1
|
Gowripriya T, Yashwanth R, James PB, Suresh R, Balamurugan K. Dopaminergic neuronal regulation determines innate immunity of Caenorhabditis elegans during Klebsiella aerogenes infection. Microbes Infect 2025; 27:105430. [PMID: 39369984 DOI: 10.1016/j.micinf.2024.105430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
The innate immune signals are the front line of host defense against bacterial pathogens. Pathogen-induced harmful effects, such as reduced neuronal signals to the intestine, affect the host's food sensing and dwelling behavior. Here, we report that dopamine and kpc-1 signals control the intestinal innate immune responses through the p38/PMK-1 MAPK signaling pathway in C. elegans. K. aerogenes infection in C. elegans affects the food-dwelling behavior, which depends on dopamine regulation. The absence of the dopamine receptor (dop-1) and transporter (dat-1) increases attraction to the pathogen instead of avoidance. The K. aerogenes infection affects age-1 regulation through the furin-like proprotein convertase (kpc-1); the absence of kpc-1 affects environment-dependent dauer formation. In contrast, the dop-1 mutation antagonistically regulates intestinal immune regulation, while the kpc-1 mutation partially regulates the p38/PMK-1 MAPK pathway. Our findings indicate that dopamine and kpc-1signaling from the nervous system control intestinal immunity in an antagonistic and agonistic manner, respectively.
Collapse
Affiliation(s)
- Thirumugam Gowripriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, India
| | - Radhakrishnan Yashwanth
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | - Prabhanand Bhaskar James
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | - Ramamurthi Suresh
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India
| | | |
Collapse
|
2
|
Patel R, Romero AG, Bryant AS, Agak GW, Hallem EA. Dopamine signaling drives skin invasion by human-infective nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635547. [PMID: 39974984 PMCID: PMC11838280 DOI: 10.1101/2025.01.29.635547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Skin-penetrating nematodes are one of the most prevalent causes of disease worldwide - nearly 15% of the global population is infected with at least one species of skin-penetrating nematode1,2. The World Health Organization has targeted these parasites for elimination by 20303, but the lack of preventative measures is a major obstacle to this goal. The infective larvae of skin-penetrating nematodes enter hosts through skin4, and blocking skin penetration is an as-yet unexplored approach for preventing infection. However, in order to prevent worm ingress via the skin, an understanding of the behavioral and neural mechanisms that drive skin penetration is required. Here, we describe the skin-penetration behaviors of the human-infective threadworm Strongyloides stercoralis. Using fluorescently labeled worms to enable visualization on the skin coupled with time-lapse microscopy, we show that S. stercoralis engages in repeated cycles of pushing, puncturing, and crawling on the skin surface before penetrating the skin. Pharmacological inhibition of dopamine signaling inhibits these behaviors in S. stercoralis and the human hookworm Ancylostoma ceylanicum, suggesting a critical role for dopamine signaling in driving skin penetration across distantly related nematodes. CRISPR-mediated disruption of dopamine biosynthesis and chemogenetic silencing of dopaminergic neurons also inhibit skin penetration. Finally, inactivation of the TRPN channel TRP-4, which is expressed in the dopaminergic neurons, blocks skin penetration on both rat and human skin. Our results suggest that drugs targeting TRP-4 and other nematode-specific components of the dopaminergic pathway could be developed into topical prophylactics that block skin penetration, thereby preventing infections.
Collapse
Affiliation(s)
- Ruhi Patel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Aracely Garcia Romero
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Astra S. Bryant
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Zhang Y, Iino Y, Schafer WR. Behavioral plasticity. Genetics 2024; 228:iyae105. [PMID: 39158469 DOI: 10.1093/genetics/iyae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024] Open
Abstract
Behavioral plasticity allows animals to modulate their behavior based on experience and environmental conditions. Caenorhabditis elegans exhibits experience-dependent changes in its behavioral responses to various modalities of sensory cues, including odorants, salts, temperature, and mechanical stimulations. Most of these forms of behavioral plasticity, such as adaptation, habituation, associative learning, and imprinting, are shared with other animals. The C. elegans nervous system is considerably tractable for experimental studies-its function can be characterized and manipulated with molecular genetic methods, its activity can be visualized and analyzed with imaging approaches, and the connectivity of its relatively small number of neurons are well described. Therefore, C. elegans provides an opportunity to study molecular, neuronal, and circuit mechanisms underlying behavioral plasticity that are either conserved in other animals or unique to this species. These findings reveal insights into how the nervous system interacts with the environmental cues to generate behavioral changes with adaptive values.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yuichi Iino
- Department of Biological Sciences, University of Tokyo, Tokyo 113-0032, Japan
| | - William R Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire CB2 0QH, UK
