1
|
Huang D, Jiao X, Huang S, Liu J, Si H, Qi D, Pei X, Lu D, Wang Y, Li Z. Analysis of the heterogeneity and complexity of murine extraorbital lacrimal gland via single-cell RNA sequencing. Ocul Surf 2024; 34:60-95. [PMID: 38945476 DOI: 10.1016/j.jtos.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE The lacrimal gland is essential for maintaining ocular surface health and avoiding external damage by secreting an aqueous layer of the tear film. However, a healthy lacrimal gland's inventory of cell types and heterogeneity remains understudied. METHODS Here, 10X Genome-based single-cell RNA sequencing was used to generate an unbiased classification of cellular diversity in the extraorbital lacrimal gland (ELG) of C57BL/6J mice. From 43,850 high-quality cells, we produced an atlas of cell heterogeneity and defined cell types using classic marker genes. The possible functions of these cells were analyzed through bioinformatics analysis. Additionally, the CellChat was employed for a preliminary analysis of the cell-cell communication network in the ELG. RESULTS Over 37 subclasses of cells were identified, including seven types of glandular epithelial cells, three types of fibroblasts, ten types of myeloid-derived immune cells, at least eleven types of lymphoid-derived immune cells, and five types of vascular-associated cell subsets. The cell-cell communication network analysis revealed that fibroblasts and immune cells play a pivotal role in the dense intercellular communication network within the mouse ELG. CONCLUSIONS This study provides a comprehensive transcriptome atlas and related database of the mouse ELG.
Collapse
Affiliation(s)
- Duliurui Huang
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xinwei Jiao
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Jiangman Liu
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Hongli Si
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Di Qi
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Dingli Lu
- Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China
| | - Yimian Wang
- Division of Medicine, Faculty of Medical Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Zhijie Li
- Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, 450000, China.
| |
Collapse
|
2
|
Ríos-Ríos WDJ, Sosa-Luis SA, Torres-Aguilar H. T Cells Subsets in the Immunopathology and Treatment of Sjogren's Syndrome. Biomolecules 2020; 10:E1539. [PMID: 33187265 PMCID: PMC7698113 DOI: 10.3390/biom10111539] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
Sjogren´s syndrome (SS) is an autoimmune disease whose pathogenesis is characterized by an exacerbated T cell infiltration in exocrine glands, markedly associated to the inflammatory and detrimental features as well as the disease progression. Several helper T cell subsets sequentially converge at different stages of the ailment, becoming involved in specific pathologic roles. Initially, their activated phenotype endows them with high migratory properties and increased pro-inflammatory cytokine secretion in target tissues. Later, the accumulation of immunomodulatory T cells-derived factors, such as IL-17, IFN-γ, or IL-21, preserve the inflammatory environment. These effects favor strong B cell activation, instigating an extrafollicular antibody response in ectopic lymphoid structures mediated by T follicular helper cells (Tfh) and leading to disease progression. Additionally, the memory effector phenotype of CD8+ T cells present in SS patients suggests that the presence of auto-antigen restricted CD8+ T cells might trigger time-dependent and specific immune responses. Regarding the protective roles of traditional regulatory T cells (Treg), uncertain evidence shows decrease or invariable numbers of circulating and infiltrating cells. Nevertheless, an emerging Treg subset named follicular regulatory T cells (Tfr) seems to play a critical protective role owing to their deficiency that enhances SS development. In this review, the authors summarize the current knowledge of T cells subsets contribution to the SS immunopathology, focusing on the cellular and biomolecular properties allowing them to infiltrate and to harm target tissues, and that simultaneously make them key therapeutic targets for SS treatment.
