1
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2025; 287:33-60. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Auger C, Muzammel H, Diouf I, Schini-Kerth VB. Potential of Anthocyanin-rich Products to Prevent and Improve Endothelial Function and Senescence: Focus on Anthocyanins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27590-27618. [PMID: 39629614 DOI: 10.1021/acs.jafc.4c04727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Endothelial dysfunction is a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, diabetes, and aging. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors, including nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH), and vasocontracting factors, such as arachidonic acid-derived mediators generated by cyclooxygenases, and an increased level of oxidative stress. Recently, endothelial senescence was reported to be an early trigger of endothelial dysfunction. Preclinical studies indicate that polyphenol-rich food, including anthocyanin-rich products, can activate pathways promoting an increased formation of vasoprotective factors and can prevent the induction of endothelial dysfunction in endothelial cells and isolated blood vessels. Similarly, intake of anthocyanin-rich products has been associated with the prevention and/or the improvement of an endothelial dysfunction in several experimental models of cardiovascular diseases, including physiological aging. Moreover, clinical data indicate that polyphenol-rich and anthocyanin-rich products can improve endothelial function and vascular health in humans with cardiovascular diseases. The present review will discuss both experimental and clinical evidence indicating that several polyphenol-rich foods and natural products, and especially anthocyanin-rich products, can promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- University of Strasbourg, INSERM, Regenerative Nanomedicine UMR 1260, 67000 Strasbourg, France
| | - Hira Muzammel
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Ibrahima Diouf
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| | - Valérie B Schini-Kerth
- University of Strasbourg, Translational Cardiovascular Medicine UR 3074, 67000 Strasbourg, France
| |
Collapse
|
3
|
Elbaz M, Roul G, Andriantsitohaina R. Provinols™, a Polyphenolic Extract of Red Wine, Inhibits In-Stent Neointimal Growth in Cholesterol-Fed Rabbit. Pharmaceutics 2024; 16:1311. [PMID: 39458640 PMCID: PMC11510810 DOI: 10.3390/pharmaceutics16101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Epidemiological studies indicate a potential correlation between the consumption of polyphenols and a reduced risk of developing cardiovascular disorders. The present study investigates the potential of a red wine polyphenol oral extract, Provinols™, to reduce neointimal hyperplasia following angioplasty in a hypercholesterolemic rabbit model. Methods: New Zealand white rabbits were fed 1% cholesterol-enriched chow for a period of eight weeks prior to the induction of iliac balloon injury and subsequent stent placement. Following the implantation of the stent, Provinols™ (20 mg/kg/day) or an identical placebo was administered orally for a period of four weeks in a randomized manner. Twenty-eight days following the stenting procedure, the arteries were harvested after euthanasia and subjected to histology assignment analysis. Results: The administration of Provinols™ did not result in a statistically significant change in either blood pressure or plasma cholesterol levels. However, Provinols™ treatment led to a notable reduction in the growth of the intima within the stented area, as well as a reduction in the thickness and surface area of the intima. It is of note that treatment with Provinols™ was associated with a reduction in the accumulation of fat within the arteries and a diminished inflammatory response to injury. Conclusions: The findings demonstrate that oral administration of Provinols™ has the potential to reduce in-stent neointimal growth and lipid deposition, likely due to its anti-inflammatory properties in iliac arteries from hypercholesterolemic rabbits. Additionally, these findings provide an evidence-based rationale for the potential therapeutic benefits of plant-derived polyphenols in the prevention of restenosis associated with stent placement.
Collapse
Affiliation(s)
- Meyer Elbaz
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France;
| | - Gérald Roul
- Unité Fonctionnelle Dédiée à L’insuffisance Cardiaque, Pôle Médical et Chirurgical des Maladies Cardio-Vasculaires, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
| | - Ramaroson Andriantsitohaina
- PhyMedExp, University of Montpellier, Inserm, CNRS, 371 Avenue du Doyen G. Giraud, CEDEX 5, 34295 Montpellier, France
| |
Collapse
|
4
|
Ashoori M, Soltani S, Kolahdouz-Mohammadi R, Moghtaderi F, Clayton Z, Abdollahi S. The effect of whole grape products on blood pressure and vascular function: A systematic review and meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2023; 33:1836-1848. [PMID: 37482483 DOI: 10.1016/j.numecd.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/16/2023] [Accepted: 05/01/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND AND AIMS Grape consumption-associated improvements in cardiovascular health have received significant attention over the last few years; however, major gaps have remained in the meta-evidence related to this topic. This systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to explore the effect of whole grapes and its products on blood pressure, endothelial function, heart rate, and pulse rate. METHODS AND RESULTS Four database (PubMed, Scopus, Web of Sciences, and the Cochrane Library) were searched until the 14th of January 2022. The pooled effect size of interested outcomes was calculated using the random-effects model. Thirty eligible RCTs were identified. Pooled results indicated that compared to the control group, consumption of grape products significantly decreased systolic blood pressure (SBP) (WMD = -3.17 mmHg; 95% CI: -5.36, -0.99 mmHg; P = 0.004; I2 = 64%; P-heterogeneity<0.001); while, vascular cell adhesion molecule-1 (VCAM-1) increased (WMD = 34.11 ng/ml; 95% CI: 0.98, 67.25 ng/ml; P = 0.04; I2 = 2%; P-heterogeneity = 0.4). Although, the certainty of evidence was low and very low, respectively. No significant effect was observed on diastolic blood pressure, endothelial function, heart rate, pulse rate, and soluble intercellular adhesion molecule-1 (sICAM-1). In a subgroup analysis, consumption of whole grape products (raisin and grape powder) induced a significant decrease in SBP (WMD = -2.69 mmHg; 95% CI: -4.81, -0.57; P = 0.01; I2 = 18.1%; P-heterogeneity < 0.001), while grape juice did not. CONCLUSION The low certainty of evidence from RCTs revealed that consumption of grape products, especially in whole forms, resulted in a small reduction of SBP but did not influence other markers of cardiovascular health. PROSPERO REGISTRATION CODE CRD42022379231.
Collapse
Affiliation(s)
- Marziyeh Ashoori
- Rasool Akram Medical Complex, Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Roya Kolahdouz-Mohammadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moghtaderi
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zachary Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| |
Collapse
|
5
|
Lin KH, Ramesh S, Agarwal S, Kuo WW, Kuo CH, Chen MYC, Lin YM, Ho TJ, Huang PC, Huang CY. Fisetin attenuates doxorubicin-induced cardiotoxicity by inhibiting the insulin-like growth factor II receptor apoptotic pathway through estrogen receptor-α/-β activation. Phytother Res 2023; 37:3964-3981. [PMID: 37186468 DOI: 10.1002/ptr.7855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 03/17/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023]
Abstract
Doxorubicin (DOX), an effective chemotherapeutic drug, has been used to treat various cancers; however, its cardiotoxic side effects restrict its therapeutic efficacy. Fisetin, a flavonoid phytoestrogen derived from a range of fruits and vegetables, has been reported to exert cardioprotective effects against DOX-induced cardiotoxicity; however, the underlying mechanisms remain unclear. This study investigated fisetin's cardioprotective role and mechanism against DOX-induced cardiotoxicity in H9c2 cardiomyoblasts and ovariectomized (OVX) rat models. MTT assay revealed that fisetin treatment noticeably rescued DOX-induced cell death in a dose-dependent manner. Moreover, western blotting and TUNEL-DAPI staining showed that fisetin significantly attenuated DOX-induced cardiotoxicity in vitro and in vivo by inhibiting the insulin-like growth factor II receptor (IGF-IIR) apoptotic pathway through estrogen receptor (ER)-α/-β activation. The echocardiography, biochemical assay, and H&E staining results demonstrated that fisetin reduced DOX-induced cardiotoxicity by alleviating cardiac dysfunction, myocardial injury, oxidative stress, and histopathological damage. These findings imply that fisetin has a significant therapeutic potential against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Samiraj Ramesh
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Research and Innovation, Institute of Biotechnology, Saveetha School of Engineering (SSE), Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, India
| | - Sakshi Agarwal
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Michael Yu-Chih Chen
- Department of Cardiology, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yueh-Min Lin
- Department of Medical Technology, Jen-The Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Pei-Chen Huang
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Medical Science, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
6
|
Broni E, Striegel A, Ashley C, Sakyi PO, Peracha S, Velazquez M, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Khan S, Miller WA. Molecular Docking and Dynamics Simulation Studies Predict Potential Anti-ADAR2 Inhibitors: Implications for the Treatment of Cancer, Neurological, Immunological and Infectious Diseases. Int J Mol Sci 2023; 24:6795. [PMID: 37047766 PMCID: PMC10095294 DOI: 10.3390/ijms24076795] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Altered RNA editing has been linked to several neurodevelopmental disorders, including autism spectrum disorder (ASD) and intellectual disability, in addition to depression, schizophrenia, some cancers, viral infections and autoimmune disorders. The human ADAR2 is a potential therapeutic target for managing these various disorders due to its crucial role in adenosine to inosine editing. This study applied consensus scoring to rank potential ADAR2 inhibitors after performing molecular docking with AutoDock Vina and Glide (Maestro), using a library of 35,161 compounds obtained from traditional Chinese medicine. A total of 47 compounds were predicted to be good binders of the human ADAR2 and had insignificant toxicity concerns. Molecular dynamics (MD) simulations, including the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) procedure, also emphasized the binding of the shortlisted compounds. The potential compounds had plausible binding free energies ranging from -81.304 to -1068.26 kJ/mol from the MM/PBSA calculations. ZINC000085511995, a naphthoquinone had more negative binding free energy (-1068.26 kJ/mol) than inositol hexakisphosphate (IHP) [-873.873 kJ/mol], an agonist and a strong binder of ADAR2. The potential displacement of IHP by ZINC000085511995 in the IHP binding site of ADAR2 could be explored for possible deactivation of ADAR2. Bayesian-based biological activity prediction corroborates the neuropharmacological, antineoplastic and antiviral activity of the potential lead compounds. All the potential lead compounds, except ZINC000014612330 and ZINC000013462928, were predicted to be inhibitors of various deaminases. The potential lead compounds also had probability of activity (Pa) > 0.442 and probability of inactivity (Pi) < 0.116 values for treating acute neurologic disorders, except for ZINC000085996580 and ZINC000013462928. Pursuing these compounds for their anti-ADAR2 activities holds a promising future, especially against neurological disorders, some cancers and viral infections caused by RNA viruses. Molecular interaction, hydrogen bond and per-residue decomposition analyses predicted Arg400, Arg401, Lys519, Trp687, Glu689, and Lys690 as hot-spot residues in the ADAR2 IHP binding site. Most of the top compounds were observed to have naphthoquinone, indole, furanocoumarin or benzofuran moieties. Serotonin and tryptophan, which are beneficial in digestive regulation, improving sleep cycle and mood, are indole derivatives. These chemical series may have the potential to treat neurological disorders, prion diseases, some cancers, specific viral infections, metabolic disorders and eating disorders through the disruption of ADAR2 pathways. A total of nine potential lead compounds were shortlisted as plausible modulators of ADAR2.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
7
|
Estrogenic flavonoids and their molecular mechanisms of action. J Nutr Biochem 2023; 114:109250. [PMID: 36509337 DOI: 10.1016/j.jnutbio.2022.109250] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Flavonoids are a major group of phytoestrogens associated with physiological effects, and ecological and social impacts. Although the estrogenic activity of flavonoids was reported by researchers in the fields of medical, environmental and food studies, their molecular mechanisms of action have not been comprehensively reviewed. The estrogenic activity of the respective classes of flavonoids, anthocyanidins/anthocyanins, 2-arylbenzofurans/3-arylcoumarins/α-methyldeoxybenzoins, aurones/chalcones/dihydrochalcones, coumaronochromones, coumestans, flavans/flavan-3-ols/flavan-4-ols, flavanones/dihydroflavonols, flavones/flavonols, homoisoflavonoids, isoflavans, isoflavanones, isoflavenes, isoflavones, neoflavonoids, oligoflavonoids, pterocarpans/pterocarpenes, and rotenone/rotenoids, was summarized through a comprehensive literature search, and their structure-activity relationship, biological activities, signaling pathways, and applications were discussed. Although the respective classes of flavonoids contained at least one chemical mimicking estrogen, the mechanisms varied, such as those with estrogenic, anti-estrogenic, non-estrogenic, and biphasic activities, and additional activities through crosstalk/bypassing, which exert biological activities through cell signaling pathways. Such mechanistic variations of estrogen action are not limited to flavonoids and are observed among other broad categories of chemicals, thus this group of chemicals can be termed as the "estrogenome". This review article focuses on the connection of estrogen action mainly between the outer and the inner environments, which represent variations of chemicals and biological activities/signaling pathways, respectively, and form the basis to understand their applications. The applications of chemicals will markedly progress due to emerging technologies, such as artificial intelligence for precision medicine, which is also true of the study of the estrogenome including estrogenic flavonoids.