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Sudevan S, Muto K, Higashitani N, Hashizume T, Higashibata A, Ellwood RA, Deane CS, Rahman M, Vanapalli SA, Etheridge T, Szewczyk NJ, Higashitani A. Loss of physical contact in space alters the dopamine system in C. elegans. iScience 2022; 25:103762. [PMID: 35141505 PMCID: PMC8810405 DOI: 10.1016/j.isci.2022.103762] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Surabhi Sudevan
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, UK
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Kasumi Muto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Nahoko Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Toko Hashizume
- Advanced Engineering Services Co. Ltd, Tsukuba Mitsui Building7F,1-6-1 Takezono, Tsukuba, Ibaraki 305-0032, Japan
| | - Akira Higashibata
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Rebecca A. Ellwood
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, UK
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
| | - Colleen S. Deane
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
- Living Systems Institute, University of Exeter, StockerRoad, Exeter, UK
| | - Mizanur Rahman
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, USA
| | - Timothy Etheridge
- Department of Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, St. Luke's Campus, Exeter, UK
- Corresponding author
| | - Nathaniel J. Szewczyk
- Medical Research Council (MRC) Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby, UK
- Musculoskeletal Conditions, National Institute for Health Research Nottingham Biomedical Research Centre, Derby, UK
- Ohio Musculoskeletal and Neurologic Institute, Ohio University, Athens, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Corresponding author
| | - Atsushi Higashitani
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Corresponding author
| |
Collapse
|
5
|
Cordeiro LM, Soares MV, da Silva AF, Machado ML, Bicca Obetine Baptista F, da Silveira TL, Arantes LP, Soares FAA. Neuroprotective effects of rutin on ASH neurons in Caenorhabditis elegans model of Huntington's disease. Nutr Neurosci 2021; 25:2288-2301. [PMID: 34311678 DOI: 10.1080/1028415x.2021.1956254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disease. It occurs due to a mutated huntingtin gene that contains an abnormal expansion of cytosine-adenine-guanine repeats, leading to a variable-length N-terminal polyglutamine (polyQ) chain. The mutation confers toxic functions to mutant huntingtin protein, causing neurodegeneration. Rutin is a flavonoid found in various plants, such as buckwheat, some teas, and apples. Our previous studies have indicated that rutin has protective effects in HD models, but more studies are needed to unravel its effects on protein homeostasis, and to discern the underlying mechanisms. In the present study, we investigated the effects of rutin in a Caenorhabditis elegans model of HD, focusing on ASH neurons and antioxidant defense. We tested behavioral changes (touch response, movement, and octanol response), measured neuronal polyQ aggregates, and assessed degeneration using a dye-filling assay. In addition, we analyzed expression levels of heat-shock protein-16.2 and superoxide dismutase-3. Overall, our data demonstrate that chronic rutin treatment maintains the function of ASH neurons, and decreases the degeneration of their sensory terminations. We propose that rutin does so in a mechanism that involves antioxidant activity by controlling the expression of antioxidant enzymes and other chaperones regulating proteostasis. Our findings provide new evidence of rutin's potential neuroprotective role in the C. elegans model and should inform treatment strategies for neurodegenerative diseases and other diseases caused by age-related protein aggregation.
Collapse
Affiliation(s)
- Larissa Marafiga Cordeiro
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marcell Valandro Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Aline Franzen da Silva
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marina Lopes Machado
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Fabiane Bicca Obetine Baptista
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Tássia Limana da Silveira
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Leticia Priscilla Arantes
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Felix Alexandre Antunes Soares
- Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Brazil
| |
Collapse
|
6
|
Gourgou E, Adiga K, Goettemoeller A, Chen C, Hsu AL. Caenorhabditis elegans learning in a structured maze is a multisensory behavior. iScience 2021; 24:102284. [PMID: 33889812 PMCID: PMC8050377 DOI: 10.1016/j.isci.2021.102284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 03/04/2021] [Indexed: 11/05/2022] Open
Abstract
We show that C. elegans nematodes learn to associate food with a combination of proprioceptive cues and information on the structure of their surroundings (maze), perceived through mechanosensation. By using the custom-made Worm-Maze platform, we demonstrate that C. elegans young adults can locate food in T-shaped mazes and, following that experience, learn to reach a specific maze arm. C. elegans learning inside the maze is possible after a single training session, it resembles working memory, and it prevails over conflicting environmental cues. We provide evidence that the observed learning is a food-triggered multisensory behavior, which requires mechanosensory and proprioceptive input, and utilizes cues about the structural features of nematodes' environment and their body actions. The CREB-like transcription factor and dopamine signaling are also involved in maze performance. Lastly, we show that the observed aging-driven decline of C. elegans learning ability in the maze can be reversed by starvation.
