1
|
Gu J, He Y, He C, Zhang Q, Huang Q, Bai S, Wang R, You Q, Wang L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct Target Ther 2025; 10:84. [PMID: 40069202 PMCID: PMC11897415 DOI: 10.1038/s41392-025-02166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 03/15/2025] Open
Abstract
Molecular chaperones, a class of complex client regulatory systems, play significant roles in the prevention of protein misfolding and abnormal aggregation, the modulation of protein homeostasis, and the protection of cells from damage under constantly changing environmental conditions. As the understanding of the biological mechanisms of molecular chaperones has increased, their link with the occurrence and progression of disease has suggested that these proteins are promising targets for therapeutic intervention, drawing intensive interest. Here, we review recent advances in determining the structures of molecular chaperones and heat shock protein 90 (HSP90) chaperone system complexes. We also describe the features of molecular chaperones and shed light on the complicated regulatory mechanism that operates through interactions with various co-chaperones in molecular chaperone cycles. In addition, how molecular chaperones affect diseases by regulating pathogenic proteins has been thoroughly analyzed. Furthermore, we focus on molecular chaperones to systematically discuss recent clinical advances and various drug design strategies in the preclinical stage. Recent studies have identified a variety of novel regulatory strategies targeting molecular chaperone systems with compounds that act through different mechanisms from those of traditional inhibitors. Therefore, as more novel design strategies are developed, targeting molecular chaperones will significantly contribute to the discovery of new potential drugs.
Collapse
Affiliation(s)
- Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chenxi He
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qifei Huang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shangjun Bai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruoning Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial TCM Engineering Technology Research Center of Highly Efficient Drug Delivery Systems (DDSs), Nanjing, China.
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
2
|
Aluksanasuwan S, Somsuan K, Ngoenkam J, Chiangjong W, Rongjumnong A, Morchang A, Chutipongtanate S, Pongcharoen S. Knockdown of heat shock protein family D member 1 (HSPD1) in lung cancer cell altered secretome profile and cancer-associated fibroblast induction. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119736. [PMID: 38663552 DOI: 10.1016/j.bbamcr.2024.119736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The crosstalk between lung cancer cells and cancer-associated fibroblast (CAF) is pivotal in cancer progression. Heat shock protein family D member 1 (HSPD1) is a potential prognostic biomarker associated with the tumor microenvironment in lung adenocarcinoma (LUAD). However, the role of HSPD1 in CAF activation remains unclear. This study established stable HSPD1-knockdown A549 lung cancer cells using a lentivirus-mediated shRNA transduction. A targeted label-free proteomic analysis identified six significantly altered secretory proteins in the shHSPD1-A549 secretome compared to shControl-A549. Functional enrichment analysis highlighted their involvement in cell-to-cell communication and immune responses within the tumor microenvironment. Additionally, most altered proteins exhibited positive correlations and significant prognostic impacts on LUAD patient survival. Investigations on the effects of lung cancer secretomes on lung fibroblast WI-38 cells revealed that the shControl-A549 secretome stimulated fibroblast proliferation, migration, and CAF marker expression. These effects were reversed upon the knockdown of HSPD1 in A549 cells. Altogether, our findings illustrate the role of HSPD1 in mediating CAF induction through secretory proteins, potentially contributing to the progression and aggressiveness of lung cancer.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand.
| | - Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Artitaya Rongjumnong
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Atthapan Morchang
- School of Medicine, Mae Fah Luang University, Chiang Rai 57100, Thailand; Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Somchai Chutipongtanate
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0056, USA
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand.
| |
Collapse
|
3
|
Singh MK, Shin Y, Han S, Ha J, Tiwari PK, Kim SS, Kang I. Molecular Chaperonin HSP60: Current Understanding and Future Prospects. Int J Mol Sci 2024; 25:5483. [PMID: 38791521 PMCID: PMC11121636 DOI: 10.3390/ijms25105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Molecular chaperones are highly conserved across evolution and play a crucial role in preserving protein homeostasis. The 60 kDa heat shock protein (HSP60), also referred to as chaperonin 60 (Cpn60), resides within mitochondria and is involved in maintaining the organelle's proteome integrity and homeostasis. The HSP60 family, encompassing Cpn60, plays diverse roles in cellular processes, including protein folding, cell signaling, and managing high-temperature stress. In prokaryotes, HSP60 is well understood as a GroEL/GroES complex, which forms a double-ring cavity and aids in protein folding. In eukaryotes, HSP60 is implicated in numerous biological functions, like facilitating the folding of native proteins and influencing disease and development processes. Notably, research highlights its critical involvement in sustaining oxidative stress and preserving mitochondrial integrity. HSP60 perturbation results in the loss of the mitochondria integrity and activates apoptosis. Currently, numerous clinical investigations are in progress to explore targeting HSP60 both in vivo and in vitro across various disease models. These studies aim to enhance our comprehension of disease mechanisms and potentially harness HSP60 as a therapeutic target for various conditions, including cancer, inflammatory disorders, and neurodegenerative diseases. This review delves into the diverse functions of HSP60 in regulating proteo-homeostasis, oxidative stress, ROS, apoptosis, and its implications in diseases like cancer and neurodegeneration.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Centre for Genomics, SOS Zoology, Jiwaji University, Gwalior 474011, India;
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Pramod K. Tiwari
- Centre for Genomics, SOS Zoology, Jiwaji University, Gwalior 474011, India;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (Y.S.); (S.H.); (J.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Fatima N, Shen Y, Crassini K, Burling O, Thurgood L, Iwanowicz EJ, Lang H, Karanewsky DS, Christopherson RI, Mulligan SP, Best OG. The CIpP activator, TR-57, is highly effective as a single agent and in combination with venetoclax against CLL cells in vitro. Leuk Lymphoma 2024; 65:585-597. [PMID: 38227293 DOI: 10.1080/10428194.2023.2300055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/11/2023] [Indexed: 01/17/2024]
Abstract
Despite advances in treatment, a significant proportion of patients with chronic lymphocytic leukemia (CLL) will relapse with drug-resistant disease. The imipridones, ONC-201 and ONC-212, are effective against a range of different cancers, including acute myeloid leukemia (AML) and tumors of the brain, breast, and prostate. These drugs induce cell death through activation of the mitochondrial protease, caseinolytic protease (CIpP), and the unfolded protein response (UPR). Here we demonstrate that the novel imipridone analog, TR-57, has efficacy as a single agent and synergises with venetoclax against CLL cells under in vitro conditions that mimic the tumor microenvironment. Changes in protein expression suggest TR-57 activates the UPR, inhibits the AKT and ERK1/2 pathways and induces pro-apoptotic changes in the expression of proteins of the BCL-2 family. The study suggests that TR-57, as a single agent and in combination with venetoclax, may represent an effective treatment option for CLL.
Collapse
MESH Headings
- Humans
- Sulfonamides/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Apoptosis/drug effects
- Drug Synergism
- Cell Line, Tumor
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Unfolded Protein Response/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Narjis Fatima
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Yandong Shen
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Kyle Crassini
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
| | - Olivia Burling
- Flinders Health and Medical Research Institute, Department of Genetics and Molecular Medicine, College of Medicine and Public Health, Flinders University, Camperdown, Australia
| | - Lauren Thurgood
- Flinders Health and Medical Research Institute, Department of Genetics and Molecular Medicine, College of Medicine and Public Health, Flinders University, Camperdown, Australia
| | | | - Henk Lang
- Madera Therapeutics, LLC, Cary, North Carolina, USA
| | | | | | - Stephen P Mulligan
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - O Giles Best
- Kolling Institute of Medical Research, Royal North Shore Hospital, University of Sydney, Camperdown, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
- Flinders Health and Medical Research Institute, Department of Genetics and Molecular Medicine, College of Medicine and Public Health, Flinders University, Camperdown, Australia
| |
Collapse
|
5
|
Li Y, Cao H, Qiu D, Wang N, Wang Y, Wen T, Wang J, Zhu H. The proteomics analysis of extracellular vesicles revealed the possible function of heat shock protein 60 in Helicobacter pylori infection. Cancer Cell Int 2023; 23:272. [PMID: 37974232 PMCID: PMC10652618 DOI: 10.1186/s12935-023-03131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is a major risk factor for gastric diseases, including gastritis and gastric cancer. Heat shock protein 60 (HSP60) is a chaperone protein involved in various cellular processes and has been implicated in the immune response to bacterial infections. Extracellular vesicles (EVs) containing various protein components play important roles in cell communication. In the present study, a systematic proteomic analysis of EVs obtained from H. pylori infected cells was performed and the EV-derived HSP60 function was studied. METHODS EVs were evaluated by nanoparticle tracking analysis, transmission electron microscopy and western blotting. The recognized protein components were quantified by label-free proteomics and subjected to bioinformatics assays. The expression of HSP60 in EVs, host cells and gastric cancers infected by H. pylori was determined by western blotting and immunohistochemical, respectively. In addition, the apoptotic regulation mechanisms of HSP60 in H. pylori infection were analyzed by western blotting and flow cytometry. RESULTS A total of 120 important differential proteins were identified in the EVs from H. pylori-infected cells and subjected to Gene Ontology analysis. Among them, CD63, HSP-70 and TSG101 were verified via western blotting. Moreover, HSP60 expression was significantly increased in the EVs from H. pylori-infected GES-1 cells. H. pylori infection promoted an abnormal increase in HSP60 expression in GES-1 cells, AGS cells, gastric mucosa and gastric cancer. In addition, knockdown of HSP60 suppressed the apoptosis of infected cells and the expression of Bcl2, and promoted the upregulation of Bax. CONCLUSION This study provides a comprehensive proteomic profile of EVs from H. pylori-infected cells, shedding light on the potential role of HSP60 in H. pylori infection. The findings underscore the significance of EV-derived HSP60 in the pathophysiology of H. pylori-associated diseases.
