1
|
Cadena del Castillo CE, Deniz O, van Geest F, Rosseels L, Stockmans I, Robciuc M, Carpentier S, Wölnerhanssen BK, Meyer-Gerspach AC, Peterli R, Hietakangas V, Shimobayashi M. MLX phosphorylation stabilizes the ChREBP-MLX heterotetramer on tandem E-boxes to control carbohydrate and lipid metabolism. SCIENCE ADVANCES 2025; 11:eadt4548. [PMID: 40073115 PMCID: PMC11900861 DOI: 10.1126/sciadv.adt4548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Carbohydrate-responsive element binding protein (ChREBP) and Max-like protein X (MLX) form a heterodimeric transcription factor complex that couples intracellular sugar levels to carbohydrate and lipid metabolism. To promote the expression of target genes, two ChREBP-MLX heterodimers form a heterotetramer to bind a tandem element with two adjacent E-boxes, called carbohydrate-responsive element (ChoRE). How the ChREBP-MLX hetero-tetramerization is achieved and regulated remains poorly understood. Here, we show that MLX phosphorylation on an evolutionarily conserved motif is necessary for the heterotetramer formation on the ChoRE and the transcriptional activity of the ChREBP-MLX complex. We identified casein kinase 2 (CK2) and glycogen synthase kinase 3 (GSK3) as MLX kinases. High intracellular glucose-6-phosphate accumulation inhibits MLX phosphorylation and heterotetramer formation on the ChoRE, impairing ChREBP-MLX activity. Physiologically, MLX phosphorylation is necessary in Drosophila to maintain sugar tolerance and lipid homeostasis. Our findings suggest that MLX phosphorylation is a key mechanism for the ChREBP-MLX heterotetramer formation to regulate carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- Carla E. Cadena del Castillo
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Onur Deniz
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Femke van Geest
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Lore Rosseels
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ingrid Stockmans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marius Robciuc
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sebastien Carpentier
- Facility for Systems Biology Based Mass Spectrometry, KU Leuven, Leuven, Belgium
| | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd, St. Claraspital, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Ralph Peterli
- Clarunis, University Digestive Health Care Center, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mitsugu Shimobayashi
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Starr CR, Zhylkibayev A, Gorbatyuk O, Nuotio-Antar AM, Mobley J, Grant MB, Gorbatyuk M. Glucose-Sensing Carbohydrate Response Element-Binding Protein in the Pathogenesis of Diabetic Retinopathy. Cells 2025; 14:107. [PMID: 39851533 PMCID: PMC11763462 DOI: 10.3390/cells14020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry. qRT-PCR was performed to quantify gene expression. To explore the role of ChREBP in rods, we generated caChREBPRP mice with constitutively active (ca) ChREBP. These mice underwent retinal functional testing, which was followed by proteomic analysis using LC-MS. Furthermore, ARPE-19 cells were infected with lentiviral particles expressing human ChREBP (ARPE-19ChREBP) and subjected to global proteomics. Our results demonstrate that both proteins were expressed across the retina, although with distinct distribution patterns: MondoA was more prominently expressed in cones, while ChREBP was broadly expressed throughout the retina. Elevated expression of both proteins was observed in DR. This may have contributed to rod photoreceptor degeneration, as we observed diminished scotopic ERG amplitudes in caChREBPRP mice at P35. The retinal proteomic landscape revealed a decline in the KEGG pathways associated with phototransduction, amino acid metabolism, and cell adhesion. Furthermore, rod-specific caChREBP induced TXNIP expression. Consistent with altered retinal proteomics, ARPE-19ChREBP cells exhibit a metabolic shift toward increased glyoxylate signaling, sugar metabolism, and lysosomal activation. Our study demonstrates that ChREBP overexpression causes significant metabolic reprogramming triggering retinal functional loss in mice.
Collapse
Affiliation(s)
- Christopher R. Starr
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (C.R.S.); (M.B.G.)
| | - Assylbek Zhylkibayev
- Department of Biochemistry, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA;
| | - Oleg Gorbatyuk
- Department of Translational Neuroscience, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA;
| | | | - James Mobley
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Maria B. Grant
- Department of Ophthalmology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (C.R.S.); (M.B.G.)
| | - Marina Gorbatyuk
- Department of Biochemistry, School of Medicine, Wake Forest University, Winston Salem, NC 27101, USA;
| |
Collapse
|
3
|
Starr CR, Zhylkibayev A, Gorbatyuk O, Nuotio-Antar AM, Mobley J, Grant MB, Gorbatyuk M. Glucose-Sensing ChREBP Protein in the Pathogenesis of Dia-betic Retinopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626828. [PMID: 39677707 PMCID: PMC11643094 DOI: 10.1101/2024.12.04.626828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Glucose-sensing ChREBP and MondoA are transcriptional factors involved in lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry. qRT-PCR was performed to quantify gene expression. To explore the role of ChREBP in rods, we generated caChREBPRP mice with constitutively active (ca) ChREBP. These mice underwent retinal function testing, followed by proteomic analysis using LC-MS. Furthermore, ARPE-19 cells were infected with lentiviral particles expressing human ChREBP (ARPE-19ChREBP) and subjected to global proteomics. Our results demonstrate that both proteins were expressed across the retina, although with distinct distribution patterns: MondoA was more prominently expressed in cones, while ChREBP was broadly expressed throughout the retina. Elevated expression of both proteins was observed in DR. This may have contributed to rod photoreceptor degeneration as we observed diminished scotopic ERG amplitudes detected in caChREB-PRP mice at P35. The retinal proteomic landscape indicated a decline in KEGG pathways associated with phototransduction, amino acid metabolism, and cell adhesion. Furthermore, rod-specific ca-ChREBP induced TXNIP expression. Consistent with altered retinal proteomics, ARPE-19ChREBP cells displayed a metabolic shift toward increased glyoxylate signaling, sugar metabolism, and lysosomal activation. Our study demonstrates that ChREBP overexpression causes significant metabolic reprograming triggering retinal functional loss in mice.