Collapse
Affiliation(s)
- William de Jesús Ríos-Ríos
- Department of Clinical Immunology Research of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico;
| | - Sorely Adelina Sosa-Luis
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Honorio Torres-Aguilar
- Department of Clinical Immunology Research of Biochemical Sciences Faculty, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca City 68120, Mexico;
| |
Collapse
|
3
|
Saito M, Otsuka K, Ushio A, Yamada A, Arakaki R, Kudo Y, Ishimaru N. Unique Phenotypes and Functions of Follicular Helper T Cells and Regulatory T Cells in Sjögren's Syndrome. Curr Rheumatol Rev 2019; 14:239-245. [PMID: 28124612 PMCID: PMC6225342 DOI: 10.2174/1573397113666170125122858] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 02/07/2023]
Abstract
Sjogren’s syndrome (SS) is a T cell-mediated autoimmune disease of the systemic exocrine glands, such as salivary and lacrimal glands. A variety of T-cell subpopulations maintain immune tolerance in the thymus and periphery through complex immune responses including cellular and humoral immunity. The T-cell subpopulations exhibiting abnormal or unique phenotypes and impaired functionality have been reported to play important roles in the cellular mechanisms of autoimmunity in SS patients and animal models of SS. In this review, we focused on follicular helper T cells related to antibody production and regulatory T cells to control immune tolerance in the pathogenesis of SS. The unique roles of these T-cell subpopulations in the process of the onset or development of SS have been demonstrated in this review of recent publications. The clinical application of these T-cell subpopulations will be helpful for the development of new techniques for diagnosis or treatment of SS in the future.
Collapse
Affiliation(s)
- Masako Saito
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Kunihiro Otsuka
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Aya Ushio
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Akiko Yamada
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8504, Japan
| |
Collapse
|
4
|
Hu Z, Li Y, Van Nieuwenhuijze A, Selden HJ, Jarrett AM, Sorace AG, Yankeelov TE, Liston A, Ehrlich LIR. CCR7 Modulates the Generation of Thymic Regulatory T Cells by Altering the Composition of the Thymic Dendritic Cell Compartment. Cell Rep 2018; 21:168-180. [PMID: 28978470 DOI: 10.1016/j.celrep.2017.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 07/21/2017] [Accepted: 09/01/2017] [Indexed: 12/29/2022] Open
Abstract
Upon recognition of auto-antigens, thymocytes are negatively selected or diverted to a regulatory T cell (Treg) fate. CCR7 is required for negative selection of auto-reactive thymocytes in the thymic medulla. Here, we describe an unanticipated contribution of CCR7 to intrathymic Treg generation. Ccr7-/- mice have increased Treg cellularity because of a hematopoietic but non-T cell autonomous CCR7 function. CCR7 expression by thymic dendritic cells (DCs) promotes survival of mature Sirpα- DCs. Thus, CCR7 deficiency results in apoptosis of Sirpα- DCs, which is counterbalanced by expansion of immature Sirpα+ DCs that efficiently induce Treg generation. CCR7 deficiency results in enhanced intrathymic generation of Tregs at the neonatal stage and in lymphopenic adults, when Treg differentiation is critical for establishing self-tolerance. Together, these results reveal a complex function for CCR7 in thymic tolerance induction, where CCR7 not only promotes negative selection but also governs intrathymic Treg generation via non-thymocyte intrinsic mechanisms.
Collapse
Affiliation(s)
- Zicheng Hu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yu Li
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Annemarie Van Nieuwenhuijze
- Translational Immunology Laboratory, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven 3000, Belgium
| | - Hilary J Selden
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Angela M Jarrett
- Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anna G Sorace
- Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E Yankeelov
- Departments of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Adrian Liston
- Translational Immunology Laboratory, VIB, Leuven 3000, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven 3000, Belgium
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Abstract
The immune system has evolved to defend the organism against an almost infinite number of pathogens in a locally confined and antigen-specific manner while at the same time preserving tolerance to harmless antigens and self. Regulatory T (Treg) cells essentially contribute to an immunoregulatory network preventing excessive immune responses and immunopathology. There is emerging evidence that Treg cells not only operate in secondary lymphoid tissue but also regulate immune responses directly at the site of inflammation. Hence, the classification of Treg cells might need to be further extended by Treg cell subsets that are functionally and phenotypically polarized by their residency. In this review, we discuss recent findings on these tissue-resident Treg cell subsets and how these cells may operate in a tissue- and context-dependent manner.