Collapse
Affiliation(s)
- Eleni Gourgou
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 41809, USA
| | - Kavya Adiga
- Department of Internal Medicine, Division of Geriatrics & Palliative Medicine, University of Michigan Medical School, Ann Arbor, MI 41809, USA
| | - Anne Goettemoeller
- Neuroscience Program, College of Literature, Science and the Arts, University of Michigan, Ann Arbor, MI 41809, USA
| | - Chieh Chen
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, 112 Taiwan
| | - Ao-Lin Hsu
- Department of Internal Medicine, Division of Geriatrics & Palliative Medicine, University of Michigan Medical School, Ann Arbor, MI 41809, USA
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, 112 Taiwan
- Research Center for Healthy Aging and Institute of New Drug Development, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
7
|
Liu X, Jiang L, Li L, Yu H, Nie S, Xie M, Gong J. The Role of Neurotransmitters in the Protection of Caenorhabditis Elegans for Salmonella Infection by Lactobacillus. Front Cell Infect Microbiol 2020; 10:554052. [PMID: 33134188 PMCID: PMC7550654 DOI: 10.3389/fcimb.2020.554052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/20/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonellosis is a common foodborne disease. We previously reported the protection of Caenorhabditis elegans from Salmonella Typhimurium DT104 infection by Lactobacillus zeae LB1. However, the mechanism is not fully understood. C. elegans exhibits behavior plasticity when presented with diverse pathogenic or commensal bacteria. Whether it can exert approach avoidance to S. Typhimurium through altering its neurological activity remains to be determined. In the current study, both the wild type and mutants defective in serotonin or dopamine production of C. elegans were used to investigate olfactory preference of the nematode to L. zeae LB1, DT104, and Escherichia coli OP50 by choice assays, and its resistance to DT104 infection and the protection offered by L. zeae LB1 using a life-span assay. The expression of target genes in C. elegans was also examined by real-time quantitative PCR. Results showed that pre-exposure to L. zeae LB1 did not elicit aversive olfactory behavior of the nematode toward DT104. Both mutants tph-1 and cat-2 succumbed faster than the wild type when infected with DT104. While pre-exposure to L. zeae LB1 significantly increased the survival of both the wild type and mutant tph-1, it provided no protection to mutant cat-2. Supplementation of dopamine resulted in both the resistance of mutant cat-2 to S. Typhimurium infection and the protection from L. zeae LB1 to the same mutant. Gene expression data also supported the observations in the life-span assay. These results suggest that both serotonin and dopamine play a positive role in the host defense of C. elegans to S. Typhimurium infection and that the L. zeae LB1 protection is not dependent on modifying olfactory preference of the nematode but mediated by dopamine that may have involved the regulation of p38-mitogen-activated protein kinase and insulin/insulin-like growth factor signaling pathways.
Collapse
Affiliation(s)
- Xiaozhen Liu
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China.,Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Leming Jiang
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Linyan Li
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hai Yu
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Joshua Gong
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
8
|
Krum BN, Martins AC, Queirós L, Ferrer B, Milne GL, Soares FAA, Fachinetto R, Aschner M. Haloperidol Interactions with the dop-3 Receptor in Caenorhabditis elegans. Mol Neurobiol 2020; 58:304-316. [PMID: 32935232 DOI: 10.1007/s12035-020-02124-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/05/2020] [Indexed: 11/29/2022]
Abstract
Haloperidol is a typical antipsychotic drug commonly used to treat a broad range of psychiatric disorders related to dysregulations in the neurotransmitter dopamine (DA). DA modulates important physiologic functions and perturbations in Caenorhabditis elegans (C. elegans) and, its signaling have been associated with alterations in behavioral, molecular, and morphologic properties in C. elegans. Here, we evaluated the possible involvement of dopaminergic receptors in the onset of these alterations followed by haloperidol exposure. Haloperidol increased lifespan and decreased locomotor behavior (basal slowing response, BSR, and locomotion speed via forward speed) of the worms. Moreover, locomotion speed recovered to basal conditions upon haloperidol withdrawal. Haloperidol also decreased DA levels, but it did not alter neither dop-1, dop-2, and dop-3 gene expression, nor CEP dopaminergic neurons' morphology. These effects are likely due to haloperidol's antagonism of the D2-type DA receptor, dop-3. Furthermore, this antagonism appears to affect mechanistic pathways involved in the modulation and signaling of neurotransmitters such as octopamine, acetylcholine, and GABA, which may underlie at least in part haloperidol's effects. These pathways are conserved in vertebrates and have been implicated in a range of disorders. Our novel findings demonstrate that the dop-3 receptor plays an important role in the effects of haloperidol.
Collapse
Affiliation(s)
- Bárbara Nunes Krum
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Libânia Queirós
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Ginger L Milne
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240, USA
| | - Félix Alexandre Antunes Soares
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Roselei Fachinetto
- Departamento de Fisiologia e Farmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Forccheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
9
|
O'Donnell MP, Fox BW, Chao PH, Schroeder FC, Sengupta P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 2020; 583:415-420. [PMID: 32555456 PMCID: PMC7853625 DOI: 10.1038/s41586-020-2395-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022]
Abstract
Animals coexist in commensal, pathogenic or mutualistic relationships with complex communities of diverse organisms, including microorganisms1. Some bacteria produce bioactive neurotransmitters that have previously been proposed to modulate nervous system activity and behaviours of their hosts2,3. However, the mechanistic basis of this microbiota-brain signalling and its physiological relevance are largely unknown. Here we show that in Caenorhabditis elegans, the neuromodulator tyramine produced by commensal Providencia bacteria, which colonize the gut, bypasses the requirement for host tyramine biosynthesis and manipulates a host sensory decision. Bacterially produced tyramine is probably converted to octopamine by the host tyramine β-hydroxylase enzyme. Octopamine, in turn, targets the OCTR-1 octopamine receptor on ASH nociceptive neurons to modulate an aversive olfactory response. We identify the genes that are required for tyramine biosynthesis in Providencia, and show that these genes are necessary for the modulation of host behaviour. We further find that C. elegans colonized by Providencia preferentially select these bacteria in food choice assays, and that this selection bias requires bacterially produced tyramine and host octopamine signalling. Our results demonstrate that a neurotransmitter produced by gut bacteria mimics the functions of the cognate host molecule to override host control of a sensory decision, and thereby promotes fitness of both the host and the microorganism.