Collapse
Affiliation(s)
- Christopher R. Starr
- University of Alabama at Birmingham, School of Medicine, Department of Ophthalmology
| | | | - Oleg Gorbatyuk
- Wake Forest University, School of Medicine, Department of Translational Neuroscience
| | | | - James Mobley
- University of Alabama at Birmingham, School of Medicine, Department of Anesthesiology and Perioperative Medicine
| | - Maria B. Grant
- University of Alabama at Birmingham, School of Medicine, Department of Ophthalmology
| | - Marina Gorbatyuk
- Wake Forest University, School of Medicine, Department of Biochemistry
| |
Collapse
|
4
|
Katz LS, Visser EJ, Plitzko KF, Pennings MAM, Cossar PJ, Tse IL, Kaiser M, Brunsveld L, Ottmann C, Scott DK. Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580675. [PMID: 38405965 PMCID: PMC10888794 DOI: 10.1101/2024.02.16.580675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) with two major splice isoforms (α and β). In chronic hyperglycemia and glucolipotoxicity, ChREBPα-mediated ChREBPβ expression surges, leading to insulin-secreting β-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in cytoplasmic retention and suppression of transcriptional activity. Thus, small molecule-mediated stabilization of this protein-protein interaction (PPI) may be of therapeutic value. Here, we show that structure-based optimizations of a 'molecular glue' compound led to potent ChREBPα/14-3-3 PPI stabilizers with cellular activity. In primary human β-cells, the most active compound retained ChREBPα in the cytoplasm, and efficiently protected β-cells from glucolipotoxicity while maintaining β-cell identity. This study may thus not only provide the basis for the development of a unique class of compounds for the treatment of Type 2 Diabetes but also showcases an alternative 'molecular glue' approach for achieving small molecule control of notoriously difficult to target TFs.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Kathrin F Plitzko
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Isabelle L Tse
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| |
Collapse
|
5
|
Cadena del Castillo CE, Deniz O, van Geest F, Rosseels L, Stockmans I, Robciuc M, Carpentier S, Wölnerhanssen BK, Meyer-Gerspach AC, Peterli R, Hietakangas V, Shimobayashi M. MLX phosphorylation stabilizes the ChREBP-MLX heterotetramer on tandem E-boxes to control carbohydrate and lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611172. [PMID: 39282306 PMCID: PMC11398402 DOI: 10.1101/2024.09.04.611172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The heterodimeric ChREBP-MLX transcription factor complex is a key mediator that couples intracellular sugar levels to carbohydrate and lipid metabolism. To promote the expression of target genes, two ChREBP-MLX heterodimers form a heterotetramer to bind a tandem element with two adjacent E-boxes, called Carbohydrate Responsive Element (ChoRE). How the ChREBP-MLX hetero-tetramerization is achieved and regulated, remains poorly understood. Here we show that MLX phosphorylation on an evolutionarily conserved motif is necessary for the heterotetramer formation on the ChoRE and the transcriptional activity of the ChREBP-MLX complex. We identified CK2 and GSK3 as MLX kinases that coordinately phosphorylate MLX. High intracellular glucose-6-phosphate accumulation inhibits MLX phosphorylation and heterotetramer formation on the ChoRE, impairing ChREBP-MLX activity. Physiologically, MLX phosphorylation is necessary in Drosophila to maintain sugar tolerance and lipid homeostasis. Our findings suggest that MLX phosphorylation is a key mechanism for the ChREBP-MLX heterotetramer formation to regulate carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
- Carla E Cadena del Castillo
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Onur Deniz
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Femke van Geest
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Lore Rosseels
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Ingrid Stockmans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Marius Robciuc
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sebastien Carpentier
- Facility for Systems Biology Based Mass Spectrometry, KU Leuven, Leuven, Belgium
| | - Bettina K. Wölnerhanssen
- St. Clara Research Ltd, St. Claraspital, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Ralph Peterli
- Clarunis, University Digestive Health Care Center, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Ville Hietakangas
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Mitsugu Shimobayashi
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Delpero M, Korkuć P, Arends D, Brockmann GA, Hesse D. Identification of additional body weight QTLs in the Berlin Fat Mouse BFMI861 lines using time series data. Sci Rep 2024; 14:6159. [PMID: 38486030 PMCID: PMC10940635 DOI: 10.1038/s41598-024-56097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
The Berlin Fat Mouse Inbred line (BFMI) is a model for obesity and metabolic syndrome. The sublines BFMI861-S1 and BFMI861-S2 differ in weight despite high genetic similarity and a shared obesity-related locus. This study focused on identifying additional body weight quantitative trait loci (QTLs) by analyzing weekly weight measurements in a male population of the advanced intercross line BFMI861-S1 x BFMI861-S2. QTL analysis, utilizing 200 selectively genotyped mice (GigaMUGA) and 197 males genotyped for top SNPs, revealed a genome-wide significant QTL on Chr 15 (68.46 to 81.40 Mb) for body weight between weeks 9 to 20. Notably, this QTL disappeared (weeks 21 to 23) and reappeared (weeks 24 and 25) coinciding with a diet change. Additionally, a significant body weight QTL on Chr 16 (3.89 to 22.79 Mb) was identified from weeks 6 to 25. Candidate genes, including Gpt, Cbx6, Apol6, Apol8, Sun2 (Chr 15) and Trap1, Rrn3, Mapk1 (Chr 16), were prioritized. This study unveiled two additional body weight QTLs, one of which is novel and responsive to diet changes. These findings illuminate genomic regions influencing weight in BFMI and emphasize the utility of time series data in uncovering novel genetic factors.
Collapse
Affiliation(s)
- Manuel Delpero
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Gudrun A Brockmann
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Deike Hesse
- Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
7
|
You S, Bollong MJ. A high throughput screen for pharmacological inhibitors of the carbohydrate response element. Sci Data 2023; 10:676. [PMID: 37794069 PMCID: PMC10550954 DOI: 10.1038/s41597-023-02596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
A central regulator of metabolism, transcription factor carbohydrate response element binding protein (ChREBP) senses and responds to dietary glucose levels by stimulating the transcription of glycolytic and lipogenic enzymes. Genetic depletion of ChREBP rescues β-cell dysfunction arising from high glucose levels, suggesting that inhibiting ChREBP might represent an attractive therapeutic approach to manage diabetes and other metabolic diseases. However, the molecular mechanisms governing ChREBP activation are poorly understood and chemical tools to probe the cellular activity of ChREBP are lacking. Here, we report a high-throughput pharmacological screen in INS-1E β-cells that identified novel inhibitors of ChREBP-driven transcription at carbohydrate response element sites, including three putative covalent inhibitors and two likely non-covalent chemical scaffolds. This work affords a pharmacological toolkit to help uncover the signaling logic controlling ChREBP activation and may ultimately reveal potential therapeutic approaches for treating metabolic disease.
Collapse
Affiliation(s)
- Shaochen You
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037, USA
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, 92037, USA.
| |
Collapse
|
8
|
Prochownik EV. Regulation of Normal and Neoplastic Proliferation and Metabolism by the Extended Myc Network. Cells 2022; 11:3974. [PMID: 36552737 PMCID: PMC9777120 DOI: 10.3390/cells11243974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The Myc Network, comprising a small assemblage of bHLH-ZIP transcription factors, regulates many hundreds to thousands of genes involved in proliferation, energy metabolism, translation and other activities. A structurally and functionally related set of factors known as the Mlx Network also supervises some of these same functions via the regulation of a more limited but overlapping transcriptional repertoire. Target gene co-regulation by these two Networks is the result of their sharing of three members that suppress target gene expression as well as by the ability of both Network's members to cross-bind one another's consensus DNA sites. The two Networks also differ in that the Mlx Network's control over transcription is positively regulated by several glycolytic pathway intermediates and other metabolites. These distinctive properties, functions and tissue expression patterns potentially allow for sensitive control of gene regulation in ways that are differentially responsive to environmental and metabolic cues while allowing for them to be both rapid and of limited duration. This review explores how such control might occur. It further discusses how the actual functional dependencies of the Myc and Mlx Networks rely upon cellular context and how they may differ between normal and neoplastic cells. Finally, consideration is given to how future studies may permit a more refined understanding of the functional interrelationships between the two Networks.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- The UPMC Hillman Comprehensive Cancer Center, Pittsburgh, PA 15232, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| |
Collapse
|
9
|
Basnet R, Bahadur T, Basnet BB, Khadka S. Overview on thioredoxin-interacting protein (TXNIP): a potential target for diabetes intervention. Curr Drug Targets 2022; 23:761-767. [PMID: 35240955 DOI: 10.2174/1389450123666220303092324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/25/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is a common metabolic disorder characterized by a persistent increment of blood glucose. Type 2 DM is characterized by insulin resistance and β-cell dysfunction. Thioredoxin-interacting protein (TXNIP) is among the factors that control the production and loss of pancreatic β-cells. OBJECTIVE Recent studies have shown that high glucose can significantly up-regulate the expression of the TXNIP. Overexpression of TXNIP in β-cells not only induced apoptosis but also decreased the production of insulin. At the same time, TXNIP deficiency protected the apoptosis of β-cells, leading to increased insulin production. Therefore, finding small molecules that can modulate TXNIP expression and downstream signalling pathways is essential. Thus, the inhibition of TXNIP has beneficial effects on the cardiovascular system and other tissues such as the heart and the kidney in DM. Therefore, DM treatment must target small TXNIP activity, inhibit expression, and promote endogenous cell mass and insulin production. CONCLUSION This review briefly describes the effect mechanism, regulatory mechanism, and crystal structure of TXNIP. In addition, we highlight how TXNIP signalling networks contribute to diabetes and interact with drugs that inhibit the development often and its complexes. Finally, the current status and prospects of TXNIP targeted therapy are also discussed.
