1
|
Hortal AM, Calleja E, Oeste CL, Arellano I, Lacuna M, Blanco S, Martín-Blanco N, Montanuy I, Alcamí A, Bustelo XR, Alarcón B. Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2. Sci Signal 2025; 18:eadk4204. [PMID: 39874377 DOI: 10.1126/scisignal.adk4204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 07/10/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025]
Abstract
The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity. R-RAS2 exhibited direct, high-affinity interactions with ITAM peptides derived from B and T cell receptors through a proline-rich sequence in the hypervariable domain of R-RAS2. In resting T and B cells, the presence of antigen receptors at the plasma membrane was sufficient to promote the activation of R-RAS2 and PI3K, and mutations that abolished the interaction of R-RAS2 with ITAMs reduced R-RAS2 signaling. Binding to ITAMs increased GDP-GTP exchange on R-RAS2 through a mechanism distinct from that by which conventional cytosolic guanosine nucleotide exchange factors (GEFs) activate RAS proteins. These results define antigen receptors as noncanonical GEFs involved in the basal activation state of R-RAS2 in lymphocytes. Such a mechanism may underlie the leukemic transformation of B cells that occurs when wild-type R-RAS2 is present in high amounts.
Collapse
Affiliation(s)
- Alejandro M Hortal
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Enrique Calleja
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Clara L Oeste
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Irene Arellano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Marta Lacuna
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Soledad Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nadia Martín-Blanco
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Inmaculada Montanuy
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Cientificas and University of Salamanca, 37007 Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Cientificas and University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Cientificas and University of Salamanca, 37007 Salamanca, Spain
| | - Balbino Alarcón
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
2
|
Renganathan A, Minaya MA, Broder M, Alfradique-Dunham I, Moritz M, Bhagat R, Marsh J, Verbeck A, Galasso G, Starr E, Agard DA, Cruchaga C, Karch CM. A novel lncRNA FAM151B-DT regulates autophagy and degradation of aggregation prone proteins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.22.25320997. [PMID: 39974060 PMCID: PMC11838976 DOI: 10.1101/2025.01.22.25320997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurodegenerative diseases share common features of protein aggregation along with other pleiotropic traits, including shifts in transcriptional patterns, neuroinflammation, disruptions in synaptic signaling, mitochondrial dysfunction, oxidative stress, and impaired clearance mechanisms like autophagy. However, key regulators of these pleotropic traits have yet to be identified. Here, we discovered a novel long non-coding RNA (lncRNA), FAM151B-DT, that is reduced in a stem cell model of frontotemporal dementia with tau inclusions (FTLD-tau) and in brains from FTLD-tau, progressive supranuclear palsy, Alzheimer's disease, and Parkinson's disease patients. We show that silencing FAM151B-DT in vitro is sufficient to enhance tau aggregation. To begin to understand the mechanism by which FAM151B-DT mediates tau aggregation and contributes to several neurodegenerative diseases, we deeply characterized this novel lncRNA and found that FAM151B-DT resides in the cytoplasm where it interacts with tau, α-synuclein, HSC70, and other proteins enriched in protein homeostasis. When silenced, FAM151B-DT blocks autophagy, leading to the accumulation of tau and α-synuclein. Importantly, we discovered that increasing FAM151B-DT expression is sufficient to promote autophagic flux, reduce phospho-tau and α-synuclein, and reduce tau aggregation. Overall, these findings pave the way for further exploration of FAM151B-DT as a promising molecular target for several neurodegenerative diseases.
Collapse
Affiliation(s)
- Arun Renganathan
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Miguel A. Minaya
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Matthew Broder
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | | | - Michelle Moritz
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Reshma Bhagat
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Jacob Marsh
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Anthony Verbeck
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Grant Galasso
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - Emma Starr
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
| | - David A. Agard
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO
| | - Celeste M. Karch
- Department of Psychiatry, Washington University in St Louis, St Louis, MO
- Knight Alzheimer Disease Research Center, Washington University in St Louis, St Louis, MO
| |
Collapse
|
3
|
Sager RA, Backe SJ, Heritz J, Woodford MR, Bourboulia D, Mollapour M. Flow cytometry FRET reveals post-translational modifications drive Protein Phosphatase-5 conformational changes in mammalian cells. Cell Stress Chaperones 2024; 29:709-717. [PMID: 39395782 PMCID: PMC11532808 DOI: 10.1016/j.cstres.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
The serine/threonine Protein Phosphatase-5 (PP5) plays an essential role in regulating hormone and stress-induced signaling networks as well as extrinsic apoptotic pathways in cells. Unlike other Protein Phosphatases, PP5 possesses both regulatory and catalytic domains, and its function is further modulated through post-translational modifications (PTMs). PP5 contains a tetratricopeptide repeat (TPR) domain, which usually inhibits its phosphatase activity by blocking the active site (closed conformation). Certain activators bind to the PP5-TPR domain, alleviating this inhibition and allowing the catalytic domain to adopt an active (open) conformation. While this mechanism has been proposed based on structural and biophysical studies, PP5 conformational changes and activity have yet to be observed in cells. Here, we designed and developed a flow cytometry-based fluorescence resonance energy transfer (FC-FRET) method, enabling real-time observation of PP5 autoinhibition and activation within live mammalian cells. By quantifying FRET efficiency using sensitized emission, we established a standardized and adaptable data acquisition workflow. Our findings revealed that, in a cellular context, PP5 exists in multiple conformational states, none of which alone fully predicts its activity. Additionally, we have demonstrated that PTMs such as phosphorylation and SUMOylation impact PP5 conformational changes, representing a significant advancement in our understanding of its regulatory mechanisms.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA
| | - Jennifer Heritz
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA.
| |
Collapse
|
4
|
Aubel M, Buchel F, Heames B, Jones A, Honc O, Bornberg-Bauer E, Hlouchova K. High-throughput Selection of Human de novo-emerged sORFs with High Folding Potential. Genome Biol Evol 2024; 16:evae069. [PMID: 38597156 PMCID: PMC11024478 DOI: 10.1093/gbe/evae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024] Open
Abstract
De novo genes emerge from previously noncoding stretches of the genome. Their encoded de novo proteins are generally expected to be similar to random sequences and, accordingly, with no stable tertiary fold and high predicted disorder. However, structural properties of de novo proteins and whether they differ during the stages of emergence and fixation have not been studied in depth and rely heavily on predictions. Here we generated a library of short human putative de novo proteins of varying lengths and ages and sorted the candidates according to their structural compactness and disorder propensity. Using Förster resonance energy transfer combined with Fluorescence-activated cell sorting, we were able to screen the library for most compact protein structures, as well as most elongated and flexible structures. We find that compact de novo proteins are on average slightly shorter and contain lower predicted disorder than less compact ones. The predicted structures for most and least compact de novo proteins correspond to expectations in that they contain more secondary structure content or higher disorder content, respectively. Our experiments indicate that older de novo proteins have higher compactness and structural propensity compared with young ones. We discuss possible evolutionary scenarios and their implications underlying the age-dependencies of compactness and structural content of putative de novo proteins.
Collapse
Affiliation(s)
- Margaux Aubel
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Filip Buchel
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Brennen Heames
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Alun Jones
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Ondrej Honc
- Imaging Methods Core Facility, BIOCEV, Prague, Czech Republic
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
- Department of Protein Evolution, Max Planck-Institute for Biology Tuebingen, Tuebingen, Germany
| | - Klara Hlouchova
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Mortelecque J, Zejneli O, Bégard S, Simões MC, ElHajjar L, Nguyen M, Cantrelle FX, Hanoulle X, Rain JC, Colin M, Gomes CM, Buée L, Landrieu I, Danis C, Dupré E. A selection and optimization strategy for single-domain antibodies targeting the PHF6 linear peptide within the tau intrinsically disordered protein. J Biol Chem 2024; 300:107163. [PMID: 38484799 PMCID: PMC11007443 DOI: 10.1016/j.jbc.2024.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
The use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies. The activity of this promising parent VHH named Z70 relies on its binding within the central region of the tau protein. Accordingly, we carried out random mutagenesis followed by yeast two-hybrid screening to obtain optimized variants. The VHHs selected from this initial screen targeted the same epitope as VHH Z70 as shown using NMR spectroscopy and had indeed improved binding affinities according to dissociation constant values obtained by surface plasmon resonance spectroscopy. The improved affinities can be partially rationalized based on three-dimensional structures and NMR data of three complexes consisting of an optimized VHH and a peptide containing the tau epitope. Interestingly, the ability of the VHH variants to inhibit tau aggregation and seeding could not be predicted from their affinity alone. We indeed showed that the in vitro and in cellulo VHH stabilities are other limiting key factors to their efficacy. Our results demonstrate that only a complete pipeline of experiments, here described, permits a rational selection of optimized VHH variants, resulting in the selection of VHH variants with higher affinities and/or acting against tau seeding in cell models.
Collapse
Affiliation(s)
- Justine Mortelecque
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Orgeta Zejneli
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France; Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Séverine Bégard
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Margarida C Simões
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Lea ElHajjar
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Marine Nguyen
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - François-Xavier Cantrelle
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | - Xavier Hanoulle
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France
| | | | - Morvane Colin
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Cláudio M Gomes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luc Buée
- Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France.
| | - Isabelle Landrieu
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
| | - Clément Danis
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France; Univ. Lille, Inserm, CHU-Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Elian Dupré
- CNRS EMR9002 - BSI - Integrative Structural Biology, Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Lille, France.
| |
Collapse
|
6
|
Bunz M, Eisele M, Hu D, Ritter M, Kammerloher J, Lampl S, Schindler M. CD81 suppresses NF-κB signaling and is downregulated in hepatitis C virus expressing cells. Front Cell Infect Microbiol 2024; 14:1338606. [PMID: 38357447 PMCID: PMC10864554 DOI: 10.3389/fcimb.2024.1338606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
The tetraspanin CD81 is one of the main entry receptors for Hepatitis C virus, which is a major causative agent to develop liver cirrhosis and hepatocellular carcinoma (HCC). Here, we identify CD81 as one of few surface proteins that are downregulated in HCV expressing hepatoma cells, discovering a functional role of CD81 beyond mediating HCV entry. CD81 was downregulated at the mRNA level in hepatoma cells that replicate HCV. Kinetics of HCV expression were increased in CD81-knockout cells and accompanied by enhanced cellular growth. Furthermore, loss of CD81 compensated for inhibition of pro-survival TBK1-signaling in HCV expressing cells. Analysis of functional phenotypes that could be associated with pro-survival signaling revealed that CD81 is a negative regulator of NF-κB. Interaction of the NF-κB subunits p50 and p65 was increased in cells lacking CD81. Similarly, we witnessed an overall increase in the total levels of phosphorylated and cellular p65 upon CD81-knockout in hepatoma cells. Finally, translocation of p65 in CD81-negative hepatoma cells was markedly induced upon stimulation with TNFα or PMA. Altogether, CD81 emerges as a regulator of pro-survival NF-κB signaling. Considering the important and established role of NF-κB for HCV replication and tumorigenesis, the downregulation of CD81 by HCV and the associated increase in NF-κB signaling might be relevant for viral persistence and chronic infection.
Collapse
Affiliation(s)
- Maximilian Bunz
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Mona Eisele
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Dan Hu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Ritter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Julia Kammerloher
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Sandra Lampl
- Institute of Virology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Hagelauer E, Lotke R, Kmiec D, Hu D, Hohner M, Stopper S, Nchioua R, Kirchhoff F, Sauter D, Schindler M. Tetherin Restricts SARS-CoV-2 despite the Presence of Multiple Viral Antagonists. Viruses 2023; 15:2364. [PMID: 38140605 PMCID: PMC10747847 DOI: 10.3390/v15122364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Coronavirus infection induces interferon-stimulated genes, one of which encodes Tetherin, a transmembrane protein inhibiting the release of various enveloped viruses from infected cells. Previous studies revealed that SARS-CoV encodes two Tetherin antagonists: the Spike protein (S), inducing lysosomal degradation of Tetherin, and ORF7a, altering its glycosylation. Similarly, SARS-CoV-2 has also been shown to use ORF7a and Spike to enhance virion release in the presence of Tetherin. Here, we directly compare the abilities and mechanisms of these two viral proteins to counteract Tetherin. Therefore, cell surface and total Tetherin levels upon ORF7a or S expression were investigated using flow cytometry and Western blot analysis. SARS-CoV and SARS-CoV-2 S only marginally reduced Tetherin cell surface levels in a cell type-dependent manner. In HEK293T cells, under conditions of high exogenous Tetherin expression, SARS-CoV-2 S and ORF7a reduced total cellular Tetherin levels much more efficiently than the respective counterparts derived from SARS-CoV. Nevertheless, ORF7a from both species was able to alter Tetherin glycosylation. The ability to decrease total protein levels of Tetherin was conserved among S proteins from different SARS-CoV-2 variants (α, γ, δ, ο). While SARS-CoV-2 S and ORF7a both colocalized with Tetherin, only ORF7a directly interacted with the restriction factor in a two-hybrid assay. Despite the presence of multiple Tetherin antagonists, SARS-CoV-2 replication in Caco-2 cells was further enhanced upon Tetherin knockout. Altogether, our data show that endogenous Tetherin restricts SARS-CoV-2 replication and that the antiviral activity of Tetherin is only partially counteracted by viral antagonists with differential and complementary modes of action.