Collapse
Affiliation(s)
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Pin-Hao Chao
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
10
|
Lyu S, Doroodchi A, Xing H, Sheng Y, DeAndrade MP, Yang Y, Johnson TL, Clemens S, Yokoi F, Miller MA, Xiao R, Li Y. BTBD9 and dopaminergic dysfunction in the pathogenesis of restless legs syndrome. Brain Struct Funct 2020; 225:1743-1760. [PMID: 32468214 DOI: 10.1007/s00429-020-02090-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 05/13/2020] [Indexed: 01/17/2023]
Abstract
Restless legs syndrome (RLS) is characterized by an urge to move legs, usually accompanied by uncomfortable sensations. RLS symptoms generally happen at night and can be relieved by movements. Genetic studies have linked polymorphisms in BTBD9 to a higher risk of RLS. Knockout of BTBD9 homolog in mice (Btbd9) and fly results in RLS-like phenotypes. A dysfunctional dopaminergic system is associated with RLS. However, the function of BTBD9 in the dopaminergic system and RLS is not clear. Here, we made use of the simple Caenorhabditis elegans nervous system. Loss of hpo-9, the worm homolog of BTBD9, resulted in hyperactive egg-laying behavior. Analysis of genetic interactions between hpo-9 and genes for dopamine receptors (dop-1, dop-3) indicated that hpo-9 and dop-1 worked similarly. Reporter assays of dop-1 and dop-3 revealed that hpo-9 knockout led to a significant increase of DOP-3 expression. This appears to be evolutionarily conserved in mice with an increased D2 receptor (D2R) mRNA in the striatum of the Btbd9 knockout mice. Furthermore, the striatal D2R protein was significantly decreased and Dynamin I was increased. Overall, activities of DA neurons in the substantia nigra were not altered, but the peripheral D1R pathway was potentiated in the Btbd9 knockout mice. Finally, we generated and characterized the dopamine neuron-specific Btbd9 knockout mice and detected an active-phase sleepiness, suggesting that dopamine neuron-specific loss of Btbd9 is sufficient to disturb the sleep. Our results suggest that increased activities in the D1R pathway, decreased activities in the D2R pathway, or both may contribute to RLS.
Collapse
Affiliation(s)
- Shangru Lyu
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Atbin Doroodchi
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hong Xing
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Yi Sheng
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mark P DeAndrade
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Youfeng Yang
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Tracy L Johnson
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Fumiaki Yokoi
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA
| | - Michael A Miller
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui Xiao
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Yuqing Li
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, College of Medicine, University of Florida, PO Box 100236, Gainesville, FL, 32610-0236, USA.
| |
Collapse
|
11
|
Voelker L, Upadhyaya B, Ferkey DM, Woldemariam S, L’Etoile ND, Rabinowitch I, Bai J. INX-18 and INX-19 play distinct roles in electrical synapses that modulate aversive behavior in Caenorhabditis elegans. PLoS Genet 2019; 15:e1008341. [PMID: 31658255 PMCID: PMC6837551 DOI: 10.1371/journal.pgen.1008341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 10/04/2019] [Indexed: 12/23/2022] Open
Abstract
In order to respond to changing environments and fluctuations in internal states, animals adjust their behavior through diverse neuromodulatory mechanisms. In this study we show that electrical synapses between the ASH primary quinine-detecting sensory neurons and the neighboring ASK neurons are required for modulating the aversive response to the bitter tastant quinine in C. elegans. Mutant worms that lack the electrical synapse proteins INX-18 and INX-19 become hypersensitive to dilute quinine. Cell-specific rescue experiments indicate that inx-18 operates in ASK while inx-19 is required in both ASK and ASH for proper quinine sensitivity. Imaging analyses find that INX-19 in ASK and ASH localizes to the same regions in the nerve ring, suggesting that both sides of ASK-ASH electrical synapses contain INX-19. While inx-18 and inx-19 mutant animals have a similar behavioral phenotype, several lines of evidence suggest the proteins encoded by these genes play different roles in modulating the aversive quinine response. First, INX-18 and INX-19 localize to different regions of the nerve ring, indicating that they are not present in the same synapses. Second, removing inx-18 disrupts the distribution of INX-19, while removing inx-19 does not alter INX-18 localization. Finally, by using a fluorescent cGMP reporter, we find that INX-18 and INX-19 have distinct roles in establishing cGMP levels in ASK and ASH. Together, these results demonstrate that electrical synapses containing INX-18 and INX-19 facilitate modulation of ASH nociceptive signaling. Our findings support the idea that a network of electrical synapses mediates cGMP exchange between neurons, enabling modulation of sensory responses and behavior. Animals are constantly adjusting their behavior to respond to changes in the environment or to their internal state. This behavior modulation is achieved by altering the activity of neurons and circuits through a variety of neuroplasticity mechanisms. Chemical synapses are known to impact neuroplasticity in several different ways, but the diversity of mechanisms by which electrical synapses contribute is still being investigated. Electrical synapses are specialized sites of connection between neurons where ions and small signaling molecules can pass directly from one cell to the next. By passing small molecules through electrical synapses, neurons may be able to modify the activity of their neighbors. In this study we identify two genes that contribute to electrical synapses between two sensory neurons in C. elegans. We show that these electrical synapses are crucial for proper modulation of sensory responses, as without them animals are overly responsive to an aversive stimulus. In addition to pinpointing their sites of action, we present evidence that they may be contributing to neuromodulation by facilitating passage of the small molecule cGMP between neurons. Our work provides evidence for a role of electrical synapses in regulating animal behavior.