Collapse
|
6
|
Yamada A, Arakaki R, Saito M, Tsunematsu T, Kudo Y, Ishimaru N. Role of regulatory T cell in the pathogenesis of inflammatory bowel disease. World J Gastroenterol 2016; 22:2195-205. [PMID: 26900284 PMCID: PMC4734996 DOI: 10.3748/wjg.v22.i7.2195] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/11/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Regulatory T (Treg) cells play key roles in various immune responses. For example, Treg cells contribute to the complex pathogenesis of inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis during onset or development of that disease. Many animal models of IBD have been used to investigate factors such as pathogenic cytokines, pathogenic bacteria, and T-cell functions, including those of Treg cells. In addition, analyses of patients with IBD facilitate our understanding of the precise mechanism of IBD. This review article focuses on the role of Treg cells and outlines the pathogenesis and therapeutic strategies of IBD based on previous reports.
Collapse
|
7
|
Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, Benoist C, Mathis D. Poor Repair of Skeletal Muscle in Aging Mice Reflects a Defect in Local, Interleukin-33-Dependent Accumulation of Regulatory T Cells. Immunity 2016; 44:355-67. [PMID: 26872699 DOI: 10.1016/j.immuni.2016.01.009] [Citation(s) in RCA: 379] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/14/2015] [Accepted: 11/17/2015] [Indexed: 12/30/2022]
Abstract
Normal repair of skeletal muscle requires local expansion of a special population of Foxp3(+)CD4(+) regulatory T (Treg) cells. Such cells failed to accumulate in acutely injured muscle of old mice, known to undergo ineffectual repair. This defect reflected reduced recruitment of Treg cells to injured muscle, as well as less proliferation and retention therein. Interleukin-33 (IL-33) regulated muscle Treg cell homeostasis in young mice, and its administration to old mice ameliorated their deficits in Treg cell accumulation and muscle regeneration. The major IL-33-expressing cells in skeletal muscle displayed a constellation of markers diagnostic of fibro/adipogenic progenitor cells and were often associated with neural structures, including nerve fibers, nerve bundles, and muscle spindles, which are stretch-sensitive mechanoreceptors important for proprioception. IL-33(+) cells were more frequent after muscle injury and were reduced in old mice. IL-33 is well situated to relay signals between the nervous and immune systems within the muscle context.
Collapse
Affiliation(s)
- Wilson Kuswanto
- Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Dalia Burzyn
- Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Marisella Panduro
- Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathy K Wang
- Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Young Charles Jang
- Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Amy J Wagers
- Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Joslin Diabetes Center, Boston, MA 02215, USA; Paul F Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Diane Mathis
- Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Yamada A, Ushio A, Arakaki R, Tsunematsu T, Kudo Y, Hayashi Y, Ishimaru N. Impaired expansion of regulatory T cells in a neonatal thymectomy-induced autoimmune mouse model. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2886-97. [PMID: 26343329 DOI: 10.1016/j.ajpath.2015.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/17/2015] [Accepted: 07/28/2015] [Indexed: 11/16/2022]
Abstract
Neonatal thymectomy in certain mouse strains is known to induce organ-specific autoimmunity due to impaired functions of T cells, including Foxp3(+) regulatory T (Treg) cells in the thymus. The precise mechanism underlying the induction of autoimmunity by neonatal thymectomy remains unclear. One possibility is that depletion of Treg cells breaks down peripheral tolerance. We examined the functions of Treg cells by using a murine Sjögren syndrome model of NFS/sld mice that underwent neonatal thymectomy. The ratio of Treg cells to effector memory phenotype T cells in thymectomy mice was significantly lower than that of nonthymectomy mice. In addition, in vitro induction of peripherally induced Treg cells by transforming growth factor-β (TGF-β) using naive T cells from Sjögren syndrome model mice was severely impaired. The mRNA expression of TGF-β receptor I and II and Smad3 and -4 in the TGF-β-induced signal transduction pathway of Treg cells in this Sjögren syndrome model were lower than those of control mice. In addition, Treg cells in this Sjögren syndrome model exhibited an interferon-γ-producing Th1-like phenotype that resembled effector T cells. In conclusion, these results suggest that abnormal expansion and differentiation of Treg cells and inflammatory cytokines produced by Treg cells contribute to the development of autoimmunity.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Aya Ushio