Collapse
Affiliation(s)
- Rajesh Basnet
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Til Bahadur
- Fujian Medical University, Fuzhou, Fujian, China
| | - Buddha Bahadur Basnet
- Faculty of Science, Nepal Academy of Science and Technology, Government of Nepal, Lalitpur, Nepal
| | - Sandhya Khadka
- Department of Pharmacy, Hope International College, Purbanchal University, Lalitpur, Nepal
| |
Collapse
|
10
|
Zhong L, Liu Q, Liu Q, Zhang S, Cao Y, Yang D, Wang MW. W2476 represses TXNIP transcription via dephosphorylation of FOXO1 at Ser319. Chem Biol Drug Des 2021; 97:1089-1099. [PMID: 33560565 DOI: 10.1111/cbdd.13828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/20/2022]
Abstract
Thioredoxin-interacting protein (TXNIP) overexpression is implicated in the pathogenesis of type 2 diabetes. Previous studies have shown that a small molecule compound (W2476) was able to improve β-cell dysfunction and exert therapeutic effects in diabetic mice via repression of TXNIP signaling pathway. The impact of W2476 on TXNIP transcription was thus investigated using the chromatin immunoprecipitation method. It was found that W2476 promotes competitive binding of forkhead box O1 transcription factor (FOXO1) to the carbohydrate response element (ChoRE) sequence associated with ChoRE-binding protein (ChREBP)/Mlx interacting protein-like(Mlx) complexes. This interaction hinders the attachment of histone acetyltransferase p300 and reduces histone H4 acetylation on the TXNIP promoter, leading to decreasing TXNIP transcription.
Collapse
Affiliation(s)
- Li Zhong
- The National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- The National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Qiaofeng Liu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Shikai Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongbing Cao
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dehua Yang
- The National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ming-Wei Wang
- The National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Zhang J, Tian X, Yin H, Xiao S, Yi S, Zhang Y, Zeng F. TXNIP induced by MondoA, rather than ChREBP, suppresses cervical cancer cell proliferation, migration and invasion. J Biochem 2020; 167:371-377. [PMID: 31782782 DOI: 10.1093/jb/mvz105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/10/2019] [Indexed: 01/18/2023] Open
Abstract
Evidence has indicated the associations between thioredoxin-interacting protein (TXNIP) and cancers. However, the role of TXNIP in cervical cancer remains unclear. Hence, this study aims to investigate the role of TXNIP in regulating cervical cancer cell proliferation, migration and invasion. TXNIP expression can be regulated by either MondoA or ChREBP in a cell- or tissue- dependent manner. Thus, we also explored whether TXNIP expression in cervical cancer can be regulated by MondoA or ChREBP. Our results showed that TXNIP expression was decreased in cervical cancer cells (HeLa, SiHa, CaSki, MS751, C-33A). Furthermore, TXNIP overexpression inhibited cell proliferation, migration and invasion in HeLa cells, whereas TXNIP silencing exerted the opposite effect in C-33A cells. Moreover, TXNIP expression could be induced by MondoA, rather than ChREBP in HeLa cells. Additionally, MondoA overexpression inhibited cell proliferation, migration and invasion through upregulating TXNIP in HeLa cells. In summary, TXNIP induced by MondoA, rather than ChREBP, suppresses cervical cancer cell proliferation, migration and invasion. Our findings provide new ideas for the prevention and treatment of cervical cancer.
Collapse
Affiliation(s)
- Junhua Zhang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Xingbo Tian
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Huifang Yin
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Shuijing Yi
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| | - Youzhong Zhang
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, No. 107 West Wenhua Road, Jinan 250012, Shandong Province, China
| | - Fei Zeng
- Department of Gynecology and Obstetrics, The Third Xiangya Hospital of Central South University, No. 138 Tongzipo Road, Changsha 410013, Hunan Province, China
| |
Collapse
|
12
|
Thioredoxin-Interacting Protein (TXNIP) with Focus on Brain and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21249357. [PMID: 33302545 PMCID: PMC7764580 DOI: 10.3390/ijms21249357] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The development of new therapeutic approaches to diseases relies on the identification of key molecular targets involved in amplifying disease processes. One such molecule is thioredoxin-interacting protein (TXNIP), also designated thioredoxin-binding protein-2 (TBP-2), a member of the α-arrestin family of proteins and a central regulator of glucose and lipid metabolism, involved in diabetes-associated vascular endothelial dysfunction and inflammation. TXNIP sequesters reduced thioredoxin (TRX), inhibiting its function, resulting in increased oxidative stress. Many different cellular stress factors regulate TXNIP expression, including high glucose, endoplasmic reticulum stress, free radicals, hypoxia, nitric oxide, insulin, and adenosine-containing molecules. TXNIP is also directly involved in inflammatory activation through its interaction with the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome complex. Neurodegenerative diseases such as Alzheimer’s disease have significant pathologies associated with increased oxidative stress, inflammation, and vascular dysfunctions. In addition, as dysfunctions in glucose and cellular metabolism have been associated with such brain diseases, a role for TXNIP in neurodegeneration has actively been investigated. In this review, we will focus on the current state of the understanding of possible normal and pathological functions of TXNIP in the central nervous system from studies of in vitro neural cells and the brains of humans and experimental animals with reference to other studies. As TXNIP can be expressed by neurons, microglia, astrocytes, and endothelial cells, a complex pattern of regulation and function in the brain is suggested. We will examine data suggesting TXNIP as a therapeutic target for neurodegenerative diseases where further research is needed.
Collapse
|
13
|
Weger M, Weger BD, Schink A, Takamiya M, Stegmaier J, Gobet C, Parisi A, Kobitski AY, Mertes J, Krone N, Strähle U, Nienhaus GU, Mikut R, Gachon F, Gut P, Dickmeis T. MondoA regulates gene expression in cholesterol biosynthesis-associated pathways required for zebrafish epiboly. eLife 2020; 9:e57068. [PMID: 32969791 PMCID: PMC7515633 DOI: 10.7554/elife.57068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
The glucose-sensing Mondo pathway regulates expression of metabolic genes in mammals. Here, we characterized its function in the zebrafish and revealed an unexpected role of this pathway in vertebrate embryonic development. We showed that knockdown of mondoa impaired the early morphogenetic movement of epiboly in zebrafish embryos and caused microtubule defects. Expression of genes in the terpenoid backbone and sterol biosynthesis pathways upstream of pregnenolone synthesis was coordinately downregulated in these embryos, including the most downregulated gene nsdhl. Loss of Nsdhl function likewise impaired epiboly, similar to MondoA loss of function. Both epiboly and microtubule defects were partially restored by pregnenolone treatment. Maternal-zygotic mutants of mondoa showed perturbed epiboly with low penetrance and compensatory changes in the expression of terpenoid/sterol/steroid metabolism genes. Collectively, our results show a novel role for MondoA in the regulation of early vertebrate development, connecting glucose, cholesterol and steroid hormone metabolism with early embryonic cell movements.
Collapse
Affiliation(s)
- Meltem Weger
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Benjamin D Weger
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Andrea Schink
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Masanari Takamiya
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Cédric Gobet
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Alice Parisi
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Andrei Yu Kobitski
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Jonas Mertes
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Nils Krone
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Uwe Strähle
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Gerd Ulrich Nienhaus
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
- Institute of Applied Physics, Karlsruhe Institute of TechnologyKarlsruheGermany
- Department of Physics, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Institute of Nanotechnology, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Philipp Gut
- Nestlé Institute of Health Sciences SA, EPFL Innovation ParkLausanneSwitzerland
| | - Thomas Dickmeis
- Institute of Biological and Chemical Systems – Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| |
Collapse
|
14
|
Feng L, Chen L, Yun J, Cao X. Expression of recombinant classical swine fever virus E2 glycoprotein by endogenous Txnip promoter in stable transgenic CHO cells. Eng Life Sci 2020; 20:320-330. [PMID: 32774204 PMCID: PMC7401223 DOI: 10.1002/elsc.201900147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/12/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022] Open
Abstract
As the main immunogen that could stimulate neutralized antibody in pigs, recombinant E2 protein of CSFV was expressed in CHO-dhfr-cells driven by endogenous Txnip promoter from Chinese hamster. Different fragments of Txnip promoter were amplified by PCR from isolated genomic DNA of CHO cells and cloned into different expression vectors. Compared with CMV promoter, CHO-pTxnip-4-rE2 (F12) cell clone with the highest yield of rE2 protein was established by random insertion of the expression cassette driven by 860 bp sequences of Txnip promoter. In combination with treatment of 800 nM MTX for copy amplification of inserted expression cassette, the dynamic expression profile of rE2 protein was observed. Then inducible expression strategy of balance between viable cell density and product yield was conducted by mixed addition of 0.1 mM NADH and 0.1 mM ATP in culture medium at day 3 of batch-wise culture. It could be concluded that Txnip promoter would be a promising alternative promoter for recombinant antigen protein expression in transgenic cells.