Collapse
|
8
|
Enhancement of the Anti-Angiogenic Effects of Delphinidin When Encapsulated within Small Extracellular Vesicles. Nutrients 2021; 13:nu13124378. [PMID: 34959929 PMCID: PMC8703615 DOI: 10.3390/nu13124378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
(1) Background: The anthocyanin delphinidin exhibits anti-angiogenic properties both in in vitro and in vivo angiogenesis models. However, in vivo delphinidin is poorly absorbed, thus its modest bioavailability and stability reduce its anti-angiogenic effects. The present work takes advantage of small extracellular vesicle (sEV) properties to enhance both the stability and efficacy of delphinidin. When encapsulated in sEVs, delphinidin inhibits the different stages of angiogenesis on human aortic endothelial cells (HAoECs). (2) Methods: sEVs from immature dendritic cells were produced and loaded with delphinidin. A method based on UHPLC-HRMS was implemented to assess delphinidin metabolites within sEVs. Proliferation assay, nitric oxide (NO) production and Matrigel assay were evaluated in HAoECs. (3) Results: Delphinidine, 3-O-β-rutinoside and Peonidin-3-galactoside were found both in delphinidin and delphinidin-loaded sEVs. sEV-loaded delphinidin increased the potency of free delphinidin 2-fold for endothelial proliferation, 10-fold for endothelial NO production and 100-fold for capillary-like formation. Thus, sEV-loaded delphinidin exerts effects on the different steps of angiogenesis. (4) Conclusions: sEVs may be considered as a promising approach to deliver delphinidin to target angiogenesis-related diseases, including cancer and pathologies associated with excess vascularization.
Collapse
|
9
|
Delphinidin diminishes in vitro interferon-γ and interleukin-17 producing cells in patients with psoriatic disease. Immunol Res 2021; 70:161-173. [PMID: 34825313 DOI: 10.1007/s12026-021-09251-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
The anthocyanidin delphinidin reduces psoriasiform lesions and inflammatory mediators in human cell culture systems. Its role in psoriatic disease has not yet been investigated. We assessed delphinidin's in vitro immunomodulatory effect on ex vivo stimulated peripheral blood mononuclear cells (PBMCs) from 50 individuals [26 with psoriasis, 10 with psoriatic arthritis (PsA) and 14 healthy controls (HCs)]. Cells were either left untreated or stimulated with PMA plus ionomycin in the presence or absence of delphinidin. Intracellular production of interferon-γ (IFNγ), interleukin-17A (IL-17A), and interleukin-10 (IL-10) was measured flow cytometrically. Delphinidin dose-dependently reduced IFNγ+ T cells from patients and HCs. The mean IFNγ decrease in CD4+ T subpopulations was 42.5 ± 28% for psoriasis patients, 51.8 ± 21.5% for PsA patients and 49 ± 17% for HCs (p < 0.001 for all). Similarly, IFNγ reduction in CD8+ T cells was 34 ± 21.6% for psoriasis patients, 47.1 ± 22.8% for PsA and 44.8 ± 14.3% for HCs (P < 0.001 for all). An inhibitory effect of delphinidin was also noted in IFNγ producing NKs and NKTs from psoriasis individuals. Delphinidin also significantly decreased IL-17+ CD4+ T cells in all tested subjects, with marginal effect on the increase of IL-10-producing T regulatory subsets. In conclusion, delphinidin exerts a profound in vitro anti-inflammatory effect in psoriasis and psoriatic arthritis by inhibiting IFNγ+ innate and adaptive cells and T helper (Th) 17 cells. If this effect is also exerted in vivo, delphinidin may be regarded as a nutraceutical with immunosuppressive potential.
Collapse
|
10
|
Sharifi-Rad J, Quispe C, Zam W, Kumar M, Cardoso SM, Pereira OR, Ademiluyi AO, Adeleke O, Moreira AC, Živković J, Noriega F, Ayatollahi SA, Kobarfard F, Faizi M, Martorell M, Cruz-Martins N, Butnariu M, Bagiu IC, Bagiu RV, Alshehri MM, Cho WC. Phenolic Bioactives as Antiplatelet Aggregation Factors: The Pivotal Ingredients in Maintaining Cardiovascular Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2195902. [PMID: 34447485 PMCID: PMC8384526 DOI: 10.1155/2021/2195902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023]
Abstract
Cardiovascular diseases (CVD) are one of the main causes of mortality in the world. The development of these diseases has a specific factor-alteration in blood platelet activation. It has been shown that phenolic compounds have antiplatelet aggregation abilities and a positive impact in the management of CVD, exerting prominent antioxidant, anti-inflammatory, antitumor, cardioprotective, antihyperglycemic, and antimicrobial effects. Thus, this review is intended to address the antiplatelet activity of phenolic compounds with special emphasis in preventing CVD, along with the mechanisms of action through which they are able to prevent and treat CVD. In vitro and in vivo studies have shown beneficial effects of phenolic compound-rich plant extracts and isolated compounds against CVD, despite that the scientific literature available on the antiplatelet aggregation ability of phenolic compounds in vivo is scarce. Thus, despite the current advances, further studies are needed to confirm the cardioprotective potential of phenolic compounds towards their use alone or in combination with conventional drugs for effective therapeutic interventions.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olivia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Adedayo O. Ademiluyi
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Oluwakemi Adeleke
- Functional Foods and Nutraceuticals Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
- Department of Science Laboratory Technology, Ekiti State University, Ado-Ekiti, Nigeria
| | | | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Felipe Noriega
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillan 4070386, Chile
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara, Department of Microbiology, Timisoara, Romania
- Preventive Medicine Study Center, Timisoara, Romania
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
11
|
Calfío C, Donoso F, Huidobro‐Toro JP. Anthocyanins Activate Membrane Estrogen Receptors With Nanomolar Potencies to Elicit a Nongenomic Vascular Response Via NO Production. J Am Heart Assoc 2021; 10:e020498. [PMID: 34350775 PMCID: PMC8475021 DOI: 10.1161/jaha.119.020498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
Background The vascular pharmacodynamics of anthocyanins is only partially understood. To examine whether the anthocyanin-induced vasorelaxation is related to membrane estrogen receptor activity, the role of ERα or GPER antagonism was ascertained on anthocyanins or 17-β estradiol-(E2) induced vasodilatations and NO production. Methods and Results The rat arterial mesenteric bed was perfused with either anthocyanins or corresponding 3-O-glycosides, or E2, to examine rapid concentration-dependent vasorelaxations. The luminally accessible fraction of NO in mesenteric perfusates before and after anthocyanins or E2 administration was quantified. Likewise, NO-DAF signal detected NO production in primary endothelial cells cultures incubated with anthocyanins or E2 in the absence and presence of ERα (ICI 182,780) or GPER (G-36) selective antagonists. Anthocyanins or corresponding glycosides elicited, within minutes, vasodilation with nanomolar potencies; half maximal anthocyanin response reached 50% to 60% efficacy, in contrast to acetylcholine. The vasorelaxation is of rapid onset and exclusively endothelium-dependent; NOS inhibition annulled the vasorelaxation. The delphinidin vascular response was not modified by 100 nmol/L atropine but significantly attenuated by joint application of ICI plus G-36 (52±4.6 versus 8.5±1.5%), revealing the role of membrane estrogen receptors. Moreover, the anthocyanin or E2-induced NO production was antagonized up to 70% by these antagonists. NO-DAF signal elicited by anthocyanins was annulled by NOS inhibition or by ICI plus G-36 addition. Conclusions The biomedical effect of anthocyanins or 3-O-glycosylates derivatives contained in naturally purple-colored foods or berries is due to increased NO production, and not to the phytochemical's antioxidant potential, highlighting the nutraceutical role of natural products in cardiovascular diseases.