Collapse
Affiliation(s)
- Lisa Voelker
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
| | - Bishal Upadhyaya
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| | - Denise M. Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, United States of America
| | - Sarah Woldemariam
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, United States of America
| | - Noelle D. L’Etoile
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, United States of America
| | - Ithai Rabinowitch
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Department of Medical Neurobiology, Faculty of Medicine Hebrew, University of Jerusalem, Jerusalem, Israel
| | - Jihong Bai
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Li S, Song JH, Kim TI, Yoo WG, Won MH, Dai F, Hong SJ. Chemotactic migration of newly excysted juvenile Clonorchis sinensis is suppressed by neuro-antagonists. PLoS Negl Trop Dis 2019; 13:e0007573. [PMID: 31408466 PMCID: PMC6691982 DOI: 10.1371/journal.pntd.0007573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/22/2019] [Indexed: 12/31/2022] Open
Abstract
The metacercariae of the Clonorchis sinensis liver fluke excyst in the duodenum of mammalian hosts, and the newly excysted juveniles (CsNEJs) migrate along the bile duct via bile chemotaxis. Cholic acid is a major component of bile that induces this migration. We investigated the neuronal control of chemotactic behavior of CsNEJs toward cholic acid. The migration of CsNEJs was strongly inhibited at sub-micromolar concentration by dopamine D1 (LE-300 and SKF-83566), D2 (spiramide, nemonapride, and sulpiride), and D3 (GR-103691 and NGB-2904) receptor antagonists, as well as a dopamine reuptake inhibitor (BTCP). Neuropeptides, FMRFamide, peptide YY, and neuropeptide Y were also potent inhibitors of chemotaxis. Meanwhile, serotonergic, glutamatergic, and cholinergic inhibitors did not affect chemotaxis, with the exception of fluoxetine and CNQX. Confocal immunofluorescence analysis indicated that dopaminergic and cholinergic neurons were colocalized in the somatic muscle tissues of adult C. sinensis. Our findings suggest that dopaminergic neurons and neuropeptides play a major role in the chemotactic migration of CsNEJs to bile, and their inhibitors or modulators could be utilized to prevent their migration from the bile duct.
Collapse
Affiliation(s)
- Shunyu Li
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Tae Im Kim
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Division of Planning and Management, Nakdong-gang National Institute of Biological Resources, Sangju, Gyeongsangbuk-do, Republic of Korea
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Parasitology, Medical College of Soochow University, Suzhou Industrial Park, Suzhou, Jiangsu, P.R. China
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
13
|
da Silveira TL, Machado ML, Arantes LP, Zamberlan DC, Cordeiro LM, Obetine FBB, da Silva AF, Tassi CL, Soares FAA. Guanosine Prevents against Glutamatergic Excitotoxicity in C. elegans. Neuroscience 2019; 414:265-272. [PMID: 31306683 DOI: 10.1016/j.neuroscience.2019.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 02/08/2023]
Abstract
Glutamatergic neurotransmission is present in most mammalian excitatory synapses and plays a key role in central nervous system homeostasis. When over-activated, it can induce excitotoxicity, which is present in several neuropathologies. The nucleoside guanosine (GUO) is a guanine-based purine known to have neuroprotective effects by modulating glutamatergic system during glutamate excitotoxicity in mammals. However, GUO action in Caenorhabditis elegans, as well as on C. elegans glutamatergic excitotoxicity model, is not known. The GUO effects on behavioral parameters in Wild Type (WT) and knockouts worms for glutamate transporters (GLT-3, GLT-1), glutamate vesicular transporter (EAT-4), and NMDA and non-NMDA receptors were used to evaluate the GUO modulatory effects. The GUO tested concentrations did not alter the animals' development, but GUO reduced pharyngeal pumps in WT animals in a dose-dependent manner. The same effect was observed in pharyngeal pumps, when the animals were treated with 4 mM of GUO in glr-1, nmr-1 and eat-4, but not in glt-3 and glt-3;glt-1 knockouts. The double mutant glt-3; glt-1 for GluTs had decreased body bends and an increased number of reversions. This effect was reverted after treatment with GUO. Furthermore, GUO did not alter the sensory response in worms with altered glutamatergic signaling. Thus, GUO seems to modulate the worm's glutamatergic system in situations of exacerbated glutamatergic signaling, which are represented by knockout strains to glutamate transporters. However, in WT animals, GUO appears to reinforce glutamatergic signaling in specific neurons. Our findings indicate that C. elegans strains are useful models to study new compounds that could be used in glutamate-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Tássia Limana da Silveira
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Marina Lopes Machado
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Leticia Priscilla Arantes
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Daniele Coradini Zamberlan
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Larissa Marafiga Cordeiro
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Fabiane Bicca Baptista Obetine
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Aline Franzen da Silva
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Cintia Letícia Tassi
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil
| | - Felix Alexandre Antunes Soares
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Programa de Pós-graduação em Ciências Biológicas, Bioquímica Toxicológica, Camobi, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Cannabinoids Stimulate the TRP Channel-Dependent Release of Both Serotonin and Dopamine to Modulate Behavior in C. elegans. J Neurosci 2019; 39:4142-4152. [PMID: 30886012 DOI: 10.1523/jneurosci.2371-18.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/04/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