Collapse
Affiliation(s)
- Yujie Li
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Hui Cao
- Department of Food and Nutrition Safety, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Dewen Qiu
- Department of Clinical Laboratory, Jiangxi Maternal and Child Health Hospital Maternal and Child Heath Hospital of Nanchang College, Nanchang, 215300, People's Republic of China
| | - Nan Wang
- The School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yan Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Tingting Wen
- Department of Pharmacy, First People's Hospital of Kunshan, Suzhou, 215300, Jiangsu, People's Republic of China
| | - Jianjun Wang
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, Jiangsu, People's Republic of China.
| | - Hong Zhu
- Department of Clinical Laboratory, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213000, People's Republic of China.
| |
Collapse
|
6
|
Zimbone S, Di Rosa MC, Chiechio S, Giuffrida ML. Exploring the Role of Hsp60 in Alzheimer's Disease and Type 2 Diabetes: Suggestion for Common Drug Targeting. Int J Mol Sci 2023; 24:12456. [PMID: 37569831 PMCID: PMC10419248 DOI: 10.3390/ijms241512456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Heat shock protein 60 (Hsp60) is a member of the chaperonin family of heat shock proteins (HSPs), primarily found in the mitochondrial matrix. As a molecular chaperone, Hsp60 plays an essential role in mediating protein folding and assembly, and together with the co-chaperon Hsp10, it is thought to maintain protein homeostasis. Recently, it has been found to localize in non-canonical, extra-mitochondrial sites such as cell membranes or extracellular fluids, particularly in pathological conditions. Starting from its biological function, this review aims to provide a comprehensive understanding of the potential involvement of Hsp60 in Alzheimer's disease (AD) and Type II Diabetes Mellitus (T2DM), which are known to share impaired key pathways and molecular dysfunctions. Fragmentary data reported in the literature reveal interesting links between the altered expression level or localization of this chaperonin and several disease conditions. The present work offers an overview of the past and more recent knowledge about Hsp60 and its role in the most important cellular processes to shed light on neuronal Hsp60 as a potential common target for both pathologies. The absence of any effective cure for AD patients makes the identification of a new molecular target a promising path by which to move forward in the development of new drugs and/or repositioning of therapies already used for T2DM.
Collapse
Affiliation(s)
- Stefania Zimbone
- Institute of Crystallography, National Research Council (CNR-IC), 95126 Catania, Italy; (S.Z.); (M.C.D.R.)
| | - Maria Carmela Di Rosa
- Institute of Crystallography, National Research Council (CNR-IC), 95126 Catania, Italy; (S.Z.); (M.C.D.R.)
- Cogentech Società Benefit srl Actual Position, 95121 Catania, Italy
| | - Santina Chiechio
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy;
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Maria Laura Giuffrida
- Institute of Crystallography, National Research Council (CNR-IC), 95126 Catania, Italy; (S.Z.); (M.C.D.R.)
| |
Collapse
|
7
|
Rädler J, Gupta D, Zickler A, Andaloussi SE. Exploiting the biogenesis of extracellular vesicles for bioengineering and therapeutic cargo loading. Mol Ther 2023; 31:1231-1250. [PMID: 36805147 PMCID: PMC10188647 DOI: 10.1016/j.ymthe.2023.02.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are gaining increasing attention for diagnostic and therapeutic applications in various diseases. These natural nanoparticles benefit from favorable safety profiles and unique biodistribution capabilities, rendering them attractive drug-delivery modalities over synthetic analogs. However, the widespread use of EVs is limited by technological shortcomings and biological knowledge gaps that fail to unravel their heterogeneity. An in-depth understanding of their biogenesis is crucial to unlocking their full therapeutic potential. Here, we explore how knowledge about EV biogenesis can be exploited for EV bioengineering to load therapeutic protein or nucleic acid cargos into or onto EVs. We summarize more than 75 articles and discuss their findings on the formation and composition of exosomes and microvesicles, revealing multiple pathways that may be stimulation and/or cargo dependent. Our analysis further identifies key regulators of natural EV cargo loading and we discuss how this knowledge is integrated to develop engineered EV biotherapeutics.
Collapse
Affiliation(s)
- Julia Rädler
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Dhanu Gupta
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden; Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Antje Zickler
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Samir El Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Huddinge, Sweden.
| |
Collapse
|
8
|
Kucukakcali Z, Colak C, Gozukara Bag HG, Balikci Cicek I, Ozhan O, Yildiz A, Danis N, Koc A, Parlakpinar H, Akbulut S. Modeling Based on Ensemble Learning Methods for Detection of Diagnostic Biomarkers from LncRNA Data in Rats Treated with Cis-Platinum-Induced Hepatotoxicity. Diagnostics (Basel) 2023; 13:1583. [PMID: 37174973 PMCID: PMC10177870 DOI: 10.3390/diagnostics13091583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND The first aim of this study is to perform bioinformatic analysis of lncRNAs obtained from liver tissue samples from rats treated with cisplatin hepatotoxicity and without pathology. Another aim is to identify possible biomarkers for the diagnosis/early diagnosis of hepatotoxicity by modeling the data obtained from bioinformatics analysis with ensemble learning methods. METHODS In the study, 20 female Sprague-Dawley rats were divided into a control group and a hepatotoxicity group. Liver samples were taken from rats, and transcriptomic and histopathological analyses were performed. The dataset achieved from the transcriptomic analysis was modeled with ensemble learning methods (stacking, bagging, and boosting). Modeling results were evaluated with accuracy (Acc), balanced accuracy (B-Acc), sensitivity (Se), specificity (Sp), positive predictive value (Ppv), negative predictive value (Npv), and F1 score performance metrics. As a result of the modeling, lncRNAs that could be biomarkers were evaluated with variable importance values. RESULTS According to histopathological and immunohistochemical analyses, a significant increase was observed in the sinusoidal dilatation and Hsp60 immunoreactivity values in the hepatotoxicity group compared to the control group (p < 0.0001). According to the results of the bioinformatics analysis, 589 lncRNAs showed different expressions in the groups. The stacking model had the best classification performance among the applied ensemble learning models. The Acc, B-Acc, Se, Sp, Ppv, Npv, and F1-score values obtained from this model were 90%, 90%, 80%, 100%, 100%, 83.3%, and 88.9%, respectively. lncRNAs with id rna-XR_005492522.1, rna-XR_005492536.1, and rna-XR_005505831.1 with the highest three values according to the variable importance obtained as a result of stacking modeling can be used as predictive biomarker candidates for hepatotoxicity. CONCLUSIONS Among the ensemble algorithms, the stacking technique yielded higher performance results as compared to the bagging and boosting methods on the transcriptomic data. More comprehensive studies can support the possible biomarkers determined due to the research and the decisive results for the diagnosis of drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zeynep Kucukakcali
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (Z.K.); (H.G.G.B.); (I.B.C.); (S.A.)
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (Z.K.); (H.G.G.B.); (I.B.C.); (S.A.)
| | - Harika Gozde Gozukara Bag
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (Z.K.); (H.G.G.B.); (I.B.C.); (S.A.)
| | - Ipek Balikci Cicek
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (Z.K.); (H.G.G.B.); (I.B.C.); (S.A.)
| | - Onural Ozhan
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (O.O.)
| | - Azibe Yildiz
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey;
| | - Nefsun Danis
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (N.D.); (A.K.)
| | - Ahmet Koc
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (N.D.); (A.K.)
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (O.O.)
| | - Sami Akbulut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey; (Z.K.); (H.G.G.B.); (I.B.C.); (S.A.)
- Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
9
|
Venkatesan M, Zhang N, Marteau B, Yajima Y, De Zarate Garcia NO, Fang Z, Hu T, Cai S, Ford A, Olszewski H, Borst A, Coskun AF. Spatial subcellular organelle networks in single cells. Sci Rep 2023; 13:5374. [PMID: 37005468 PMCID: PMC10067843 DOI: 10.1038/s41598-023-32474-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
Organelles play important roles in human health and disease, such as maintaining homeostasis, regulating growth and aging, and generating energy. Organelle diversity in cells not only exists between cell types but also between individual cells. Therefore, studying the distribution of organelles at the single-cell level is important to understand cellular function. Mesenchymal stem cells are multipotent cells that have been explored as a therapeutic method for treating a variety of diseases. Studying how organelles are structured in these cells can answer questions about their characteristics and potential. Herein, rapid multiplexed immunofluorescence (RapMIF) was performed to understand the spatial organization of 10 organelle proteins and the interactions between them in the bone marrow (BM) and umbilical cord (UC) mesenchymal stem cells (MSCs). Spatial correlations, colocalization, clustering, statistical tests, texture, and morphological analyses were conducted at the single cell level, shedding light onto the interrelations between the organelles and comparisons of the two MSC subtypes. Such analytics toolsets indicated that UC MSCs exhibited higher organelle expression and spatially spread distribution of mitochondria accompanied by several other organelles compared to BM MSCs. This data-driven single-cell approach provided by rapid subcellular proteomic imaging enables personalized stem cell therapeutics.
Collapse
Affiliation(s)
- Mythreye Venkatesan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Benoit Marteau
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yukina Yajima
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nerea Ortiz De Zarate Garcia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Departamento de Bioingenieria e Ingenieria Aeroespacial, Universidad Carlos III de Madrid, Getafe, Spain
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Adam Ford
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Harrison Olszewski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrew Borst
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
10
|
Application of plasma membrane proteomics to identify cancer biomarkers. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
11
|
Yang F, Wang M, Guan X. Exosomes and mimics as novel delivery platform for cancer therapy. Front Pharmacol 2022; 13:1001417. [PMID: 36313380 PMCID: PMC9602403 DOI: 10.3389/fphar.2022.1001417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/30/2022] [Indexed: 11/15/2022] Open
Abstract
Exosomes are nano-sized biological extracellular vesicles transmitting information between cells and constituting a new intercellular communication mode. Exosomes have many advantages as an ideal drug delivery nanocarrier, including good biocompatibility, permeability, low toxicity, and low immunogenicity. Recently, exosomes have been used to deliver chemotherapeutic agents, natural drugs, nucleic acid drugs, and other antitumor drugs to treat many types of tumors. Due to the limited production of exosomes, synthetic exosome-mimics have been developed as an ideal platform for drug delivery. This review summarizes recent advances in the application of exosomes and exosome-mimics delivering therapeutic drugs in treating cancers.
