on new hippocampal neurons, to the same level as that observed in healthy age-matched control animals. Remarkably, this population of highly connected new neurons was sufficient to restore spatial memory in these diseased mice. Collectively our findings demonstrate that endogenous neural stem cells of the diseased brain can be manipulated to become new neurons that could allow cognitive improvement.
Collapse
Affiliation(s)
- Kevin Richetin
- 1 Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France 2 CNRS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse, France
| | - Clémence Leclerc
- 1 Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France 2 CNRS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse, France 3 Laboratoire de Neurobiologie, ESPCI ParisTech, UMR 7637, Paris, France
| | - Nicolas Toni
- 4 Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, CH-1005 Lausanne, Switzerland
| | - Thierry Gallopin
- 3 Laboratoire de Neurobiologie, ESPCI ParisTech, UMR 7637, Paris, France
| | - Stéphane Pech
- 1 Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France 2 CNRS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse, France
| | - Laurent Roybon
- 5 Stem Cell Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Claire Rampon
- 1 Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France 2 CNRS, Centre de Recherches sur la Cognition Animale, F-31062 Toulouse, France
| |
Collapse
|
46
|
MAO BIJING, ZHANG ZHIMIN, WANG GE. BTG2: A rising star of tumor suppressors (Review). Int J Oncol 2014; 46:459-64. [DOI: 10.3892/ijo.2014.2765] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/03/2014] [Indexed: 11/05/2022] Open
|
47
|
Yamada T, Minoda R, Miwa T, Ise M, Takeda H, Yumoto E. Neurogenesis of the spiral ganglion cells in the cochlea requires the transcriptional cofactor TIS21. Neurosci Lett 2014; 584:265-9. [PMID: 25451728 DOI: 10.1016/j.neulet.2014.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 09/29/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022]
Abstract
The molecular mechanisms controlling the proliferation and differentiation of spiral ganglion cells (SGCs) in the inner ear are still largely unknown. TIS21 is a transcriptional cofactor that shows antiproliferative, antiapoptotic, and prodifferentiative effects on neural progenitor cells. To investigate the function of TIS21 during SGC development, we analyzed SGC neurogenesis from embryonic day 13.5 (E13.5) to postnatal day 4 (P4) in Tis21-GFP knock-in mice, in which the protein-encoding exon of the Tis21 gene was replaced by EGFP. Through E13.5 to P4, we found fewer SGCs in homozygous Tis21-GFP knock-in mice than in wild-type mice. Our results suggest that TIS21 is required for development of SGCs. Deleting Tis21 may affect progenitor cells or neuroblasts at the beginning of cochlear-vestibular ganglion formation and would consequently lead to a decrease in the number of SGCs.
Collapse
Affiliation(s)
- Takao Yamada
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan
| | - Ryosei Minoda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan.
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan
| | - Momoko Ise
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan
| | - Hiroki Takeda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan
| | - Eiji Yumoto
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University, Graduate School of Medicine, 1-1-1 Honjo Chuouku, Kumamoto city, Kumamoto 860-8556, Japan
| |
Collapse
|
48
|
Ryu MS, Woo MY, Kwon D, Hong AE, Song KY, Park S, Lim IK. Accumulation of cytolytic CD8+ T cells in B16-melanoma and proliferation of mature T cells in TIS21-knockout mice after T cell receptor stimulation. Exp Cell Res 2014; 327:209-21. [PMID: 25088256 DOI: 10.1016/j.yexcr.2014.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/30/2014] [Accepted: 07/23/2014] [Indexed: 11/27/2022]
Abstract
In vivo and in vitro effects of TIS21 gene on the mature T cell activation and antitumor activities were explored by employing MO5 melanoma orthograft and splenocytes isolated from the TIS21-knockout (KO)(2) mice. Proliferation and survival of mature T cells were significantly increased in the KO than the wild type (WT3)e cells, indicating that TIS21 inhibits the rate of mature T cell proliferation and its survival. In MO5 melanoma orthograft model, the KO mice recruited much more CD8(+) T cells into the tumors at around day 14 after tumor cell injection along with reduced tumor volumes compared with the WT. The increased frequency of granzyme B+ CD8+ T cells in splenocytes of the KO mice compared with the WT may account for antitumor-immunity of TIS21 gene in the melanoma orthograft. In contrast, reduced frequencies of CD107a+ CD8+ T cells in the splenocytes of KO mice may affect the loss of CD8+ T cell infiltration in the orthograft at around day 19. These results indicate that TIS21 exhibits antiproliferative and proapoptotic effects in mature T cells, and differentially affects the frequencies of granzyme B+ CD8+ T-cells and CD107a+ CD8+ T-cells, thus transiently regulating in vivo anti-tumor immunity.