Collapse
Affiliation(s)
- Elena Hagelauer
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Rishikesh Lotke
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (D.K.); (R.N.); (F.K.)
| | - Dan Hu
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Mirjam Hohner
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Sophie Stopper
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (D.K.); (R.N.); (F.K.)
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (D.K.); (R.N.); (F.K.)
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany; (E.H.); (R.L.); (D.H.); (M.H.); (S.S.); (D.S.)
| |
Collapse
|
8
|
Bugajev V, Draberova L, Utekal P, Blazikova M, Tumova M, Draber P. Enhanced Membrane Fluidization and Cholesterol Displacement by 1-Heptanol Inhibit Mast Cell Effector Functions. Cells 2023; 12:2069. [PMID: 37626879 PMCID: PMC10453462 DOI: 10.3390/cells12162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Signal transduction by the high-affinity IgE receptor (FcεRI) depends on membrane lipid and protein compartmentalization. Recently published data show that cells treated with 1-heptanol, a cell membrane fluidizer, exhibit changes in membrane properties. However, the functional consequences of 1-heptanol-induced changes on mast cell signaling are unknown. This study shows that short-term exposure to 1-heptanol reduces membrane thermal stability and dysregulates mast cell signaling at multiple levels. Cells treated with 1-heptanol exhibited increased lateral mobility and decreased internalization of the FcεRI. However, this did not affect the initial phosphorylation of the FcεRI-β chain and components of the SYK/LAT1/PLCγ1 signaling pathway after antigen activation. In contrast, 1-heptanol inhibited SAPK/JNK phosphorylation and effector functions such as calcium response, degranulation, and cytokine production. Membrane hyperfluidization induced a heat shock-like response via increased expression of the heat shock protein 70, increased lateral diffusion of ORAI1-mCherry, and unsatisfactory performance of STIM1-ORAI1 coupling, as determined by flow-FRET. Furthermore, 1-heptanol inhibited the antigen-induced production of reactive oxygen species and potentiated stress-induced plasma membrane permeability by interfering with heat shock protein 70 activity. The combined data suggest that 1-heptanol-mediated membrane fluidization does not interfere with the earliest biochemical steps of FcεRI signaling, such as phosphorylation of the FcεRI-β chain and components of the SYK/LAT/PLCγ1 signaling pathway, instead inhibiting the FcεRI internalization and mast cell effector functions, including degranulation and cytokine production.
Collapse
Affiliation(s)
- Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Lubica Draberova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Pavol Utekal
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Michaela Blazikova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Magda Tumova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| |
Collapse
|
9
|
Lim J, Lilie H, Kalbacher H, Roos N, Frecot DI, Feige M, Conrady M, Votteler T, Cousido-Siah A, Corradini Bartoli G, Iftner T, Trave G, Simon C. Evidence for direct interaction between the oncogenic proteins E6 and E7 of high-risk human papillomavirus (HPV). J Biol Chem 2023; 299:104954. [PMID: 37354975 PMCID: PMC10372912 DOI: 10.1016/j.jbc.2023.104954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
Human papillomaviruses (HPVs) are DNA tumor viruses that infect mucosal and cutaneous epithelial cells of more than 20 vertebrates. High-risk HPV causes about 5% of human cancers worldwide, and the viral proteins E6 and E7 promote carcinogenesis by interacting with tumor suppressors and interfering with many cellular pathways. As a consequence, they immortalize cells more efficiently in concert than individually. So far, the networks of E6 and E7 with their respective cellular targets have been studied extensively but independently. However, we hypothesized that E6 and E7 might also interact directly with each other in a novel interaction affecting HPV-related carcinogenesis. Here, we report a direct interaction between E6 and E7 proteins from carcinogenic HPV types 16 and 31. We demonstrated this interaction via cellular assays using two orthogonal methods: coimmunoprecipitation and flow cytometry-based FRET assays. Analytical ultracentrifugation of the recombinant proteins revealed that the stoichiometry of the E6/E7 complex involves two E7 molecules and two E6 molecules. In addition, fluorescence polarization showed that (I) E6 binds to E7 with a similar affinity for HPV16 and HPV31 (in the same micromolar range) and (II) that the binding interface involves the unstructured N-terminal region of E7. The direct interaction of these highly conserved papillomaviral oncoproteins may provide a new perspective for studying HPV-associated carcinogenesis and the overall viral life cycle.
Collapse
Affiliation(s)
- JiaWen Lim
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittemberg, Halle-Wittemberg, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Nora Roos
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Desiree Isabella Frecot
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Maximilian Feige
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Marcel Conrady
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Tobias Votteler
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Alexandra Cousido-Siah
- Equipe Labellisée Ligue 2015, Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, Illkirch, France
| | - Giada Corradini Bartoli
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| | - Gilles Trave
- Equipe Labellisée Ligue 2015, Department of Integrative Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, UdS, Illkirch, France
| | - Claudia Simon
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
10
|
Zhang H, Lu F, Liu P, Qiu Z, Li J, Wang X, Xu H, Zhao Y, Li X, Wang H, Lu D, Qi R. A direct interaction between RhoGDIα/Tau alleviates hyperphosphorylation of Tau in Alzheimer's disease and vascular dementia. J Neuroimmune Pharmacol 2023; 18:58-71. [PMID: 35080740 DOI: 10.1007/s11481-021-10049-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023]
Abstract
RhoGDIα is an inhibitor of RhoGDP dissociation that involves in Aβ metabolism and NFTs production in Alzheimer's disease (AD) by regulating of RhoGTP enzyme activity. Our previous research revealed that RhoGDIα, as the target of Polygala saponin (Sen), might alleviate apoptosis of the nerve cells caused by hypoxia/reoxygenation (H/R). To further clarify the role of RhoGDIα in the generation of NFTs, we explored the relationship between RhoGDIα and Tau. We found out that RhoGDIα and Tau can bind with each other and interact by using coimmunoprecipitation (Co-IP) and GST pulldown methods in vitro. This RhoGDIα-Tau partnership was further verified by using immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) approaches in PC12 cells. Using the RNA interference (RNAi) technique, we found that the RhoGDIα may be involved in an upstream signaling pathway for Tau. Subsequently, in Aβ25-35- and H/R-induced PC12 cells, forced expression of RhoGDIα via cDNA plasmid transfection was found to reduce the hyperphosphorylation of Tau, augment the expression of bcl-2 protein, and inhibit the expression of Bax protein (reducing the Bax/bcl-2 ratio) and the activity of caspase-3. In mouse AD and VaD models, forced expression of RhoGDIα via injection of a viral vector (pAAV-EGFP-RhoGDIα) into the lateral ventricle of the brain alleviated the pathological symptoms of AD and VaD. Finally, GST pulldown confirmed that the binding sites on RhoGDIα for Tau were located in the range of the ΔC33 fragment (aa 1-33). These results indicate that RhoGDIα is involved in the phosphorylation of Tau and apoptosis in AD and VaD. Overexpression of RhoGDIα can inhibit the generation of NFTs and delay the progress of these two types of dementia.
Collapse
Affiliation(s)
- Heping Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fan Lu
- Department of Emergency, First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Panhong Liu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Zhaohui Qiu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, ShenZhen, 518033, China
| | - Jianling Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Anesthesiology, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiaotong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hui Xu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yandong Zhao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Xuemin Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Anhui, 230031, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Renbin Qi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
11
|
Göttig L, Weiß C, Stubbe M, Hanrieder L, Hofmann S, Grodziecki A, Stadler D, Carpentier A, Protzer U, Schreiner S. Apobec3A Deamination Functions Are Involved in Antagonizing Efficient Human Adenovirus Replication and Gene Expression. mBio 2023:e0347822. [PMID: 37154747 DOI: 10.1128/mbio.03478-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Apobec3A is involved in the antiviral host defense, targeting nuclear DNA, introducing point mutations, and thereby activating DNA damage response (DDR). Here, we found a significant upregulation of Apobec3A during HAdV infection, including Apobec3A protein stabilization mediated by the viral proteins E1B-55K and E4orf6, which subsequently limited HAdV replication and most likely involved a deaminase-dependent mechanism. The transient silencing of Apobec3A enhanced adenoviral replication. HAdV triggered Apobec3A dimer formation and enhanced activity to repress the virus. Apobec3A decreased E2A SUMOylation and interfered with viral replication centers. A comparative sequence analysis revealed that HAdV types A, C, and F may have evolved a strategy to escape Apobec3A-mediated deamination via reduced frequencies of TC dinucleotides within the viral genome. Although viral components induce major changes within infected cells to support lytic life cycles, our findings demonstrate that host Apobec3A-mediated restriction limits virus replication, albeit that HAdV may have evolved to escape this restriction. This allows for novel insights into the HAdV/host-cell interplay, which broaden the current view of how a host cell can limit HAdV infection. IMPORTANCE Our data provide a novel conceptual insight into the virus/host-cell interplay, changing the current view of how a host-cell can defeat a virus infection. Thus, our study reveals a novel and general impact of cellular Apobec3A on the intervention of human adenovirus (HAdV) gene expression and replication by improving the host antiviral defense mechanisms, thereby providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways that are modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as COVID vaccine vectors and also frequently serve as tools in human gene therapy and oncolytic treatment options. HAdV constitute an ideal model system by which to analyze the transforming capabilities of DNA tumor viruses as well as the underlying molecular principles of virus-induced and cellular tumorigenesis.
Collapse
Affiliation(s)
- Lilian Göttig
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christina Weiß
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Miona Stubbe
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Lisa Hanrieder
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Samuel Hofmann
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Alessandro Grodziecki
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
| | - Daniela Stadler
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| | - Sabrina Schreiner
- Institute of Virology, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Cluster of Excellence RESIST (Resolving Infection Susceptibility; EXC 2155), Hannover Medical School, Hannover, Germany
- Institute of Virology, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
12
|
Nzimande B, Makhwitine JP, Mkhwanazi NP, Ndlovu SI. Developments in Exploring Fungal Secondary Metabolites as Antiviral Compounds and Advances in HIV-1 Inhibitor Screening Assays. Viruses 2023; 15:v15051039. [PMID: 37243125 DOI: 10.3390/v15051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/28/2023] Open
Abstract
The emergence of drug-resistant Human Immunodeficiency Virus-1 strains against anti-HIV therapies in the clinical pipeline, and the persistence of HIV in cellular reservoirs remains a significant concern. Therefore, there is a continuous need to discover and develop new, safer, and effective drugs targeting novel sites to combat HIV-1. The fungal species are gaining increasing attention as alternative sources of anti-HIV compounds or immunomodulators that can escape the current barriers to cure. Despite the potential of the fungal kingdom as a source for diverse chemistries that can yield novel HIV therapies, there are few comprehensive reports on the progress made thus far in the search for fungal species with the capacity to produce anti-HIV compounds. This review provides insights into the recent research developments on natural products produced by fungal species, particularly fungal endophytes exhibiting immunomodulatory or anti-HIV activities. In this study, we first explore currently existing therapies for various HIV-1 target sites. Then we assess the various activity assays developed for gauging antiviral activity production from microbial sources since they are crucial in the early screening phases for discovering novel anti-HIV compounds. Finally, we explore fungal secondary metabolites compounds that have been characterized at the structural level and demonstrate their potential as inhibitors of various HIV-1 target sites.
Collapse
Affiliation(s)
- Bruce Nzimande
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban 4000, South Africa
| | - John P Makhwitine
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, Medical School, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Nompumelelo P Mkhwanazi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Sizwe I Ndlovu
- Department of Biotechnology and Food Technology, Doornfontein Campus, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
13
|
Saha I, Yuste-Checa P, Da Silva Padilha M, Guo Q, Körner R, Holthusen H, Trinkaus VA, Dudanova I, Fernández-Busnadiego R, Baumeister W, Sanders DW, Gautam S, Diamond MI, Hartl FU, Hipp MS. The AAA+ chaperone VCP disaggregates Tau fibrils and generates aggregate seeds in a cellular system. Nat Commun 2023; 14:560. [PMID: 36732333 PMCID: PMC9894937 DOI: 10.1038/s41467-023-36058-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Amyloid-like aggregates of the microtubule-associated protein Tau are associated with several neurodegenerative disorders including Alzheimer's disease. The existence of cellular machinery for the removal of such aggregates has remained unclear, as specialized disaggregase chaperones are thought to be absent in mammalian cells. Here we show in cell culture and in neurons that the hexameric ATPase valosin-containing protein (VCP) is recruited to ubiquitylated Tau fibrils, resulting in their efficient disaggregation. Aggregate clearance depends on the functional cooperation of VCP with heat shock 70 kDa protein (Hsp70) and the ubiquitin-proteasome machinery. While inhibition of VCP activity stabilizes large Tau aggregates, disaggregation by VCP generates seeding-active Tau species as byproduct. These findings identify VCP as a core component of the machinery for the removal of neurodegenerative disease aggregates and suggest that its activity can be associated with enhanced aggregate spreading in tauopathies.