Collapse
Affiliation(s)
- Lei Feng
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
- School of pharmacyJiangsu UniversityZhenjiangP. R. China
| | - Li Chen
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
| | - Junwen Yun
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
| | - Xinglin Cao
- National Research Center of Engineering and Technology for Veterinary BiologicalsInstitute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural SciencesNanjingP. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouP. R. China
| |
Collapse
|
15
|
Wang CY, Xu Y, Wang X, Guo C, Wang T, Wang ZY. Dl-3-n-Butylphthalide Inhibits NLRP3 Inflammasome and Mitigates Alzheimer's-Like Pathology via Nrf2-TXNIP-TrX Axis. Antioxid Redox Signal 2019; 30:1411-1431. [PMID: 29634349 DOI: 10.1089/ars.2017.7440] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Oxidative stress and neuroinflammation play important roles in the pathology of Alzheimer's disease (AD). Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of antioxidant thioredoxin, is suspected to be an important modulator of oxidative stress and inflammation. However, the underlying mechanism involved in the abnormal homeostasis of TXNIP-thioredoxin (TrX) in AD pathogenesis remains unclear. RESULTS Using the Swedish mutant form of APP (APPswe)/PSEN1dE9 transgenic mouse (APP/PS1) and human-derived neuronal cells as model systems, we disclosed the impairment of the nuclear factor erythroid 2-related factor 2 (Nrf2)-TXNIP-TrX signaling in Alzheimer's-like pathology. We observed that the immune staining of TXNIP was increased in postmortem AD brain. The chronic accumulation of inflammatory mediator in neuronal cells facilitates interactions of TXNIP-nucleotide binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3) and NLRP3-ASC, which increases β-amyloid (Aβ) secretion. The antioxidant Dl-3-n-butylphthalide (Dl-NBP) is commonly used for cerebral ischemia treatment. In our study, we elucidated for new mechanisms by which Dl-NBP enhanced TrX activity, suppressed TXNIP, and ameliorated neuronal apoptosis in the APP/PS1 mouse brains. In human glioblastoma A172 cells and neuroblastoma SH-SY5Y cells, we delineated the Dl-NBP-mediated signaling pathways by which Dl-NBP-dependent upregulation of Nrf2 mediated the reciprocal regulation of reducing proinflammatory cytokine and inhibiting Aβ production in the glial and neuronal cells overexpressing APPswe. INNOVATION Our data provide a novel insight into the molecular mechanism that impairments of Nrf2-TXNIP-TrX system may be involved in the imbalance of cellular redox homeostasis and inflammatory damage in the AD brain. CONCLUSION Dl-NBP treatment could suppress TXNIP-NLRP3 interaction and inhibit NLRP3 inflammasome activation via upregulating Nrf2. These findings may provide an instrumental therapeutic approach for AD. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Chun-Yan Wang
- 1 Key Laboratory of Medical Cell Biology of Ministry of Education of China, Institute of Health Sciences, China Medical University, Shenyang, China.,2 Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, China
| | - Ye Xu
- 2 Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, China
| | - Xu Wang
- 3 Department of Histology and Embryology, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chuang Guo
- 4 College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tao Wang
- 4 College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Zhan-You Wang
- 1 Key Laboratory of Medical Cell Biology of Ministry of Education of China, Institute of Health Sciences, China Medical University, Shenyang, China
| |
Collapse
|
16
|
The Function of Thioredoxin-Binding Protein-2 (TBP-2) in Different Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4582130. [PMID: 29854083 PMCID: PMC5954861 DOI: 10.1155/2018/4582130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/23/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023]
Abstract
Thioredoxin-binding protein-2 (TBP-2) has an important role in the redox system, but it plays a different role in many different diseases (e.g., various cancers, diabetes mellitus (DM), cardiovascular disease, and cataracts) by influencing cell proliferation, differentiation, apoptosis, autophagy, and metabolism. Distinct transcription factors (TFs) stimulated by different factors combine with binding sites or proteins to upregulate or downregulate TBP-2 expression, in order to respond to the change in the internal environment. Most research disclosed that the main function of TBP-2 is associating with thioredoxin (Trx) to inhibit the antioxidant capacity of Trx. Furthermore, the TBP-2 located in tissues, whether normal or abnormal, has the ability to cause the dysfunctioning of cells and even death through different pathways, such as shortening the cell cycle and inducing apoptosis or autophagy. Through these studies, we found that TBP-2 promoted the development of diseases which are involved in inflammatory and oxidative damage. To a certain extent, we believe that there is some hidden connection between the biological functions which TBP-2 participates in and some distinct diseases. This review presents only a summary of the roles that TBP-2 plays in cancer, DM, cataracts, and so on, as well as its universal mechanisms. Further investigations are needed for the cell signaling pathways of the effects caused by TBP-2. A greater understanding of the mechanisms of TBP-2 could produce potential new targets for the treatment of diseases, including cancer and diabetes, cardiovascular disease, and cataracts.
Collapse
|
17
|
Qin K, Zhang N, Zhang Z, Nipper M, Zhu Z, Leighton J, Xu K, Musi N, Wang P. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia 2018; 61:906-918. [PMID: 29322219 PMCID: PMC6203439 DOI: 10.1007/s00125-017-4542-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. METHODS Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. RESULTS Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. CONCLUSIONS/INTERPRETATION Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability. DATA AVAILABILITY Sequence data have been deposited in the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) with the accession code GSE104161.
Collapse
Affiliation(s)
- Kunhua Qin
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Ning Zhang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Michael Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Zhenxin Zhu
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jake Leighton
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
18
|
Wang BF, Yoshioka J. The Emerging Role of Thioredoxin-Interacting Protein in Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Pharmacol Ther 2016; 22:219-229. [PMID: 27807222 DOI: 10.1177/1074248416675731] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Myocardial ischemia/reperfusion injury represents a major threat to human health and contributes to adverse cardiovascular outcomes worldwide. Despite the identification of numerous molecular mechanisms, understanding of the complex pathophysiology of this clinical syndrome remains incomplete. Thioredoxin-interacting protein (Txnip) has been of great interest in the past decade since it has been reported to be a critical regulator in human diseases with several important cellular functions. Thioredoxin-interacting protein binds to and inhibits thioredoxin, a redox protein that neutralizes reactive oxygen species (ROS), and through its interaction with thioredoxin, Txnip sensitizes cardiomyocytes to ROS-induced apoptosis. Interestingly, evidence from recent studies also suggests that some of the effects of Txnip may be unrelated to changes in thioredoxin activity. These pleiotropic effects of Txnip are mediated by interactions with other signaling molecules, such as nod-like receptor pyrin domain-containing 3 inflammasome and glucose transporter 1. Indeed, Txnip has been implicated in the regulation of inflammatory response and glucose homeostasis during myocardial ischemia/reperfusion injury. This review attempts to make the case that in addition to interacting with thioredoxin, Txnip contributes to some of the pathological consequences of myocardial ischemia and infarction through endogenous signals in multiple molecular mechanisms.
Collapse
Affiliation(s)
- Bing F Wang
- 1 Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jun Yoshioka
- 1 Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Dolfini D, Zambelli F, Pedrazzoli M, Mantovani R, Pavesi G. A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors. Nucleic Acids Res 2016; 44:4684-702. [PMID: 26896797 PMCID: PMC4889920 DOI: 10.1093/nar/gkw096] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
NF-Y is a trimeric transcription factor (TF), binding the CCAAT box element, for which several results suggest a pioneering role in activation of transcription. In this work, we integrated 380 ENCODE ChIP-Seq experiments for 154 TFs and cofactors with sequence analysis, protein–protein interactions and RNA profiling data, in order to identify genome-wide regulatory modules resulting from the co-association of NF-Y with other TFs. We identified three main degrees of co-association with NF-Y for sequence-specific TFs. In the most relevant one, we found TFs having a significant overlap with NF-Y in their DNA binding loci, some with a precise spacing of binding sites with respect to the CCAAT box, others (FOS, Sp1/2, RFX5, IRF3, PBX3) mostly lacking their canonical binding site and bound to arrays of well spaced CCAAT boxes. As expected, NF-Y binding also correlates with RNA Pol II General TFs and with subunits of complexes involved in the control of H3K4 methylations. Co-association patterns are confirmed by protein–protein interactions, and correspond to specific functional categorizations and expression level changes of target genes following NF-Y inactivation. These data define genome-wide rules for the organization of NF-Y-centered regulatory modules, supporting a model of distinct categorization and synergy with well defined sets of TFs.