Collapse
Affiliation(s)
- Camila Calfío
- Laboratorio de FarmacologíaDepartamento de BiologíaFacultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
| | - Francisca Donoso
- Laboratorio de FarmacologíaDepartamento de BiologíaFacultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
| | - J. Pablo Huidobro‐Toro
- Laboratorio de FarmacologíaDepartamento de BiologíaFacultad de Química y BiologíaUniversidad de Santiago de ChileSantiagoChile
- Centro Desarrollo de Nanociencias y Nanotecnología, CEDENNASantiagoChile
| |
Collapse
|
12
|
Ferreira LLDM, Leão VDF, de Melo CM, Machado TDB, Amaral ACF, da Silva LL, Simas NK, Muzitano MF, Leal ICR, Raimundo JM. Ethyl Acetate Fraction and Isolated Phenolics Derivatives from Mandevilla moricandiana Identified by UHPLC-DAD-ESI-MS n with Pharmacological Potential for the Improvement of Obesity-Induced Endothelial Dysfunction. Pharmaceutics 2021; 13:pharmaceutics13081173. [PMID: 34452134 PMCID: PMC8401510 DOI: 10.3390/pharmaceutics13081173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
Endothelial dysfunction in obesity plays a key role in the development of cardiovascular diseases, and it is characterized by increased vascular tonus and oxidative stress. Thus, this study aimed to investigate the vasodilatory and antioxidant activities of Mandevilla moricandiana ethyl acetate fraction and subfractions. Vascular effects were investigated on aorta isolated from control and monosodium glutamate (MSG) induced-obese Wistar rats, and antioxidant activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) methods. The ethyl acetate fraction (MMEAF) induced a concentration-dependent vasodilation on aortic rings through the NO pathway, with the involvement of histamine H1 and estrogen ERα receptors and showed potent antioxidant activity. In aorta of MSG obese rats, maximal relaxation to acetylcholine was increased in the presence of MMEAF (3 µg/mL), indicating that MMEAF ameliorated obesity-induced endothelial dysfunction. Quercetin and kaempferol aglycones and their correspondent glycosides, as well as caffeoylquinic acid derivatives, A-type procyanidin trimer, ursolic and oleanolic triterpenoid acids were identified in subfractions from MMEAF and seem to be the metabolites responsible for the vascular and antioxidant activities of this fraction.
Collapse
Affiliation(s)
- Leticia L. D. M. Ferreira
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
- Laboratory of Natural Products and Biological Assays, Pharmacy Faculty, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Valéria de F. Leão
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
| | - Cinthya M. de Melo
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
| | - Thelma de B. Machado
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Faculty of Pharmacy, Federal Fluminense University, Niterói 24241-000, RJ, Brazil
| | - Ana Claudia F. Amaral
- Laboratory of Medicinal Plants and Derivatives, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Leandro L. da Silva
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
| | - Naomi K. Simas
- Laboratory of Natural Products and Biological Assays, Pharmacy Faculty, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Michelle F. Muzitano
- Laboratory of Bioactive Products, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27933-378, RJ, Brazil;
| | - Ivana C. R. Leal
- Laboratory of Natural Products and Biological Assays, Pharmacy Faculty, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Correspondence: (I.C.R.L.); (J.M.R.); Tel.: +55-21965620428 (I.C.R.L.); +55-2221414019 (J.M.R.)
| | - Juliana M. Raimundo
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
- Correspondence: (I.C.R.L.); (J.M.R.); Tel.: +55-21965620428 (I.C.R.L.); +55-2221414019 (J.M.R.)
| |
Collapse
|
13
|
Thomas P, Dong J. (-)-Epicatechin acts as a potent agonist of the membrane androgen receptor, ZIP9 (SLC39A9), to promote apoptosis of breast and prostate cancer cells. J Steroid Biochem Mol Biol 2021; 211:105906. [PMID: 33989703 DOI: 10.1016/j.jsbmb.2021.105906] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023]
Abstract
(-)-Epicatechin, a flavonoid present in high concentrations in foods such as green tea and cocoa, exerts beneficial and protective effects in numerous disease models, including anti-tumorigenesis and apoptosis in human breast and prostate cancer cells. Potential interactions of (-)-epicatechin and (+)-catechin with the membrane androgen receptor, ZIP9 (SLC39A9), which mediates androgen induction of apoptosis in these cancer cells, were investigated. Both (-)-epicatechin and (+)-catechin were effective competitors of [3H]-testosterone binding to PC-3 prostate cancer cells (nuclear androgen receptor-negative, nAR-null) overexpressing ZIP9 (PC3-ZIP9), with relative binding affinities of 75 % and 28 % that of testosterone, respectively. (-)-Epicatechin (200 nM) mimicked the effects of 100 nM testosterone in inducing apoptosis of PC3-ZIP9 cells, whereas (+)-catechin (concentration range 200 nM-1000 nM) did not significantly increase apoptosis and instead blocked the apoptotic response to testosterone. (-)-Epicatechin also activated androgen-dependent ZIP9 signaling pathways, inducing decreases in cAMP production and elevating intracellular free zinc levels, while (+)-catechin typically lacked these actions. Both (-)-epicatechin and (+)-catechin also bound to cell membranes of MDA-MB-468 breast cancer cells (nAR-null, high ZIP9 expression). MDA-MB-468 cells showed similar apoptotic, cAMP, and free zinc signaling responses to (-)-epicatechin to those observed in PC3-ZIP9 cells, as well as antagonism by (+)-catechin of testosterone-induced apoptosis and modulation of cAMP and caspase-3 levels. Moreover, knockdown of ZIP9 expression in MDA-MB-468 cells with siRNA decreased specific [3H]-testosterone binding of both catechins and blocked the apoptotic and free zinc responses to testosterone and (-)-epicatechin. The results indicate (-)-epicatechin is a potent ZIP9 agonist in breast and prostate cancer cells.
Collapse
Affiliation(s)
- Peter Thomas
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, United States.
| | - Jing Dong
- Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, United States
| |
Collapse
|
14
|
Tran-Nguyen VK, Bret G, Rognan D. True Accuracy of Fast Scoring Functions to Predict High-Throughput Screening Data from Docking Poses: The Simpler the Better. J Chem Inf Model 2021; 61:2788-2797. [PMID: 34109796 DOI: 10.1021/acs.jcim.1c00292] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hundreds of fast scoring functions have been developed over the last 20 years to predict binding free energies from three-dimensional structures of protein-ligand complexes. Despite numerous statistical promises, we believe that none of them has been properly validated for daily prospective high-throughput virtual screening studies, mostly because in silico screening challenges usually employ artificially built and biased datasets. We here carry out a fully unbiased evaluation of four scoring functions (Pafnucy, ΔvinaRF20, IFP, and GRIM) on an in-house developed data collection of experimental high-confidence screening data (LIT-PCBA) covering about 3 million data points on 15 diverse pharmaceutical targets. All four scoring functions were applied to rescore the docking poses of LIT-PCBA compounds in conditions mimicking exactly standard drug discovery scenarios and were compared in terms of propensity to enrich true binders in the top 1%-ranked hit lists. Interestingly, rescoring based on simple interaction fingerprints or interaction graphs outperforms state-of-the-art machine learning and deep learning scoring functions in most of the cases. The current study notably highlights the strong tendency of deep learning methods to predict affinity values within a very narrow range centered on the mean value of samples used for training. Moreover, it suggests that knowledge of pre-existing binding modes is the key to detecting the most potent binders.
Collapse
Affiliation(s)
- Viet-Khoa Tran-Nguyen
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| | - Guillaume Bret
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 67400 Illkirch, France
| |
Collapse
|
15
|
Oliveira G, Volino-Souza M, Conte-Júnior CA, Alvares TS. Food-derived polyphenol compounds and cardiovascular health: A nano-technological perspective. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Kumar S, Kim MH. SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors. J Cheminform 2021; 13:28. [PMID: 33766140 PMCID: PMC7993508 DOI: 10.1186/s13321-021-00507-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
In drug discovery, rapid and accurate prediction of protein–ligand binding affinities is a pivotal task for lead optimization with acceptable on-target potency as well as pharmacological efficacy. Furthermore, researchers hope for a high correlation between docking score and pose with key interactive residues, although scoring functions as free energy surrogates of protein–ligand complexes have failed to provide collinearity. Recently, various machine learning or deep learning methods have been proposed to overcome the drawbacks of scoring functions. Despite being highly accurate, their featurization process is complex and the meaning of the embedded features cannot directly be interpreted by human recognition without an additional feature analysis. Here, we propose SMPLIP-Score (Substructural Molecular and Protein–Ligand Interaction Pattern Score), a direct interpretable predictor of absolute binding affinity. Our simple featurization embeds the interaction fingerprint pattern on the ligand-binding site environment and molecular fragments of ligands into an input vectorized matrix for learning layers (random forest or deep neural network). Despite their less complex features than other state-of-the-art models, SMPLIP-Score achieved comparable performance, a Pearson’s correlation coefficient up to 0.80, and a root mean square error up to 1.18 in pK units with several benchmark datasets (PDBbind v.2015, Astex Diverse Set, CSAR NRC HiQ, FEP, PDBbind NMR, and CASF-2016). For this model, generality, predictive power, ranking power, and robustness were examined using direct interpretation of feature matrices for specific targets. ![]()
Collapse
Affiliation(s)
- Surendra Kumar
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea
| | - Mi-Hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon, Republic of Korea.
| |
Collapse
|
17
|
Bernatova I, Liskova S. Mechanisms Modified by (-)-Epicatechin and Taxifolin Relevant for the Treatment of Hypertension and Viral Infection: Knowledge from Preclinical Studies. Antioxidants (Basel) 2021; 10:467. [PMID: 33809620 PMCID: PMC8002320 DOI: 10.3390/antiox10030467] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Various studies have shown that certain flavonoids, flavonoid-containing plant extracts, and foods can improve human health. Experimental studies showed that flavonoids have the capacity to alter physiological processes as well as cellular and molecular mechanisms associated with their antioxidant properties. An important function of flavonoids was determined in the cardiovascular system, namely their capacity to lower blood pressure and to improve endothelial function. (-)-Epicatechin and taxifolin are two flavonoids with notable antihypertensive effects and multiple beneficial actions in the cardiovascular system, but they also possess antiviral effects, which may be of particular importance in the ongoing pandemic situation. Thus, this review is focused on the current knowledge of (-)-epicatechin as well as (+)-taxifolin and/or (-)-taxifolin-modified biological action and underlining molecular mechanisms determined in preclinical studies, which are relevant not only to the treatment of hypertension per se but may provide additional antiviral benefits that could be relevant to the treatment of hypertensive subjects with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Iveta Bernatova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
| | - Silvia Liskova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 813 71 Bratislava, Slovakia;
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
18
|
Abstract
Polyphenols are characterised structurally by two or more hydroxyl groups attached to one or more benzene rings, and provide the taste and colour characteristics of fruits and vegetables. They are radical scavengers and metal chelators, but due to their low concentration in biological fluids in vivo their antioxidant properties seem to be related to enhanced endogenous antioxidant capacity induced via signalling through the Nrf2 pathway. Polyphenols also seem to possess anti-inflammatory properties and have been shown to enhance vascular function via nitric oxide-mediated mechanisms. As a consequence, there is a rationale for supplementation with fruit-derived polyphenols both to enhance exercise performance, since excess reactive oxygen species generation has been implicated in fatigue development, and to enhance recovery from muscle damage induced by intensive exercise due to the involvement of inflammation and oxidative damage within muscle. Current evidence would suggest that acute supplementation with ~ 300 mg polyphenols 1–2 h prior to exercise may enhance exercise capacity and/or performance during endurance and repeated sprint exercise via antioxidant and vascular mechanisms. However, only a small number of studies have been performed to date, some with methodological limitations, and more research is needed to confirm these findings. A larger body of evidence suggests that supplementation with > 1000 mg polyphenols per day for 3 or more days prior to and following exercise will enhance recovery following muscle damage via antioxidant and anti-inflammatory mechanisms. The many remaining unanswered questions within the field of polyphenol research and exercise performance and recovery are highlighted within this review article.