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Takaaki Tsunematsu
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshio Hayashi
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| |
Collapse
|
9
|
Mircheff AK, Wang Y, Ding C, Warren DW, Schechter JE. Potentially pathogenic immune cells and networks in apparently healthy lacrimal glands. Ocul Surf 2015; 13:47-81. [PMID: 25557346 DOI: 10.1016/j.jtos.2014.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 12/22/2022]
Abstract
Lacrimal glands of people over 40 years old frequently contain lymphocytic infiltrates. Relationships between histopathological presentation and physiological dysfunction are not straightforward. Data from rabbit studies have suggested that at least two immune cell networks form in healthy lacrimal glands, one responding to environmental dryness, the other to high temperatures. New findings indicate that mRNAs for several chemokines and cytokines are expressed primarily in epithelial cells; certain others are expressed in both epithelial cells and immune cells. Transcript abundances vary substantially across glands from animals that have experienced the same conditions, allowing for correlation analyses, which detect clusters that map to various cell types and to networks of coordinately functioning cells. A core network--expressing mRNAs including IL-1α, IL-6, IL-17A, and IL-10--expands adaptively with exposure to dryness, suppressing IFN-γ, but potentially causing physiological dysfunction. High temperature elicits concurrent increases of mRNAs for prolactin (PRL), CCL21, and IL-18. PRL is associated with crosstalk to IFN-γ, BAFF, and IL-4. The core network reacts to the resulting PRL-BAFF-IL-4 network, creating a profile reminiscent of Sjögren's disease. In a warmer, moderately dry setting, PRL-associated increases of IFN-γ are associated with suppression of IL-10 and augmentations of IL-1α and IL-17, creating a profile reminiscent of severe chronic inflammation.
Collapse
Affiliation(s)
- Austin K Mircheff
- Department of Physiology & Biophysics, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California; Department of Ophthalmology, Doheny Eye Institute, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California.
| | - Yanru Wang
- Department of Physiology & Biophysics, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California
| | - Chuanqing Ding
- Department of Pharmacology & Pharmaceutical Sciences, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California; Department of Cell & Neurobiology, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California
| | - Dwight W Warren
- Department of Cell & Neurobiology, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California
| | - Joel E Schechter
- Department of Cell & Neurobiology, Keck School of Medicine and School of Pharmacy, University of Southern California, Los Angeles, California
| |
Collapse
|
10
|
Abstract
Mucosal immunity defends the ocular surface against antigenic challenge and microbial invasion. The principal effector site is the lacrimal gland, where immunoglobulin A (IgA) antibodies are produced. Nasal-associated lymphoid tissue and posterior cervical lymph nodes function as major inductive sites for tear IgA responses. Neural connections and systemic hormones maintain the integrity and function of the ocular surface. Neuroenzyme activities in the lacrimal gland are influenced by ocular infections, leading to reduced expression of acetylcholine and modulation of receptors on acinar cells and on plasma cells, thereby decreasing fluid and immunoglobulin secretion. T lymphocyte-dependent responses result in production of interleukin-4 in lacrimal glands, thereby influencing cholinergic enzyme activity affecting immune processes and lacrimal physiology. Furthermore, neuropeptides released into lymphoid structures or inflamed tissues are chemotactic for antigen-presenting cells and affect their interactions with T cells. Thus, in developing therapeutic approaches for treating dry-eye conditions and vaccination strategies to elicit protective ocular mucosal immune responses, the entire lacrimal functional unit should be considered.