Collapse
Affiliation(s)
- Fuxu Yang
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
- Key Laboratory of Pharmaceutics and Bioengineering, School of Medical Technology, Beihua University, Jilin, China
| | - Mingyue Wang
- Key Laboratory of Pharmaceutics and Bioengineering, School of Medical Technology, Beihua University, Jilin, China
- Center of Reproductive Medicine and Center of Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Xingang Guan
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
- *Correspondence: Xingang Guan,
| |
Collapse
|
12
|
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022; 123:1704-1735. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
13
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
14
|
Cheng J, Wang X, Yuan X, Liu G, Chu Q. Emerging roles of exosome-derived biomarkers in cancer theranostics: messages from novel protein targets. Am J Cancer Res 2022; 12:2226-2248. [PMID: 35693088 PMCID: PMC9185602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Effective biomarkers that guide therapeutics with limited adverse effects, have emerged as attractive research topics in cancer diagnosis and treatment. Cancer-derived exosomes, a type of extracellular vesicles representing molecular signatures of cells of origin, could serve as stable reservoirs for potential biomarkers (i.e., proteins, nucleic acids) in non-invasive cancer diagnosis and prognosis. In this review, the physiological and pathological roles of exosomes and their protein components in facilitating tumorigenesis are highlighted. Exosomes carrying proteins can participate in tumor development and progression through multiple signaling pathways, including EMT, invasion and metastasis. Meanwhile, the practical applications of exosomal proteins in detecting and monitoring several solid-tumor cancers (including lung, breast, pancreatic, colorectal and prostate cancers) were also summarized. More clinically relevant, exosomal proteins play pivotal roles in transmitting oncogenic potential or resistance to therapies in recipient cells, which might further support therapeutic strategy determinations.
Collapse
Affiliation(s)
- Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Xiaofeng Wang
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Xuechun Yuan
- Department of Medicinal Chemistry, China Pharmaceutical UniversityNanjing 211198, Jiangsu, China
| | - Guangxiang Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang UniversityNanjing 211171, Jiangsu, China
| | - Qian Chu
- Department of Medicinal Chemistry, China Pharmaceutical UniversityNanjing 211198, Jiangsu, China
| |
Collapse
|
15
|
Tang Y, Zhou Y, Fan S, Wen Q. The Multiple Roles and Therapeutic Potential of HSP60 in Cancer. Biochem Pharmacol 2022; 201:115096. [DOI: 10.1016/j.bcp.2022.115096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
|
16
|
Heat shock proteins and the calcineurin-crz1 signaling regulate stress responses in fungi. Arch Microbiol 2022; 204:240. [PMID: 35377020 DOI: 10.1007/s00203-022-02833-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 12/26/2022]
Abstract
The heat shock proteins (Hsps) act as a molecular chaperone to stabilize client proteins involved in various cell functions in fungi. Hsps are classified into different families such as HSP90, HSP70, HSP60, HSP40, and small HSPs (sHsps). Hsp90, a well-studied member of the Hsp family proteins, plays a role in growth, cell survival, and pathogenicity in fungi. Hsp70 and sHsps are involved in the development, tolerance to stress conditions, and drug resistance in fungi. Hsp60 is a mitochondrial chaperone, and Hsp40 regulates fungal ATPase machinery. In this review, we describe the cell functions, regulation, and the molecular link of the Hsps with the calcineurin-crz1 calcium signaling pathway for their role in cell survival, growth, virulence, and drug resistance in fungi and related organisms.
Collapse
|
17
|
Cyran AM, Zhitkovich A. Heat Shock Proteins and HSF1 in Cancer. Front Oncol 2022; 12:860320. [PMID: 35311075 PMCID: PMC8924369 DOI: 10.3389/fonc.2022.860320] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Fitness of cells is dependent on protein homeostasis which is maintained by cooperative activities of protein chaperones and proteolytic machinery. Upon encountering protein-damaging conditions, cells activate the heat-shock response (HSR) which involves HSF1-mediated transcriptional upregulation of a group of chaperones - the heat shock proteins (HSPs). Cancer cells experience high levels of proteotoxic stress due to the production of mutated proteins, aneuploidy-induced excess of components of multiprotein complexes, increased translation rates, and dysregulated metabolism. To cope with this chronic state of proteotoxic stress, cancers almost invariably upregulate major components of HSR, including HSF1 and individual HSPs. Some oncogenic programs show dependence or coupling with a particular HSR factor (such as frequent coamplification of HSF1 and MYC genes). Elevated levels of HSPs and HSF1 are typically associated with drug resistance and poor clinical outcomes in various malignancies. The non-oncogene dependence ("addiction") on protein quality controls represents a pancancer target in treating human malignancies, offering a potential to enhance efficacy of standard and targeted chemotherapy and immune checkpoint inhibitors. In cancers with specific dependencies, HSR components can serve as alternative targets to poorly druggable oncogenic drivers.
Collapse
Affiliation(s)
- Anna M Cyran
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Legoretta Cancer Center, Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| |
Collapse
|
18
|
Wang G, Fan Y, Cao P, Tan K. Insight into the mitochondrial unfolded protein response and cancer: opportunities and challenges. Cell Biosci 2022; 12:18. [PMID: 35180892 PMCID: PMC8857832 DOI: 10.1186/s13578-022-00747-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/18/2022] [Indexed: 02/08/2023] Open
Abstract
The mitochondrial unfolded protein response (UPRmt) is an evolutionarily conserved protective transcriptional response that maintains mitochondrial proteostasis by inducing the expression of mitochondrial chaperones and proteases in response to various stresses. The UPRmt-mediated transcriptional program requires the participation of various upstream signaling pathways and molecules. The factors regulating the UPRmt in Caenorhabditis elegans (C. elegans) and mammals are both similar and different. Cancer cells, as malignant cells with uncontrolled proliferation, are exposed to various challenges from endogenous and exogenous stresses. Therefore, in cancer cells, the UPRmt is hijacked and exploited for the repair of mitochondria and the promotion of tumor growth, invasion and metastasis. In this review, we systematically introduce the inducers of UPRmt, the biological processes in which UPRmt participates, the mechanisms regulating the UPRmt in C. elegans and mammals, cross-tissue signal transduction of the UPRmt and the roles of the UPRmt in promoting cancer initiation and progression. Disrupting proteostasis in cancer cells by targeting UPRmt constitutes a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Ge Wang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China.,Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Yumei Fan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China
| | - Pengxiu Cao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China
| | - Ke Tan
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Hebei, 050024, China.
| |
Collapse
|
19
|
Cancer extracellular vesicles, tumoroid models, and tumor microenvironment. Semin Cancer Biol 2022; 86:112-126. [PMID: 35032650 DOI: 10.1016/j.semcancer.2022.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/21/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Cancer extracellular vesicles (EVs), or exosomes, promote tumor progression through enhancing tumor growth, initiating epithelial-to-mesenchymal transition, remodeling the tumor microenvironment, and preparing metastatic niches. Three-dimensionally (3D) cultured tumoroids / spheroids aim to reproduce some aspects of tumor behavior in vitro and show increased cancer stem cell properties. These properties are transferred to their EVs that promote tumor growth. Moreover, recent tumoroid models can be furnished with aspects of the tumor microenvironment, such as vasculature, hypoxia, and extracellular matrix. This review summarizes tumor tissue culture and engineering platforms compatible with EV research. For example, the combination experiments of 3D-tumoroids and EVs have revealed multifunctional proteins loaded in EVs, such as metalloproteinases and heat shock proteins. EVs or exosomes are able to transfer their cargo molecules to recipient cells, whose fates are often largely altered. In addition, the review summarizes approaches to EV labeling technology using fluorescence and luciferase, useful for studies on EV-mediated intercellular communication, biodistribution, and metastatic niche formation.
Collapse
|
20
|
Abu N, Rus Bakarurraini NAA, Nasir SN. Extracellular Vesicles and DAMPs in Cancer: A Mini-Review. Front Immunol 2021; 12:740548. [PMID: 34721407 PMCID: PMC8554306 DOI: 10.3389/fimmu.2021.740548] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Certain cancer therapy has been shown to induce immunogenic cell death in cancer cells and may promote tumor progression instead. The external stress or stimuli may induce cell death and contribute toward the secretion of pro inflammatory molecules. The release of damage-associated molecular patterns (DAMPs) upon induction of therapy or cell death has been shown to induce an inflammatory response. Nevertheless, the mechanism as to how the DAMPs are released and engage in such activity needs further in-depth investigation. Interestingly, some studies have shown that DAMPs can be released through extracellular vesicles (EVs) and can bind to receptors such as toll-like receptors (TCRs). Ample pre-clinical studies have shown that cancer-derived EVs are able to modulate immune responses within the tumor microenvironment. However, the information on the presence of such DAMPs within EVs is still elusive. Therefore, this mini-review attempts to summarize and appraise studies that have shown the presence of DAMPs within cancer-EVs and how it affects the downstream cellular process.
Collapse
Affiliation(s)
- Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | - Siti Nurmi Nasir
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Malik JA, Lone R. Heat shock proteins with an emphasis on HSP 60. Mol Biol Rep 2021; 48:6959-6969. [PMID: 34498161 DOI: 10.1007/s11033-021-06676-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Heat shock phenomenon is a process by which cells express a set of proteins called heat shock proteins (HSPs) against heat stress. HSPs include several families depending upon the molecular weight of the respective protein. Among the different HSPs, The HSP60 is one of the main components representing the framework of chaperone system. HSP60 plays a myriad number of roles like chaperoning, thermotolerance, apoptosis, cancer, immunology and embryonic development. In this review we discussed briefly the general knowledge and focussed on HSP60 in terms of structure, regulation and function in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Javid Ahmad Malik
- Pharmacology and Toxicology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Rafiq Lone
- Department of Botany, Central University of Kashmir, Jammu and Kashmir, India.
| |
Collapse
|
22
|
Regimbeau M, Abrey J, Vautrot V, Causse S, Gobbo J, Garrido C. Heat shock proteins and exosomes in cancer theranostics. Semin Cancer Biol 2021; 86:46-57. [PMID: 34343652 DOI: 10.1016/j.semcancer.2021.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2023]
Abstract
Heat shock proteins (HSPs) are a superfamily of molecular chaperones that were discovered through their ability to be induced by different stresses including heat shock. Other than their function as chaperones in proteins homeostasis, HSPs have been shown to inhibit different forms of cell death and to participate in cell proliferation and differentiation processes. Because cancer cells have to rewire their metabolism, they require a high amount of these stress-inducible chaperones for their survival. Therefore, HSPs are unusually abundant in cancer cells where they have oncogene-like functions. In cancer, HSPs have been involved in the regulation of apoptosis, immune responses, angiogenesis, metastasis and treatment resistance. Recently, HSPs have been shown to be secreted through exosomes by cancer cells. These tumor-derived exosomes can be used as circulating markers: HSP-exosomes have been reported as biomarkers of cancer dissemination, response to therapy and/or patient outcome. A new range of functions, mostly in modulation of anticancer immune responses, have been described for these extracellular HSPs. In this review, we will describe those recently reported functions of HSP-exosomes that makes them both targets for anticancer therapeutics and biomarkers for the monitoring of the disease. We will also discuss their emerging interest in cancer vaccines.