Cannabis sativa alters sensory perception and exhibits potential medicinal benefits. In mammals, cannabinoids activate two canonical receptors, CB1/CB2, as well additional receptors/ion channels whose overall contributions to cannabinoid signaling have yet to be fully assessed. In Caenorhabditis elegans, the endogenous cannabinoid receptor agonist, 2-arachidonoylglycerol (2-AG) activates a CB1 ortholog, NPR-19, to modulate behavior (Oakes et al., 2017). In addition, 2-AG stimulates the NPR-19 independent release of both serotonin (5-HT) and dopamine (DA) from subsets of monoaminergic neurons to modulate locomotory behaviors through a complex monoaminergic signaling pathway involving multiple serotonin and dopamine receptors. 2-AG also inhibits locomotion in remodeled monoamine receptor mutant animals designed to measure the acute release of either 5-HT or DA, confirming the direct effects of 2-AG on monoamine release. 2-AG-dependent locomotory inhibition requires the expression of transient receptor potential vanilloid 1 (TRPV1) and TRPN-like channels in the serotonergic or dopaminergic neurons, respectively, and the acute pharmacological inhibition of the TRPV1-like channel abolishes both 2-AG-dependent 5-HT release and locomotory inhibition, suggesting the 2-AG may activate the channel directly. This study highlights the advantages of identifying and assessing both CB1/CB2-dependent and independent cannabinoid signaling pathways in a genetically tractable, mammalian predictive model, where cannabinoid signaling at the molecular/neuronal levels can be correlated directly with changes in behavior.SIGNIFICANCE STATEMENT This study is focused on assessing CB1/CB2-independent cannabinoid signaling in a genetically tractable, whole-animal model where cannabinoid signaling at the molecular/neuronal levels can be correlated with behavioral change. Caenorhabditis elegans contains a cannabinoid signaling system mediated by a canonical cannabinoid receptor, NPR-19, with orthology to human CB1/CB2 (Oakes et al., 2017). The present study has characterized an NPR-19-independent signaling pathway that involves the cannabinoid-dependent release of both serotonin and dopamine and the expression of distinct TRP-like channels on the monoaminergic neurons. Our work should be of interest to those studying the complexities of CB1/CB2-independent cannabinoid signaling, the role of TRP channels in the modulation of monoaminergic signaling, and the cannabinoid-dependent modulation of behavior.
Collapse
|
15
|
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2018; 2018:1-52. [PMID: 26937633 PMCID: PMC5010795 DOI: 10.1895/wormbook.1.75.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.
Collapse
Affiliation(s)
- Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT 06520 USA
| |
Collapse
|
16
|
A subset of octopaminergic neurons that promotes feeding initiation in Drosophila melanogaster. PLoS One 2018; 13:e0198362. [PMID: 29949586 PMCID: PMC6021039 DOI: 10.1371/journal.pone.0198362] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/17/2018] [Indexed: 11/19/2022] Open
Abstract
Octopamine regulates feeding behavioral responses in Drosophila melanogaster, however the molecular and circuit mechanisms have not been fully elucidated. Here, we investigated the role of a subset of octopaminergic neurons, the OA-VPM4 cluster, in sucrose acceptance behavior. Thermogenetic activation of Gal4 lines containing OA-VPM4 promoted proboscis extension to sucrose, while optogenetic inactivation reduced extension. Anatomically, the presynaptic terminals of OA-VPM4 are in close proximity to the axons of sugar-responsive gustatory sensory neurons. Moreover, RNAi knockdown of a specific class of octopamine receptor, OAMB, selectively in sugar-sensing gustatory neurons decreased the behavioral response to sucrose. By calcium imaging experiments, we found that application of octopamine potentiates sensory responses to sucrose in satiated flies. Taken together, these findings suggest a model by which OA-VPM4 promotes feeding behavior by modulating the activity of sensory neurons.
Collapse
|
17
|
Mani T, Bourguinat C, Prichard RK. G-protein-coupled receptor genes of Dirofilaria immitis. Mol Biochem Parasitol 2018; 222:6-13. [PMID: 29625152 DOI: 10.1016/j.molbiopara.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/28/2018] [Accepted: 04/02/2018] [Indexed: 12/27/2022]
Abstract
The diversity and uniqueness of nematode heterotrimeric G-protein-coupled receptors (GPCRs) provides impetus for identifying ligands that can be used as therapeutics for treating diseases caused by parasitic nematode infections. In human medicine, GPCRs have represented the largest group of 'drugable' targets exploited in the market today. In the filarial nematode Dirofilaria immitis, which causes heartworm disease, the macrocyclic lactones (ML) have been used as the sole preventatives for more than 25 years and now there is confirmed ML resistance in this parasite. A novel anthelmintic emodepside, with antifilarial activity, can act on a GPCR. In view of the ML resistance, there is an urgent need to identify new drug targets and GPCRs of D. immitis may be promising receptors. Knowledge of polymorphism within the GPCR superfamily is of interest. A total of 127 GPCR genes have been identified, so far, in the genome of D. immitis. Whole genome sequencing data from four ML susceptible and four ML loss of efficacy populations was used to identify 393 polymorphic loci in 35 D. immitis GPCR genes. Out of 57 SNPs in exonic regions, 36 of them caused a change in an amino acid, out of which 2 changed the predicted secondary structure of the protein. Knowledge about GPCR genes and their polymorphism is valuable information for drug design processes. Further studies need to be carried out to more fully understand the implications of each of the SNPs identified by this study.