Collapse
|
19
|
Legeay S, Trân K, Abatuci Y, Faure S, Helesbeux JJ. Novel Insights into the Mode of Action of Vasorelaxant Synthetic Polyoxygenated Chalcones. Int J Mol Sci 2020; 21:ijms21051609. [PMID: 32111098 PMCID: PMC7084244 DOI: 10.3390/ijms21051609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/31/2022] Open
Abstract
Polyphenols consumption has been associated with a lower risk of cardiovascular diseases (CVDs) notably through nitric oxide (NO)- and estrogen receptor α (ERα)-dependent pathways. Among polyphenolic compounds, chalcones have been suggested to prevent endothelial dysfunction and hypertension. However, the involvement of both the NO and the ERα pathways for the beneficial vascular effects of chalcones has never been demonstrated. In this study, we aimed to identify chalcones with high vasorelaxation potential and to characterize the signaling pathways in relation to ERα signaling and NO involvement. The evaluation of vasorelaxation potential was performed by myography on wild-type (WT) and ERα knock-out (ERα-KO) mice aorta in the presence or in absence of the eNOS inhibitor Nω-nitro-L-arginine methyl ester (L-NAME). Among the set of chalcones that were synthesized, four (3, 8, 13 and 15) exhibited a strong vasorelaxant effect (more than 80% vasorelaxation) while five compounds (6, 10, 11, 16, 17) have shown a 60% relief of the pre-contraction and four compounds (12, 14, 18, 20) led to a lower vasorelaxation. We were able to demonstrate that the vasorelaxant effect of two highly active chalcones was either ERα-dependent and NO-independent or ERα-independent and NO-dependent. Thus some structure-activity relationships (SAR) were discussed for an optimized vasorelaxant effect.
Collapse
Affiliation(s)
- Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 Rue Larrey, 49100 Angers, France;
- Correspondence: ; Tel.: +33-(0)2-44-68-85-32
| | - Kien Trân
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers CEDEX 01, France; (K.T.); (Y.A.); (J.-J.H.)
| | - Yannick Abatuci
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers CEDEX 01, France; (K.T.); (Y.A.); (J.-J.H.)
| | - Sébastien Faure
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 Rue Larrey, 49100 Angers, France;
| | - Jean-Jacques Helesbeux
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers CEDEX 01, France; (K.T.); (Y.A.); (J.-J.H.)
| |
Collapse
|
20
|
Chai SC, Jerusik J, Davis K, Wright RS, Zhang Z. Effect of Montmorency tart cherry juice on cognitive performance in older adults: a randomized controlled trial. Food Funct 2020; 10:4423-4431. [PMID: 31287117 DOI: 10.1039/c9fo00913b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypertension, inflammation and oxidative stress are important factors in the development of cognitive impairment. Our previous study demonstrated that tart cherry juice can lower systolic blood pressure (BP) and improve inflammatory and oxidative stress status in older adults. As part of our previous trial, we explored whether daily consumption of tart cherry juice would improve cognitive abilities. In this randomized controlled trial, 37 adults between the ages of 65-80 with normal cognitive function were recruited and randomly assigned to consume two cups of Montmorency tart cherry juice for 12 weeks. Subjective memory and objective cognitive performance were assessed at baseline and after the 12-week juice supplementation using a validated subjective memory questionnaire and a standardized battery of tests. Daily caloric intake and physical activity levels were assessed throughout the study period. After the intervention, participants in the tart cherry group had higher contentment with memory scores (mean difference of 2.7; 95% CI: 1.2 to 4.2; p = 0.02), lowered their scores of movement time (mean difference of -10.4; 95% CI: -13.4 to -7.5; p = 0.03) as well as performed better on the paired associates learning task (mean difference of -8.5; 95% CI: -12.5 to -4.5; p = 0.02) compared to the control group. The within-group analysis showed that the visual sustained attention (p < 0.0001) and spatial working memory (p = 0.06) improved after the 12-week consumption of tart cherry juice compared with corresponding baseline values. Daily tart cherry juice consumption may improve cognitive abilities. This may be through anti-oxidative and anti-inflammatory properties of tart cherry and its ability to lower BP. Further research is needed to confirm these findings.
Collapse
Affiliation(s)
- Sheau C Chai
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Jessica Jerusik
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Kristina Davis
- Department of Behavioral Health and Nutrition, College of Health Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Regina S Wright
- School of Nursing, College of Health Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zugui Zhang
- Value Institute, Christiana Care Health System, Newark, DE 19718, USA
| |
Collapse
|
21
|
Estrogenic biological activity and underlying molecular mechanisms of green tea constituents. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Legeay S, Trân K, Abatuci Y, Justiniano H, Lugnier C, Duval O, Helesbeux JJ, Faure S. Design, Synthesis, Pharmacological Evaluation and Vascular Effects of Delphinidin Analogues. Curr Pharm Des 2019; 24:5580-5589. [PMID: 30727871 DOI: 10.2174/1381612825666190206144913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Among polyphenolic compounds suggested to prevent cardiovascular diseases (CVDs) and to explain the "French paradox", the anthocyanidin delphinidin (Dp) has been reported to support at least partly the vascular beneficial effects of dietary polyphenolic compounds including those from fruits and related products as red wine. It has also been highlighted that Dp interacts directly with the active site of estrogen receptor α (ERα), leading to activation of endothelial NO synthase (eNOS) pathway thus contributing to the prevention of endothelial dysfunction in mice aorta. However, anthocyanidins have very low bioavailability and despite a well described in vitro efficacy, the very high hydrophilicity and physicochemical instability of Dp might explain the lack of in vivo reported effects. OBJECTIVE The aim of this study was to identify new Dp analogues with increased lipophilicity and vasorelaxation potential by a chemical modulation of its structure and to characterize the signaling pathway notably in relation with ERα signaling and nitric oxide (NO) production. METHOD OCH3-substituted delphinidin analogues were obtained through the coupling of the corresponding acetophenones with substituted benzaldehydes. Prediction of resorption of the flavylium derivatives was performed with the calculated logP and induction of vasorelaxation was performed by myography on WT and ERαKO mice thoracic aorta rings and compared to Dp. NO production was evaluated in vitro on human primary endothelial cells. RESULTS Eight Dp analogues were synthesized including four new flavylium derivatives. Two compounds (9 and 11) showed a strong increase of vasorelaxation potential and a theoretically increased bioavailability compared to Dp. Interestingly, 9 and 11 induced increased O2 - or NO endothelial production respectively and revealed a novel NO-dependent ERα-independent relaxation compared to Dp. We suggested that this mechanism may be at least in part supported by the inhibition of vascular cyclic nucleotide phosphodiesterase (PDEs). CONCLUSION The current study demonstrated that pharmacomodulation of the Dp backbone by replacement of OH groups by OCH3 groups of the A and B rings led to the identification and characterization of two compounds (9 and 11) with enhanced physio-chemical properties that could be associated to higher permeability capability and pharmacological activity for the prevention of CVDs compared to Dp.
Collapse
Affiliation(s)
- Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| | - Kien Trân
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Yannick Abatuci
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Hélène Justiniano
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Universite de Strasbourg, Illkirch, France
| | - Claire Lugnier
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Universite de Strasbourg, Illkirch, France
| | - Olivier Duval
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| | - Jean-Jacques Helesbeux
- SONAS, EA921, UNIV Angers, SFR QUASAV, Faculty of Health Sciences, Dpt Pharmacy, 16 Bd Daviers, 49045 Angers cedex 01, France
| | - Sébastien Faure
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| |
Collapse
|
23
|
Chen Z, Zhang R, Shi W, Li L, Liu H, Liu Z, Wu L. The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11288-11306. [PMID: 31557009 DOI: 10.1021/acs.jafc.9b05079] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Delphinidin (Del) and its glycosides are water-soluble pigments, belonging to a subgroup of flavonoids. They are health-promoting candidates for pharmaceutical and nutraceutical uses, as indicated by exhibiting antioxidation, anti-inflammation, antimicroorganism, antidiabetes, antiobesity, cardiovascular protection, neuroprotection, and anticancer properties. Glycosylation modification of Del is associated with increased stability and reduced biological activity. Del and its glycosides can be the alternative inhibitors of CBRs, ERα/β, EGFR, BCRP, and SGLT-1, and virtual docking indicates that the sugar moiety may not effectively interact with the active sites of the targets. Structure-based characteristics confer the multifunctional properties of Del and its glycosides. Because of their health-promoting effects, Del and its glycosides are promising and have been developed as potential pharmaceuticals. However, more investigation on the underlying mechanisms of Del and its glycosides in mediating cellular processes with high specificity are still needed. The research progression of Del and its glycosides over the last 10 years is comprehensively reviewed in this article.