Collapse
Affiliation(s)
- Mathilde Regimbeau
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Jimena Abrey
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Valentin Vautrot
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France
| | - Sebastien Causse
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Jessica Gobbo
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France; Early Phase Unit INCa CLIP², Department of Oncology, Georges-François Leclerc Centre, Dijon, France; Centre d'investigation Clinique INSERM 1432, CHU Dijon-Bourgogne, Dijon, France
| | - Carmen Garrido
- INSERM, UMR 1231, Label Ligue Nationale Contre le Cancer and LipSTIC. 7 blvd Jeanne d'Arc, 21000, Dijon, France; Université. Bourgogne Franche-Comté, 21000, Dijon, France; Anticancer Center Georges François Leclerc, Dijon, France.
| |
Collapse
|
23
|
Singh P, Kumari M, Bal A, Srinivasan R, Ghosh S. Heat shock protein 60 is a disease-associated sialoglycoprotein in human non-small cell lung cancer. Biol Chem 2021; 401:969-983. [PMID: 32049642 DOI: 10.1515/hsz-2019-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
The diagnostic and therapeutic potential of Maackia amurensis agglutinin (MAA) have been reported in various malignancies. Earlier, we have found that MAA specifically interacted with human non-small cell lung-cancer (NSCLC) cells and induced apoptosis in these cells. The present study was designed to identify M. amurensis leukoagglutinin (MAL-I, one of the components of MAA, having the same carbohydrate specificity as MAA) interacting membrane sialoglycoprotein(s) of two subtypes of human NSCLC cell lines. Nine proteins were identified using two-dimensional (2D)-polyacrylamide gel electrophoresis (PAGE) followed by MAL-I-overlay transblotting and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). Among these proteins, HSP60 was selected for further characterization. The sialoglycoprotein nature of membrane-HSP60 of NSCLC cell lines was confirmed by its reduced reactivity with MAL-I in Western blots in the presence of GM2 and by dual staining of the cell lines with MAL-I and HSP60-antibody. These findings were further substantiated by enzymatic analysis of membrane-HSP60 as well as in-silico evidence regarding this protein. Our observations were validated by immunohistochemical analysis of both subtypes of NSCLC tissue sections. Membrane-HSP60 was found to be involved in the inhibition of MAL-I-induced morphological alteration of NSCLC cells and also in the proliferation and migration of these cells, indicating the probable role of sialylated membrane-HSP60 in this disease.
Collapse
Affiliation(s)
- Praveen Singh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Munmun Kumari
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| | - Amanjit Bal
- Department of Histopathology, PGIMER, Chandigarh 160012, India
| | - Radhika Srinivasan
- Department of Cytology and Gynecological Pathology, PGIMER, Chandigarh 160012, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, PGIMER, Chandigarh 160012, India
| |
Collapse
|
24
|
Huang D, Chen J, Hu D, Xie F, Yang T, Li Z, Wang X, Xiao Y, Zhong J, Jiang Y, Zhang X, Zhong T. Advances in Biological Function and Clinical Application of Small Extracellular Vesicle Membrane Proteins. Front Oncol 2021; 11:675940. [PMID: 34094979 PMCID: PMC8172959 DOI: 10.3389/fonc.2021.675940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Small extracellular vesicles are membrane-bound vesicles secreted into extracellular spaces by virtually all types of cells. These carry a large number of membrane proteins on their surface that are incorporated during their biogenesis in cells. The composition of the membrane proteins hence bears the signature of the cells from which they originate. Recent studies have suggested that the proteins on these small extracellular vesicles can serve as biomarkers and target proteins for the diagnosis and treatment of diseases. This article classifies small extracellular vesicle membrane proteins and summarizes their pathophysiological functions in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Die Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangfang Xie
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yongwei Xiao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiaokang Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Department of Preventive Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
25
|
Sun B, Li G, Yu Q, Liu D, Tang X. HSP60 in cancer: a promising biomarker for diagnosis and a potentially useful target for treatment. J Drug Target 2021; 30:31-45. [PMID: 33939586 DOI: 10.1080/1061186x.2021.1920025] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heat shock proteins (HSPs), most of which are molecular chaperones, are highly conserved proteins produced by cells under physiological stress or pathological conditions. HSP60 (57-69 kDa) can promote or inhibit cell apoptosis through different mechanisms, and its abnormal expression is also related to tumour cell metastasis and drug resistance. In recent years, HSP60 has received increasing attention in the field of cancer research due to its potential as a diagnostic and prognostic biomarker or therapeutic target. However, in different types of cancer, the specific mechanisms of abnormally expressed HSP60 in tumour carcinogenesis and drug resistance are complicated and still require further study. In this article, we comprehensively review the regulative mechanisms of HSP60 on apoptosis, its applications as a cancer diagnostic biomarker and a therapeutic target, evidence of involvement in tumour resistance and the applications of exosomal HSP60 in liquid biopsy. By evaluating the current findings of HSP60 in cancer research, we highlight some core issues that need to be addressed for the use of HSP60 as a diagnostic or prognostic biomarker and therapeutic target in certain types of cancer.
Collapse
Affiliation(s)
- Bo Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Ganghui Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Qing Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Dongchun Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xing Tang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
26
|
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules which foment inflammation and are associated with disorders in sepsis and cancer. Thus, therapeutically targeting DAMPs has potential to provide novel and effective treatments. When establishing anti-DAMP strategies, it is important not only to focus on the DAMPs as inflammatory mediators but also to take into account the underlying mechanisms of their release from cells and tissues. DAMPs can be released passively by membrane rupture due to necrosis/necroptosis, although the mechanisms of release appear to differ between the DAMPs. Other types of cell death, such as apoptosis, pyroptosis, ferroptosis and NETosis, can also contribute to DAMP release. In addition, some DAMPs can be exported actively from live cells by exocytosis of secretory lysosomes or exosomes, ectosomes, and activation of cell membrane channel pores. Here we review the shared and DAMP-specific mechanisms reported in the literature for high mobility group box 1, ATP, extracellular cold-inducible RNA-binding protein, histones, heat shock proteins, extracellular RNAs and cell-free DNA.
Collapse
Affiliation(s)
- Atsushi Murao
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Monowar Aziz
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Haichao Wang
- Center for Biomedical Science, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
- Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA.
| |
Collapse
|
27
|
Buttacavoli M, Di Cara G, D’Amico C, Geraci F, Pucci-Minafra I, Feo S, Cancemi P. Prognostic and Functional Significant of Heat Shock Proteins (HSPs) in Breast Cancer Unveiled by Multi-Omics Approaches. BIOLOGY 2021; 10:biology10030247. [PMID: 33810095 PMCID: PMC8004706 DOI: 10.3390/biology10030247] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary In this study, we investigated the expression pattern and prognostic significance of the heat shock proteins (HSPs) family members in breast cancer (BC) by using several bioinformatics tools and proteomics investigations. Our results demonstrated that, collectively, HSPs were deregulated in BC, acting as both oncogene and onco-suppressor genes. In particular, two different HSP-clusters were significantly associated with a poor or good prognosis. Interestingly, the HSPs deregulation impacted gene expression and miRNAs regulation that, in turn, affected important biological pathways involved in cell cycle, DNA replication, and receptors-mediated signaling. Finally, the proteomic identification of several HSPs members and isoforms revealed much more complexity of HSPs roles in BC and showed that their expression is quite variable among patients. In conclusion, we elaborated two panels of HSPs that could be further explored as potential biomarkers for BC progression and prognosis. Abstract Heat shock proteins (HSPs) are a well-characterized molecular chaperones protein family, classified into six major families, according to their molecular size. A wide range of tumors have been shown to express atypical levels of one or more HSPs, suggesting that they could be used as biomarkers. However, the collective role and the possible coordination of HSP members, as well as the prognostic significance and the functional implications of their deregulated expression in breast cancer (BC) are poorly investigated. Here, we used a systematic multi-omics approach to assess the HSPs expression, the prognostic value, and the underlying mechanisms of tumorigenesis in BC. By using data mining, we showed that several HSPs were deregulated in BC and significantly correlated with a poor or good prognosis. Functional network analysis of HSPs co-expressed genes and miRNAs highlighted their regulatory effects on several biological pathways involved in cancer progression. In particular, these pathways concerned cell cycle and DNA replication for the HSPs co-expressed genes, and miRNAs up-regulated in poor prognosis and Epithelial to Mesenchymal Transition (ETM), as well as receptors-mediated signaling for the HSPs co-expressed genes up-regulated in good prognosis. Furthermore, the proteomic expression of HSPs in a large sample-set of breast cancer tissues revealed much more complexity in their roles in BC and showed that their expression is quite variable among patients and confined into different cellular compartments. In conclusion, integrative analysis of multi-omics data revealed the distinct impact of several HSPs members in BC progression and indicate that collectively they could be useful as biomarkers and therapeutic targets for BC management.
Collapse
Affiliation(s)
- Miriam Buttacavoli
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Gianluca Di Cara
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Cesare D’Amico
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Fabiana Geraci
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | | | - Salvatore Feo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
| | - Patrizia Cancemi
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128 Palermo, Italy; (M.B.); (G.D.C.); (C.D.); (F.G.); (S.F.)