Collapse
Affiliation(s)
- Diletta Dolfini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Via Amendola 165/A, 70126, Italy
| | - Maurizio Pedrazzoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy
| |
Collapse
|
20
|
Hong SY, Yu FX, Luo Y, Hagen T. Oncogenic activation of the PI3K/Akt pathway promotes cellular glucose uptake by downregulating the expression of thioredoxin-interacting protein. Cell Signal 2016; 28:377-383. [PMID: 26826652 DOI: 10.1016/j.cellsig.2016.01.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 11/18/2022]
Abstract
Oncogenic activation of the PI3K/Akt pathway is known to play an important role to promote glucose metabolism in cancer cells. However, the molecular mechanism through which the PI3K/Akt signalling pathway promotes glucose utilisation in cancer cells is still not well understood. It has recently been shown that the oncogenic activation of the PI3K/Akt/mTOR signalling in lung adenocarcinoma is important in promoting the localisation of glucose transporter 1 (GLUT1) at the plasma membrane. We thus hypothesised that the effect of constitutive activation of the PI3K/AKT signalling on glucose metabolism is mediated by thioredoxin interacting protein (TXNIP), a known regulator of the GLUT1 plasma membrane localisation. Consistent with previous studies, inhibition of the PI3K/Akt pathway decreased cellular glucose uptake. Furthermore, inhibition of PI3K/Akt signalling in non-small cell lung cancer (NSCLC) cell lines using clinically used tyrosine kinase inhibitors (TKIs) resulted in a decrease in GLUT1 membrane localisation. We also observed that inhibition of the PI3K/Akt pathway in various cell lines, including NSCLC cells, resulted in an increase in TXNIP expression. Importantly, knockdown of TXNIP using siRNA in the NSCLC cells promoted GLUT1 to be localised at the plasma membrane and reversed the effect of PI3K/Akt inhibitors. Together, our results suggest that the oncogenic activation of PI3K/Akt signalling promotes cellular glucose uptake, at least in part, through the regulation of TXNIP expression. This mechanism may contribute to the Warburg effect in cancer cells.
Collapse
Affiliation(s)
- Shin Yee Hong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore
| | - Fa-Xing Yu
- Children's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yan Luo
- School of Basic Medical Sciences, Zhejiang University College of Medicine, Zhejiang 310058, China
| | - Thilo Hagen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore, Singapore.
| |
Collapse
|
21
|
Shin E, Bae JS, Han JY, Lee J, Jeong YS, Lee HJ, Ahn YH, Cha JY. Hepatic DGAT2 gene expression is regulated by the synergistic action of ChREBP and SP1 in HepG2 cells. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2015.1131738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
22
|
Gunes A, Iscan E, Topel H, Avci ST, Gumustekin M, Erdal E, Atabey N. Heparin treatment increases thioredoxin interacting protein expression in hepatocellular carcinoma cells. Int J Biochem Cell Biol 2015; 65:169-81. [DOI: 10.1016/j.biocel.2015.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 04/30/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
|
23
|
Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci U S A 2015; 112:5425-30. [PMID: 25870263 DOI: 10.1073/pnas.1501555112] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are aggressive and lack targeted therapies. Understanding how nutrients are used in TNBCs may provide new targets for therapeutic intervention. We demonstrate that the transcription factor c-Myc drives glucose metabolism in TNBC cells but does so by a previously unappreciated mechanism that involves direct repression of thioredoxin-interacting protein (TXNIP). TXNIP is a potent negative regulator of glucose uptake, aerobic glycolysis, and glycolytic gene expression; thus its repression by c-Myc provides an alternate route to c-Myc-driven glucose metabolism. c-Myc reduces TXNIP gene expression by binding to an E-box-containing region in the TXNIP promoter, possibly competing with the related transcription factor MondoA. TXNIP suppression increases glucose uptake and drives a dependence on glycolysis. Ectopic TXNIP expression decreases glucose uptake, reduces cell proliferation, and increases apoptosis. Supporting the biological significance of the reciprocal relationship between c-Myc and TXNIP, a Mychigh/TXNIPlow gene signature correlates with decreased overall survival and decreased metastasis-free survival in breast cancer. The correlation between the Mychigh/TXNIPlow gene signature and poor clinical outcome is evident only in TNBC, not in other breast cancer subclasses. Mutation of TP53, which is a defining molecular feature of TNBC, enhances the correlation between the Mychigh/TXNIPlow gene signature and death from breast cancer. Because Myc drives nutrient utilization and TXNIP restricts glucose availability, we propose that the Mychigh/TXNIPlow gene signature coordinates nutrient utilization with nutrient availability. Further, our data suggest that loss of the p53 tumor suppressor cooperates with Mychigh/TXNIPlow-driven metabolic dysregulation to drive the aggressive clinical behavior of TNBC.
Collapse
|
24
|
Diabetes and Alzheimer disease, two overlapping pathologies with the same background: oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:985845. [PMID: 25815110 PMCID: PMC4357132 DOI: 10.1155/2015/985845] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/10/2015] [Indexed: 01/06/2023]
Abstract
There are several oxidative stress-related pathways interconnecting Alzheimer's disease and type II diabetes, two public health problems worldwide. Coincidences are so compelling that it is attractive to speculate they are the same disorder. However, some pathological mechanisms as observed in diabetes are not necessarily the same mechanisms related to Alzheimer's or the only ones related to Alzheimer's pathology. Oxidative stress is inherent to Alzheimer's and feeds a vicious cycle with other key pathological features, such as inflammation and Ca2+ dysregulation. Alzheimer's pathology by itself may lead to insulin resistance in brain, insulin resistance being an intervening variable in the neurodegenerative disorder. Hyperglycemia and insulin resistance from diabetes, overlapping with the Alzheimer's pathology, aggravate the progression of the neurodegenerative processes, indeed. But the same pathophysiological background is behind the consequences, oxidative stress. We emphasize oxidative stress and its detrimental role in some key regulatory enzymes.
Collapse
|
25
|
Wutthisathapornchai A, Vongpipatana T, Muangsawat S, Boonsaen T, MacDonald MJ, Jitrapakdee S. Multiple E-boxes in the distal promoter of the rat pyruvate carboxylase gene function as a glucose-responsive element. PLoS One 2014; 9:e102730. [PMID: 25054881 PMCID: PMC4108332 DOI: 10.1371/journal.pone.0102730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/21/2014] [Indexed: 12/22/2022] Open
Abstract
Pyruvate carboxylase (PC) is an anaplerotic enzyme that regulates glucose-induced insulin secretion in pancreatic islets. Dysregulation of its expression is associated with type 2 diabetes. Herein we describe the molecular mechanism underlying the glucose-mediated transcriptional regulation of the PC gene. Incubation of the rat insulin cell line INS-1 832/13 with glucose resulted in a 2-fold increase in PC mRNA expression. Transient transfections of the rat PC promoter-luciferase reporter construct in the above cell line combined with mutational analysis indicated that the rat PC gene promoter contains the glucose-responsive element (GRE), comprising three canonical E-boxes (E1, E3 and E4) and one E-box-like element (E2) clustering between nucleotides –546 and –399, upstream of the transcription start site. Mutation of any of these E-boxes resulted in a marked reduction of glucose-mediated transcriptional induction of the reporter gene. Electrophoretic mobility shift assays revealed that the upstream stimulatory factors 1 and 2 (USF1 and USF2) bind to E1, the Specificity Protein-1 (Sp1) binds to E2, USF2 and the carbohydrate responsive element binding protein (ChREBP) binds to E4, while unknown factors binds to E3. High glucose promotes the recruitment of Sp1 to E2 and, USF2 and ChREBP to E4. Silencing the expression of Sp1, USF2 and ChREBP by their respective siRNAs in INS-1 832/13 cells blunted glucose-induced expression of endogenous PC. We conclude that the glucose-mediated transcriptional activation of the rat PC gene is regulated by at least these three transcription factors.