Collapse
Affiliation(s)
- Zhixi Chen
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Rui Zhang
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Weimei Shi
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Linfu Li
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Hai Liu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| | - Zhiping Liu
- School of Basic Medicine , Gannan Medical University , Ganzhou 341000 , China
| | - Longhuo Wu
- College of Pharmacy , Gannan Medical University , Ganzhou 341000 , China
| |
Collapse
|
24
|
Calfío C, Huidobro-Toro JP. Potent Vasodilator and Cellular Antioxidant Activity of Endemic Patagonian Calafate Berries ( Berberis microphylla) with Nutraceutical Potential. Molecules 2019; 24:E2700. [PMID: 31349544 PMCID: PMC6695892 DOI: 10.3390/molecules24152700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022] Open
Abstract
Hydroalcoholic extracts of Patagonian Calafate berry (Berberis microphylla) contain mono or disaccharide conjugated anthocyanins and flavonols. The Liquid Chromatography-Mass Spectrometry (LC-MS) chemical extract profile identified glycosylated anthocyanidins such as delphinidin-, petunidin- and malvidin-3-glucoside as the major constituents. The predominant flavonols were 3-O substituents quercetin-rutinoside or -rhamnoside. Anthocyanins doubled flavonols in mass (13.1 vs. 6 mg/g extract). Polyphenols vascular actions were examined in the rat arterial mesenteric bed bioassay; extract perfusion elicited concentration-dependent vasodilatation mimicked by conjugated anthocyanins standards. Vascular responses of main glycosylated anthocyanins were endothelium-dependent (p < 0.001) and mediated by NO production (p < 0.05). The anthocyanins antioxidant activity determined in isolated endothelial cells (CAA) showed a reduced redox potential as compared to the extract or quercetin. While in the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay, the anthocyanins showed an equivalent quercetin potency, the extract was 15-fold less active, proposing that the anthocyanin-induced vasodilation is not due to an antioxidant mechanism. The extract shows promising commercial nutraceutical potential.
Collapse
Affiliation(s)
- Camila Calfío
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| | - Juan Pablo Huidobro-Toro
- Laboratorio de Farmacología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
- Centro para el Desarrollo de Nanociencia y Nanotecnología (CEDENNA), Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
25
|
Lack of a Synergistic Effect on Cardiometabolic and Redox Markers in a Dietary Supplementation with Anthocyanins and Xanthophylls in Postmenopausal Women. Nutrients 2019; 11:nu11071533. [PMID: 31284490 PMCID: PMC6683247 DOI: 10.3390/nu11071533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Fruits and vegetables are pivotal for a healthy diet due partly to their content in bioactive compounds. It is for this reason that we conducted a parallel study to unravel the possible effect on cardiometabolic parameters of the ingestion of anthocyanins, xanthophylls, or both groups of bioactives together in postmenopausal women. Seventy-two postmenopausal women were randomized into an 8-month parallel study: a group consuming 60 mg/day anthocyanins (Group A), a group consuming 6 mg lutein and 2 mg zeaxanthin per day (Group X), and a third group consuming a combination of anthocyanins and xanthophylls in the same amounts (Group A+X). Non-targeted metabolomic analysis was done in plasma samples at baseline and after the 8-month intervention by HPLC-QTOF-MS. Inflammatory, antioxidant, and cardiometabolic parameters were measured at the beginning of the study and after 4 and 8-months intervention. Compared with baseline values, none of the 8-month treatments significantly (p < 0.05) changed systolic or diastolic blood pressure (BP), plasma C-reactive protein, interleukin 6, vascular cell adhesion molecule-1, intercellular adhesion molecule-1, monocyte chemoattractant protein-1 or matrix metalloproteinases 2 and 9. Only plasma glucose levels were significantly decreased by treatment A+X after 8 months, and the plasma metabolomic profile was clearly affected by all three dietary supplementations after 8 months. In parallel, there was an increase, also for the three groups, in the plasma ferric reducing antioxidant power value that did not show any synergistic effect between the two groups of bioactives. Postmenopausal women could benefit from an increase in anthocyanins and xanthophylls intake, through the consumption of fruits and vegetables rich in these two types of compounds. Accordingly, plasma glucose and, above all, the reducing power in plasma, could be improved.
Collapse
|
26
|
Moringa oleifera Seeds Improve Aging-Related Endothelial Dysfunction in Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2567198. [PMID: 31214278 PMCID: PMC6535829 DOI: 10.1155/2019/2567198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/14/2019] [Indexed: 12/16/2022]
Abstract
Vascular aging is characterized by functional and structural changes of the vessel wall, including endothelial dysfunction, with decreased endothelial NO· bioavailability and elevated vasoconstrictor and inflammatory mediator production, vascular rigidity, and tone impairment. Moringa oleifera (MOI) is a little tree, and different parts of which are used in traditional medicine in tropical Africa, America, and Asia for therapeutic applications in several disorders including cardiovascular disease. The present study is aimed at assessing the effect of MOI on aging-associated alteration of the endothelial function in Wistar rats. Middle-aged Wistar rats (46-week-old males) have been fed with food containing or not 750 mg/kg/day of MOI seed powder for 4 weeks. A group of young Wistar rats (16-week-old) was used as control. Measurement of isometric contraction, western blot analysis, and immunostaining has then been performed in the aortas and mesenteric arteries to assess the endothelium function. MOI treatment improved carbachol-induced relaxation in both aortas and mesenteric arteries of middle-aged rats. In the aortas, this was associated with an increased Akt signalling and endothelial NO synthase activation and a downregulation of arginase-1. In the mesenteric arteries, the improvement of the endothelial-dependent relaxation was related to an EDHF-dependent mechanism. These results suggest a vascular protective effect of MOI seeds against the vascular dysfunction that develops during aging through different mechanisms in conductance and resistance arteries.
Collapse
|
27
|
Spirulina Liquid Extract Protects against Fibrosis Related to Non-Alcoholic Steatohepatitis and Increases Ursodeoxycholic Acid. Nutrients 2019; 11:nu11010194. [PMID: 30669332 PMCID: PMC6357008 DOI: 10.3390/nu11010194] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/06/2019] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by an excess of lipids and oxidative stress in the liver. Spirulina was reported to possess hypolipemic and antioxidative effects and might counteract NASH development. C57Bl/6J mice were fed a western diet (WD) during 25 weeks with or without spirulina liquid extract (SLE) at 2 different doses (WDS1 and WDS2 groups) in drinking water. Liver histology, inflammation, and oxidative stress were assessed as well as glucose tolerance status, lipid metabolism, and gallbladder bile acid profile. WDS2 gained significantly less weight than WD. Liver weight-to-body weight ratio and plasma alanine aminotransferase were significantly lower in WDS2 mice. A reduced liver fibrosis and NFκBp65 protein expression were measured in the supplemented group as a lower accumulation of superoxide anion, nitric oxide, and thiobarbituric reactive substances. WDS2 mice showed also a preserved glucose tolerance, a strong decrease of plasma cholesterol, and a significant increase of gallbladder ursodeoxycholic acid and β-muricholic acid. Our findings demonstrate a protective effect of SLE against WD induced NASH that is related to less inflammation and oxidative stress, a preserved glucose tolerance, and less hepatotoxic bile acid profile.
Collapse
|
28
|
Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of Red Wine Consumption on Cardiovascular Health. Curr Med Chem 2019; 26:3542-3566. [PMID: 28521683 DOI: 10.2174/0929867324666170518100606] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks. METHODS This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: "red wine, cardiovascular, alcohol" in combination with "polyphenols, heart failure, infarction". RESULTS Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the "French paradox". Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk. CONCLUSION Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
29
|
Abstract
Hippocrates, the father of medicine, had said: "Wine is a thing wonderfully appropriate to man if, in health as in disease, it is administered with appropriate and just measure according to the individual constitution." Wine has always accompanied humanity, for religion or for health. Christians and Jews need wine for the liturgy. For Plato, wine was an indispensable element in society and the most important in the symposium. In this second part of the banquet, mixed with water, the wine gave the word. If the French paradox made a lot of ink flow; it was the wine that was originally responsible for it. Many researchers have tried to study alcohol and polyphenols in wine, in order to solve the mystery. Beyond its cardiovascular effects, there are also effects on longevity, metabolism, cancer prevention, and neuroprotection, and the list goes on. The purpose of this work is to make an analysis of the current knowledge on the subject. Indeed, if the paradigm of antioxidants is seductive, it is perhaps by their prooxidant effect that the polyphenols act, by an epigenetic process mediated by nrf2. Wine is a preserve of antioxidants for the winter and it is by this property that the wine acts, in an alcoholic solution. A wine without alcohol is pure heresy. Wine is the elixir that by design, over millennials, has acted as a pharmacopeia that enabled man to heal and prosper on the planet. From Alvise Cornaro to Serge Renaud, nutrition was the key to health and longevity, whether the Cretan or Okinawa diet, it is the small dose of alcohol (wine or sake) that allows the bioavailability of polyphenols. Moderate drinking gives a protection for diseases and a longevity potential. In conclusion, let us drink fewer, but drink better, to live older.
Collapse
|
30
|
Williamson G, Kay CD, Crozier A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr Rev Food Sci Food Saf 2018; 17:1054-1112. [DOI: 10.1111/1541-4337.12351] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Colin D. Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Inst. North Carolina State Univ. North Carolina Research Campus Kannapolis NC 28081 U.S.A
| | - Alan Crozier
- Dept. of Nutrition Univ. of California Davis CA 95616 U.S.A
- School of Medicine Dentistry and Nursing, Univ. Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
31
|
Oak MH, Auger C, Belcastro E, Park SH, Lee HH, Schini-Kerth VB. Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium. Free Radic Biol Med 2018; 122:161-170. [PMID: 29548794 DOI: 10.1016/j.freeradbiomed.2018.03.018] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Epidemiological studies have indicated that regular intake of polyphenol-rich diets such as red wine and tea, are associated with a reduced risk of cardiovascular diseases. The beneficial effect of polyphenol-rich products has been attributable, at least in part, to their direct action on the endothelial function. Indeed, polyphenols from tea, grapes, cacao, berries, and plants have been shown to activate endothelial cells to increase the formation of potent vasoprotective factors including nitric oxide (NO) and to delay endothelial ageing. Moreover, intake of such polyphenol-rich products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in Humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that polyphenols are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Min-Ho Oak
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Republic of Korea
| | - Cyril Auger
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Eugenia Belcastro
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Sin-Hee Park
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Hyun-Ho Lee
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, 67000 Strasbourg, France; Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France.