Collapse
|
11
|
Human secondary lymphoid organs typically contain polyclonally-activated proliferating regulatory T cells. Blood 2013; 122:2213-23. [PMID: 23950176 DOI: 10.1182/blood-2013-03-489443] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Immunomodulating regulatory T-cell (Treg) therapy is a promising strategy in autoimmunity and transplantation. However, to achieve full clinical efficacy, better understanding of in vivo human Treg biology is warranted. Here, we demonstrate that in contrast to blood and bone marrow Tregs, which showed a resting phenotype, the majority of CD4(pos)CD25(pos)CD127(neg)FoxP3(pos) Tregs in secondary lymphoid organs were proliferating activated CD69(pos)CD45RA(neg) cells with a hyperdemethylated FOXP3 gene and a broad T-cell receptor-Vβ repertoire, implying polyclonal activation. Activated CD69(pos) Tregs were distributed over both T-cell and B-cell areas, distant from Aire(pos) and CD11c(pos) cells. In contrast to the anergic peripheral blood Tregs, lymphoid organ Tregs had significant ex vivo proliferative capacity and produced cytokines like interleukin-2, while revealing similar suppressive potential. Also, next to Treg-expressing chemokine receptors important for a prolonged stay in lymphoid organs, a significant part of the cells expressed peripheral tissue-associated, functional homing markers. In conclusion, our data suggest that human secondary lymphoid organs aid in the maintenance and regulation of Treg function and homeostasis. This knowledge may be exploited for further optimization of Treg immunotherapy, for example, by ex vivo selection of Tregs with capacity to migrate to lymphoid organs providing an in vivo platform for further Treg expansion.
Collapse
|
12
|
Saeki A, Segawa T, Abe T, Sugiyama M, Arimoto T, Hara H, Hasebe A, Ohtani M, Tanizume N, Ohuchi M, Kataoka H, Kawanami M, Yokoyama A, Shibata K. Toll-like receptor 2-mediated modulation of growth and functions of regulatory T cells by oral streptococci. Mol Oral Microbiol 2013; 28:267-80. [PMID: 23413817 DOI: 10.1111/omi.12023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2013] [Indexed: 11/30/2022]
Abstract
This study was designed to determine whether oral streptococci modulate the growth and functions of regulatory T cells. Heat-killed cells of wild-type strains of Streptococcus gordonii and Streptococcus mutans induced the Toll-like receptor 2 (TLR2) -mediated nuclear factor-κB (NF-κB) activation, but their lipoprotein-deficient strains did not. Stimulation with these streptococci resulted in a significant increase in the frequency of CD4(+) CD25(+) Foxp3(+) regulatory T cells in splenocytes derived from both TLR2(+/+) and TLR2(-/-) mice, but the level of increase in TLR2(+/+) splenocytes was stronger than that in TLR2(-/-) splenocytes. Both strains of S. gordonii enhanced the proliferation of CD4(+) CD25(+) Foxp3(+) regulatory T cells isolated from TLR2(+/+) mice at the same level as those from TLR2(-/-) mice in an interleukin-2-independent manner. However, wild-type and lipoprotein-deficient strains of both streptococci did not enhance the suppressive activity of the isolated regulatory T cells in vitro, but rather inhibited it. TLR ligands also inhibited the suppressive activity of the regulatory T cells. Inhibition of the suppressive activity was recovered by the addition of anti-IL-6 antibody. Pretreatment of antigen-presenting cells with the NF-κB inhibitor BAY11-7082 enhanced the suppressive activity of the regulatory T cells. These results suggested that interleukin-6 produced by antigen-presenting cells inhibits the suppressive activity of the regulatory T cells. Wild-type strain, but not lipoprotein-deficient strain, of S. gordonii reduced the frequency of CD4(+) CD25(+) Foxp3(+) regulatory T cells in the acute infection model, whereas both strains of S. gordonii increased it in the chronic infection model mice. Hence, this study suggests that oral streptococci are capable of modulating the growth and functions of regulatory T cells in vitro and in vivo.