Collapse
Affiliation(s)
- Itika Saha
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Patricia Yuste-Checa
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Miguel Da Silva Padilha
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, 82152, Martinsried, Germany.,Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152, Martinsried, Germany.,Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Qiang Guo
- Department of Structural Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Hauke Holthusen
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Victoria A Trinkaus
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Department of Structural Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Irina Dudanova
- Molecular Neurodegeneration Group, Max Planck Institute for Biological Intelligence, 82152, Martinsried, Germany.,Department of Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Am Klopferspitz 18, 82152, Martinsried, Germany.,Center for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Rubén Fernández-Busnadiego
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Structural Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Institute of Neuropathology, University Medical Center Göttingen, 37099, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Wolfgang Baumeister
- Department of Structural Molecular Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - David W Sanders
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, 75390, TX, USA.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Saurabh Gautam
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.,Boehringer Ingelheim International GmbH, 55216, Ingelheim, Germany.,ViraTherapeutics GmbH, 6063, Rum, Austria
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, 75390, TX, USA
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany. .,School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. .,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan, 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
14
|
Macromolecular crowding amplifies allosteric regulation of T-cell protein tyrosine phosphatase. J Biol Chem 2022; 298:102655. [PMID: 36328244 PMCID: PMC9720572 DOI: 10.1016/j.jbc.2022.102655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
T-cell protein tyrosine phosphatase (TC-PTP) is a negative regulator of T-cell receptor and oncogenic receptor tyrosine kinase signaling and implicated in cancer and autoimmune disease. TC-PTP activity is modulated by an intrinsically disordered C-terminal region (IDR) and suppressed in cells under basal conditions. In vitro structural studies have shown that the dynamic reorganization of IDR around the catalytic domain, driven by electrostatic interactions, can lead to TC-PTP activity inhibition; however, the process has not been studied in cells. Here, by assessing a mutant (378KRKRPR383 mutated into 378EAAAPE383, called TC45E/A) with impaired tail-PTP domain interaction, we obtained evidence that the downmodulation of TC-PTP enzymatic activity by the IDR occurs in cells. However, we found that the regulation of TC-PTP by the IDR is only recapitulated in vitro when crowding polymers that mimic the intracellular environment are present in kinetic assays using a physiological phosphopeptide. Our FRET-based assays in vitro and in cells confirmed that the effect of the mutant correlates with an impairment of the intramolecular inhibitory remodeling of TC-PTP by the IDR. This work presents an early example of the allosteric regulation of a protein tyrosine phosphatase being controlled by the cellular environment and provides a framework for future studies and targeting of TC-PTP function.
Collapse
|
15
|
Wang S, Wu R, Lu J, Jiang Y, Huang T, Cai YD. Protein-protein interaction networks as miners of biological discovery. Proteomics 2022; 22:e2100190. [PMID: 35567424 DOI: 10.1002/pmic.202100190] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022]
Abstract
Protein-protein interactions (PPIs) form the basis of a myriad of biological pathways and mechanism, such as the formation of protein-complexes or the components of signaling cascades. Here, we reviewed experimental methods for identifying PPI pairs, including yeast two-hybrid, mass spectrometry, co-localization, and co-immunoprecipitation. Furthermore, a range of computational methods leveraging biochemical properties, evolution history, protein structures and more have enabled identification of additional PPIs. Given the wealth of known PPIs, we reviewed important network methods to construct and analyze networks of PPIs. These methods aid biological discovery through identifying hub genes and dynamic changes in the network, and have been thoroughly applied in various fields of biological research. Lastly, we discussed the challenges and future direction of research utilizing the power of PPI networks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Steven Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Runxin Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiaqi Lu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Yijia Jiang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
16
|
Interaction of human CRX and NRL in live HEK293T cells measured using fluorescence resonance energy transfer (FRET). Sci Rep 2022; 12:6937. [PMID: 35484285 PMCID: PMC9050680 DOI: 10.1038/s41598-022-10689-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 12/04/2022] Open
Abstract
CRX and NRL are retina-specific transcription factors that control rod photoreceptor differentiation and synergistically activate rod phototransduction gene expression. Previous experiments showed they interact in vitro and in yeast two-hybrid assays. Here, we examined CRX-NRL interaction in live HEK293T cells using two fluorescence resonance energy transfer (FRET) approaches: confocal microscopy and flow cytometry (FC-FRET). FC-FRET can provide measurements from many cells having wide donor–acceptor expression ranges. FRET efficiencies were calibrated with a series of donor (EGFP)-acceptor (mCherry) fusion proteins separated with linkers between 6–45 amino acids. CRX and NRL were fused at either terminus with EGFP or mCherry to create fluorescent proteins, and all combinations were tested in transiently transfected cells. FRET signals between CRX or NRL homo-pairs were highest with both fluorophores fused to the DNA binding domains (DBD), lower with both fused to the activation domains (AD), and not significant when fused on opposite termini. NRL had stronger FRET signals than CRX. A significant FRET signal between CRX and NRL hetero-pairs was detected when donor was fused to the CRX DNA binding domain and the acceptor fused to the NRL activation domain. FRET signals increased with CRX or NRL expression levels at a rate much higher than expected for collisional FRET alone. Together, our results show the formation of CRX-NRL complexes in live HEK293T cells that are close enough for FRET.
Collapse
|
17
|
Reichenbach ZW, DiMattio K, Rajakaruna S, Ambrose D, Cornwell WD, Tallarida RJ, Rogers T, Liu-Chen LY, Tuma RF, Ward SJ. Modulation of Morphine Analgesia, Antinociceptive Tolerance, and Mu-Opioid Receptor Binding by the Cannabinoid CB2 Receptor Agonist O-1966. Front Pharmacol 2022; 13:803331. [PMID: 35529434 PMCID: PMC9068870 DOI: 10.3389/fphar.2022.803331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022] Open
Abstract
Acutely, non-selective cannabinoid (CB) agonists have been shown to increase morphine antinociceptive effects, and we and others have also demonstrated that non-selective CB agonists attenuate morphine antinociceptive tolerance. Activation of cannabinoid CB2 receptors reverses allodynia and hyperalgesia in models of chronic pain, and co-administration of morphine with CB2 receptor selective agonists has been shown to be synergistic. CB2 receptor activation has also been shown to reduce morphine-induced hyperalgesia in rodents, an effect attributed to CB2 receptor modulation of inflammation. In the present set of experiments, we tested both the acute and chronic interactions between morphine and the CB2 receptor selective agonist O-1966 treatments on antinociception and antinociceptive tolerance in C57Bl6 mice. Co-administration of morphine and O-1966 was tested under three dosing regimens: simultaneous administration, morphine pre-treated with O-1966, and O-1966 pre-treated with morphine. The effects of O-1966 on mu-opioid receptor binding were determined using [3H]DAMGO and [35S]GTPγS binding assays, and these interactions were further examined by FRET analysis linked to flow cytometry. Results yielded surprising evidence of interactions between the CB2 receptor selective agonist O-1966 and morphine that were dependent upon the order of administration. When O-1966 was administered prior to or simultaneous with morphine, morphine antinociception was attenuated and antinociceptive tolerance was exacerbated. When O-1966 was administered following morphine, morphine antinociception was not affected and antinociceptive tolerance was attenuated. The [35S]GTPγS results suggest that O-1966 interrupts functional activity of morphine at the mu-opioid receptor, leading to decreased potency of morphine to produce acute thermal antinociceptive effects and potentiation of morphine antinociceptive tolerance. However, O-1966 administered after morphine blocked morphine hyperalgesia and led to an attenuation of morphine tolerance, perhaps due to well-documented anti-inflammatory effects of CB2 receptor agonism.
Collapse
Affiliation(s)
- Zachary W. Reichenbach
- Center for Substance Abuse Research (CSAR), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Department of Gastroenterology and Hepatology, Temple University Hospital, Philadelphia, PA, United States
| | - Kelly DiMattio
- Center for Substance Abuse Research (CSAR), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Suren Rajakaruna
- Center for Inflammation, Translational, and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - David Ambrose
- Center for Inflammation, Translational, and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - William D. Cornwell
- Center for Inflammation, Translational, and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ronald J. Tallarida
- Center for Substance Abuse Research (CSAR), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Thomas Rogers
- Center for Inflammation, Translational, and Clinical Lung Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research (CSAR), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ronald F. Tuma
- Center for Substance Abuse Research (CSAR), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sara Jane Ward
- Center for Substance Abuse Research (CSAR), Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
18
|
Danis C, Dupré E, Zejneli O, Caillierez R, Arrial A, Bégard S, Mortelecque J, Eddarkaoui S, Loyens A, Cantrelle FX, Hanoulle X, Rain JC, Colin M, Buée L, Landrieu I. Inhibition of Tau seeding by targeting Tau nucleation core within neurons with a single domain antibody fragment. Mol Ther 2022; 30:1484-1499. [PMID: 35007758 PMCID: PMC9077319 DOI: 10.1016/j.ymthe.2022.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/07/2021] [Accepted: 01/05/2022] [Indexed: 01/13/2023] Open
Abstract
Tau proteins aggregate into filaments in brain cells in Alzheimer's disease and related disorders referred to as tauopathies. Here, we used fragments of camelid heavy-chain-only antibodies (VHHs or single domain antibody fragments) targeting Tau as immuno-modulators of its pathologic seeding. A VHH issued from the screen against Tau of a synthetic phage-display library of humanized VHHs was selected for its capacity to bind Tau microtubule-binding domain, composing the core of Tau fibrils. This parent VHH was optimized to improve its biochemical properties and to act in the intra-cellular compartment, resulting in VHH Z70. VHH Z70 precisely binds the PHF6 sequence, known for its nucleation capacity, as shown by the crystal structure of the complex. VHH Z70 was more efficient than the parent VHH to inhibit in vitro Tau aggregation in heparin-induced assays. Expression of VHH Z70 in a cellular model of Tau seeding also decreased the aggregation-reporting fluorescence signal. Finally, intra-cellular expression of VHH Z70 in the brain of an established tauopathy mouse seeding model demonstrated its capacity to mitigate accumulation of pathological Tau. VHH Z70, by targeting Tau inside brain neurons, where most of the pathological Tau resides, provides an immunological tool to target the intra-cellular compartment in tauopathies.
Collapse
Affiliation(s)
- Clément Danis
- CNRS, EMR9002 BSI Integrative Structural Biology, 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Elian Dupré
- CNRS, EMR9002 BSI Integrative Structural Biology, 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Orgeta Zejneli
- CNRS, EMR9002 BSI Integrative Structural Biology, 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Alexis Arrial
- Hybrigenic Services, Evry-Courcouronnes 91000, France
| | - Séverine Bégard
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Justine Mortelecque
- CNRS, EMR9002 BSI Integrative Structural Biology, 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000 Lille, France
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Anne Loyens
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - François-Xavier Cantrelle
- CNRS, EMR9002 BSI Integrative Structural Biology, 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000 Lille, France
| | - Xavier Hanoulle
- CNRS, EMR9002 BSI Integrative Structural Biology, 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000 Lille, France
| | | | - Morvane Colin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Isabelle Landrieu
- CNRS, EMR9002 BSI Integrative Structural Biology, 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, 59000 Lille, France.
| |
Collapse
|
19
|
Lim J, Petersen M, Bunz M, Simon C, Schindler M. Flow cytometry based-FRET: basics, novel developments and future perspectives. Cell Mol Life Sci 2022; 79:217. [PMID: 35352201 PMCID: PMC8964568 DOI: 10.1007/s00018-022-04232-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
Abstract
Förster resonance energy transfer (FRET) is a widespread technology used to analyze and quantify protein interactions in multiple settings. While FRET is traditionally measured by microscopy, flow cytometry based-FRET is becoming popular within the last decade and more commonly used. Flow cytometry based-FRET offers the possibility to assess FRET in a short time-frame in a high number of cells thereby allowing stringent and statistically robust quantification of FRET in multiple samples. Furthermore, established, simple and easy to implement gating strategies facilitate the adaptation of flow cytometry based-FRET measurements to most common flow cytometers. We here summarize the basics of flow cytometry based-FRET, highlight recent novel developments in this field and emphasize on exciting future perspectives.