| |
Collapse
|
32
|
Leonetti D, Soleti R, Clere N, Vergori L, Jacques C, Duluc L, Dourguia C, Martínez MC, Andriantsitohaina R. Extract Enriched in Flavan-3-ols and Mainly Procyanidin Dimers Improves Metabolic Alterations in a Mouse Model of Obesity-Related Disorders Partially via Estrogen Receptor Alpha. Front Pharmacol 2018; 9:406. [PMID: 29740325 PMCID: PMC5928481 DOI: 10.3389/fphar.2018.00406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/09/2018] [Indexed: 01/21/2023] Open
Abstract
Red wine polyphenol extracts improve cardiovascular and metabolic disorders linked to obesity. Their vascular protection is mediated by the activation of the alpha isoform of the estrogen receptor (ERα). In the present study, we explored the effects of a grape seed extract (GSE) enriched in the flavan-3-ols procyanidin dimers on obesity-related cardiovascular and metabolic disorders; with a particular interest in the role/contribution of ERα. Ovariectomized wild type or ERα knockout (KO) mice were fed with standard or western diet, supplemented or not with GSE, for 12 weeks. Their body weight was monitored throughout the study, and an echocardiography was performed at the end of the treatment. Blood and tissues were collected for biochemical and functional analysis, including nitric oxide and oxidative stress measurement. Vascular reactivity and liver mitochondrial complexes activity were also analyzed. In western diet-fed mice, GSE reduced adiposity, plasma triglycerides, and oxidative stress in the heart, liver, adipose and skeletal tissues; but did not improve the vascular dysfunction. In western diet-fed mice, ERα deletion prevented or reduced the beneficial effects of GSE on plasma triglycerides and visceral adiposity. ERα deletion also prevented/reduced the anti-oxidant effect of GSE in the liver, but did not affect its capacity to reduce oxidative stress in the heart and adipose tissue. In conclusion, dietary supplementation of GSE attenuated features of metabolic syndrome partially through ERα-dependent mechanisms. This report highlights the therapeutic potential of polyphenols, and especially extract enriched in procyanidin dimers, against the metabolic disorders associated with excessive energy intake.
Collapse
Affiliation(s)
- Daniela Leonetti
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Raffaella Soleti
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Nicolas Clere
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Luisa Vergori
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Caroline Jacques
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Lucie Duluc
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Catherine Dourguia
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France
| | - Maria C Martínez
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France.,Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Ramaroson Andriantsitohaina
- INSERM UMR1063, Stress Oxydant et Pathologies Métaboliques, Faculté de Santé, UNIV Angers, Université Bretagne Loire, Angers, France.,Centre Hospitalier Universitaire d'Angers, Angers, France
| |
Collapse
|
33
|
Biological activities of (-)-epicatechin and (-)-epicatechin-containing foods: Focus on cardiovascular and neuropsychological health. Biotechnol Adv 2018; 36:666-681. [PMID: 29355598 DOI: 10.1016/j.biotechadv.2018.01.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
Abstract
Recent studies have suggested that certain (-)-epicatechin-containing foods have a blood pressure-lowering capacity. The mechanisms underlying (-)-epicatechin action may help prevent oxidative damage and endothelial dysfunction, which have both been associated with hypertension and certain brain disorders. Moreover, (-)-epicatechin has been shown to modify metabolic profile, blood's rheological properties, and to cross the blood-brain barrier. Thus, (-)-epicatechin causes multiple actions that may provide unique synergy beneficial for cardiovascular and neuropsychological health. This review summarises the current knowledge on the biological actions of (-)-epicatechin, related to cardiovascular and brain functions, which may play a remarkable role in human health and longevity.
Collapse
|
34
|
Losada-Echeberría M, Herranz-López M, Micol V, Barrajón-Catalán E. Polyphenols as Promising Drugs against Main Breast Cancer Signatures. Antioxidants (Basel) 2017; 6:E88. [PMID: 29112149 PMCID: PMC5745498 DOI: 10.3390/antiox6040088] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/30/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is one of the most common neoplasms worldwide, and in spite of clinical and pharmacological advances, it is still a clinical problem, causing morbidity and mortality. On the one hand, breast cancer shares with other neoplasms some molecular signatures such as an imbalanced redox state, cell cycle alterations, increased proliferation and an inflammatory status. On the other hand, breast cancer shows differential molecular subtypes that determine its prognosis and treatment. These are characterized mainly by hormone receptors especially estrogen receptors (ERs) and epidermal growth factor receptor 2 (HER2). Tumors with none of these receptors are classified as triple negative breast cancer (TNBC) and are associated with a worse prognosis. The success of treatments partially depends on their specificity and the adequate molecular classification of tumors. New advances in anticancer drug discovery using natural compounds have been made in the last few decades, and polyphenols have emerged as promising molecules. They may act on various molecular targets because of their promiscuous behavior, presenting several physiological effects, some of which confer antitumor activity. This review analyzes the accumulated evidence of the antitumor effects of plant polyphenols on breast cancer, with special attention to their activity on ERs and HER2 targets and also covering different aspects such as redox balance, uncontrolled proliferation and chronic inflammation.
Collapse
Affiliation(s)
- María Losada-Echeberría
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - María Herranz-López
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| | - Vicente Micol
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
- CIBER, Fisiopatología de la Obesidad y la Nutrición, CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Palma de Mallorca 07122, Spain.
| | - Enrique Barrajón-Catalán
- Institute of Molecular and Cell Biology (IBMC), Miguel Hernández University (UMH), Avda. Universidad s/n, Elche 03202, Spain.
| |
Collapse
|
35
|
Da Silva F, Desaphy J, Rognan D. IChem: A Versatile Toolkit for Detecting, Comparing, and Predicting Protein-Ligand Interactions. ChemMedChem 2017; 13:507-510. [PMID: 29024463 PMCID: PMC5901026 DOI: 10.1002/cmdc.201700505] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/06/2017] [Indexed: 12/21/2022]
Abstract
Structure-based ligand design requires an exact description of the topology of molecular entities under scrutiny. IChem is a software package that reflects the many contributions of our research group in this area over the last decade. It facilitates and automates many tasks (e.g., ligand/cofactor atom typing, identification of key water molecules) usually left to the modeler's choice. It therefore permits the detection of molecular interactions between two molecules in a very precise and flexible manner. Moreover, IChem enables the conversion of intricate three-dimensional (3D) molecular objects into simple representations (fingerprints, graphs) that facilitate knowledge acquisition at very high throughput. The toolkit is an ideal companion for setting up and performing many structure-based design computations.
Collapse
Affiliation(s)
- Franck Da Silva
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 74 route du Rhin, 67400, Illkirch, France
| | - Jeremy Desaphy
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 74 route du Rhin, 67400, Illkirch, France.,Discovery Chemistry Research and Technologies, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 74 route du Rhin, 67400, Illkirch, France
| |
Collapse
|
36
|
Pastorková B, Illés P, Dvořák Z. Profiling of anthocyanidins against transcriptional activities of steroid and nuclear receptors. Drug Chem Toxicol 2017; 41:434-440. [DOI: 10.1080/01480545.2017.1380659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Barbora Pastorková
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Petr Illés
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
37
|
Estrogen receptor α/HDAC/NFAT axis for delphinidin effects on proliferation and differentiation of T lymphocytes from patients with cardiovascular risks. Sci Rep 2017; 7:9378. [PMID: 28839227 PMCID: PMC5570903 DOI: 10.1038/s41598-017-09933-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 08/01/2017] [Indexed: 12/16/2022] Open
Abstract
Delphinidin, an anthocyanin present in red wine, has been reported to preserve the integrity of endothelium via an estrogen receptor alpha (ERα)-dependent mechanism. However, the effect of delphinidin on the immune response in obesity-related inflammation remains unknown. Given the important role of T lymphocytes in obesity-related inflammation, we investigated the effect of delphinidin on proliferation and differentiation of T lymphocytes from healthy subjects and metabolic syndrome patients. Delphinidin decreased the proliferation stimulated by different agents acting through different mechanisms. This effect of delphinidin was associated with its ability to inhibit Ca2+ signaling via reduced store-operated Ca2+ entry and release, and subsequent decrease of HDAC and NFAT activations. Delphinidin also inhibited ERK1/2 activation. Pharmacological inhibition of ER with fulvestrant, or deletion of ERα, prevented the effect of delphinidin. Further, delphinidin suppressed the differentiation of T cells toward Th1, Th17 and Treg without affecting Th2 subsets. Interestingly, delphinidin inhibited both proliferation and differentiation of T cells taken from patients with cardiovascular risks associated with metabolic syndrome. Together, we propose that delphinidin, by acting on ERα via multiple cellular targets, may represent a new approach against chronic inflammation associated with T lymphocyte activation, proliferation and differentiation, in patients with cardiovascular risk factors.
Collapse
|
38
|
Goszcz K, Duthie GG, Stewart D, Leslie SJ, Megson IL. Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response? Br J Pharmacol 2017; 174:1209-1225. [PMID: 28071785 PMCID: PMC5429332 DOI: 10.1111/bph.13708] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Polyphenols are widely regarded to have a wide range of health-promoting qualities, including beneficial effects on cardiovascular disease. Historically, the benefits have been linked to their well-recognized powerful antioxidant activity. However, the concept that the beneficial effects are attributable to direct antioxidant activity in vivo does not pay sufficient heed to the fact that polyphenols degrade rapidly, are poorly absorbed and rapidly metabolized, resulting in very low bioavailability. This review explores alternative mechanisms by which polyphenols, or their metabolites, exert biological activity via mechanisms that can be activated by physiologically relevant concentrations. Evidence is presented to support the action of phenolic derivatives on receptors and signalling pathways to induce adaptive responses that drive changes in endogenous antioxidant, antiplatelet, vasodilatory and anti-inflammatory effects. The implications are that in vitro antioxidant measures as predictors of polyphenol protective activity in vivo hold little relevance and that closer attention needs to be paid to bioavailable metabolites to understand the mode of action of these diet-derived components. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Katarzyna Goszcz
- Department of Diabetes and Cardiovascular ScienceUniversity of the Highlands and Islands, Centre for Health ScienceInvernessUK
| | - Garry G Duthie
- Rowett Institute of Nutrition and HealthUniversity of AberdeenAberdeenUK
| | - Derek Stewart
- The James Hutton InstituteDundeeUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghUK
| | - Stephen J Leslie
- Department of Diabetes and Cardiovascular ScienceUniversity of the Highlands and Islands, Centre for Health ScienceInvernessUK
- Cardiology UnitRaigmore HospitalInvernessUK
| | - Ian L Megson
- Department of Diabetes and Cardiovascular ScienceUniversity of the Highlands and Islands, Centre for Health ScienceInvernessUK
| |
Collapse
|
39
|
Bowtell JL, Aboo-Bakkar Z, Conway ME, Adlam ALR, Fulford J. Enhanced task-related brain activation and resting perfusion in healthy older adults after chronic blueberry supplementation. Appl Physiol Nutr Metab 2017; 42:773-779. [PMID: 28249119 DOI: 10.1139/apnm-2016-0550] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Blueberries are rich in flavonoids, which possess antioxidant and anti-inflammatory properties. High flavonoid intakes attenuate age-related cognitive decline, but data from human intervention studies are sparse. We investigated whether 12 weeks of blueberry concentrate supplementation improved brain perfusion, task-related activation, and cognitive function in healthy older adults. Participants were randomised to consume either 30 mL blueberry concentrate providing 387 mg anthocyanidins (5 female, 7 male; age 67.5 ± 3.0 y; body mass index, 25.9 ± 3.3 kg·m-2) or isoenergetic placebo (8 female, 6 male; age 69.0 ± 3.3 y; body mass index, 27.1 ± 4.0 kg·m-2). Pre- and postsupplementation, participants undertook a battery of cognitive function tests and a numerical Stroop test within a 1.5T magnetic resonance imaging scanner while functional magnetic resonance images were continuously acquired. Quantitative resting brain perfusion was determined using an arterial spin labelling technique, and blood biomarkers of inflammation and oxidative stress were measured. Significant increases in brain activity were observed in response to blueberry supplementation relative to the placebo group within Brodmann areas 4/6/10/21/40/44/45, precuneus, anterior cingulate, and insula/thalamus (p < 0.001) as well as significant improvements in grey matter perfusion in the parietal (5.0 ± 1.8 vs -2.9 ± 2.4%, p = 0.013) and occipital (8.0 ± 2.6 vs -0.7 ± 3.2%, p = 0.031) lobes. There was also evidence suggesting improvement in working memory (2-back test) after blueberry versus placebo supplementation (p = 0.05). Supplementation with an anthocyanin-rich blueberry concentrate improved brain perfusion and activation in brain areas associated with cognitive function in healthy older adults.