Collapse
Affiliation(s)
- Thangadurai Mani
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Catherine Bourguinat
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Roger K Prichard
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| |
Collapse
|
18
|
Topalidou I, Cooper K, Pereira L, Ailion M. Dopamine negatively modulates the NCA ion channels in C. elegans. PLoS Genet 2017; 13:e1007032. [PMID: 28968387 PMCID: PMC5638609 DOI: 10.1371/journal.pgen.1007032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/12/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.
Collapse
Affiliation(s)
- Irini Topalidou
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| | - Kirsten Cooper
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Laura Pereira
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, United States of America
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IT); (MA)
| |
Collapse
|
19
|
Bentley B, Branicky R, Barnes CL, Chew YL, Yemini E, Bullmore ET, Vértes PE, Schafer WR. The Multilayer Connectome of Caenorhabditis elegans. PLoS Comput Biol 2016; 12:e1005283. [PMID: 27984591 PMCID: PMC5215746 DOI: 10.1371/journal.pcbi.1005283] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/04/2017] [Accepted: 12/05/2016] [Indexed: 11/17/2022] Open
Abstract
Connectomics has focused primarily on the mapping of synaptic links in the brain; yet it is well established that extrasynaptic volume transmission, especially via monoamines and neuropeptides, is also critical to brain function and occurs primarily outside the synaptic connectome. We have mapped the putative monoamine connections, as well as a subset of neuropeptide connections, in C. elegans based on new and published gene expression data. The monoamine and neuropeptide networks exhibit distinct topological properties, with the monoamine network displaying a highly disassortative star-like structure with a rich-club of interconnected broadcasting hubs, and the neuropeptide network showing a more recurrent, highly clustered topology. Despite the low degree of overlap between the extrasynaptic (or wireless) and synaptic (or wired) connectomes, we find highly significant multilink motifs of interaction, pinpointing locations in the network where aminergic and neuropeptide signalling modulate synaptic activity. Thus, the C. elegans connectome can be mapped as a multiplex network with synaptic, gap junction, and neuromodulator layers representing alternative modes of interaction between neurons. This provides a new topological plan for understanding how aminergic and peptidergic modulation of behaviour is achieved by specific motifs and loci of integration between hard-wired synaptic or junctional circuits and extrasynaptic signals wirelessly broadcast from a small number of modulatory neurons.
Collapse
Affiliation(s)
- Barry Bentley
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Robyn Branicky
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Christopher L. Barnes
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- HHMI Janelia Research Campus, Ashburn, VA, United States of America
| | - Yee Lian Chew
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Eviatar Yemini
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Edward T. Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge United Kingdom
- ImmunoPsychiatry, Alternative Discovery & Development, GlaxoSmithKline R&D, Cambridge United Kingdom
| | - Petra E. Vértes
- Department of Psychiatry, University of Cambridge, Cambridge United Kingdom
| | - William R. Schafer
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
20
|
Neuropeptidergic Signaling and Active Feeding State Inhibit Nociception in Caenorhabditis elegans. J Neurosci 2016; 36:3157-69. [PMID: 26985027 DOI: 10.1523/jneurosci.1128-15.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Food availability and nutritional status are important cues affecting behavioral states. Here we report that, in Caenorhabditis elegans, a cascade of dopamine and neuropeptide signaling acts to inhibit nociception in food-poor environments. In the absence of food, animals show decreased sensitivity and increased adaptation to soluble repellents sensed by the polymodal ASH nociceptors. The effects of food on adaptation are affected by dopamine and neuropeptide signaling; dopamine acts via the DOP-1 receptor to decrease adaptation on food, whereas the neuropeptide receptors NPR-1 and NPR-2 act to increase adaptation off food. NPR-1 and NPR-2 function cell autonomously in the ASH neurons to increase adaptation off food, whereas the DOP-1 receptor controls neuropeptide release from interneurons that modulate ASH activity indirectly. These results indicate that feeding state modulates nociception through the interaction of monoamine and neuropeptide signaling pathways.
Collapse
|
21
|
Likhite N, Jackson CA, Liang MS, Krzyzanowski MC, Lei P, Wood JF, Birkaya B, Michaels KL, Andreadis ST, Clark SD, Yu MC, Ferkey DM. The protein arginine methyltransferase PRMT5 promotes D2-like dopamine receptor signaling. Sci Signal 2015; 8:ra115. [PMID: 26554819 PMCID: PMC5473623 DOI: 10.1126/scisignal.aad0872] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein arginine methylation regulates diverse functions of eukaryotic cells, including gene expression, the DNA damage response, and circadian rhythms. We showed that arginine residues within the third intracellular loop of the human D2 dopamine receptor, which are conserved in the DOP-3 receptor in the nematode Caenorhabditis elegans, were methylated by protein arginine methyltransferase 5 (PRMT5). By mutating these arginine residues, we further showed that their methylation enhanced the D2 receptor-mediated inhibition of cyclic adenosine monophosphate (cAMP) signaling in cultured human embryonic kidney (HEK) 293T cells. Analysis of prmt-5-deficient worms indicated that methylation promoted the dopamine-mediated modulation of chemosensory and locomotory behaviors in C. elegans through the DOP-3 receptor. In addition to delineating a previously uncharacterized means of regulating GPCR (heterotrimeric guanine nucleotide-binding protein-coupled receptor) signaling, these findings may lead to the development of a new class of pharmacological therapies that modulate GPCR signaling by changing the methylation status of these key proteins.