Collapse
Affiliation(s)
- JiaWen Lim
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Moritz Petersen
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Bunz
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Simon
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
20
|
Ni Z, Gale A, Johnson MS, Sedger LM. Analysis insights for three FRET pairs of chemically unlinked two-molecule FRET cytometry. Cytometry A 2021; 101:387-399. [PMID: 34935263 DOI: 10.1002/cyto.a.24527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022]
Abstract
Förster resonance energy transfer (FRET) is the direct energy exchange between two-component fluorescent molecules. FRET methods utilize chemically linked molecules or unlinked fluorescence protein-protein interactions. FRET is therefore a powerful indicator of molecular proximity, but standardized determination of FRET efficiency is challenged when investigating natural (chemically unlinked) interactions. In this paper, we have examined the interactions of tumor necrosis factor receptor-1 (TNFR1) molecules expressed as recombinant fusion proteins of cyan, yellow, or red fluorescent protein (-CFP, -YFP, or -RFP) to evaluate two-molecule chemically unlinked FRET by flow cytometry. We demonstrate three independent FRET pairs CFP→YFP (FRET-1), YFP→RFP (FRET-2) and CFP→RFP (FRET-3), comparing TNFR1+TNFR1 with non-interacting TNFR1+CD27 proteins, on both LSR-II and Fortessa X-20 cytometers. We describe genuine FRET activities reflecting TNFR1 homotypic interactions. FRET events can be visualized during sample acquisition via the use of "spiked" FRET donor cells, together with TNFR1+TNFR1 co-transfected cells, as FRET channel MFI overlays. FRET events are subsequentially indicated by comparing concatenated files of cells expressing either FRET positive events (TNFR1+TNFR1) or FRET negative events (TNFR1+CD27) to generate single-cell scatter plots showing loss of FRET donor brightness. Robust determination of FRET efficiency is then confirmed at the single-cell level by applying matrix calculations based on the measurements of FRET donor, acceptor and FRET fluorescent intensities (I), detector channel emission coefficient (S), fluorescent protein extinction coefficients (ε) and α factor. In this TNFR based system, the mean CFP→YFP FRET-1 efficiency is 0.43 (LSR-II) and 0.41 (Fortessa), the mean YFP→RFP FRET-2 efficiency is 0.30 (LSR-II) and 0.29 (Fortessa), and the mean CFP→RFP FRET-3 efficiency is 0.56 (LSR-II) and 0.54 (Fortessa). This study also embraces multidimensional clustering using t-SNE, Fit-SNE, UMAP, Tri-Map and PaCMAP to further demonstrate FRET. These approaches establish a robust system for standardized detection of chemically unlinked TNFR1 homotypic interactions with three individual FRET pairs.
Collapse
Affiliation(s)
- Zhongran Ni
- School of Life Science, Faculty of Science, University of Technology Sydney
| | - Alex Gale
- School of Life Science, Faculty of Science, University of Technology Sydney
| | - Michael S Johnson
- School of Life Science, Faculty of Science, University of Technology Sydney
| | - Lisa M Sedger
- School of Life Science, Faculty of Science, University of Technology Sydney
| |
Collapse
|
21
|
SIVgsn-99CM71 Vpu employs different amino acids to antagonize human and greater spot-nosed monkey BST-2. J Virol 2021; 96:e0152721. [PMID: 34878886 DOI: 10.1128/jvi.01527-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral protein U (Vpu) is an accessory protein encoded by human immunodeficiency virus type 1 (HIV-1) and certain simian immunodeficiency virus (SIV) strains. Some of these viruses were reported to use Vpu to overcome restriction by BST-2 of their natural hosts. Our own recent report revealed that Vpu of SIVgsn-99CM71 (SIVgsn71) antagonizes human BST-2 through two AxxxxxxxW motifs (A22W30 and A25W33) whereas antagonizing BST-2 of its natural host, greater spot-nosed monkey (GSN), involved only A22W30 motif. Here we show that residues A22, A25, W30, and W33 of SIVgsn71 Vpu are all essential to antagonize human BST-2, while, neither single mutation of A22 nor W30 affected the ability to antagonize GSN BST-2. Similar to A18, which is located in the middle of the A14xxxxxxxW22 motif in HIV-1 NL4-3 Vpu and is essential to antagonize human BST-2, A29, located in the middle of the A25W33 motif of SIVgsn71 Vpu was found to be necessary for antagonizing human but not GSN BST-2. Further mutational analyses revealed that residues L21 and K32 of SIVgsn71 Vpu were also essential for antagonizing human BST-2. On the other hand, the ability of SIVgsn71 Vpu to target GSN BST-2 was unaffected by single amino acid substitutions but required multiple mutations to render SIVgsn71 Vpu inactive against GSN BST-2. These results suggest additional requirements for SIVgsn71 Vpu antagonizing human BST-2, implying evolution of the bst-2 gene under strong selective pressure. Importance Genes related to survival against life-threating pathogens are important determinants of natural selection in animal evolution. For instance, BST-2, a protein showing broad-spectrum antiviral activity, shows polymorphisms entailing different phenotypes even among primate species, suggesting that the bst-2 gene of primates has been subject to strong selective pressure during evolution. At the same time, viruses readily adapt to these evolutionary changes. Thus, we found that Vpu of an SIVgsn isolate (SIVgsn-99CM71) can target BST-2 from humans as well as from its natural host thus potentially facilitating zoonosis. Here we mapped residues in SIVgsn71 Vpu potentially contributing to cross-species transmission. We found that the requirements for targeting human BST-2 are distinct from and more complex than those for targeting GSN BST-2. Our results suggest that the human bst-2 gene might have evolved to acquire more restrictive phenotype than GSN bst-2 against viral proteins after being derived from their common ancestor.
Collapse
|
22
|
The extracellular chaperone Clusterin enhances Tau aggregate seeding in a cellular model. Nat Commun 2021; 12:4863. [PMID: 34381050 PMCID: PMC8357826 DOI: 10.1038/s41467-021-25060-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/16/2021] [Indexed: 02/06/2023] Open
Abstract
Spreading of aggregate pathology across brain regions acts as a driver of disease progression in Tau-related neurodegeneration, including Alzheimer’s disease (AD) and frontotemporal dementia. Aggregate seeds released from affected cells are internalized by naïve cells and induce the prion-like templating of soluble Tau into neurotoxic aggregates. Here we show in a cellular model system and in neurons that Clusterin, an abundant extracellular chaperone, strongly enhances Tau aggregate seeding. Upon interaction with Tau aggregates, Clusterin stabilizes highly potent, soluble seed species. Tau/Clusterin complexes enter recipient cells via endocytosis and compromise the endolysosomal compartment, allowing transfer to the cytosol where they propagate aggregation of endogenous Tau. Thus, upregulation of Clusterin, as observed in AD patients, may enhance Tau seeding and possibly accelerate the spreading of Tau pathology. Variants of the extracellular chaperone Clusterin are associated with Alzheimer’s disease (AD) and Clusterin levels are elevated in AD patient brains. Here, the authors show that Clusterin binds to oligomeric Tau, which enhances the seeding capacity of Tau aggregates upon cellular uptake. They also demonstrate that Tau/Clusterin complexes enter cells via the endosomal pathway, resulting in damage to endolysosomes and entry into the cytosol, where they induce the aggregation of endogenous, soluble Tau.
Collapse
|
23
|
Vallejo-Gracia A, Sastre D, Colomer-Molera M, Solé L, Navarro-Pérez M, Capera J, Roig SR, Pedrós-Gámez O, Estadella I, Szilágyi O, Panyi G, Hajdú P, Felipe A. KCNE4-dependent functional consequences of Kv1.3-related leukocyte physiology. Sci Rep 2021; 11:14632. [PMID: 34272451 PMCID: PMC8285421 DOI: 10.1038/s41598-021-94015-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
The voltage-dependent potassium channel Kv1.3 plays essential roles in the immune system, participating in leukocyte activation, proliferation and apoptosis. The regulatory subunit KCNE4 acts as an ancillary peptide of Kv1.3, modulates K+ currents and controls channel abundance at the cell surface. KCNE4-dependent regulation of the oligomeric complex fine-tunes the physiological role of Kv1.3. Thus, KCNE4 is crucial for Ca2+-dependent Kv1.3-related leukocyte functions. To better understand the role of KCNE4 in the regulation of the immune system, we manipulated its expression in various leukocyte cell lines. Jurkat T lymphocytes exhibit low KCNE4 levels, whereas CY15 dendritic cells, a model of professional antigen-presenting cells, robustly express KCNE4. When the cellular KCNE4 abundance was increased in T cells, the interaction between KCNE4 and Kv1.3 affected important T cell physiological features, such as channel rearrangement in the immunological synapse, cell growth, apoptosis and activation, as indicated by decreased IL-2 production. Conversely, ablation of KCNE4 in dendritic cells augmented proliferation. Furthermore, the LPS-dependent activation of CY15 cells, which induced Kv1.3 but not KCNE4, increased the Kv1.3-KCNE4 ratio and increased the expression of free Kv1.3 without KCNE4 interaction. Our results demonstrate that KCNE4 is a pivotal regulator of the Kv1.3 channelosome, which fine-tunes immune system physiology by modulating Kv1.3-associated leukocyte functions.
Collapse
Affiliation(s)
- Albert Vallejo-Gracia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Virology and Immunology, Gladstone Institutes, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Daniel Sastre
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Laura Solé
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - María Navarro-Pérez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Jesusa Capera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Oriol Pedrós-Gámez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Orsolya Szilágyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem Sq., Debrecen, 4032, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem Sq., Debrecen, 4032, Hungary
| | - Péter Hajdú
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 400, 1 Egyetem Sq., Debrecen, 4032, Hungary
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
24
|
Cano CE, Pasero C, De Gassart A, Kerneur C, Gabriac M, Fullana M, Granarolo E, Hoet R, Scotet E, Rafia C, Herrmann T, Imbert C, Gorvel L, Vey N, Briantais A, le Floch AC, Olive D. BTN2A1, an immune checkpoint targeting Vγ9Vδ2 T cell cytotoxicity against malignant cells. Cell Rep 2021; 36:109359. [PMID: 34260935 DOI: 10.1016/j.celrep.2021.109359] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/27/2020] [Accepted: 06/17/2021] [Indexed: 01/20/2023] Open
Abstract
The anti-tumor response of Vγ9Vδ2 T cells requires the sensing of accumulated phosphoantigens (pAgs) bound intracellularly to butyrophilin 3A1 (BTN3A1). In this study, we show that butyrophilin 2A1 (BTN2A1) is required for BTN3A-mediated Vγ9Vδ2 T cell cytotoxicity against cancer cells, and that expression of the BTN2A1/BTN3A1 complex is sufficient to trigger Vγ9Vδ2 TCR activation. Also, BTN2A1 interacts with all isoforms of BTN3A (BTN3A1, BTN3A2, BTN3A3), which appears to be a rate-limiting factor to BTN2A1 export to the plasma membrane. BTN2A1/BTN3A1 interaction is enhanced by pAgs and, strikingly, B30.2 domains of both proteins are required for pAg responsiveness. BTN2A1 expression in cancer cells correlates with bisphosphonate-induced Vγ9Vδ2 T cell cytotoxicity. Vγ9Vδ2 T cell killing of cancer cells is modulated by anti-BTN2A1 monoclonal antibodies (mAbs), whose action relies on the inhibition of BTN2A1 binding to the Vγ9Vδ2TCR. This demonstrates the potential of BTN2A1 as a therapeutic target and adds to the emerging butyrophilin-family cooperation pathway in γδ T cell activation.
Collapse
Affiliation(s)
- Carla E Cano
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France.
| | - Christine Pasero
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Aude De Gassart
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Clement Kerneur
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Mélanie Gabriac
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Marie Fullana
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Emilie Granarolo
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - René Hoet
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France
| | - Emmanuel Scotet
- Université de Nantes, INSERM, CNRS, CRCINA, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes 44000, France
| | - Chirine Rafia
- ImCheck Therapeutics, 31 Joseph Aiguier, 13009 Marseille, France; Université de Nantes, INSERM, CNRS, CRCINA, 44000 Nantes, France; LabEx IGO "Immunotherapy, Graft, Oncology," Nantes 44000, France
| | - Thomas Herrmann
- Institute for Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| | - Caroline Imbert
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Laurent Gorvel
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Norbert Vey
- Institut Paoli-Calmettes, 13009 Marseille, France
| | - Antoine Briantais
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Anne Charlotte le Floch
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, 13009 Marseille, France; Institut Paoli-Calmettes, 13009 Marseille, France; Aix-Marseille Université UM105, CNRS UMR 7258, 13009 Marseille, France.
| |
Collapse
|
25
|
BRD4S interacts with viral E2 protein to limit human papillomavirus late transcription. J Virol 2021; 95:JVI.02032-20. [PMID: 33731454 PMCID: PMC8139696 DOI: 10.1128/jvi.02032-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The E2 protein encoded by human papillomaviruses (HPV) is a sequence-specific DNA-binding protein that recruits viral and cellular proteins. Bromodomain-containing protein 4 (BRD4) is a highly conserved interactor for E2 proteins that has been linked to E2's functions as transcription modulator, activator of viral replication and segregation factor for viral genomes. In addition to BRD4, a short form of BRD4 (BRD4S) is expressed from the BRD4 gene which lacks the C-terminal domain of BRD4. E2 proteins interact with the C-terminal motif (CTM) of BRD4, but a recent study suggested that the phospho-dependent interaction domain (PDID) and the basic interaction domain (BID) in BRD4 also bind to E2. These domains are also present in BRD4S. We now find that HPV31 E2 interacts with the isolated PDID domain in living cells and also with BRD4S which is present in detectable amounts in HPV-positive cell lines and is recruited into HPV31 E1 and E2 induced replication foci. Overexpression and knockdown experiments surprisingly indicate that BRD4S inhibits activities of E2. In line with that, the specific knockdown of BRD4S in the HPV31-positive CIN612-9E cell line induces mainly late viral transcripts. This occurs only in undifferentiated but not differentiated cells in which the productive viral replication cycle is induced. These data suggest that the BRD4S-E2 interaction is important to prevent HPV late gene expression in undifferentiated keratinocytes which may contribute to immune evasion and HPV persistence.ImportanceHuman papillomaviruses (HPV) have coevolved with their host by using cellular factors like bromodomain-containing protein 4 (BRD4) to control viral processes such as genome maintenance, gene expression and replication. We here show that, in addition to the C-terminal motif in BRD4, the phospho-dependent interaction domain in BRD4 interacts with E2 proteins which enable the recruitment of BRD4S, the short isoform of BRD4, to E2. Knock-down and overexpression of BRD4S reveals that BRD4S is a negative regulator of E2 activities. Importantly, the knockdown of BRD4S induces mainly L1 transcripts in undifferentiated CIN612-9E cells, which maintain replicating HPV31 genomes. Our study reveals an inhibitory role of BRD4S on HPV transcription, which may serve as an immune escape mechanism by the suppression of L1 transcripts and thus contribute to the establishment of persistent HPV infections.