Collapse
Affiliation(s)
- Joanna L Bowtell
- a Sport and Health Sciences, University of Exeter, St Luke's Campus, Heavitree Rd., Exeter, EX1 2LU, United Kingdom
| | - Zainie Aboo-Bakkar
- a Sport and Health Sciences, University of Exeter, St Luke's Campus, Heavitree Rd., Exeter, EX1 2LU, United Kingdom
| | - Myra E Conway
- b Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | | | | |
Collapse
|
40
|
Abstract
Drug discovery is a multidisciplinary and multivariate optimization endeavor. As such, in silico screening tools have gained considerable importance to archive, analyze and exploit the vast and ever-increasing amount of experimental data generated throughout the process. The current review will focus on the computer-aided prediction of the numerous properties that need to be controlled during the discovery of a preliminary hit and its promotion to a viable clinical candidate. It does not pretend to the almost impossible task of an exhaustive report but will highlight a few key points that need to be collectively addressed both by chemists and biologists to fuel the drug discovery pipeline with innovative and safe drug candidates.
Collapse
Affiliation(s)
- Didier Rognan
- Laboratoire d'Innovation Thérapeutique, UMR 7200 CNRS-Université de Strasbourg, 74 route du Rhin, 67400 Illkirch, France.
| |
Collapse
|
41
|
Leonetti D, Soleti R, Clere N, Vergori L, Jacques C, Duluc L, Dourguia C, Martínez MC, Andriantsitohaina R. Estrogen Receptor α Participates to the Beneficial Effect of Red Wine Polyphenols in a Mouse Model of Obesity-Related Disorders. Front Pharmacol 2017; 7:529. [PMID: 28119607 PMCID: PMC5222790 DOI: 10.3389/fphar.2016.00529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/20/2016] [Indexed: 01/25/2023] Open
Abstract
Red wine polyphenol extracts (polyphenols) ameliorate cardiovascular and metabolic disorders associated with obesity. Previously, we demonstrated that the alpha isoform of estrogen receptor (ERα) triggers the vascular protection of polyphenols. Here, we investigated the contribution of ERα on the effects of polyphenols on cardiovascular and metabolic alterations associated with obesity. We used ovariectomized wild type or ERα-deficient mice receiving standard (SD) or western (WD) diets, or SD and WD containing polyphenols (SD+polyphenols and WD+polyphenols, respectively) over a 12-week period. Body weight was measured during treatment. Echocardiography examination was performed before sacrifice. Blood and tissues were sampled for biochemical and functional analysis with respect to nitric oxide (NO•) and oxidative stress. Vascular reactivity and liver mitochondrial complexes were analyzed. In WD-fed mice, polyphenols reduced adiposity, plasma triglycerides and oxidative stress in aorta, heart, adipose and liver tissues and enhanced NO• production in aorta and liver. ERα deletion prevented or reduced the beneficial effects of polyphenols, especially visceral adiposity, aortic and liver oxidative stresses and NO• bioavailability. ERα deletion, however, had no effect on polyphenol's ability to decrease the fat accumulation and oxidative stress of subcutaneous adipose tissue. Also, ERα deletion did not modify the decrease of ROS levels induced by polyphenols treatment in the visceral adipose tissue and heart from WD-fed mice. Dietary supplementation of polyphenols remarkably attenuates features of metabolic syndrome; these effects are partially mediated by ERα-dependent mechanisms. This study demonstrates the therapeutic potential of this extract in metabolic and cardiovascular alterations linked to excessive energy intake.
Collapse
Affiliation(s)
- Daniela Leonetti
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Raffaella Soleti
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Nicolas Clere
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Luisa Vergori
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Caroline Jacques
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Lucie Duluc
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Catherine Dourguia
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Maria C Martínez
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'Angers Angers, France
| | - Ramaroson Andriantsitohaina
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Université d'AngersAngers, France; Centre Hospitalier Universitaire d'AngersAngers, France
| |
Collapse
|
42
|
Huang PC, Kuo WW, Shen CY, Chen YF, Lin YM, Ho TJ, Padma VV, Lo JF, Huang CY, Huang CY. Anthocyanin Attenuates Doxorubicin-Induced Cardiomyotoxicity via Estrogen Receptor-α/β and Stabilizes HSF1 to Inhibit the IGF-IIR Apoptotic Pathway. Int J Mol Sci 2016; 17:E1588. [PMID: 27657062 PMCID: PMC5037853 DOI: 10.3390/ijms17091588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/23/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022] Open
Abstract
Doxorubicin (Dox) is extensively used for chemotherapy in different types of cancer, but its use is limited to because of its cardiotoxicity. Our previous studies found that doxorubicin-induced insulin-like growth factor II receptor (IGF-IIR) accumulation causes cardiomyocytes apoptosis via down-regulation of HSF1 pathway. In these studies, we demonstrated a new mechanism through which anthocyanin protects cardiomyoblast cells against doxorubicin-induced injury. We found that anthocyanin decreased IGF-IIR expression via estrogen receptors and stabilized heat shock factor 1 (HSF1) to inhibit caspase 3 activation and apoptosis of cardiomyocytes. Therefore, the phytoestrogen from plants has been considered as another potential treatment for heart failure. It has been reported that the natural compound anthocyanin (ACN) has the ability to reduce the risk of cardiovascular disease (CVD). Here, we demonstrated that anthocyanin acts as a cardioprotective drug against doxorubicin-induced heart failure by attenuating cardiac apoptosis via estrogen receptors to stabilize HSF1 expression and down-regulated IGF-IIR-induced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 40402, Taiwan.
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan.
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingguang Road, Pingtung 91202, Taiwan.
| | - Yu-Feng Chen
- Section of Cardiology, Yuan Rung Hospital, Yuanlin 51045, Taiwan.
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua 500, Taiwan.
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan.
| | - Tsung-Jung Ho
- Chinese Medicine Department, China Medical University Beigang Hospital, Taichung 40402, Taiwan.
| | - V Vijaya Padma
- Department of Biotechnology, Bharathiar University, Coimbatore 641046, India.
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Chinese Medical Science, China Medical University, Hsueh-Shih Road, Taichung 40402, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 40402, Taiwan.
| |
Collapse
|
43
|
Slynko I, Da Silva F, Bret G, Rognan D. Docking pose selection by interaction pattern graph similarity: application to the D3R grand challenge 2015. J Comput Aided Mol Des 2016; 30:669-683. [DOI: 10.1007/s10822-016-9930-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
|
44
|
Auger C, Said A, Nguyen PN, Chabert P, Idris-Khodja N, Schini-Kerth VB. Potential of Food and Natural Products to Promote Endothelial and Vascular Health. J Cardiovasc Pharmacol 2016; 68:11-8. [PMID: 26974893 DOI: 10.1097/fjc.0000000000000382] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endothelial dysfunction is now well established as a pivotal early event in the development of major cardiovascular diseases including hypertension, atherosclerosis, and diabetes. The alteration of the endothelial function is often triggered by an imbalance between the endothelial formation of vasoprotective factors including nitric oxide (NO) and endothelium-dependent hyperpolarization, and an increased level of oxidative stress involving several prooxidant enzymes such as NADPH oxidase and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Preclinical studies have indicated that polyphenol-rich food and food-derived products such as grape-derived products, black and red berries, green and black teas and cocoa, and omega-3 fatty acids can trigger activating pathways in endothelial cells promoting an increased formation of nitric oxide and endothelium-dependent hyperpolarization. Moreover, intake of such food-derived products has been associated with the prevention and/or the improvement of an established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. This review will discuss both experimental and clinical evidences indicating that different types of food and natural products are able to promote endothelial and vascular health, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Cyril Auger
- UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
45
|
Keravis T, Favot L, Abusnina AA, Anton A, Justiniano H, Soleti R, Alabed Alibrahim E, Simard G, Andriantsitohaina R, Lugnier C. Delphinidin Inhibits Tumor Growth by Acting on VEGF Signalling in Endothelial Cells. PLoS One 2015; 10:e0145291. [PMID: 26694325 PMCID: PMC4687871 DOI: 10.1371/journal.pone.0145291] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/02/2015] [Indexed: 12/31/2022] Open
Abstract
The vasculoprotective properties of delphinidin are driven mainly by its action on endothelial cells. Moreover, delphinidin displays anti-angiogenic properties in both in vitro and in vivo angiogenesis models and thereby might prevent the development of tumors associated with excessive vascularization. This study was aimed to test the effect of delphinidin on melanoma-induced tumor growth with emphasis on its molecular mechanism on endothelial cells. Delphinidin treatment significantly decreased in vivo tumor growth induced by B16-F10 melanoma cell xenograft in mice. In vitro, delphinidin was not able to inhibit VEGFR2-mediated B16-F10 melanoma cell proliferation but it specifically reduced basal and VEGFR2-mediated endothelial cell proliferation. The anti-proliferative effect of delphinidin was reversed either by the MEK1/2 MAP kinase inhibitor, U-0126, or the PI3K inhibitor, LY-294002. VEGF-induced proliferation was reduced either by U-0126 or LY-294002. Under these conditions, delphinidin failed to decrease further endothelial cell proliferation. Delphinidin prevented VEGF-induced phosphorylation of ERK1/2 and p38 MAPK and decreased the expression of the transcription factors, CREB and ATF1. Finally, delphinidin was more potent in inhibiting in vitro cyclic nucleotide phosphodiesterases (PDEs), PDE1 and PDE2, compared to PDE3-PDE5. Altogether delphinidin reduced tumor growth of melanoma cell in vivo by acting specifically on endothelial cell proliferation. The mechanism implies an association between inhibition of VEGF-induced proliferation via VEGFR2 signalling, MAPK, PI3K and at transcription level on CREB/ATF1 factors, and the inhibition of PDE2. In conjunction with our previous studies, we demonstrate that delphinidin is a promising compound to prevent pathologies associated with generation of vascular network in tumorigenesis.