Collapse
Affiliation(s)
| | | | - Sureeporn Muangsawat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thirajit Boonsaen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Michael J. MacDonald
- UW Childrens Diabetes Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States of America
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
26
|
The Association Study between Twenty One Polymorphisms in Seven Candidate Genes and Coronary Heart Diseases in Chinese Han Population. PLoS One 2013; 8:e66976. [PMID: 23840567 PMCID: PMC3694109 DOI: 10.1371/journal.pone.0066976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/13/2013] [Indexed: 12/23/2022] Open
Abstract
Previous genome-wide association studies (GWAS) in multiple populations identified several genetic loci for coronary heart diseases (CHD). Here we utilized a 2-stage candidate gene association strategy in Chinese Han population to shed light on the putative association between several metabolic-related candidate genes and CHD. At the 1st stage, 190 patients with CHD and 190 controls were genotyped through the MassARRAY platform. At the 2nd stage, a larger sample including 400 patients and 392 controls was genotyped by the High Resolution Melt (HRM) method to confirm or rule out the associations with CHD. MLXIP expression level was quantified by the real time PCR in 65 peripheral blood samples. From the 21 studied single nucleotide polymorphisms (SNPs) of seven candidate genes: MLXIPL, MLXIP, MLX, ADIPOR1, VDR, SREBF1 and NR1H3, only one tag SNP rs4758685 (T→C) was found to be statistically associated with CHD (P-value = 0.02, Odds ratio (OR) of 0.83). After adjustment for the age, sex, lipid levels and diabetes, the association remained significant (P-value = 0.03). After adjustment for the hypertension, P-value became 0.20 although there was a significant difference in the allele distribution between the CHD patients with hypertension and the controls (P-value = 0.04, 406 vs 582). In conclusion, among the 21 tested SNPs, we identified a novel association between rs4758685 of MLXIP gene and CHD. The C allele of common variant rs4758685 interacted with hypertension, and was found to be protective against CHD in both allelic and genotypic models in Chinese Han population.
Collapse
|
27
|
Lee S, Kim SM, Lee RT. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid Redox Signal 2013; 18:1165-207. [PMID: 22607099 PMCID: PMC3579385 DOI: 10.1089/ars.2011.4322] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The thioredoxin (Trx) system is one of the central antioxidant systems in mammalian cells, maintaining a reducing environment by catalyzing electron flux from nicotinamide adenine dinucleotide phosphate through Trx reductase to Trx, which reduces its target proteins using highly conserved thiol groups. While the importance of protecting cells from the detrimental effects of reactive oxygen species is clear, decades of research in this field revealed that there is a network of redox-sensitive proteins forming redox-dependent signaling pathways that are crucial for fundamental cellular processes, including metabolism, proliferation, differentiation, migration, and apoptosis. Trx participates in signaling pathways interacting with different proteins to control their dynamic regulation of structure and function. In this review, we focus on Trx target proteins that are involved in redox-dependent signaling pathways. Specifically, Trx-dependent reductive enzymes that participate in classical redox reactions and redox-sensitive signaling molecules are discussed in greater detail. The latter are extensively discussed, as ongoing research unveils more and more details about the complex signaling networks of Trx-sensitive signaling molecules such as apoptosis signal-regulating kinase 1, Trx interacting protein, and phosphatase and tensin homolog, thus highlighting the potential direct and indirect impact of their redox-dependent interaction with Trx. Overall, the findings that are described here illustrate the importance and complexity of Trx-dependent, redox-sensitive signaling in the cell. Our increasing understanding of the components and mechanisms of these signaling pathways could lead to the identification of new potential targets for the treatment of diseases, including cancer and diabetes.
Collapse
Affiliation(s)
- Samuel Lee
- The Harvard Stem Cell Institute, Cambridge, MA, USA
| | | | | |
Collapse
|
28
|
Kanari Y, Sato Y, Aoyama S, Muta T. Thioredoxin-interacting protein gene expression via MondoA is rapidly and transiently suppressed during inflammatory responses. PLoS One 2013; 8:e59026. [PMID: 23520550 PMCID: PMC3592832 DOI: 10.1371/journal.pone.0059026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 02/11/2013] [Indexed: 12/18/2022] Open
Abstract
Whereas accumulating evidence indicates that a number of inflammatory genes are induced by activation of nuclear factor-κB and other transcription factors, less is known about genes that are suppressed by proinflammatory stimuli. Here we show that expression of thioredoxin-interacting protein (Txnip) is dramatically suppressed both in mRNA and protein levels upon stimulation with lipopolysaccharide in mouse and human macrophages. In addition to lipopolysaccharide, a Toll-like receptor 4 ligand, stimulation with other Toll-like receptor ligands such as CpG DNA also suppressed Txnip expression. Not only the Toll-like receptor ligands, but also other proinflammatory stimulators, such as interleukin-1β and tumor necrosis factor-α elicited the similar response in fibroblasts. Suppression of Txnip by lipopolysaccharide is accompanied by a decrease of the glucose sensing transcription factor MondoA in the nuclei and dissociation of the MondoA:Mlx complex that bound to the carbohydrate-response elements in the Txnip promoter in unstimulated cells. Lipopolysaccharide-mediated decrease of nuclear MondoA was inhibited in the presence of 2-deoxyglucose. Furthermore, blockage of glyceraldehyde-3-phosphate dehydrogenase by iodoacetate alleviated the suppression of Txnip mRNA by lipopolysaccharide, suggesting the involvement of glucose-metabolites in the regulation. Since Txnip is implicated in the regulation of glucose metabolism, this observation links between inflammatory responses and metabolic regulation.
Collapse
Affiliation(s)
- Yasuyoshi Kanari
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Global Center of Excellence Program, Center for Ecosystem Management Adapting to Global Change, Sendai, Miyagi, Japan
| | - Yuki Sato
- Department of Biology, Faculty of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Satoru Aoyama
- Department of Biology, Faculty of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Tatsushi Muta
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Global Center of Excellence Program, Center for Ecosystem Management Adapting to Global Change, Sendai, Miyagi, Japan
- Department of Biology, Faculty of Science, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|
29
|
Glucose induces protein targeting to glycogen in hepatocytes by fructose 2,6-bisphosphate-mediated recruitment of MondoA to the promoter. Mol Cell Biol 2012. [PMID: 23207906 DOI: 10.1128/mcb.01576-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the liver, a high glucose concentration activates transcription of genes encoding glucose 6-phosphatase and enzymes for glycolysis and lipogenesis by elevation in phosphorylated intermediates and recruitment of the transcription factor ChREBP (carbohydrate response element binding protein) and its partner, Mlx, to gene promoters. A proposed function for this mechanism is intracellular phosphate homeostasis. In extrahepatic tissues, MondoA, the paralog of ChREBP, partners with Mlx in transcriptional induction by glucose. We tested for glucose induction of regulatory proteins of the glycogenic pathway in hepatocytes and identified the glycogen-targeting proteins, G(L) and PTG (protein targeting to glycogen), as being encoded by Mlx-dependent glucose-inducible genes. PTG induction by glucose was MondoA dependent but ChREBP independent and was enhanced by forced elevation of fructose 2,6-bisphosphate and by additional xylitol-derived metabolites. It was counteracted by selective depletion of fructose 2,6-bisphosphate with a bisphosphatase-active kinase-deficient variant of phosphofructokinase 2/fructosebisphosphatase 2, which prevented translocation of MondoA to the nucleus and recruitment to the PTG promoter. We identify a novel role for MondoA in the liver and demonstrate that elevated fructose 2,6-bisphosphate is essential for recruitment of MondoA to the PTG promoter. Phosphometabolite activation of MondoA and ChREBP and their recruitment to target genes is consistent with a mechanism for gene regulation to maintain intracellular phosphate homeostasis.