Collapse
Affiliation(s)
- A Saeki
- Division of Oral Molecular Microbiology, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ishimaru N. A multilateral study of the pathogenesis of organ-specific autoimmune diseases. J Oral Biosci 2012. [DOI: 10.1016/j.job.2012.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Matsumoto K, Ogawa M, Suzuki JI, Hirata Y, Nagai R, Isobe M. Regulatory T lymphocytes attenuate myocardial infarction-induced ventricular remodeling in mice. Int Heart J 2012; 52:382-7. [PMID: 22188713 DOI: 10.1536/ihj.52.382] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Downregulation of CD4+CD25+ regulatory T lymphocytes (Treg) has been found in local atherosclerotic lesions and in patients with myocardial infarction (MI). However, the roles of Treg in MI and the following inflammatory response have not yet been well elucidated. Therefore, we hypothesized that adoptive transfer of Treg could attenuate the postinfarction inflammatory response protecting from adverse remodeling, and we attempted to elucidate the mechanism of delayed heart failure after MI. To clarify the role of Treg in MI, we used a murine MI model and administered a single intravenous injection of Treg (1 × 10(5)) (treatment, n = 6) or saline (control, n = 7) and sacrificed the mice on day 14. Echocardiograms revealed that Treg improved LV contraction after MI. Histopathology also showed that Treg negated MI-induced LV remodeling. RT-PCR demonstrated that the mRNA levels of IFN-gamma in hearts were lower and Foxp3 in spleens were higher in the treatment group than in the control group. We observed that adoptive Treg transfer could attenuate MI-induced cardiac remodeling through the IFN-gamma and Foxp3 alteration.
Collapse
Affiliation(s)
- Kazuaki Matsumoto
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Ishimaru N, Yamada A, Nitta T, Arakaki R, Lipp M, Takahama Y, Hayashi Y. CCR7 with S1P1 signaling through AP-1 for migration of Foxp3+ regulatory T-cells controls autoimmune exocrinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:199-208. [PMID: 22067914 DOI: 10.1016/j.ajpath.2011.09.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/31/2011] [Accepted: 09/13/2011] [Indexed: 12/16/2022]
Abstract
Forkhead box p3-positive (Foxp3(+)) regulatory T cells (T(reg) cells) participate in maintaining peripheral immune tolerance and suppressing autoimmunity. We recently reported that in situ patrolling by C-C-chemokine receptor 7 (CCR7)(+) T(reg) cells in target organs is essential for controlling autoimmune lesions in Sjögren's syndrome. In the present study, the molecular mechanism underlying CCR7-mediated T(reg) cell migration was investigated in a mouse model. The impaired migratory response of Ccr7(-/-) T(reg) cells to sphingosine 1-phosphate (S1P) occurred because of defective association of S1P receptor 1 (S1P(1)) with a G coupled-protein. In addition, T-cell receptor (TCR)- and S1P(1)-mediated Ras-related C3 botulinum toxin substrate 1 (Rac-1), extracellular signal-related kinase (ERK), and c-Jun phosphorylation required for activator protein 1 (AP-1) transcriptional activity were significantly impaired in Ccr7(-/-) T(reg) cells. Surprisingly, the abnormal nuclear localization of Foxp3 was detected after abrogation of the c-Jun and Foxp3 interaction in the nucleus of Ccr7(-/-) T(reg) cells. These results indicate that CCR7 essentially controls the migratory function of T(reg) cells through S1P(1)-mediated AP-1 signaling, which is regulated through its interaction with Foxp3 in the nucleus.
Collapse
Affiliation(s)
- Naozumi Ishimaru
- Department of Oral Molecular Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nitta T, Ohigashi I, Nakagawa Y, Takahama Y. Cytokine crosstalk for thymic medulla formation. Curr Opin Immunol 2010; 23:190-7. [PMID: 21194915 DOI: 10.1016/j.coi.2010.12.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 01/12/2023]
Abstract
The medullary microenvironment of the thymus plays a crucial role in the establishment of self-tolerance through the deletion of self-reactive thymocytes and the generation of regulatory T cells. Crosstalk or bidirectional signal exchanges between developing thymocytes and medullary thymic epithelial cells (mTECs) contribute to the formation of the thymic medulla. Recent studies have identified the molecules that mediate thymic crosstalk. Tumor necrosis factor superfamily cytokines, including RANKL, CD40L, and lymphotoxin, produced by positively selected thymocytes and lymphoid tissue inducer cells promote the proliferation and differentiation of mTECs. In return, CCR7 ligand chemokines produced by mTECs facilitate the migration of positively selected thymocytes to the medulla. The cytokine crosstalk between developing thymocytes and mTECs nurtures the formation of the thymic medulla and thereby regulates the establishment of self-tolerance.
Collapse
Affiliation(s)
- Takeshi Nitta
- Division of Experimental Immunology, Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | |
Collapse
|