Collapse
Affiliation(s)
- Thérèse Keravis
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Université de Strasbourg, Illkirch, France
| | - Laure Favot
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Université de Strasbourg, Illkirch, France
| | - Abdurrazag A. Abusnina
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Université de Strasbourg, Illkirch, France
| | - Anita Anton
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Université de Strasbourg, Illkirch, France
| | - Hélène Justiniano
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Université de Strasbourg, Illkirch, France
| | | | | | - Gilles Simard
- LUNAM, INSERM, U1063, Université d'Angers, Angers, France
- Centre Hospitalo-Universitaire, Angers, France
| | | | - Claire Lugnier
- Laboratoire de Biophotonique et de Pharmacologie, CNRS UMR 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|
46
|
Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. ENVIRONMENT INTERNATIONAL 2015; 83:11-40. [PMID: 26073844 DOI: 10.1016/j.envint.2015.05.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
A comprehensive summary of more than 450 estrogenic chemicals including estrogenic endocrine disruptors is provided here to understand the complex and profound impact of estrogen action. First, estrogenic chemicals are categorized by structure as well as their applications, usage and effects. Second, estrogenic signaling is examined by the molecular mechanism based on the receptors, signaling pathways, crosstalk/bypassing and autocrine/paracrine/homeostatic networks involved in the signaling. Third, evaluation of estrogen action is discussed by focusing on the technologies and protocols of the assays for assessing estrogenicity. Understanding the molecular mechanisms of estrogen action is important to assess the action of endocrine disruptors and will be used for risk management based on pathway-based toxicity testing.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
47
|
Khan NQ, Patel B, Kang SS, Dhariwal SK, Husain F, Wood EG, Pothecary MR, Corder R. Regulation of vascular endothelial function by red wine procyanidins: implications for cardiovascular health. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.10.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
48
|
Chalopin M, Soleti R, Benameur T, Tesse A, Faure S, Martínez MC, Andriantsitohaina R. Red wine polyphenol compounds favor neovascularisation through estrogen receptor α-independent mechanism in mice. PLoS One 2014; 9:e110080. [PMID: 25299185 PMCID: PMC4192547 DOI: 10.1371/journal.pone.0110080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022] Open
Abstract
Red wine polyphenol compounds (RWPC) exert paradoxical effects depending on the dose on post-ischemic neovascularisation. Low dose RWPC (0.2 mg/kg/day) is pro-angiogenic, whereas high dose (20 mg/kg/day) is anti-angiogenic. We recently reported that the endothelial effect of RWPC is mediated through the activation of a redox-sensitive pathway, mitochondrial biogenesis and the activation of α isoform of the estrogen receptor (ERα). Here, we investigated the implication of ERα on angiogenic properties of RWPC. Using ovariectomized mice lacking ERα treated with high dose of RWPC after hindlimb ischemia, we examined blood flow reperfusion, vascular density, nitric oxide (NO) production, expression and activation of proteins involved in angiogenic process and muscle energy sensing network. As expected, high dose of RWPC treatment reduced both blood flow and vascular density in muscles of mice expressing ERα. These effects were associated with reduced NO production resulting from diminished activity of eNOS. In the absence of RWPC, ERα deficient mice showed a reduced neo-vascularisation associated with a decreased NO production. Surprisingly in mice lacking ERα, high dose of RWPC increased blood flow and capillary density in conjunction with increased NO pathway and production as well as VEGF expression. Of particular interest is the activation of Sirt-1, AMPKα and PGC-1α/β axis in ischemic hindlimb from both strains. Altogether, the results highlight a pro-angiogenic property of RWPC via an ERα-independent mechanism that is associated with an up-regulation of energy sensing network. This study brings a corner stone of a novel pathway for RWPC to correct cardiovascular diseases associated with failed neovascularisation.
Collapse
Affiliation(s)
- Matthieu Chalopin
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Raffaella Soleti
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Tarek Benameur
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Angela Tesse
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | - Sébastien Faure
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
| | | | - Ramaroson Andriantsitohaina
- INSERM U1063, Stress Oxydant et Pathologies Métaboliques, Angers, France
- Centre Hospitalier Universitaire d’Angers, Angers, France
- * E-mail:
| |
Collapse
|
49
|
Speciale A, Cimino F, Saija A, Canali R, Virgili F. Bioavailability and molecular activities of anthocyanins as modulators of endothelial function. GENES & NUTRITION 2014; 9:404. [PMID: 24838260 PMCID: PMC4169059 DOI: 10.1007/s12263-014-0404-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022]
Abstract
Anthocyanins (AC) are water-soluble natural pigments found in various parts of higher plants. Despite their limited oral bioavailability and very low post-absorption plasma concentrations, the dietary consumption of these pigments has been proposed to be associated with a significant protection against several human pathological conditions, including cardiovascular diseases. Many studies highlighted that some health benefits of AC localize in particular at endothelium level, contributing to vascular homeostasis and also to the control of angiogenesis, inflammation, and platelet aggregation. This review reports and comments on the large existing literature addressing the molecular mechanisms that, beyond the antioxidant properties, may have a significant role in the effects of AC and AC-rich foods on vessel endothelium. Among these, AC have been reported to prevent peroxynitrite-mediated endothelial dysfunction in endothelial cells (ECs), thanks to their capability to modulate the expression and activity of several enzymes involved in NO metabolism. Furthermore, evidence indicates that AC can prevent the expression of adhesion molecules and the adhesion of monocytes to ECs challenged by pro-inflammatory agents. Overall, the activity of AC could be associated with the ability to elicit cell adaptive responses involving the transcription factor Nrf2 by affecting the "nucleophilic tone" of the organism. This review confirms the importance of specific nutritional molecules for human health and suggests new avenues for nutrition-based interventions to reduce the risk of cardiovascular disease in the population.
Collapse
Affiliation(s)
- Antonio Speciale
- />Department Drug Sciences and Health Products, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Francesco Cimino
- />Department Drug Sciences and Health Products, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Antonella Saija
- />Department Drug Sciences and Health Products, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Raffaella Canali
- />Agricultural Research Council - Food and Nutrition Research Centre (C.R.A.- NUT), Rome, Italy
| | - Fabio Virgili
- />Agricultural Research Council - Food and Nutrition Research Centre (C.R.A.- NUT), Rome, Italy
| |
Collapse
|
50
|
Duluc L, Jacques C, Soleti R, Andriantsitohaina R, Simard G. Delphinidin inhibits VEGF induced-mitochondrial biogenesis and Akt activation in endothelial cells. Int J Biochem Cell Biol 2014; 53:9-14. [PMID: 24792670 DOI: 10.1016/j.biocel.2014.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Accepted: 03/28/2014] [Indexed: 12/21/2022]
Abstract
Delphinidin, an anthocyanin present in red wine, has been reported to exert vasculoprotective properties on endothelial cells, including vasorelaxing and anti-apoptotic effects. Moreover, delphinidin treatment in a rat model of post-ischemic neovascularization has been described to exert anti-angiogenic property. Angiogenesis is an energetic process and VEGF-induced angiogenesis is associated with mitochondrial biogenesis. However, whether delphinidin induces changes in mitochondrial biogenesis has never been addressed. Effects of delphinidin were investigated in human endothelial cells at a concentration described to be anti-angiogenic in vitro (10(-2)g/l). mRNA expression of mitochondrial biogenesis factors, mitochondrial respiration, DNA content and enzyme activities were assessed after 48 h of stimulation. Delphinidin increased mRNA expression of several mitochondrial biogenesis factors, including NRF1, ERRα, Tfam, Tfb2m and PolG but did not affect neither mitochondrial respiration, DNA content nor enzyme activities. In presence of delphinidin, VEGF failed to increase mitochondrial respiration, DNA content, complex IV activity and Akt activation in endothelial cells. These results suggest a possible association between inhibition of VEGF-induced mitochondrial biogenesis through Akt pathway by delphinidin and its anti-angiogenic effect, providing a novel mechanism sustaining the beneficial effect of delphinidin against pathologies associated with excessive angiogenesis such as cancers.
Collapse
Affiliation(s)
- Lucie Duluc
- LUNAM, Inserm U1063, F-49100 Angers, France; UFR Médecine, Université d'Angers, rue haute de Reculée, F-49045 Angers, France.
| | - Caroline Jacques
- LUNAM, Inserm U1063, F-49100 Angers, France; UFR Médecine, Université d'Angers, rue haute de Reculée, F-49045 Angers, France.
| | - Raffaella Soleti
- LUNAM, Inserm U1063, F-49100 Angers, France; UFR Médecine, Université d'Angers, rue haute de Reculée, F-49045 Angers, France.
| | - Ramaroson Andriantsitohaina
- LUNAM, Inserm U1063, F-49100 Angers, France; UFR Médecine, Université d'Angers, rue haute de Reculée, F-49045 Angers, France.
| | - Gilles Simard
- LUNAM, Inserm U1063, F-49100 Angers, France; UFR Médecine, Université d'Angers, rue haute de Reculée, F-49045 Angers, France; Laboratoire de Biochimie, IBS, PBH, CHU d'Angers, rue Larrey, F-49033 Angers, France.
| |
Collapse
|