Collapse
|
26
|
Soave M, Stoddart LA, White CW, Kilpatrick LE, Goulding J, Briddon SJ, Hill SJ. Detection of genome-edited and endogenously expressed G protein-coupled receptors. FEBS J 2021; 288:2585-2601. [PMID: 33506623 PMCID: PMC8647918 DOI: 10.1111/febs.15729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest family of membrane receptors and major targets for FDA-approved drugs. The ability to quantify GPCR expression and ligand binding characteristics in different cell types and tissues is therefore important for drug discovery. The advent of genome editing along with developments in fluorescent ligand design offers exciting new possibilities to probe GPCRs in their native environment. This review provides an overview of the recent technical advances employed to study the localisation and ligand binding characteristics of genome-edited and endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Mark Soave
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Leigh A. Stoddart
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Carl W. White
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
- Harry Perkins Institute of Medical Research and Centre for Medical ResearchQEII Medical CentreThe University of Western AustraliaNedlandsAustralia
- Australian Research Council Centre for Personalised Therapeutics TechnologiesAustralia
| | - Laura E. Kilpatrick
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
- Division of Biomolecular Science and Medicinal ChemistrySchool of Pharmacy, Biodiscovery InstituteUniversity of NottinghamUK
| | - Joëlle Goulding
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Stephen J. Briddon
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| | - Stephen J. Hill
- Division of Physiology, Pharmacology and NeuroscienceSchool of Life SciencesUniversity of NottinghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)University of Birmingham and University of NottinghamThe MidlandsUK
| |
Collapse
|
27
|
Güllülü Ö, Hehlgans S, Mayer BE, Gößner I, Petraki C, Hoffmann M, Dombrowsky MJ, Kunzmann P, Hamacher K, Strebhardt K, Fokas E, Rödel C, Münch C, Rödel F. A Spatial and Functional Interaction of a Heterotetramer Survivin-DNA-PKcs Complex in DNA Damage Response. Cancer Res 2021; 81:2304-2317. [PMID: 33408118 DOI: 10.1158/0008-5472.can-20-2931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/19/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Substantial evidence has shown that overexpression of the inhibitor of apoptosis protein (IAP) survivin in human tumors correlates significantly with treatment resistance and poor patient prognosis. Survivin serves as a radiation resistance factor that impacts the DNA damage response by interacting with DNA-dependent protein kinase (DNA-PKcs). However, the complexity, molecular determinants, and functional consequences of this interrelationship remain largely unknown. By applying coimmunoprecipitation and flow cytometry-based Förster resonance energy transfer assays, we demonstrated a direct involvement of the survivin baculovirus IAP repeat domain in the regulation of radiation survival and DNA repair. This survivin-mediated activity required an interaction of residues S20 and W67 with the phosphoinositide 3-kinase (PI3K) domain of DNA-PKcs. In silico molecular docking and dynamics simulation analyses, in vitro kinase assays, and large-scale mass spectrometry suggested a heterotetrameric survivin-DNA-PKcs complex that results in a conformational change within the DNA-PKcs PI3K domain. Overexpression of survivin resulted in enhanced PI3K enzymatic activity and detection of differentially abundant phosphopeptides and proteins implicated in the DNA damage response. The survivin-DNA-PKcs interaction altered the S/T-hydrophobic motif substrate specificity of DNA-PKcs with a predominant usage of S/T-P phosphorylation sites and an increase of DNA-PKcs substrates including Foxo3. These data demonstrate that survivin differentially regulates DNA-PKcs-dependent radiation survival and DNA double-strand break repair via formation of a survivin-DNA-PKcs heterotetrameric complex. SIGNIFICANCE: These findings provide insight into survivin-mediated regulation of DNA-PKcs kinase and broaden our knowledge of the impact of survivin in modulating the cellular radiation response.See related commentary by Iliakis, p. 2270 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2304/F1.large.jpg.
Collapse
Affiliation(s)
- Ömer Güllülü
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt, Germany
| | - Benjamin E Mayer
- Department of Computational Biology and Simulation, Technical University of Darmstadt, Germany
| | - Ines Gößner
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Germany
| | - Chrysi Petraki
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt, Germany
| | - Melanie Hoffmann
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt, Germany
| | - Maximilian J Dombrowsky
- Department of Computational Biology and Simulation, Technical University of Darmstadt, Germany
| | - Patrick Kunzmann
- Department of Computational Biology and Simulation, Technical University of Darmstadt, Germany
| | - Kay Hamacher
- Department of Computational Biology and Simulation, Technical University of Darmstadt, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, University Hospital, Goethe University Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany
| | - Emmanouil Fokas
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt, Germany. .,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK) partner site: Frankfurt, Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI), Theodor-Stern-Kai 7, Goethe University Frankfurt, Germany
| |
Collapse
|
28
|
Robertson N, Lopez-Anton N, Gurjar SA, Khalique H, Khalaf Z, Clerkin S, Leydon VR, Parker-Manuel R, Raeside A, Payne T, Jones TD, Seymour L, Cawood R. Development of a novel mammalian display system for selection of antibodies against membrane proteins. J Biol Chem 2020; 295:18436-18448. [PMID: 33127646 PMCID: PMC7939478 DOI: 10.1074/jbc.ra120.015053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
Reliable, specific polyclonal and monoclonal antibodies are important tools in research and medicine. However, the discovery of antibodies against their targets in their native forms is difficult. Here, we present a novel method for discovery of antibodies against membrane proteins in their native configuration in mammalian cells. The method involves the co-expression of an antibody library in a population of mammalian cells that express the target polypeptide within a natural membrane environment on the cell surface. Cells that secrete a single-chain fragment variable (scFv) that binds to the target membrane protein thereby become self-labeled, enabling enrichment and isolation by magnetic sorting and FRET-based flow sorting. Library sizes of up to 109 variants can be screened, thus allowing campaigns of naïve scFv libraries to be selected against membrane protein antigens in a Chinese hamster ovary cell system. We validate this method by screening a synthetic naïve human scFv library against Chinese hamster ovary cells expressing the oncogenic target epithelial cell adhesion molecule and identify a panel of three novel binders to this membrane protein, one with a dissociation constant (KD ) as low as 0.8 nm We further demonstrate that the identified antibodies have utility for killing epithelial cell adhesion molecule-positive cells when used as a targeting domain on chimeric antigen receptor T cells. Thus, we provide a new tool for identifying novel antibodies that act against membrane proteins, which could catalyze the discovery of new candidates for antibody-based therapies.
Collapse
Affiliation(s)
| | | | | | - Hena Khalique
- Anticancer Viruses and Cancer Vaccines Group, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | - Tom Payne
- OXGENE, Medawar Centre, Oxford, United Kingdom
| | - Tim D Jones
- OXGENE, Medawar Centre, Oxford, United Kingdom
| | - Len Seymour
- Anticancer Viruses and Cancer Vaccines Group, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ryan Cawood
- OXGENE, Medawar Centre, Oxford, United Kingdom.
| |
Collapse
|
29
|
Liu L, He F, Yu Y, Wang Y. Application of FRET Biosensors in Mechanobiology and Mechanopharmacological Screening. Front Bioeng Biotechnol 2020; 8:595497. [PMID: 33240867 PMCID: PMC7680962 DOI: 10.3389/fbioe.2020.595497] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Extensive studies have shown that cells can sense and modulate the biomechanical properties of the ECM within their resident microenvironment. Thus, targeting the mechanotransduction signaling pathways provides a promising way for disease intervention. However, how cells perceive these mechanical cues of the microenvironment and transduce them into biochemical signals remains to be answered. Förster or fluorescence resonance energy transfer (FRET) based biosensors are a powerful tool that can be used in live-cell mechanotransduction imaging and mechanopharmacological drug screening. In this review, we will first introduce FRET principle and FRET biosensors, and then, recent advances on the integration of FRET biosensors and mechanobiology in normal and pathophysiological conditions will be discussed. Furthermore, we will summarize the current applications and limitations of FRET biosensors in high-throughput drug screening and the future improvement of FRET biosensors. In summary, FRET biosensors have provided a powerful tool for mechanobiology studies to advance our understanding of how cells and matrices interact, and the mechanopharmacological screening for disease intervention.
Collapse
Affiliation(s)
| | | | | | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
30
|
Hochreiter B, Chong CS, Hartig A, Maurer-Stroh S, Berger J, Schmid JA, Kunze M. A Novel FRET Approach Quantifies the Interaction Strength of Peroxisomal Targeting Signals and Their Receptor in Living Cells. Cells 2020; 9:E2381. [PMID: 33143123 PMCID: PMC7693011 DOI: 10.3390/cells9112381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 02/02/2023] Open
Abstract
Measuring Förster-resonance-energy-transfer (FRET) efficiency allows the investigation of protein-protein interactions (PPI), but extracting quantitative measures of affinity necessitates highly advanced technical equipment or isolated proteins. We demonstrate the validity of a recently suggested novel approach to quantitatively analyze FRET-based experiments in living mammalian cells using standard equipment using the interaction between different type-1 peroxisomal targeting signals (PTS1) and their soluble receptor peroxin 5 (PEX5) as a model system. Large data sets were obtained by flow cytometry coupled FRET measurements of cells expressing PTS1-tagged EGFP together with mCherry fused to the PTS1-binding domain of PEX5, and were subjected to a fitting algorithm extracting a quantitative measure of the interaction strength. This measure correlates with results obtained by in vitro techniques and a two-hybrid assay, but is unaffected by the distance between the fluorophores. Moreover, we introduce a live cell competition assay based on this approach, capable of depicting dose- and affinity-dependent modulation of the PPI. Using this system, we demonstrate the relevance of a sequence element next to the core tripeptide in PTS1 motifs for the interaction strength between PTS1 and PEX5, which is supported by a structure-based computational prediction of the binding energy indicating a direct involvement of this sequence in the interaction.
Collapse
Affiliation(s)
- Bernhard Hochreiter
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Cheng-Shoong Chong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; (C.-S.C.); (S.M.-S.)
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
| | - Andreas Hartig
- Department of Biochemistry and Cell Biology, Max Perutz Laboratories, University of Vienna, 1030 Vienna, Austria;
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore; (C.-S.C.); (S.M.-S.)
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Johannes Berger
- Center for Brain Research, Department of Pathobiology of the Nervous System, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johannes A. Schmid
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Markus Kunze
- Center for Brain Research, Department of Pathobiology of the Nervous System, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
31
|
Edelstein HI, Donahue PS, Muldoon JJ, Kang AK, Dolberg TB, Battaglia LM, Allchin ER, Hong M, Leonard JN. Elucidation and refinement of synthetic receptor mechanisms. Synth Biol (Oxf) 2020; 5:ysaa017. [PMID: 33392392 PMCID: PMC7759213 DOI: 10.1093/synbio/ysaa017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/13/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022] Open
Abstract
Synthetic receptors are powerful tools for engineering mammalian cell-based devices. These biosensors enable cell-based therapies to perform complex tasks such as regulating therapeutic gene expression in response to sensing physiological cues. Although multiple synthetic receptor systems now exist, many aspects of receptor performance are poorly understood. In general, it would be useful to understand how receptor design choices influence performance characteristics. In this study, we examined the modular extracellular sensor architecture (MESA) and systematically evaluated previously unexamined design choices, yielding substantially improved receptors. A key finding that might extend to other receptor systems is that the choice of transmembrane domain (TMD) is important for generating high-performing receptors. To provide mechanistic insights, we adopted and employed a Förster resonance energy transfer-based assay to elucidate how TMDs affect receptor complex formation and connected these observations to functional performance. To build further insight into these phenomena, we developed a library of new MESA receptors that sense an expanded set of ligands. Based upon these explorations, we conclude that TMDs affect signaling primarily by modulating intracellular domain geometry. Finally, to guide the design of future receptors, we propose general principles for linking design choices to biophysical mechanisms and performance characteristics.