Collapse
|
30
|
He X, Ma Q. Redox regulation by nuclear factor erythroid 2-related factor 2: gatekeeping for the basal and diabetes-induced expression of thioredoxin-interacting protein. Mol Pharmacol 2012; 82:887-97. [PMID: 22869588 PMCID: PMC4678870 DOI: 10.1124/mol.112.081133] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor activated by a range of oxidants and electrophiles. The transcriptional response to endogenous oxidative cues by Nrf2 plays an important role in mammalian redox physiology and oxidative pathology. Hyperglycemia induces oxidative stress in the heart where it leads to apoptosis and ultimately cardiomyopathy. Here we investigated the mechanism by which Nrf2 suppresses oxidative stress in diabetic mouse heart. Knockout (KO) of Nrf2 induced oxidative stress and apoptosis in KO heart; diabetes further increased oxidative damage. A pathway-focused gene array revealed that Nrf2 controls the expression of 24 genes in the heart, including the gene encoding thioredoxin-interacting protein (TXNIP). Nrf2 suppressed the basal expression of Txnip in the heart and blocked induction of Txnip by high glucose by binding to an antioxidant response element (ARE) (-1286 to -1276) of the Txnip promoter. Binding of Nrf2 to ARE also suppressed the binding of MondoA to the carbohydrate response element with or without high glucose. TXNIP promoted reactive oxygen species production and apoptosis by inhibiting thioredoxin. On the other hand, Nrf2 boosted thioredoxin activity by inhibiting Txnip. The findings revealed, for the first time, that Nrf2 is a key gatekeeper of Txnip transcription, suppressing both its basal expression and MondoA-driven induction to control the thioredoxin redox signaling in diabetes.
Collapse
Affiliation(s)
- Xiaoqing He
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | |
Collapse
|
31
|
Cha-Molstad H, Xu G, Chen J, Jing G, Young ME, Chatham JC, Shalev A. Calcium channel blockers act through nuclear factor Y to control transcription of key cardiac genes. Mol Pharmacol 2012; 82:541-9. [PMID: 22734068 PMCID: PMC3422702 DOI: 10.1124/mol.112.078253] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 06/25/2012] [Indexed: 12/17/2022] Open
Abstract
First-generation calcium channel blockers such as verapamil are a widely used class of antihypertensive drugs that block L-type calcium channels. We recently discovered that they also reduce cardiac expression of proapoptotic thioredoxin-interacting protein (TXNIP), suggesting that they may have unappreciated transcriptional effects. By use of TXNIP promoter deletion and mutation studies, we found that a CCAAT element was mediating verapamil-induced transcriptional repression and identified nuclear factor Y (NFY) to be the responsible transcription factor as assessed by overexpression/knockdown and luciferase and chromatin immunoprecipitation assays in cardiomyocytes and in vivo in diabetic mice receiving oral verapamil. We further discovered that increased NFY-DNA binding was associated with histone H4 deacetylation and transcriptional repression and mediated by inhibition of calcineurin signaling. It is noteworthy that the transcriptional control conferred by this newly identified verapamil-calcineurin-NFY signaling cascade was not limited to TXNIP, suggesting that it may modulate the expression of other NFY targets. Thus, verapamil induces a calcineurin-NFY signaling pathway that controls cardiac gene transcription and apoptosis and thereby may affect cardiac biology in previously unrecognized ways.
Collapse
Affiliation(s)
- Hyunjoo Cha-Molstad
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lerner AG, Upton JP, Praveen PVK, Ghosh R, Nakagawa Y, Igbaria A, Shen S, Nguyen V, Backes BJ, Heiman M, Heintz N, Greengard P, Hui S, Tang Q, Trusina A, Oakes SA, Papa FR. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab 2012; 16:250-64. [PMID: 22883233 PMCID: PMC4014071 DOI: 10.1016/j.cmet.2012.07.007] [Citation(s) in RCA: 693] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/05/2012] [Accepted: 07/17/2012] [Indexed: 12/12/2022]
Abstract
When unfolded proteins accumulate to irremediably high levels within the endoplasmic reticulum (ER), intracellular signaling pathways called the unfolded protein response (UPR) become hyperactivated to cause programmed cell death. We discovered that thioredoxin-interacting protein (TXNIP) is a critical node in this "terminal UPR." TXNIP becomes rapidly induced by IRE1α, an ER bifunctional kinase/endoribonuclease (RNase). Hyperactivated IRE1α increases TXNIP mRNA stability by reducing levels of a TXNIP destabilizing microRNA, miR-17. In turn, elevated TXNIP protein activates the NLRP3 inflammasome, causing procaspase-1 cleavage and interleukin 1β (IL-1β) secretion. Txnip gene deletion reduces pancreatic β cell death during ER stress and suppresses diabetes caused by proinsulin misfolding in the Akita mouse. Finally, small molecule IRE1α RNase inhibitors suppress TXNIP production to block IL-1β secretion. In summary, the IRE1α-TXNIP pathway is used in the terminal UPR to promote sterile inflammation and programmed cell death and may be targeted to develop effective treatments for cell degenerative diseases.
Collapse
Affiliation(s)
- Alana G Lerner
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chai TF, Hong SY, He H, Zheng L, Hagen T, Luo Y, Yu FX. A potential mechanism of metformin-mediated regulation of glucose homeostasis: inhibition of Thioredoxin-interacting protein (Txnip) gene expression. Cell Signal 2012; 24:1700-5. [PMID: 22561086 DOI: 10.1016/j.cellsig.2012.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/20/2012] [Accepted: 04/21/2012] [Indexed: 12/11/2022]
Abstract
Metformin (dimethylbiguanide) is widely used among diabetic patients to lower the blood sugar level. Although several mechanisms have been proposed, its mode of action in enhancing peripheral glucose uptake and inhibiting hepatic glucose production is not fully understood. Thioredoxin-interacting protein (Txnip) is known to play important roles in glucose metabolism by inhibiting cellular glucose uptake and metabolism and promoting hepatic gluconeogenesis. The expression of the gene encoding Txnip is regulated in a glucose dependent manner via the Mondo:MLX transcription factor complex. In the present study, we report that Txnip mRNA as well as protein expression in cultured cells is markedly reduced upon metformin administration. The binding of Mondo:MLX to the Txnip gene promoter is reduced, suggesting that the transcription of the Txnip gene is repressed by metformin. Moreover, we show that the effect of metformin on Txnip gene transcription is due to the inhibition of mitochondrial complex I and increased glycolysis, and is partially mediated by the AMP activated kinase (AMPK). These observations prompt us to propose that the novel action of metformin on the Txnip gene expression may contribute to its therapeutic effects in the treatment of type II diabetes.
Collapse
Affiliation(s)
- Tin Fan Chai
- Department of Biochemistry, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
34
|
Kim GS, Jung JE, Narasimhan P, Sakata H, Chan PH. Induction of thioredoxin-interacting protein is mediated by oxidative stress, calcium, and glucose after brain injury in mice. Neurobiol Dis 2012; 46:440-9. [PMID: 22366181 DOI: 10.1016/j.nbd.2012.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 01/25/2012] [Accepted: 02/08/2012] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and glucose affect the expression of various genes that contribute to both reactive oxygen species generation and antioxidant systems. However, systemic alteration of oxidative stress-related gene expression in normal brains and in brains with a high-glucose status after ischemic-reperfusion has not been explored. Using a polymerase chain reaction array system, we demonstrate that thioredoxin-interacting protein (Txnip) is induced by both oxidative stress and glucose. We found that Txnip mRNA is induced by ischemic-reperfusion injury and that Txnip is located in the cytoplasm of neurons. Moreover, in vitro oxygen-glucose deprivation (OGD) and subsequent reoxygenation without glucose and in vivo administration of 3-nitropropionic acid also promoted an increase in Txnip in a time-dependent manner, indicating that oxidative stress without glucose can induce Txnip expression in the brain. However, calcium channel blockers inhibit induction of Txnip after OGD and reoxygenation. Using the polymerase chain reaction array with ischemic and hyperglycemic-ischemic samples, we confirmed that enhanced expression of Txnip was observed in hyperglycemic-ischemic brains after middle cerebral artery occlusion. Finally, transfection of Txnip small interfering RNA into primary neurons reduced lactate dehydrogenase release after OGD and reoxygenation. This is the first report showing that Txnip expression is induced in neurons after oxidative or glucose stress under either ischemic or hyperglycemic-ischemic conditions, and that Txnip is proapoptotic under these conditions.