- Experimental Center of Onco Biology (COBS), 90145 Palermo, Italy;
- Correspondence: ; Tel.: +39-091-2389-7330
| |
Collapse
|
28
|
Krawczyk MA, Pospieszynska A, Styczewska M, Bien E, Sawicki S, Marino Gammazza A, Fucarino A, Gorska-Ponikowska M. Extracellular Chaperones as Novel Biomarkers of Overall Cancer Progression and Efficacy of Anticancer Therapy. APPLIED SCIENCES 2020; 10:6009. [DOI: 10.3390/app10176009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Exosomal heat shock proteins (Hsps) are involved in intercellular communication both in physiological and pathological conditions. They play a role in key processes of carcinogenesis including immune system regulation, cell differentiation, vascular homeostasis and metastasis formation. Thus, exosomal Hsps are emerging biomarkers of malignancies and possible therapeutic targets. Adolescents and young adults (AYAs) are patients aged 15–39 years. This age group, placed between pediatric and adult oncology, pose a particular challenge for cancer management. New biomarkers of cancer growth and progression as well as prognostic factors are desperately needed in AYAs. In this review, we attempted to summarize the current knowledge on the role of exosomal Hsps in selected solid tumors characteristic for the AYA population and/or associated with poor prognosis in this age group. These included malignant melanoma, brain tumors, and breast, colorectal, thyroid, hepatocellular, lung and gynecological tract carcinomas. The studies on exosomal Hsps in these tumors are limited; however; some have provided promising results. Although further research is needed, there is potential for future clinical applications of exosomal Hsps in AYA cancers, both as novel biomarkers of disease presence, progression or relapse, or as therapeutic targets or tools for drug delivery.
Collapse
|
29
|
Caruso Bavisotto C, Alberti G, Vitale AM, Paladino L, Campanella C, Rappa F, Gorska M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Hsp60 Post-translational Modifications: Functional and Pathological Consequences. Front Mol Biosci 2020; 7:95. [PMID: 32582761 PMCID: PMC7289027 DOI: 10.3389/fmolb.2020.00095] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Hsp60 is a chaperone belonging to the Chaperonins of Group I and typically functions inside mitochondria in which, together with the co-chaperonin Hsp10, maintains protein homeostasis. In addition to this canonical role, Hsp60 plays many others beyond the mitochondria, for instance in the cytosol, plasma-cell membrane, extracellular space, and body fluids. These non-canonical functions include participation in inflammation, autoimmunity, carcinogenesis, cell replication, and other cellular events in health and disease. Thus, Hsp60 is a multifaceted molecule with a wide range of cellular and tissue locations and functions, which is noteworthy because there is only one hsp60 gene. The question is by what mechanism this protein can become multifaceted. Likely, one factor contributing to this diversity is post-translational modification (PTM). The amino acid sequence of Hsp60 contains many potential phosphorylation sites, and other PTMs are possible such as O-GlcNAcylation, nitration, acetylation, S-nitrosylation, citrullination, oxidation, and ubiquitination. The effect of some of these PTMs on Hsp60 functions have been examined, for instance phosphorylation has been implicated in sperm capacitation, docking of H2B and microtubule-associated proteins, mitochondrial dysfunction, tumor invasiveness, and delay or facilitation of apoptosis. Nitration was found to affect the stability of the mitochondrial permeability transition pore, to inhibit folding ability, and to perturb insulin secretion. Hyperacetylation was associated with mitochondrial failure; S-nitrosylation has an impact on mitochondrial stability and endothelial integrity; citrullination can be pro-apoptotic; oxidation has a role in the response to cellular injury and in cell migration; and ubiquitination regulates interaction with the ubiquitin-proteasome system. Future research ought to determine which PTM causes which variations in the Hsp60 molecular properties and functions, and which of them are pathogenic, causing chaperonopathies. This is an important topic considering the number of acquired Hsp60 chaperonopathies already cataloged, many of which are serious diseases without efficacious treatment.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Giusi Alberti
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Alessandra Maria Vitale
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Letizia Paladino
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Claudia Campanella
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| | - Magdalena Gorska
- Department of Medical Chemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Francesco Cappello
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
Hoter A, Rizk S, Naim HY. Heat Shock Protein 60 in Hepatocellular Carcinoma: Insights and Perspectives. Front Mol Biosci 2020; 7:60. [PMID: 32351972 PMCID: PMC7174549 DOI: 10.3389/fmolb.2020.00060] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 60 (HSP60) is a mitochondrial chaperone that is implicated in physiological and pathological processes. For instance, it contributes to protein folding and stability, translocation of mitochondrial proteins, and apoptosis. Variations in the expression levels of HSP60 have been correlated to various diseases and cancers, including hepatocellular carcinoma (HCC). Unlike other HSPs which clearly increase in some cancers, data about HSP60 levels in HCC are controversial and difficult to interpret. In the current review, we summarize and simplify the current knowledge about the role of HSP60 in HCC. In addition, we highlight the possibility of its targeting, using chemical compounds and/or genetic tools for treatment of HCC.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hanover, Germany.,Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hanover, Germany
| |
Collapse
|
31
|
Role of HSP60/HSP10 in Lung Cancer: Simple Biomarkers or Leading Actors? JOURNAL OF ONCOLOGY 2020; 2020:4701868. [PMID: 32318107 PMCID: PMC7149434 DOI: 10.1155/2020/4701868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/22/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023]
Abstract
Cancers are one of the major challenges faced by modern medicine both because of their impact in terms of the amount of cases and of the ineffectiveness of therapies used today. A concrete support to the fight against them can be found in the analysis and understanding of the molecular mechanisms involving molecular chaperones. In particular, HSP60 and HSP10 seem to play an important role in carcinogenesis, supporting tumours in their proliferation, survival, and metastasis. Efforts must be directed toward finding ways to eliminate or block this "mistaken" chaperone. Therefore, the scientific community must develop therapeutic strategies that consider HSP60 and HSP10 as the possible target of an anti-tumoural treatment and not only as diagnostic biomarkers, since they contribute to the evolution of pre-cancerous respiratory pathologies in lung tumours. HSP60 acts at the mitochondrial, cytoplasmic, and extracellular levels in the development of cancer pathologies. The molecular mechanisms in which these chaperones are involved concern cell survival, the restoration of a condition of absence of replicative senescence, the promotion of pro-inflammatory environments, and an increase in the ability to form metastases. In this review, we will also present examples of interactions between HSP60 and HSP10 and different molecules and ways to exploit this knowledge in anticancer therapies for lung tumours. In order to improve not only chances for an earlier diagnosis but also treatments for patients suffering from this type of disease, chaperones must be considered as key agents in carcinogenesis and primary targets in therapeutics.
Collapse
|
32
|
Curcumin Affects HSP60 Folding Activity and Levels in Neuroblastoma Cells. Int J Mol Sci 2020; 21:ijms21020661. [PMID: 31963896 PMCID: PMC7013437 DOI: 10.3390/ijms21020661] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
The fundamental challenge in fighting cancer is the development of protective agents able to interfere with the classical pathways of malignant transformation, such as extracellular matrix remodeling, epithelial–mesenchymal transition and, alteration of protein homeostasis. In the tumors of the brain, proteotoxic stress represents one of the main triggering agents for cell transformation. Curcumin is a natural compound with anti-inflammatory and anti-cancer properties with promising potential for the development of therapeutic drugs for the treatment of cancer as well as neurodegenerative diseases. Among the mediators of cancer development, HSP60 is a key factor for the maintenance of protein homeostasis and cell survival. High HSP60 levels were correlated, in particular, with cancer development and progression, and for this reason, we investigated the ability of curcumin to affect HSP60 expression, localization, and post-translational modifications using a neuroblastoma cell line. We have also looked at the ability of curcumin to interfere with the HSP60/HSP10 folding machinery. The cells were treated with 6, 12.5, and 25 µM of curcumin for 24 h, and the flow cytometry analysis showed that the compound induced apoptosis in a dose-dependent manner with a higher percentage of apoptotic cells at 25 µM. This dose of curcumin-induced a decrease in HSP60 protein levels and an upregulation of HSP60 mRNA expression. Moreover, 25 µM of curcumin reduced HSP60 ubiquitination and nitration, and the chaperonin levels were higher in the culture media compared with the untreated cells. Furthermore, curcumin at the same dose was able to favor HSP60 folding activity. The reduction of HSP60 levels, together with the increase in its folding activity and the secretion in the media led to the supposition that curcumin might interfere with cancer progression with a protective mechanism involving the chaperonin.
Collapse
|
33
|
Yang X, Yamazaki H, Yamakoshi Y, Duverger O, Morasso MI, Beniash E. Trafficking and secretion of keratin 75 by ameloblasts in vivo. J Biol Chem 2019; 294:18475-18487. [PMID: 31628189 PMCID: PMC6885611 DOI: 10.1074/jbc.ra119.010037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/24/2019] [Indexed: 11/06/2022] Open
Abstract
A highly specialized cytoskeletal protein, keratin 75 (K75), expressed primarily in hair follicles, nail beds, and lingual papillae, was recently discovered in dental enamel, the most highly mineralized hard tissue in the human body. Among many questions this discovery poses, the fundamental question regarding the trafficking and secretion of this protein, which lacks a signal peptide, is of an utmost importance. Here, we present evidence that K75 is expressed during the secretory stage of enamel formation and is present in the forming enamel matrix. We further show that K75 is secreted together with major enamel matrix proteins amelogenin and ameloblastin, and it was detected in Golgi and the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) but not in rough ER (rER). Inhibition of ER-Golgi transport by brefeldin A did not affect the association of K75 with Golgi, whereas ameloblastin accumulated in rER, and its transport from rER into Golgi was disrupted. Together, these results indicate that K75, a cytosolic protein lacking a signal sequence, is secreted into the forming enamel matrix utilizing portions of the conventional ER-Golgi secretory pathway. To the best of our knowledge, this is the first study providing insights into mechanisms of keratin secretion.