Collapse
Affiliation(s)
- Hailey I Edelstein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Patrick S Donahue
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph J Muldoon
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
| | - Anthony K Kang
- Honors Program in Medical Education, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Program in Biological Sciences, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor B Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lauren M Battaglia
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Everett R Allchin
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Mihe Hong
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
32
|
Deal J, Pleshinger DJ, Johnson SC, Leavesley SJ, Rich TC. Milestones in the development and implementation of FRET-based sensors of intracellular signals: A biological perspective of the history of FRET. Cell Signal 2020; 75:109769. [PMID: 32898611 DOI: 10.1016/j.cellsig.2020.109769] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 01/24/2023]
Abstract
Fӧrster resonance energy transfer (FRET) has been described for more than a century. FRET has become a mainstay for the study of protein localization in living cells and tissues. It has also become widely used in the fields that comprise cellular signaling. FRET-based probes have been developed to monitor second messenger signals, the phosphorylation state of peptides and proteins, and subsequent cellular responses. Here, we discuss the milestones that led to FRET becoming a widely used tool for the study of biological systems: the theoretical description of FRET, the insight to use FRET as a molecular ruler, and the isolation and genetic modification of green fluorescent protein (GFP). Each of these milestones were critical to the development of a myriad of FRET-based probes and reporters in common use today. FRET-probes offer a unique opportunity to interrogate second messenger signals and subsequent protein phosphorylation - and perhaps the most effective approach for study of cAMP/PKA pathways. As such, FRET probes are widely used in the study of intracellular signaling pathways. Yet, somehow, the potential of FRET-based probes to provide windows through which we can visualize complex cellular signaling systems has not been fully reached. Hence we conclude by discussing the technical challenges to be overcome if FRET-based probes are to live up to their potential for the study of complex signaling networks.
Collapse
Affiliation(s)
- J Deal
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - D J Pleshinger
- Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S C Johnson
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - S J Leavesley
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Chemical and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA
| | - T C Rich
- Basic Medical Sciences Graduate Program, University of South Alabama, Mobile, AL 36688, USA; Center for Lung Biology, Departments of Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA; Pharmacology and Biomolecular Engineering, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
33
|
Wilkes MC, Siva K, Chen J, Varetti G, Youn MY, Chae H, Ek F, Olsson R, Lundbäck T, Dever DP, Nishimura T, Narla A, Glader B, Nakauchi H, Porteus MH, Repellin CE, Gazda HT, Lin S, Serrano M, Flygare J, Sakamoto KM. Diamond Blackfan anemia is mediated by hyperactive Nemo-like kinase. Nat Commun 2020; 11:3344. [PMID: 32620751 PMCID: PMC7334220 DOI: 10.1038/s41467-020-17100-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/26/2020] [Indexed: 01/30/2023] Open
Abstract
Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome associated with ribosomal gene mutations that lead to ribosomal insufficiency. DBA is characterized by anemia, congenital anomalies, and cancer predisposition. Treatment for DBA is associated with significant morbidity. Here, we report the identification of Nemo-like kinase (NLK) as a potential target for DBA therapy. To identify new DBA targets, we screen for small molecules that increase erythroid expansion in mouse models of DBA. This screen identified a compound that inhibits NLK. Chemical and genetic inhibition of NLK increases erythroid expansion in mouse and human progenitors, including bone marrow cells from DBA patients. In DBA models and patient samples, aberrant NLK activation is initiated at the Megakaryocyte/Erythroid Progenitor (MEP) stage of differentiation and is not observed in non-erythroid hematopoietic lineages or healthy erythroblasts. We propose that NLK mediates aberrant erythropoiesis in DBA and is a potential target for therapy. Diamond Blackfan Anemia (DBA) is a congenital bone marrow failure syndrome that is associated with anemia. Here, the authors examine the role of Nemo-like kinase (NLK) in erythroid cells in the pathogenesis of DBA and as a potential target for therapy.
Collapse
Affiliation(s)
- M C Wilkes
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - K Siva
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - J Chen
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - G Varetti
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028, Spain.,Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08028, Spain
| | - M Y Youn
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - H Chae
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - F Ek
- Chemical Biology and Therapeutics Group, Department of Medical Science, Lund University, Lund, 22184, Sweden
| | - R Olsson
- Chemical Biology and Therapeutics Group, Department of Medical Science, Lund University, Lund, 22184, Sweden
| | - T Lundbäck
- Chemical Biology Consortium Sweden (CBCS), Science for Life Laboratory, Department for Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - D P Dever
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - T Nishimura
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - A Narla
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - B Glader
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - H Nakauchi
- Department of Genetics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - M H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - C E Repellin
- Biosciences Division, SRI International, Menlo Park, CA, 94025, USA
| | - H T Gazda
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - S Lin
- Department of Molecular, Cell and Development Biology, University of California, Los Angeles, CA, 90095, USA
| | - M Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, 08028, Spain.,Barcelona Institute of Science and Technology (BIST), Barcelona, 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08028, Spain
| | - J Flygare
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, 22184, Sweden
| | - K M Sakamoto
- Division of Hematology/Oncology, Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
34
|
p53 destabilizing protein skews asymmetric division and enhances NOTCH activation to direct self-renewal of TICs. Nat Commun 2020; 11:3084. [PMID: 32555153 PMCID: PMC7299990 DOI: 10.1038/s41467-020-16616-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 04/28/2020] [Indexed: 01/11/2023] Open
Abstract
Tumor-initiating stem-like cells (TICs) are defective in maintaining asymmetric cell division and responsible for tumor recurrence. Cell-fate-determinant molecule NUMB-interacting protein (TBC1D15) is overexpressed and contributes to p53 degradation in TICs. Here we identify TBC1D15-mediated oncogenic mechanisms and tested the tumorigenic roles of TBC1D15 in vivo. We examined hepatocellular carcinoma (HCC) development in alcohol Western diet-fed hepatitis C virus NS5A Tg mice with hepatocyte-specific TBC1D15 deficiency or expression of non-phosphorylatable NUMB mutations. Liver-specific TBC1D15 deficiency or non-p-NUMB expression reduced TIC numbers and HCC development. TBC1D15–NuMA1 association impaired asymmetric division machinery by hijacking NuMA from LGN binding, thereby favoring TIC self-renewal. TBC1D15–NOTCH1 interaction activated and stabilized NOTCH1 which upregulated transcription of NANOG essential for TIC expansion. TBC1D15 activated three novel oncogenic pathways to promote self-renewal, p53 loss, and Nanog transcription in TICs. Thus, this central regulator could serve as a potential therapeutic target for treatment of HCC. Normal stem cells are maintained by asymmetric cell division, but this process is dysregulated in tumour initiating stem-like cells (TICs). Here, the authors show that TBC1D15 impairs the asymmetric division machinery and activates NOTCH pathway for TIC self-renewal and expansion to promote liver tumorigenesis.
Collapse
|
35
|
Balatskaya MN, Baglay AI, Rubtsov YP, Sharonov GV. Analysis of GPI-Anchored Receptor Distribution and Dynamics in Live Cells by Tag-mediated Enzymatic Labeling and FRET. Methods Protoc 2020; 3:mps3020033. [PMID: 32349461 PMCID: PMC7359698 DOI: 10.3390/mps3020033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 01/17/2023] Open
Abstract
The analysis of glycosylphosphatidylinositol (GPI)-anchored receptor distribution and dynamics in live cells is challenging, because their clusters exhibit subdiffraction-limited sizes and are highly dynamic. However, the cellular response depends on the GPI-anchored receptor clusters' distribution and dynamics. Here, we compare three approaches to GPI-anchored receptor labeling (with antibodies, fluorescent proteins, and enzymatically modified small peptide tags) and use several variants of Förster resonance energy transfer (FRET) detection by confocal microscopy and flow cytometry in order to obtain insight into the distribution and the ligand-induced dynamics of GPI-anchored receptors. We found that the enzyme-mediated site-specific fluorescence labeling of T-cadherin modified with a short peptide tag (12 residues in length) have several advantages over labeling by fluorescent proteins or antibodies, including (i) the minimized distortion of the protein's properties, (ii) the possibility to use a cell-impermeable fluorescent substrate that allows for selective labeling of surface-exposed proteins in live cells, and (iii) superior control of the donor to acceptor molar ratio. We successfully detected the FRET of GPI-anchored receptors, T-cadherin, and ephrin-A1, without ligands, and showed in real time that adiponectin induces stable T-cadherin cluster formation. In this paper (which is complementary to our recent research (Balatskaya et al., 2019)), we present the practical aspects of labeling and the heteroFRET measurements of GPI-anchored receptors to study their dynamics on a plasma membrane in live cells.
Collapse
Affiliation(s)
- Maria N. Balatskaya
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av. 27-1, 119192 Moscow, Russia; (A.I.B.); (Y.P.R.); (G.V.S.)
- Correspondence:
| | - Alexandra I. Baglay
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av. 27-1, 119192 Moscow, Russia; (A.I.B.); (Y.P.R.); (G.V.S.)
| | - Yury P. Rubtsov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av. 27-1, 119192 Moscow, Russia; (A.I.B.); (Y.P.R.); (G.V.S.)
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - George V. Sharonov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovskiy av. 27-1, 119192 Moscow, Russia; (A.I.B.); (Y.P.R.); (G.V.S.)
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, str. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Ostrovitianov str. 1, 117997 Moscow, Russia
- Laboratory of Genomics of Antitumor Adaptive Immunity, Privolzhsky Research Medical University, 10/1 Minin & Pozharsky sq., 603005 Nizhny Novgorod, Russia
| |
Collapse
|
36
|
Betaneli V, Jessberger R. Mechanism of control of F-actin cortex architecture by SWAP-70. J Cell Sci 2020; 133:jcs233064. [PMID: 31932501 DOI: 10.1242/jcs.233064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023] Open
Abstract
F-actin binding and bundling are crucial to a plethora of cell processes, including morphogenesis, migration, adhesion and many others. SWAP-70 was recently described as an in vitro F-actin-binding and -bundling protein. Fluorescence cross-correlation spectroscopy measurements with purified recombinant SWAP-70 confirmed that it forms stable oligomers that facilitate F-actin bundling. However, it remained unclear how SWAP-70 oligomerization and F-actin binding are controlled in living cells. We addressed this by biophysical approaches, including seFRET, FACS-FRET and FLIM-FRET. PIP3-mediated association with the cytoplasmic membrane and non-phosphorylated Y426 are required for SWAP-70 to dimerize and to bind F-actin. The dimerization region was identified near the C terminus where R546 is required for dimerization and, thus, F-actin bundling. The in vitro and in vivo data presented here reveal the functional relationship between the cytoplasm-to-membrane translocation and dimerization of SWAP-70, and F-actin binding and bundling, and demonstrate that SWAP-70 is a finely controlled modulator of membrane-proximal F-actin dynamics.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Viktoria Betaneli
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| |
Collapse
|
37
|
Vpu of a Simian Immunodeficiency Virus Isolated from Greater Spot-Nosed Monkey Antagonizes Human BST-2 via Two AxxxxxxxW Motifs. J Virol 2020; 94:JVI.01669-19. [PMID: 31666374 DOI: 10.1128/jvi.01669-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 01/20/2023] Open
Abstract
BST-2/CD317/tetherin is a host transmembrane protein that potently inhibits human immunodeficiency virus type 1 (HIV-1) virion release by tethering the nascent virions to the plasma membrane. Viral protein U (Vpu) is an accessory protein encoded by HIV-1 as well as by some simian immunodeficiency viruses (SIVs) infecting wild chimpanzees, gorillas, or monkeys (SIVcpz, SIVgor, or SIVgsn/SIVmon/SIVmus, respectively). HIV-1 Vpu directly binds to and downregulates human BST-2. The antagonism is highly species specific because the amino acid sequences of BST-2 are different among animal species. Here, we show that Vpu proteins from several SIVcpz, SIVgsn, SIVmon, or SIVmus isolates fail to antagonize human BST-2. Only Vpu from an SIVgsn isolate (SIVgsn-99CM71 [SIVgsn71]) was able to antagonize human BST-2 as well as BST-2 of its natural host, greater spot-nosed monkey (GSN). This SIVgsn Vpu interacted with human BST-2, downregulated cell surface human BST-2 expression, and facilitated HIV-1 virion release in the presence of human BST-2. While the unique 14AxxxxxxxW22 motif in the transmembrane domain of HIV-1NL4-3Vpu was reported to be important for antagonizing human BST-2, we show here that two AxxxxxxxW motifs (A22W30 and A25W33) exist in SIVgsn71 Vpu. Only the A22W30 motif was needed for SIVgsn71 Vpu to antagonize GSN BST-2, suggesting that the mechanism of this antagonism resembles that of HIV-1NL4-3 Vpu against human BST-2. Interestingly, SIVgsn71 Vpu requires two AxxxxxxxW (A22W30 and A25W33) motifs to antagonize human BST-2, suggesting an as-yet-undefined way that SIVgsn71 Vpu works against human BST-2. These results imply an evolutionary impact of primate BST-2 on lentiviral Vpu.IMPORTANCE Genetic alterations conferring a selective advantage in protecting from life-threating pathogens are maintained during evolution. In fact, the amino acid sequences of BST-2 differ among primate animals and their susceptibility to viral proteins is species specific, suggesting that such genetic diversity has arisen through the evolutionarily controlled balance between the host and pathogens. The M (main) group of HIV-1 is thought to be derived from SIVcpz, which utilizes Nef, but not Vpu, to antagonize chimpanzee BST-2. SIVcpz Nef is, however, unable to antagonize human BST-2, and Vpu was consequently chosen again as an antagonist against human BST-2 in the context of HIV-1. Studies on how Vpu lost and acquired this ability, together with the distinct mechanisms by which SIVgsn71 Vpu binds to and downregulates human or GSN BST-2, may help to explain the evolution of this lentiviral protein as a result of host-pathogen interactions.