Collapse
Affiliation(s)
- Gab Seok Kim
- Department of Neurosurgery, and Program in Neurosciences, Stanford University School of Medicine, Stanford, CA 94305–5487, USA
| | | | | | | | | |
Collapse
|
35
|
Masutani H, Yoshihara E, Masaki S, Chen Z, Yodoi J. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus. J Clin Biochem Nutr 2011; 50:23-34. [PMID: 22247597 PMCID: PMC3246179 DOI: 10.3164/jcbn.11-36sr] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/05/2011] [Indexed: 01/05/2023] Open
Abstract
Thioredoxin binding protein -2/ thioredoxin interacting protein is an α-arrestin protein that has attracted much attention as a multifunctional regulator. Thioredoxin binding protein -2 expression is downregulated in tumor cells and the level of thioredoxin binding protein is correlated with clinical stage of cancer. Mice with mutations or knockout of the thioredoxin binding protein -2 gene are much more susceptible to carcinogenesis than wild-type mice, indicating a role for thioredoxin binding protein -2 in cancer suppression. Studies have also revealed roles for thioredoxin binding protein -2 in metabolic control. Enhancement of thioredoxin binding protein -2 expression causes impairment of insulin sensitivity and glucose-induced insulin secretion, and β-cell apoptosis. These changes are important characteristics of type 2 diabetes mellitus. Thioredoxin binding protein -2 regulates transcription of metabolic regulating genes. Thioredoxin binding protein -2-like inducible membrane protein/ arrestin domain containing 3 regulates endocytosis of receptors such as the β(2)-adrenergic receptor. The α-arrestin family possesses PPXY motifs and may function as an adaptor/scaffold for NEDD family ubiquitin ligases. Elucidation of the molecular mechanisms of α-arrestin proteins would provide a new pharmacological basis for developing approaches against cancer and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hiroshi Masutani
- Institute for Virus Research, Graduate School of Biostudies, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
36
|
Jeong YS, Kim D, Lee YS, Kim HJ, Han JY, Im SS, Chong HK, Kwon JK, Cho YH, Kim WK, Osborne TF, Horton JD, Jun HS, Ahn YH, Ahn SM, Cha JY. Integrated expression profiling and genome-wide analysis of ChREBP targets reveals the dual role for ChREBP in glucose-regulated gene expression. PLoS One 2011; 6:e22544. [PMID: 21811631 PMCID: PMC3141076 DOI: 10.1371/journal.pone.0022544] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 06/29/2011] [Indexed: 01/23/2023] Open
Abstract
The carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper transcription factor, plays a critical role in the control of lipogenesis in the liver. To identify the direct targets of ChREBP on a genome-wide scale and provide more insight into the mechanism by which ChREBP regulates glucose-responsive gene expression, we performed chromatin immunoprecipitation-sequencing and gene expression analysis. We identified 1153 ChREBP binding sites and 783 target genes using the chromatin from HepG2, a human hepatocellular carcinoma cell line. A motif search revealed a refined consensus sequence (CABGTG-nnCnG-nGnSTG) to better represent critical elements of a functional ChREBP binding sequence. Gene ontology analysis shows that ChREBP target genes are particularly associated with lipid, fatty acid and steroid metabolism. In addition, other functional gene clusters related to transport, development and cell motility are significantly enriched. Gene set enrichment analysis reveals that ChREBP target genes are highly correlated with genes regulated by high glucose, providing a functional relevance to the genome-wide binding study. Furthermore, we have demonstrated that ChREBP may function as a transcriptional repressor as well as an activator.
Collapse
Affiliation(s)
- Yun-Seung Jeong
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Deokhoon Kim
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Yong Seok Lee
- Korean BioInformation Center (KOBIC), KRIBB, Daejeon, Korea
- Healthcare Service Group, Samsung SDS, Seoul, Korea
| | - Ha-Jung Kim
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Jung-Youn Han
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Seung-Soon Im
- Sanford-Burnham Medical Research Institute, Orlando, Florida, United States of America
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Hansook Kim Chong
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Je-Keun Kwon
- Korean BioInformation Center (KOBIC), KRIBB, Daejeon, Korea
| | - Yun-Ho Cho
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Woo Kyung Kim
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Timothy F. Osborne
- Sanford-Burnham Medical Research Institute, Orlando, Florida, United States of America
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Jay D. Horton
- Department of Molecular Genetics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Hee-Sook Jun
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Yong-Ho Ahn
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Min Ahn
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
- Department of Translational Medicine, Gachon University Gil Hospital, Incheon, Korea
| | - Ji-Young Cha
- Department of Molecular Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| |
Collapse
|
37
|
Chai TF, Leck YC, He H, Yu FX, Luo Y, Hagen T. Hypoxia-inducible factor independent down-regulation of thioredoxin-interacting protein in hypoxia. FEBS Lett 2010; 585:492-8. [PMID: 21192937 DOI: 10.1016/j.febslet.2010.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/09/2010] [Accepted: 12/21/2010] [Indexed: 01/05/2023]
Abstract
Thioredoxin-Interacting Protein (Txnip) is an important regulator of glucose metabolism and functions by inhibiting cellular glucose uptake. The expression of the Txnip gene is sensitive to glucose availability and is negatively correlated with the glycolytic rate. Here we show that hypoxia induces a rapid decrease in Txnip mRNA and protein expression in a Hypoxia-Inducible Factor independent manner. Hypoxia caused reduced binding of the glucose responsive MondoA:Mlx transcription factor to the carbohydrate response elements (ChoREs) in the Txnip promoter. Our data suggest that hypoxia decreases MondoA:Mlx activity by increasing glycolytic flux, leading to the depletion of glycolytic intermediates which normally activate MondoA:Mlx. Hypoxia dependent Txnip down-regulation may be an important compensatory mechanism through which cancer cells adapt their metabolism to low oxygen concentrations.
Collapse
Affiliation(s)
- Tin Fan Chai
- Department of Biochemistry, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
38
|
Yu FX, Chai TF, He H, Hagen T, Luo Y. Thioredoxin-interacting protein (Txnip) gene expression: sensing oxidative phosphorylation status and glycolytic rate. J Biol Chem 2010; 285:25822-30. [PMID: 20558747 PMCID: PMC2919144 DOI: 10.1074/jbc.m110.108290] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 06/16/2010] [Indexed: 11/06/2022] Open
Abstract
Thioredoxin-interacting protein (Txnip) has important functions in regulating cellular metabolism including glucose utilization; the expression of the Txnip gene is sensitive to the availability of glucose and other fuels. Here, we show that Txnip expression is down-regulated at the transcriptional level by diverse inhibitors of mitochondrial oxidative phosphorylation (OXPHOS). The effect of these OXPHOS inhibitors is mediated by earlier identified carbohydrate-response elements (ChoREs) on the Txnip promoter and the ChoRE-associated transcription factors Max-like protein X (MLX) and MondoA (or carbohydrate-response element-binding protein (ChREBP)) involved in glucose-induced Txnip expression, suggesting that inhibited oxidative phosphorylation compromises glucose-induced effects on Txnip expression. We also show that the OXPHOS inhibitors repress the Txnip transcription most likely by inducing the glycolytic rate, and increased glycolytic flux decreases the levels of glycolytic intermediates important for the function of MLX and MondoA (or ChREBP). Our findings suggest that the Txnip expression is tightly correlated with glycolytic flux, which is regulated by oxidative phosphorylation status. The identified link between the Txnip expression and glycolytic activity implies a mechanism by which the cellular glucose uptake/homeostasis is regulated in response to various metabolic cues, oxidative phosphorylation status, and other physiological signals, and this may facilitate our efforts toward understanding metabolism in normal or cancer cells.
Collapse
Affiliation(s)
- Fa-Xing Yu
- From the Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, and
| | - Tin Fan Chai
- the Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | - Hongpeng He
- From the Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, and
| | - Thilo Hagen
- the Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| | - Yan Luo
- From the Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, and
- the Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Republic of Singapore
| |
Collapse
|