Collapse
Affiliation(s)
- Xu Yang
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Hajime Yamazaki
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Olivier Duverger
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Maria I Morasso
- Laboratory of Skin Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892
| | - Elia Beniash
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
34
|
Mohammadi S, Yousefi F, Shabaninejad Z, Movahedpour A, Mahjoubin Tehran M, Shafiee A, Moradizarmehri S, Hajighadimi S, Savardashtaki A, Mirzaei H. Exosomes and cancer: From oncogenic roles to therapeutic applications. IUBMB Life 2019; 72:724-748. [PMID: 31618516 DOI: 10.1002/iub.2182] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
Exosomes belong to extracellular vehicles that were produced and secreted from most eukaryotic cells and are involved in cell-to-cell communications. They are an effective delivery system for biological compounds such as mRNAs, microRNAs (miRNAs), proteins, lipids, saccharides, and other physiological compounds to target cells. In this way, they could influence on cellular pathways and mediate their physiological behaviors including cell proliferation, tumorigenesis, differentiation, and so on. Many research studies focused on their role in cancers and also on potentially therapeutic and biomarker applications. In the current study, we reviewed the exosomes' effects on cancer progression based on their cargoes including miRNAs, long noncoding RNAs, circular RNAs, DNAs, mRNAs, proteins, and lipids. Moreover, their therapeutic roles in cancer were considered. In this regard, we have given a brief overview of challenges and obstacles in using exosomes as therapeutic agents.
Collapse
Affiliation(s)
- Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mahjoubin Tehran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sanaz Moradizarmehri
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
35
|
Caruso Bavisotto C, Cipolla C, Graceffa G, Barone R, Bucchieri F, Bulone D, Cabibi D, Campanella C, Marino Gammazza A, Pitruzzella A, Porcasi R, San Biagio PL, Tomasello G, Conway de Macario E, Macario AJL, Cappello F, Rappa F. Immunomorphological Pattern of Molecular Chaperones in Normal and Pathological Thyroid Tissues and Circulating Exosomes: Potential Use in Clinics. Int J Mol Sci 2019; 20:ijms20184496. [PMID: 31514388 PMCID: PMC6770414 DOI: 10.3390/ijms20184496] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
The thyroid is a major component of the endocrine system and its pathology can cause serious diseases, e.g., papillary carcinoma (PC). However, the carcinogenic mechanisms are poorly understood and clinical useful biomarkers are scarce. Therefore, we determined if there are quantitative patterns of molecular chaperones in the tumor tissue and circulating exosomes that may be useful in diagnosis and provide clues on their participation in carcinogenesis. Hsp27, Hsp60, Hsp70, and Hsp90 were quantified by immunohistochemistry in PC, benign goiter (BG), and normal peritumoral tissue (PT). The same chaperones were assessed in plasma exosomes from PC and BG patients before and after ablative surgery, using Western blotting. Hsp27, Hsp60, and Hsp90 were increased in PC in comparison with PT and BG but no differences were found for Hsp70. Similarly, exosomal levels of Hsp27, Hsp60, and Hsp90 were higher in PC than in BG, and those in PC were higher before ablative surgery than after it. Hsp27, Hsp60, and Hsp90 show distinctive quantitative patterns in thyroid tissue and circulating exosomes in PC as compared with BG, suggesting some implication in the carcinogenesis of these chaperones and indicating their potential as biomarkers for clinical applications.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
- Institute of Biophysics, National Research Council, 90100 Palermo, Italy.
| | - Calogero Cipolla
- Department of Surgical Oncology and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Giuseppa Graceffa
- Department of Surgical Oncology and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Rosario Barone
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy.
| | - Fabio Bucchieri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy.
- Institute of Biomedicine and Molecular Immunology, National Research Council, 90100 Palermo, Italy.
| | - Donatella Bulone
- Institute of Biophysics, National Research Council, 90100 Palermo, Italy.
| | - Daniela Cabibi
- Department "G. D'Alessandro", Pathology Institute, University of Palermo, 90127 Palermo, Italy.
| | - Claudia Campanella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy.
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy.
| | - Alessandro Pitruzzella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy.
| | - Rossana Porcasi
- Department "G. D'Alessandro", Pathology Institute, University of Palermo, 90127 Palermo, Italy.
| | | | - Giovanni Tomasello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy.
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90100 Palermo, Italy.
| | - Francesca Rappa
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Institute of Human Anatomy and Histology, University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
36
|
Vilasi S, Carrotta R, Ricci C, Rappa GC, Librizzi F, Martorana V, Ortore MG, Mangione MR. Inhibition of Aβ 1-42 Fibrillation by Chaperonins: Human Hsp60 Is a Stronger Inhibitor than Its Bacterial Homologue GroEL. ACS Chem Neurosci 2019; 10:3565-3574. [PMID: 31298838 DOI: 10.1021/acschemneuro.9b00183] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease is a chronic neurodegenerative disease characterized by the accumulation of pathological aggregates of amyloid beta peptide. Many efforts have been focused on understanding peptide aggregation pathways and on identification of molecules able to inhibit aggregation in order to find an effective therapy. As a result, interest in neuroprotective proteins, such as molecular chaperones, has increased as their normal function is to assist in protein folding or to facilitate the disaggregation and/or clearance of abnormal aggregate proteins. Using biophysical techniques, we evaluated the effects of two chaperones, human Hsp60 and bacterial GroEL, on the fibrillogenesis of Aβ1-42. Both chaperonins interfere with Aβ1-42 aggregation, but the effect of Hsp60 is more significant and correlates with its more pronounced flexibility and stronger interaction with ANS, an indicator of hydrophobic regions. Dose-dependent ThT fluorescence kinetics and SAXS experiments reveal that Hsp60 does not change the nature of the molecular processes stochastically leading to the formation of seeds, but strongly delays them by recognition of hydrophobic sites of some peptide species crucial for triggering amyloid formation. Hsp60 reduces the initial chaotic heterogeneity of Aβ1-42 sample at high concentration regimes. The understanding of chaperone action in counteracting pathological aggregation could be a starting point for potential new therapeutic strategies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Vilasi
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Rita Carrotta
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Caterina Ricci
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona 60131, Italy
| | | | - Fabio Librizzi
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Vincenzo Martorana
- Institute of Biophysics, National Research Council, Palermo 90146, Italy
| | - Maria Grazia Ortore
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona 60131, Italy
| | | |
Collapse
|
37
|
Metabolic Nano-Machines: Extracellular Vesicles Containing Active Enzymes and Their Contribution to Liver Diseases. CURRENT PATHOBIOLOGY REPORTS 2019. [DOI: 10.1007/s40139-019-00197-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
38
|
Krüger K, Reichel T, Zeilinger C. Role of heat shock proteins 70/90 in exercise physiology and exercise immunology and their diagnostic potential in sports. J Appl Physiol (1985) 2019; 126:916-927. [DOI: 10.1152/japplphysiol.01052.2018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heat shock proteins (HSPs) are molecular chaperones facilitating the unfolding or folding of secondary structures of proteins, their client proteins, in cellular stress situations. Various internal and external physiological and mechanical stress factors induce a homeostatic imbalance, followed by an increased expression of HSP70 and HSP90. Exercise is a stress factor, too, and its cumulative physiological perturbation manifests at a cellular level by threatening the protein homeostasis of various cell types. Consequently, an increase of HSP70/90 was described in plasma and mononuclear cells and various organs and tissues, such as muscle, liver, cardiac tissue, and brain, after an acute bout of exercise. The specific response of HSP70/90 seems to be strongly related to the modality of exercise, with several dependent factors such as duration, intensity, exercise type, subjects’ training status, and environmental factors, e.g., temperature. It is suggested that HSP70/90 play a major role in immune regulation and cell protection during exercise and in the efficiency of regeneration and reparation processes. During long-term training, HSP70/90 are involved in preconditioning and adaptation processes that might also be important for disease prevention and therapy. With regard to their highly sensitive and individual response to specific exercise and training modalities, this review discusses whether and how HSP70 and HSP90 can be applied as biomarkers for monitoring exercise and training.
Collapse
Affiliation(s)
- Karsten Krüger
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Thomas Reichel
- Department of Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Carsten Zeilinger
- Center of Biomolecular Drug Research, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
39
|
Extracellular Vesicle-Mediated Cell⁻Cell Communication in the Nervous System: Focus on Neurological Diseases. Int J Mol Sci 2019; 20:ijms20020434. [PMID: 30669512 PMCID: PMC6359416 DOI: 10.3390/ijms20020434] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes, are membranous particles released by cells into the extracellular space. They are involved in cell differentiation, tissue homeostasis, and organ remodelling in virtually all tissues, including the central nervous system (CNS). They are secreted by a range of cell types and via blood reaching other cells whose functioning they can modify because they transport and deliver active molecules, such as proteins of various types and functions, lipids, DNA, and miRNAs. Since they are relatively easy to isolate, exosomes can be characterized, and their composition elucidated and manipulated by bioengineering techniques. Consequently, exosomes appear as promising theranostics elements, applicable to accurately diagnosing pathological conditions, and assessing prognosis and response to treatment in a variety of disorders. Likewise, the characteristics and manageability of exosomes make them potential candidates for delivering selected molecules, e.g., therapeutic drugs, to specific target tissues. All these possible applications are pertinent to research in neurophysiology, as well as to the study of neurological disorders, including CNS tumors, and autoimmune and neurodegenerative diseases. In this brief review, we discuss what is known about the role and potential future applications of exosomes in the nervous system and its diseases, focusing on cell–cell communication in physiology and pathology.
Collapse
|
40
|
Fais S, Logozzi M, Alberti G, Campanella C. Exosomal Hsp60: A Tumor Biomarker? HEAT SHOCK PROTEIN 60 IN HUMAN DISEASES AND DISORDERS 2019. [DOI: 10.1007/978-3-030-23154-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Cappello F, Mazzola M, Jurjus A, Zeenny MN, Jurjus R, Carini F, Leone A, Bonaventura G, Tomasello G, Bucchieri F, Conway de Macario E, Macario AJL. Hsp60 as a Novel Target in IBD Management: A Prospect. Front Pharmacol 2019; 10:26. [PMID: 30800066 PMCID: PMC6376446 DOI: 10.3389/fphar.2019.00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 01/10/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) encompasses various pathological conditions similar but distinct that share a multifactorial etiology, including involvement of the intestinal barrier function, the immune system, and intestinal microorganisms. Hsp60 is a chaperonin component of the chaperoning system, present in all cells and tissues, including the intestine. It plays important roles in cell physiology outside and inside mitochondria, its canonical place of residence. However, Hsp60 can also be pathogenic in many conditions, the Hsp60 chaperonopathies, possibly including IBD. The various clinico-pathological types of IBD have a complicated mix of causative factors, among which Hsp60 can be considered a putatively important driver of events and could play an etiopathogenic role. This possibility is discussed in this review. We also indicate that Hsp60 can be a biomarker useful in disease diagnosing and monitoring and, if found active in pathogenesis, should become a target for developing new therapies. The latter are particularly needed to alleviate patient suffering and to prevent complications, including colon cancer.