Collapse
|
38
|
Developments in single-molecule and single-particle fluorescence-based approaches for studying viral envelope glycoprotein dynamics and membrane fusion. Adv Virus Res 2019; 104:123-146. [PMID: 31439147 DOI: 10.1016/bs.aivir.2019.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Fusion of viral and cellular membranes is an essential step in the entry pathway of all enveloped viruses. This is a dynamic and multistep process, which has been extensively studied, resulting in the endpoints of the reaction being firmly established, and many essential cellular factors identified. What remains is to elucidate the dynamic events that underlie this process, including the order and timing of glycoprotein conformational changes, receptor-binding events, and movement of the glycoprotein on the surface of the virion. Due to the inherently asynchronous nature of these dynamics, there has been an increased focus on the study of single virions and single molecules. These techniques provide researchers the high precision and resolution necessary to bridge the gaps in our understanding of viral membrane fusion. This review highlights the advancement of single-molecule and single-particle fluorescence-based techniques, with a specific focus on how these techniques have been used to study the dynamic nature of the viral fusion pathway.
Collapse
|
39
|
Winkler M, Wrensch F, Bosch P, Knoth M, Schindler M, Gärtner S, Pöhlmann S. Analysis of IFITM-IFITM Interactions by a Flow Cytometry-Based FRET Assay. Int J Mol Sci 2019; 20:ijms20163859. [PMID: 31398796 PMCID: PMC6719045 DOI: 10.3390/ijms20163859] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/26/2019] [Accepted: 08/03/2019] [Indexed: 12/14/2022] Open
Abstract
The interferon-induced transmembrane proteins 1–3 (IFITM1–3) inhibit host cell entry of several viruses. However, it is incompletely understood how IFITM1–3 exert antiviral activity. Two phenylalanine residues, F75 and F78, within the intramembrane domain 1 (IM1) were previously shown to be required for IFITM3/IFITM3 interactions and for inhibition of viral entry, suggesting that IFITM/IFITM interactions might be pivotal to antiviral activity. Here, we employed a fluorescence resonance energy transfer (FRET) assay to analyze IFITM/IFITM interactions. For assay calibration, we equipped two cytosolic, non-interacting proteins, super yellow fluorescent protein (SYFP) and super cyan fluorescent protein (SCFP), with signals that target proteins to membrane rafts and also analyzed a SCFP-SYFP fusion protein. This strategy allowed us to discriminate background signals resulting from colocalization of proteins at membrane subdomains from signals elicited by protein–protein interactions. Coexpression of IFITM1–3 and IFITM5 fused to fluorescent proteins elicited strong FRET signals, and mutation of F75 and F78 in IFITM3 (mutant IFITM3-FF) abrogated antiviral activity, as expected, but did not alter cellular localization and FRET signals. Moreover, IFITM3-FF co-immunoprecipitated efficiently with wild type (wt) IFITM3, lending further support to the finding that lack of antiviral activity of IFITM3-FF was not due to altered membrane targeting or abrogated IFITM3-IFITM3 interactions. Collectively, we report an assay that allows quantifying IFITM/IFITM interactions. Moreover, we confirm residues F75 and F78 as critical for antiviral activity but also show that these residues are dispensable for IFITM3 membrane localization and IFITM3/IFITM3 interactions.
Collapse
Affiliation(s)
- Michael Winkler
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany.
| | - Florian Wrensch
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Pascale Bosch
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Maike Knoth
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Sabine Gärtner
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, 37077 Göttingen, Germany.
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
40
|
Trümper V, von Knethen A, Preuß A, Ermilov E, Hackbarth S, Kuchler L, Gunne S, Schäfer A, Bornhütter T, Vereb G, Ujlaky-Nagy L, Brüne B, Röder B, Schindler M, Parnham MJ, Knape T. Flow cytometry-based FRET identifies binding intensities in PPARγ1 protein-protein interactions in living cells. Theranostics 2019; 9:5444-5463. [PMID: 31534496 PMCID: PMC6735382 DOI: 10.7150/thno.29367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 05/01/2019] [Indexed: 01/10/2023] Open
Abstract
PPARγ is a pharmacological target in inflammatory and metabolic diseases. Upon agonistic treatment or following antagonism, binding of co-factors is altered, which consequently affects PPARγ-dependent transactivation as well as its DNA-independent properties. Therefore, establishing techniques to characterize these interactions is an important issue in living cells. Methods: Using the FRET pair Clover/mRuby2, we set up a flow cytometry-based FRET assay by analyzing PPARγ1 binding to its heterodimerization partner RXRα. Analyses of PPARγ-reporter and co-localization studies by laser-scanning microscopy validated this system. Refining the system, we created a new readout to distinguish strong from weak interactions, focusing on PPARγ-binding to the co-repressor N-CoR2. Results: We observed high FRET in cells expressing Clover-PPARγ1 and mRuby2-RXRα, but no FRET when cells express a mRuby2-RXRα deletion mutant, lacking the PPARγ interaction domain. Focusing on the co-repressor N-CoR2, we identified in HEK293T cells the new splice variant N-CoR2-ΔID1-exon. Overexpressing this isoform tagged with mRuby2, revealed no binding to Clover-PPARγ1, nor in murine J774A.1 macrophages. In HEK293T cells, binding was even lower in comparison to N-CoR2 constructs in which domains established to mediate interaction with PPARγ binding are deleted. These data suggest a possible role of N-CoR2-ΔID1-exon as a dominant negative variant. Because binding to N-CoR2-mRuby2 was not altered following activation or antagonism of Clover-PPARγ1, we determined the effect of pharmacological treatment on FRET intensity. Therefore, we calculated flow cytometry-based FRET efficiencies based on our flow cytometry data. As with PPARγ antagonism, PPARγ agonist treatment did not prevent binding of N-CoR2. Conclusion: Our system allows the close determination of protein-protein interactions with a special focus on binding intensity, allowing this system to characterize the role of protein domains as well as the effect of pharmacological agents on protein-protein interactions.
Collapse
Affiliation(s)
- Verena Trümper
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Andreas von Knethen
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Annegret Preuß
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Eugeny Ermilov
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Steffen Hackbarth
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Laura Kuchler
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Sandra Gunne
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Anne Schäfer
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Tobias Bornhütter
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Lázló Ujlaky-Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Bernhard Brüne
- Institute of Biochemistry I - Pathobiochemistry, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Beate Röder
- Department of Physics, Humboldt University Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Michael Schindler
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Karls University Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen
| | - Michael J. Parnham
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| | - Tilo Knape
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Theodor-Stern-Kai 7, 60596 Frankfurt/Main, Germany
| |
Collapse
|
41
|
Snieder B, Brast S, Grabner A, Buchholz S, Schröter R, Spoden GA, Florin L, Salomon J, Albrecht T, Barz V, Sparreboom A, Ciarimboli G. Identification of the Tetraspanin CD9 as an Interaction Partner of Organic Cation Transporters 1 and 2. SLAS DISCOVERY 2019; 24:904-914. [PMID: 31318583 DOI: 10.1177/2472555219859837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic cation transporters (OCTs) are membrane proteins with relevant physiological (because they accept neurotransmitters as substrate) and pharmacological (because of their interaction with drugs) roles. The human OCTs hOCT1 (SLC22A1/hOCT1) and hOCT2 (SLC22A2/hOCT2) are highly expressed in hepatic (hOCT1) and in renal and neuronal tissue (hOCT2), suggesting a possible role in modulating neurotransmitter activity in the liver, kidney, and brain, and their clearance from the blood. Even though there are several data demonstrating that OCTs are regulated under various patho-physiological conditions, it remains largely unknown which proteins directly interact with OCTs and thereby influence their cellular processing, localization, and function. In this work, using a mating-based split-ubiquitin yeast two-hybrid system, we characterized the potential interactome of hOCT1 and 2. It became evident that these OCTs share some potential interaction partners, such as the tetraspanins CD63 and CD9. Moreover, we confirmed interaction of hOCT2 with CD9 by fluorescence-activated cell sorting coupled with Förster resonance energy transfer analysis. Together with other proteins, tetraspanins build "tetraspanins webs" in the plasma membrane, which are able to regulate cellular trafficking and compartmentalization of interacting partners. While CD63 was demonstrated to mediate the localization of the hOCT2 to the endosomal system, we show here that co-expression of hOCT2 and CD9 led to strong cell surface localization of the transporter. These data suggest that tetraspanins regulate the cellular localization and function of OCTs. Co-localization of CD9 and hOCT was confirmed in tissues endogenously expressing proteins, highlighting the potential biological relevance of this interaction.
Collapse
Affiliation(s)
- Beatrice Snieder
- Medizinische Klinik D, Experimentelle Nephrologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sabine Brast
- Medizinische Klinik D, Experimentelle Nephrologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Grabner
- Medizinische Klinik D, Experimentelle Nephrologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sven Buchholz
- Medizinische Klinik D, Experimentelle Nephrologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Rita Schröter
- Medizinische Klinik D, Experimentelle Nephrologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Gilles A Spoden
- Institut für Medizinische Mikrobiologie und Hygiene, Johannes Gutenberg-Universität, Mainz, Rheinland-Pfalz, Germany
| | - Luise Florin
- Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz and Research Center for Immunotherapy (FZI), Mainz, Rheinland-Pfalz, Germany
| | - Johanna Salomon
- Abteilung Translationale Pneumologie, Zentrum für Translationale Lungenforschung Heidelberg (TLRC), Universität Heidelberg, German Center for Lung Research (DZL), Heidelberg, Baden-Württemberg, Germany
| | - Tobias Albrecht
- Hals-Nasen-Ohrenklinik, Universität Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Vivien Barz
- Medizinische Klinik D, Experimentelle Nephrologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alex Sparreboom
- Division of Pharmaceutics, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Giuliano Ciarimboli
- Medizinische Klinik D, Experimentelle Nephrologie, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
42
|
Chruścicka B, Wallace Fitzsimons SE, Borroto-Escuela DO, Druelle C, Stamou P, Nally K, Dinan TG, Cryan JF, Fuxe K, Schellekens H. Attenuation of Oxytocin and Serotonin 2A Receptor Signaling through Novel Heteroreceptor Formation. ACS Chem Neurosci 2019; 10:3225-3240. [PMID: 31038917 DOI: 10.1021/acschemneuro.8b00665] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The oxytocin receptor (OTR) and the 5-hydroxytryptamine 2A receptor (5-HTR2A) are expressed in similar brain regions modulating central pathways critical for social and cognition-related behaviors. Signaling crosstalk between their endogenous ligands, oxytocin (OT) and serotonin (5-hydroxytryptamine, 5-HT), highlights the complex interplay between these two neurotransmitter systems and may be indicative of the formation of heteroreceptor complexes with subsequent downstream signaling changes. In this study, we assess the possible formation of OTR-5HTR2A heteromers in living cells and the functional downstream consequences of this receptor-receptor interaction. First, we demonstrated the existence of a physical interaction between the OTR and 5-HTR2A in vitro, using a flow cytometry-based FRET approach and confocal microscopy. Furthermore, we investigated the formation of this specific heteroreceptor complex ex vivo in the brain sections using the Proximity Ligation Assay (PLA). The OTR-5HTR2A heteroreceptor complexes were identified in limbic regions (including hippocampus, cingulate cortex, and nucleus accumbens), key regions associated with cognition and social-related behaviors. Next, functional cellular-based assays to assess the OTR-5HTR2A downstream signaling crosstalk showed a reduction in potency and efficacy of OT and OTR synthetic agonists, carbetocin and WAY267464, on OTR-mediated Gαq signaling. Similarly, the activation of 5-HTR2A by the endogenous agonist, 5-HT, also revealed attenuation in Gαq-mediated signaling. Finally, altered receptor trafficking within the cell was demonstrated, indicative of cotrafficking of the OTR/5-HTR2A pair. Overall, these results constitute a novel mechanism of specific interaction between the OT and 5-HT neurotransmitters via OTR-5HTR2A heteroreceptor formation and provide potential new therapeutic strategies in the treatment of social and cognition-related diseases.