Collapse
Affiliation(s)
- Min Sook Ryu
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380, Republic of Korea
| | - Min-Yeong Woo
- Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380, Republic of Korea; Department of Biomedical Sciences, The Graduate School, Ajou University, Republic of Korea
| | - Daeho Kwon
- Department of Microbiology, Kwandong University College of Medicine, Gangneung, Gangwon-do 210-701, Republic of Korea
| | - Allen E Hong
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380, Republic of Korea
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Dongjak-gu, Seoul 156-756, Republic of Korea
| | - Sun Park
- Department of Microbiology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, 164, World cul-ro, Yeongtong-gu, Suwon, Gyeonggi-do 443-380, Republic of Korea
| |
Collapse
|
49
|
Marinelli S, Eleuteri C, Vacca V, Strimpakos G, Mattei E, Severini C, Pavone F, Luvisetto S. Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury. Neurobiol Aging 2014; 36:352-64. [PMID: 25150573 DOI: 10.1016/j.neurobiolaging.2014.07.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023]
Abstract
We analyzed the role of P/Q-type calcium channels in sciatic nerve regeneration after lesion induced by chronic constriction injury (CCI) in heterozygous null mutant mice lacking the CaV2.1α1 subunit of these channels (Cacna1a+/-). Compared with wild type, Cacna1a+/- mice showed an initial reduction of the CCI-induced allodynia, indicating a reduced pain perception, but they also evidenced a lack of recovery over time, with atrophy of the injured hindpaw still present 3 months after CCI when wild-type mice fully recovered. In parallel, Cacna1a+/- mice exhibited an early onset of age-dependent loss of P/Q-type channels, which can be responsible for the lack of functional recovery. Moreover, Cacna1a+/- mice showed an early age-dependent reduction of muscular strength, as well as of Schwann cells proliferation and sciatic nerve remyelination. This study demonstrates the important role played by P/Q-type channels in recovery from nerve injury and has important implications for the knowledge of age-related processes.
Collapse
Affiliation(s)
- Sara Marinelli
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cecilia Eleuteri
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valentina Vacca
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Georgios Strimpakos
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Elisabetta Mattei
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cinzia Severini
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Flaminia Pavone
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Siro Luvisetto
- CNR National Research Council of Italy, Cell Biology and Neurobiology Institute, IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
50
|
Farioli-Vecchioli S, Mattera A, Micheli L, Ceccarelli M, Leonardi L, Saraulli D, Costanzi M, Cestari V, Rouault JP, Tirone F. Running Rescues Defective Adult Neurogenesis by Shortening the Length of the Cell Cycle of Neural Stem and Progenitor Cells. Stem Cells 2014; 32:1968-82. [DOI: 10.1002/stem.1679] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/18/2014] [Accepted: 01/22/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Stefano Farioli-Vecchioli
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Andrea Mattera
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Laura Micheli
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Manuela Ceccarelli
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Luca Leonardi
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Daniele Saraulli
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| | - Marco Costanzi
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
- Department of Human Sciences; LUMSA University; Rome Italy
| | - Vincenzo Cestari
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
- Department of Psychology and “Daniel Bovet” Center; Sapienza University of Rome; Rome Italy
| | - Jean-Pierre Rouault
- Institut de Génomique Fonctionnelle de Lyon; Ecole Normal Supérieure de Lyon; CNRS UMR 5242, INRA UMR 1288 Lyon France
| | - Felice Tirone
- Institute of Cell Biology and Neurobiology; National Research Council, Fondazione Santa Lucia; Rome Italy
| |
Collapse
|