Collapse
Affiliation(s)
- Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- *Correspondence: Francesco Cappello,
| | - Margherita Mazzola
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Marie-Noel Zeenny
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy and Cell Biology, Faculty Development Associate for Education Research, Center for Faculty Excellence, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Francesco Carini
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Angelo Leone
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Giuseppe Bonaventura
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Giovanni Tomasello
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience University of Palermo (BIONEC-UniPA), Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore – Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore – Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| |
Collapse
|
42
|
Caruso Bavisotto C, Graziano F, Rappa F, Marino Gammazza A, Logozzi M, Fais S, Maugeri R, Bucchieri F, Conway de Macario E, Macario AJL, Cappello F, Iacopino DG, Campanella C. Exosomal Chaperones and miRNAs in Gliomagenesis: State-of-Art and Theranostics Perspectives. Int J Mol Sci 2018; 19:E2626. [PMID: 30189598 PMCID: PMC6164348 DOI: 10.3390/ijms19092626] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Gliomas have poor prognosis no matter the treatment applied, remaining an unmet clinical need. As background for a substantial change in this situation, this review will focus on the following points: (i) the steady progress in establishing the role of molecular chaperones in carcinogenesis; (ii) the recent advances in the knowledge of miRNAs in regulating gene expression, including genes involved in carcinogenesis and genes encoding chaperones; and (iii) the findings about exosomes and their cargo released by tumor cells. We would like to trigger a discussion about the involvement of exosomal chaperones and miRNAs in gliomagenesis. Chaperones may be either targets for therapy, due to their tumor-promoting activity, or therapeutic agents, due to their antitumor growth activity. Thus, chaperones may well represent a Janus-faced approach against tumors. This review focuses on extracellular chaperones as part of exosomes' cargo, because of their potential as a new tool for the diagnosis and management of gliomas. Moreover, since exosomes transport chaperones and miRNAs (the latter possibly related to chaperone gene expression in the recipient cell), and probably deliver their cargo in the recipient cells, a new area of investigation is now open, which is bound to generate significant advances in the understanding and treatment of gliomas.
Collapse
Affiliation(s)
- Celeste Caruso Bavisotto
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
- Institute of Biophysics, National Research Council, 90143 Palermo, Italy.
| | - Francesca Graziano
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Rosario Maugeri
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA.
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| | - Domenico G Iacopino
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Neurosurgery, University of Palermo, 90127 Palermo, Italy.
| | - Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neuroscience, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy.
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90136 Palermo, Italy.
| |
Collapse
|
43
|
Heat Shock Proteins in Alzheimer's Disease: Role and Targeting. Int J Mol Sci 2018; 19:ijms19092603. [PMID: 30200516 PMCID: PMC6163571 DOI: 10.3390/ijms19092603] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Among diseases whose cure is still far from being discovered, Alzheimer’s disease (AD) has been recognized as a crucial medical and social problem. A major issue in AD research is represented by the complexity of involved biochemical pathways, including the nature of protein misfolding, which results in the production of toxic species. Considering the involvement of (mis)folding processes in AD aetiology, targeting molecular chaperones represents a promising therapeutic perspective. This review analyses the connection between AD and molecular chaperones, with particular attention toward the most important heat shock proteins (HSPs) as representative components of the human chaperome: Hsp60, Hsp70 and Hsp90. The role of these proteins in AD is highlighted from a biological point of view. Pharmacological targeting of such HSPs with inhibitors or regulators is also discussed.
Collapse
|
44
|
Martinus RD, Goldsbury J. Endothelial TNF-α induction by Hsp60 secreted from THP-1 monocytes exposed to hyperglycaemic conditions. Cell Stress Chaperones 2018; 23:519-525. [PMID: 29134442 PMCID: PMC6045554 DOI: 10.1007/s12192-017-0858-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/12/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
A non-resolving inflammation of the endothelium is recognised to be an important process leading to atherosclerosis. In diabetes, this process is thought to account for a significant number of cardiovascular disease-associated death and disability. However, the molecular mechanisms by which diabetes contributes to endothelial inflammation remain to be established. Whilst there is some evidence linking hyperglycaemia-induced reactive oxygen species (ROS) formation by the mitochondrial electron-transport chain to oxidative stress, cellular injury and apoptosis in the endothelium, a clear link to endothelium inflammation has not yet been established. The mitochondrial molecular stress protein Hsp60 is known to be secreted from mammalian cells and is capable of activating pro-inflammatory mediators on target cells expressing Toll-like receptors (TLRs). Hsp60 is also known to be elevated in serum of diabetes patients and has been shown to be upregulated by hyperglycaemic growth conditions in cultured human HeLa cells. This study shows that Hsp60 induced in human acute monocyte leukaemia cell line (THP-1) cells grown under hyperglycaemic conditions (25 mM glucose) was able to be secreted into growth media. Furthermore, the secretion of Hsp60 from THP-1 cells was able to be inhibited by 5,5-(N-N-dimethyl)-amiloride hydrochloride (DMA), an exosomal inhibitor. Interestingly, the conditioned media obtained from THP-1 cells grown in the presence of 25 mM glucose was able to induce the secretion of TNF-α in human vascular endothelium cell line (HUVEC). When conditioned media was immuno-depleted of Hsp60, there was a significant reduction in the release of TNF-α from the HUVEC cells. This suggests that a potential link may exist between hyperglycaemia-induced expression of Hsp60 in monocyte cells and vascular inflammation. Circulating levels of Hsp60 due to mitochondrial stress in diabetes patients could therefore be an important modulator of inflammation in endothelial cells and thus contribute to the increased incidences of atherosclerosis in diabetes mellitus.
Collapse
Affiliation(s)
- Ryan Dennis Martinus
- School of Science, Faculty of Science & Engineering, The University of Waikato, Hamilton, New Zealand.
| | - Julie Goldsbury
- School of Science, Faculty of Science & Engineering, The University of Waikato, Hamilton, New Zealand
| |
Collapse
|
45
|
Huang YH, Lin KH, Yu JS, Wu TJ, Lee WC, Chao CCK, Pan TL, Yeh CT. Targeting HSP60 by subcutaneous injections of jetPEI/HSP60-shRNA destabilizes cytoplasmic survivin and inhibits hepatocellular carcinoma growth. Mol Carcinog 2018; 57:1087-1101. [PMID: 29672920 DOI: 10.1002/mc.22827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 01/14/2023]
Abstract
Heat shock protein 60 (HSP60) overexpresses in various types of cancer, but its expression levels and functions in hepatocellular carcinoma (HCC) are still in dispute. We aim to clarify this issue and examine whether HSP60 could be a therapeutic target for HCC. We found drastically enhanced cell apoptosis and suppressed cell proliferation in two HCC cell lines with HSP60-silencing, and also indicated survivin was involved in this regulatory process in vitro and in vivo. However, HSP60-silencing in normal human hepatocytes only resulted in a minimal reduction of cell proliferation but without effects on cell apoptosis. We also showed HSP60 interacted with cytosolic but not mitochondrial survivin by immunoprecipitation assay. A rigorous method was used to standardize quantification from immunoblot assay to obtain more precise expression levels of HSP60 and survivin. The expression of HSP60 and survivin positively correlated in both cancerous and non-cancerous liver tissues (P < 0.001) after analyzing 145 surgically removed HCC tissues. A total of 56.6% of HCC patients overexpressed HSP60 in cancerous tissues, and 40.0% under-expressed HSP60. Higher expression of HSP60 and survivin in non-cancerous tissues both correlated with shorter overall survival (P = 0.029 and P < 0.001, respectively). Finally, we evaluated the therapeutic potential of HSP60 using extraneous delivery of jetPEI/shHSP60 complexes. The treatment results showed significant reduction of tumor weight by 44.3% (P < 0.05), accompanied by under-expression of survivin. These studies suggested that HSP60 not only served as a prognostic marker but also served as a novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang-Gung University, Taoyuan, Taiwan
| | - Ting-Jung Wu
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Division of Liver and Transplantation Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Chen Lee
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Division of Liver and Transplantation Surgery, Department of General Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chuck C-K Chao
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Tai-Long Pan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, Chang-Gung University, Taoyuan, Taiwan.,Research Center of Industry of Human Ecology, Chang-Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
46
|
Reddy VS, Madala SK, Trinath J, Reddy GB. Extracellular small heat shock proteins: exosomal biogenesis and function. Cell Stress Chaperones 2018; 23:441-454. [PMID: 29086335 PMCID: PMC5904088 DOI: 10.1007/s12192-017-0856-z] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Small heat shock proteins (sHsps) belong to the family of heat shock proteins (Hsps): some are induced in response to multiple stressful events to protect the cells while others are constitutively expressed. Until now, it was believed that Hsps, including sHsps, are present inside the cells and perform intracellular functions. Interestingly, several groups recently reported the extracellular presence of Hsps, and sHsps have also been detected in sera/cerebrospinal fluids in various pathological conditions. Secretion into the extracellular milieu during many pathological conditions suggests additional or novel functions of sHsps in addition to their intracellular properties. Extracellular sHsps are implicated in cell-cell communication, activation of immune cells, and promoting anti-inflammatory and anti-platelet responses. Interestingly, exogenous administration of sHsps showed therapeutic effects in multiple disease models implying that extracellular sHsps are beneficial in pathological conditions. sHsps do not possess signal sequence and, hence, are not exported through the classical Endoplasmic reticulum-Golgi complex (ER-Golgi) secretory pathway. Further, export of sHsps is not inhibited by ER-Golgi secretory pathway inhibitors implying the involvement of a nonclassical secretory pathway in sHsp export. In lieu, lysoendosomal and exosomal pathways have been proposed for the export of sHsps. Heat shock protein 27 (Hsp27), αB-crystallin (αBC), and Hsp20 are shown to be exported by exosomes. Exosomes packaged with sHsps have beneficial effects in in vivo disease models. However, secretion mechanisms and therapeutic use of sHsps have not been elucidated in detail. Therefore, this review aimed at highlighting the current understanding of sHsps (Hsp27, αBC, and Hsp20) in the extracellular medium.