Collapse
Affiliation(s)
- Barbara Chruścicka
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Shauna E. Wallace Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Clémentine Druelle
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | | | - Kenneth Nally
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
43
|
A ghrelin receptor and oxytocin receptor heterocomplex impairs oxytocin mediated signalling. Neuropharmacology 2019; 152:90-101. [DOI: 10.1016/j.neuropharm.2018.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
|
44
|
Hochreiter B, Kunze M, Moser B, Schmid JA. Advanced FRET normalization allows quantitative analysis of protein interactions including stoichiometries and relative affinities in living cells. Sci Rep 2019; 9:8233. [PMID: 31160659 PMCID: PMC6547726 DOI: 10.1038/s41598-019-44650-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/20/2019] [Indexed: 12/31/2022] Open
Abstract
FRET (Fluorescence Resonance Energy Transfer) measurements are commonly applied to proof protein-protein interactions. However, standard methods of live cell FRET microscopy and signal normalization only allow a principle assessment of mutual binding and are unable to deduce quantitative information of the interaction. We present an evaluation and normalization procedure for 3-filter FRET measurements, which reflects the process of complex formation by plotting FRET-saturation curves. The advantage of this approach relative to traditional signal normalizations is demonstrated by mathematical simulations. Thereby, we also identify the contribution of critical parameters such as the total amount of donor and acceptor molecules and their molar ratio. When combined with a fitting procedure, this normalization facilitates the extraction of key properties of protein complexes such as the interaction stoichiometry or the apparent affinity of the binding partners. Finally, the feasibility of our method is verified by investigating three exemplary protein complexes. Altogether, our approach offers a novel method for a quantitative analysis of protein interactions by 3-filter FRET microscopy, as well as flow cytometry. To facilitate the application of this method, we created macros and routines for the programs ImageJ, R and MS-Excel, which we make publicly available.
Collapse
Affiliation(s)
- Bernhard Hochreiter
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria
| | - Markus Kunze
- Medical University Vienna, Center for Brain Research, Department of Pathobiology of the Nervous System, Vienna, Austria
| | - Bernhard Moser
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria
| | - Johannes A Schmid
- Medical University Vienna, Center for Physiology and Pharmacology, Institute for Vascular Biology and Thrombosis Research, Vienna, Austria.
| |
Collapse
|
45
|
Quitterer U, Fu X, Pohl A, Bayoumy KM, Langer A, AbdAlla S. Beta-Arrestin1 Prevents Preeclampsia by Downregulation of Mechanosensitive AT1-B2 Receptor Heteromers. Cell 2018; 176:318-333.e19. [PMID: 30503206 DOI: 10.1016/j.cell.2018.10.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/26/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022]
Abstract
Preeclampsia is the most frequent pregnancy-related complication worldwide with no cure. While a number of molecular features have emerged, the underlying causal mechanisms behind the disorder remain obscure. Here, we find that increased complex formation between angiotensin II AT1 and bradykinin B2, two G protein-coupled receptors with opposing effects on blood vessel constriction, triggers symptoms of preeclampsia in pregnant mice. Aberrant heteromerization of AT1-B2 led to exaggerated calcium signaling and high vascular smooth muscle mechanosensitivity, which could explain the onset of preeclampsia symptoms at late-stage pregnancy as mechanical forces increase with fetal mass. AT1-B2 receptor aggregation was inhibited by beta-arrestin-mediated downregulation. Importantly, symptoms of preeclampsia were prevented by transgenic ARRB1 expression or a small-molecule drug. Because AT1-B2 heteromerization was found to occur in human placental biopsies from pregnancies complicated by preeclampsia, specifically targeting AT1-B2 heteromerization and its downstream consequences represents a promising therapeutic approach.
Collapse
Affiliation(s)
- Ursula Quitterer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Department of Medicine, Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Xuebin Fu
- Department of Microbiology and Immunology, Stanford University, 299 Campus Dr., Stanford, CA 94305, USA
| | - Armin Pohl
- Roche Diagnostics International AG, Forrenstrasse 2, 6343 Rotkreuz, Switzerland
| | - Karam M Bayoumy
- Clinic of Obstetrics and Gynecology, Ain Shams University Hospitals, Cairo 11566, Egypt
| | - Andreas Langer
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Said AbdAlla
- Molecular Pharmacology, Department of Chemistry and Applied Biosciences, ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
46
|
Cottontail Rabbit Papillomavirus E1 and E2 Proteins Mutually Influence Their Subcellular Localizations. J Virol 2018; 92:JVI.00704-18. [PMID: 30135125 DOI: 10.1128/jvi.00704-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023] Open
Abstract
The papillomavirus (PV) E2 protein is a nuclear, sequence-specific DNA-binding protein that regulates transcription and nuclear retention of viral genomes. E2 also interacts with the viral E1 protein to replicate the viral genome. E2 residue K111 is highly conserved among PV and has been implicated in contributing to nuclear transport, transcription, and replication. Cottontail rabbit (Sylvilagus floridanus) PV (CRPV or SfPV1) E2 K111R, A, or Q mutations are transcription deficient and localized to the cytoplasm, comparable to other PV types. The addition of a nuclear localization signal (NLS) resulted in nuclear E2 K111 mutant proteins but did not restore transcriptional activation, and this is most likely due to an impaired binding to the cellular Brd4 protein. Surprisingly, coexpression of E1 with E2 K111 mutations resulted in their nuclear localization and, for K111A and R mutations, the activation of an E1/E2-dependent reporter construct. Interestingly, the nuclear localization of E2 K111Q mutant protein was independent from the presence of the conserved bipartite NLS in E1 and the direct interaction between E1 and E2. On the other hand, the cytoplasmic E1 NLS mutation could be targeted to the nucleus by wild-type E2, and this was dependent upon an interaction between E1 and E2. In summary, our studies have uncovered that E1 and E2 control each other's subcellular localization: direct binding of E2 to E1 can direct E1 to the nucleus independently from the E1 NLS, and E1 can direct E2 to the nucleus without an intact NLS or direct binding to E2.IMPORTANCE Papillomaviruses encode the DNA-binding E1 and E2 proteins, which form a complex and are essential for genome replication. Both proteins are targeted to the nucleus via nuclear localization signals. Our studies have uncovered that cytoplasmic mutant E1 or E2 proteins can be localized to the nucleus when E1 or E2 is also present. An interaction between E1 and E2 is necessary to target cytoplasmic E1 mutant proteins to the nucleus, but cytoplasmic E2 mutant proteins can be targeted to the nucleus without a direct interaction, which points to a novel function of E1.
Collapse
|
47
|
Abstract
During hepatitis B virus (HBV) infections, subviral particles (SVP) consisting only of viral envelope proteins and lipids are secreted. Heterologous expression of the small envelope protein S in mammalian cells is sufficient for SVP generation. S is synthesized as a transmembrane protein with N-terminal (TM1), central (TM2), and hydrophobic C-terminal (HCR) transmembrane domains. The loops between TM1 and TM2 (the cytosolic loop [CL]) and between TM2 and the HCR (the luminal loop [LL]) are located in the cytosol and the endoplasmic reticulum (ER) lumen, respectively. To define the domains of S mediating oligomerization during SVP morphogenesis, S mutants were characterized by expression in transiently transfected cells. Mutation of 12 out of 15 amino acids of TM1 to alanines, as well as the deletion of HCR, still allowed SVP formation, demonstrating that these two domains are not essential for contacts between S proteins. Furthermore, the oligomerization of S was measured with a fluorescence-activated cell sorter (FACS)-based Förster resonance energy transfer (FRET) assay. This approach demonstrated that the CL, TM2, and the LL independently contributed to S oligomerization, while TM1 and the HCR played minor roles. Apparently, intermolecular homo-oligomerization of the CL, TM2, and the LL drives S protein aggregation. Detailed analyses revealed that the point mutation C65S in the CL, the mutation of 13 out of 19 amino acids of TM2 to alanine residues, and the simultaneous replacement of all 8 cysteine residues in the LL by serine residues blocked the abilities of these domains to support S protein interactions. Altogether, specific domains and residues in the HBV S protein that are required for oligomerization and SVP generation were defined.IMPORTANCE The small hepatitis B virus envelope protein S has the intrinsic ability to direct the morphogenesis of spherical 20-nm subviral lipoprotein particles. Such particles expressed in yeast or mammalian cells represent the antigenic component of current hepatitis B vaccines. Our knowledge about the steps leading from the initial, monomeric, transmembrane translation product of S to SVP is very limited, as is our information on the structure of the complex main epitope of SVP that induces the formation of protective antibodies after vaccination. This study contributes to our understanding of the oligomerization process of S chains during SVP formation and shows that the cytoplasmic loop, one membrane-embedded domain, and the luminal loop of S independently drive S-S oligomerization.
Collapse
|
48
|
Enhanced uptake in 2D- and 3D- lung cancer cell models of redox responsive PEGylated nanoparticles with sensitivity to reducing extra- and intracellular environments. J Control Release 2018. [PMID: 29534890 DOI: 10.1016/j.jconrel.2018.03.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the treatment of lung cancer, there is an urgent need of innovative medicines to optimize pharmacological responses of conventional chemotherapeutics while attenuating side effects. Here, we have exploited some relatively unexplored subtle differences in reduction potential, associated with cancer cell microenvironments in addition to the well-known changes in intracellular redox environment. We report the synthesis and application of novel redox-responsive PLGA (poly(lactic-co-glycolic acid)) -PEG (polyethylene glycol) nanoparticles (RR-NPs) programmed to change surface properties when entering tumor microenvironments, thus enhancing cell internalization of the particles and their drug cargo. The new co-polymers, in which PEG and PLGA were linked by 'anchiomeric effector' dithiylethanoate esters, were synthesized by a combination of ring-opening polymerization and Michael addition reactions and employed to prepare NPs. Non redox-responsive nanoparticles (nRR-NPs) based on related PLGA-PEG copolymers were also prepared as comparators. Spherical NPs of around 120 nm diameter with a low polydispersity index and negative zeta potential as well as good drug loading of docetaxel were obtained. The NPs showed prolonged stability in relevant simulated biological fluids and a high ability to penetrate an artificial mucus layer due to the presence of the external PEG coating. Stability, FRET and drug release studies in conditions simulating intracellular reductive environments demonstrated a fast disassembly of the external shell of the NPs, thus triggering on-demand drug release. FACS measurements and confocal microscopy showed increased and faster uptake of RR-NPs in both 2D- and 3D- cell culture models of lung cancer compared to nRR-NPs. In particular, the 'designed-in' reductive instability of RR-NPs in conditioned cell media, the fast PEG release in the extracellular compartment, as well as a diminution of uptake rate in control experiments where extracellular thiols were neutralized, suggested a partial extracellular release of the PEG fringe that promoted rapid internalization of the residual NPs into cells. Taken together, these results provide further evidence of the effectiveness of PEGylated reducible nanocarriers to permeate mucus layer barriers, and establish a new means to enhance cancer cell uptake of drug carriers by extra-and intra-cellular cleavage of protein- and cell-shielding hydrophilic blocks.
Collapse
|
49
|
The N-Terminal CCHC Zinc Finger Motif Mediates Homodimerization of Transcription Factor BCL11B. Mol Cell Biol 2018; 38:MCB.00368-17. [PMID: 29203643 DOI: 10.1128/mcb.00368-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/18/2017] [Indexed: 12/14/2022] Open
Abstract
The BCL11B gene encodes a Krüppel-like, sequence-specific zinc finger (ZF) transcription factor that acts as either a repressor or an activator, depending on its posttranslational modifications. The importance of BCL11B in numerous biological processes in multiple organs has been well established in mouse knockout models. The phenotype of the first de novo monoallelic germ line missense mutation in the BCL11B gene (encoding N441K) strongly implies that the mutant protein acts in a dominant-negative manner by neutralizing the unaffected protein through the formation of a nonfunctional dimer. Using a Förster resonance energy transfer-assisted fluorescence-activated cell sorting (FACS-FRET) assay and affinity purification followed by mass spectrometry (AP-MS), we show that the N-terminal CCHC zinc finger motif is necessary and sufficient for the formation of the BCL11B dimer. Mutation of the CCHC ZF in BCL11B abolishes its transcription-regulatory activity. In addition, unlike wild-type BCL11B, this mutant is incapable of inducing cell cycle arrest and protecting against DNA damage-driven apoptosis. Our results confirm the BCL11B dimerization hypothesis and prove its importance for BCL11B function. By mapping the relevant regions to the CCHC domain, we describe a previously unidentified mechanism of transcription factor homodimerization.
Collapse
|
50
|
Detection and Quantitative Analysis of Dynamic GPCRs Interactions Using Flow Cytometry-Based FRET. RECEPTOR-RECEPTOR INTERACTIONS IN THE CENTRAL NERVOUS SYSTEM 2018. [DOI: 10.1007/978-1-4939-8576-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|