Collapse
Affiliation(s)
- V Sudhakar Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| | - Satish K Madala
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jamma Trinath
- Department of Biological Sciences, BITS-Pilani, 500078, Hyderabad Campus, Hyderabad, Telangana, India
| | - G Bhanuprakash Reddy
- Biochemistry Division, National Institute of Nutrition, Tarnaka, Jamai-Osmania, Hyderabad, 500007, India.
| |
Collapse
|
47
|
Meng Q, Li BX, Xiao X. Toward Developing Chemical Modulators of Hsp60 as Potential Therapeutics. Front Mol Biosci 2018; 5:35. [PMID: 29732373 PMCID: PMC5920047 DOI: 10.3389/fmolb.2018.00035] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
The 60 kDa heat shock protein (Hsp60) is classically known as a mitochondrial chaperonin protein working together with co-chaperonin 10 kDa heat shock protein (Hsp10). This chaperonin complex is essential for folding proteins newly imported into mitochondria. However, Hsp60, and/or Hsp10 have also been shown to reside in other subcellular compartments including extracellular space, cytosol, and nucleus. The proteins in these extra-mitochondrial compartments may possess a wide range of functions dependent or independent of its chaperoning activity. But the mechanistic details remain unknown. Mutations in Hsp60 gene have been shown to be associated with neurodegenerative disorders. Abnormality in expression level and/or subcellular localization have also been detected from different diseased tissues including inflammatory diseases and various cancers. Therefore, there is a strong interest in developing small molecule modulators of Hsp60. Most of the reported inhibitors were discovered through various chemoproteomics strategies. In this review, we will describe the recent progress in this area with reported inhibitors from both natural products and synthetic compounds. The former includes mizoribine, epolactaene, myrtucommulone, stephacidin B, and avrainvillamide while the latter includes o-carboranylphenoxyacetanilides and gold (III) porphyrins. The potencies of the known inhibitors range from low micromolar to millimolar concentrations. The potential applications of these inhibitors include anti-cancer, anti-inflammatory diseases, and anti-autoimmune diseases.
Collapse
Affiliation(s)
- Qianli Meng
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, United States
| | - Bingbing X Li
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, United States
| | - Xiangshu Xiao
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
48
|
Deniset JF, Hedley TE, Hlaváčková M, Chahine MN, Dibrov E, O'Hara K, Maddaford GG, Nelson D, Maddaford TG, Fandrich R, Kardami E, Pierce GN. Heat shock protein 60 involvement in vascular smooth muscle cell proliferation. Cell Signal 2018; 47:44-51. [PMID: 29596871 DOI: 10.1016/j.cellsig.2018.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 10/17/2022]
Abstract
AIM Heat shock protein 60 (Hsp60) is a mediator of stress-induced vascular smooth muscle cell (VSMC) proliferation. This study will determine, first, if the mitochondrial or cytoplasmic localization of Hsp60 is critical to VSMC proliferation and, second, the mechanism of Hsp60 induction of VSMC proliferation with a focus on modification of nucleocytoplasmic trafficking. METHODS AND RESULTS Hsp60 was overexpressed in primary rabbit VSMCs with or without a mitochondrial targeting sequence (AdHsp60mito-). Both interventions induced an increase in VSMC PCNA expression and proliferation. The increase in VSMC PCNA expression and growth was not observed after siRNA-mediated knockdown of Hsp60 expression. Nuclear protein import in VSMC was measured by fluorescent microscopy using a microinjected fluorescent import substrate. Nuclear protein import was stimulated by both AdHsp60 and AdHsp60mito- treatments. AdHsp60 treatment also induced increases in nucleoporin (Nup) 62, Nup153, importin-α, importin-β and Ran expression as well as cellular ATP levels compared to control. AdHsp60mito- treatment induced an up-regulation in importin-α, importin-β and Ran expression compared to control. Hsp60 knockdown did not change nuclear protein import nor the expression of any nuclear transport receptors or nucleoporins. Both heat shock treatment and Hsp60 overexpression promoted the interaction of Ran with Hsp60. CONCLUSIONS VSMC proliferation can be modulated via an Hsp60 dependent, cytosol localized mechanism that in part involves a stimulation of nuclear protein import through an interaction with Ran. This novel cellular signaling role for Hsp60 may be important in growth-based vascular pathologies like atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Justin F Deniset
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Departments of Physiology and Pathophysiology, Canada
| | - Thomas E Hedley
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Departments of Physiology and Pathophysiology, Canada
| | - Markéta Hlaváčková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Mirna N Chahine
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Departments of Physiology and Pathophysiology, Canada
| | - Elena Dibrov
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Departments of Physiology and Pathophysiology, Canada
| | - Kim O'Hara
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Departments of Physiology and Pathophysiology, Canada
| | - Graham G Maddaford
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Departments of Physiology and Pathophysiology, Canada
| | - David Nelson
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Departments of Physiology and Pathophysiology, Canada
| | - Thane G Maddaford
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Departments of Physiology and Pathophysiology, Canada
| | - Robert Fandrich
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Anatomy and Cell Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Anatomy and Cell Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, St Boniface Hospital, Canada; Departments of Physiology and Pathophysiology, Canada.
| |
Collapse
|
49
|
Vilasi S, Bulone D, Caruso Bavisotto C, Campanella C, Marino Gammazza A, San Biagio PL, Cappello F, Conway de Macario E, Macario AJL. Chaperonin of Group I: Oligomeric Spectrum and Biochemical and Biological Implications. Front Mol Biosci 2018; 4:99. [PMID: 29423396 PMCID: PMC5788889 DOI: 10.3389/fmolb.2017.00099] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 12/28/2017] [Indexed: 01/13/2023] Open
Abstract
Chaperonins play various physiological roles and can also be pathogenic. Elucidation of their structure, e.g., oligomeric status and post-translational modifications (PTM), is necessary to understand their functions and mechanisms of action in health and disease. Group I chaperonins form tetradecamers with two stacked heptameric rings. The tetradecamer is considered the typical functional complex for folding of client polypeptides. However, other forms such as the monomer and oligomers with smaller number of subunits than the classical tetradecamer, also occur in cells. The properties and functions of the monomer and oligomers, and their roles in chaperonin-associated diseases are still incompletely understood. Chaperonin I in eukaryotes occurs in various locations, not just the mitochondrion, which is its canonical place of residence and function. Eukaryotic Chaperonin I, namely Hsp60 (designated HSP60 or HSPD1 in humans) has, indeed, been found in the cytosol; the plasma-cell membrane; on the outer surface of cells; in the intercellular space; in biological liquids such as lymph, blood, and cerebrospinal fluid; and in secretions, for instance saliva and urine. Hsp60 has also been found in cell-derived vesicles such as exosomes. The functions of Hsp60 in all these non-canonical locales are still poorly characterized and one of the questions not yet answered is in what form, i.e., monomer or oligomer, is the chaperonin present in these non-canonical locations. In view of the steady increase in interest on chaperonopathies over the last several years, we have studied human HSP60 to determine its role in various diseases, its locations in cells and tissues and migrations in the body, and its post-translational modifications that might have an impact on its location and function. We also carried out experiments to characterize the oligomeric status of extramitochondrial of HSP60 in solution. Here, we provide an overview of our results, focusing on the oligomeric equilibrium and stability of the various forms of HSP60 in comparison with GroEL. We also discuss post-translational modifications associated with anti-cancer drugs to indicate the potential of Hsp60 in Medicine, as a biomarker and etiopathogenic factor.
Collapse
Affiliation(s)
- Silvia Vilasi
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Donatella Bulone
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Celeste Caruso Bavisotto
- Section of Human Anatomy, Department of Experimental Biomedicine and Clinical Neuroscience (BIONEC), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Claudia Campanella
- Section of Human Anatomy, Department of Experimental Biomedicine and Clinical Neuroscience (BIONEC), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Experimental Biomedicine and Clinical Neuroscience (BIONEC), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | | | - Francesco Cappello
- Section of Human Anatomy, Department of Experimental Biomedicine and Clinical Neuroscience (BIONEC), University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, United States
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore, and Institute of Marine and Environmental Technology (IMET), Columbus Center, Baltimore, MD, United States
| |
Collapse
|
50
|
The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cells. Oncotarget 2018; 7:28849-67. [PMID: 26700624 PMCID: PMC5045361 DOI: 10.18632/oncotarget.6680] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/22/2015] [Indexed: 12/14/2022] Open
Abstract
HSP60 undergoes changes in quantity and distribution in some types of tumors suggesting a participation of the chaperonin in the mechanism of transformation and cancer progression. Suberoylanilide hydroxamic acid (SAHA), a member of a family of histone deacetylase inhibitors (HDACi), has anti-cancer potential but its interaction, if any, with HSP60 has not been elucidated. We investigated the effects of SAHA in a human lung-derived carcinoma cell line (H292). We analysed cell viability and cycle; oxidative stress markers; mitochondrial integrity; HSP60 protein and mRNA levels; and HSP60 post-translational modifications, and its secretion. We found that SAHA is cytotoxic for H292 cells, interrupting the cycle at the G2/M phase, which is followed by death; cytotoxicity is associated with oxidative stress, mitochondrial damage, and diminution of intracellular levels of HSP60; HSP60 undergoes a post-translational modification and becomes nitrated; and nitrated HSP60 is exported via exosomes. We propose that SAHA causes ROS overproduction and mitochondrial dysfunction, which leads to HSP60 nitration and release into the intercellular space and circulation to interact with the immune system. These successive steps might constitute the mechanism of the anti-tumor action of SAHA and provide a basis to design supplementary therapeutic strategies targeting HSP60, which would be more efficacious than the compound alone.
Collapse
|