Collapse
Affiliation(s)
- Neah Likhite
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Christopher A Jackson
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Mao-Shih Liang
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Michelle C Krzyzanowski
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jordan F Wood
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Barbara Birkaya
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kerry L Michaels
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Stewart D Clark
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA. Department of Psychology, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA. Research Institute on Addictions, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Michael C Yu
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Denise M Ferkey
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
22
|
Wang D, Yu Y, Li Y, Wang Y, Wang D. Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C. elegans. PLoS One 2014; 9:e115985. [PMID: 25536037 PMCID: PMC4275273 DOI: 10.1371/journal.pone.0115985] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/03/2014] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans is a useful model to study the neuronal or molecular basis for behavioral choice, a specific form of decision-making. Although it has been implied that both D1-like and D2-like dopamine receptors may contribute to the control of decision-making in mammals, the genetic interactions between D1-like and D2-like dopamine receptors in regulating decision-making are still largely unclear. In the present study, we investigated the molecular control of behavioral choice between conflicting alternatives (diacetyl and Cu2+) by D1-like and D2-like dopamine receptors and their possible genetic interactions with C. elegans as the assay system. In the behavioral choice assay system, mutation of dop-1 gene encoding D1-like dopamine receptor resulted in the enhanced tendency to cross the Cu2+ barrier compared with wild-type. In contrast, mutations of dop-2 or dop-3 gene encoding D2-like dopamine receptor caused the weak tendency to cross the Cu2+ barrier compared with wild-type. During the control of behavioral choice, DOP-3 antagonistically regulated the function of DOP-1. The behavioral choice phenotype of dop-2; dop-1dop-3 triple mutant further confirmed the possible antagonistic function of D2-like dopamine receptor on D1-like dopamine receptor in regulating behavioral choice. The genetic assays further demonstrate that DOP-3 might act through Gαo signaling pathway encoded by GOA-1 and EGL-10, and DOP-1 might act through Gαq signaling pathway encoded by EGL-30 and EAT-16 to regulate the behavioral choice. DOP-1 might function in cholinergic neurons to regulate the behavioral choice, whereas DOP-3 might function in GABAergic neurons, RIC, and SIA neurons to regulate the behavioral choice. In this study, we provide the genetic evidence to indicate the antagonistic relationship between D1-like dopamine receptor and D2-like dopamine receptor in regulating the decision-making of animals. Our data will be useful for understanding the complex functions of dopamine receptors in regulating decision-making in animals.
Collapse
Affiliation(s)
- Daoyong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Yonglin Yu
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Yinxia Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Yang Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School of Southeast University, Nanjing, 210009, China
- * E-mail:
| |
Collapse
|
23
|
Komuniecki R, Hapiak V, Harris G, Bamber B. Context-dependent modulation reconfigures interactive sensory-mediated microcircuits in Caenorhabditis elegans. Curr Opin Neurobiol 2014; 29:17-24. [DOI: 10.1016/j.conb.2014.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/04/2023]
|
24
|
Zahratka JA, Williams PDE, Summers PJ, Komuniecki RW, Bamber BA. Serotonin differentially modulates Ca2+ transients and depolarization in a C. elegans nociceptor. J Neurophysiol 2014; 113:1041-50. [PMID: 25411461 DOI: 10.1152/jn.00665.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Monoamines and neuropeptides modulate neuronal excitability and synaptic strengths, shaping circuit activity to optimize behavioral output. In C. elegans, a pair of bipolar polymodal nociceptors, the ASHs, sense 1-octanol to initiate escape responses. In the present study, 1-octanol stimulated large increases in ASH Ca(2+), mediated by L-type voltage-gated Ca(2+) channels (VGCCs) in the cell soma and L-plus P/Q-type VGCCs in the axon, which were further amplified by Ca(2+) released from intracellular stores. Importantly, 1-octanol-dependent aversive responses were not inhibited by reducing ASH L-VGCC activity genetically or pharmacologically. Serotonin, an enhancer of 1-octanol avoidance, potentiated 1-octanol-dependent ASH depolarization measured electrophysiologically, but surprisingly, decreased the ASH somal Ca(2+) transients. These results suggest that ASH somal Ca(2+) transient amplitudes may not always be predictive of neuronal depolarization and synaptic output. Therefore, although increases in steady-state Ca(2+) can reliably indicate when neurons become active, quantitative relationships between Ca(2+) transient amplitudes and neuronal activity may not be as straightforward as previously anticipated.
Collapse
Affiliation(s)
- Jeffrey A Zahratka
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio
| | - Paul D E Williams
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio
| | - Philip J Summers
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio
| | | | - Bruce A Bamber
- Department of Biological Sciences, The University of Toledo, Toledo, Ohio
| |
Collapse
|
25
|
Dopamine modulation of avoidance behavior in Caenorhabditis elegans requires the NMDA receptor NMR-1. PLoS One 2014; 9:e102958. [PMID: 25089710 PMCID: PMC4121140 DOI: 10.1371/journal.pone.0102958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 06/26/2014] [Indexed: 01/01/2023] Open
Abstract
The nematode C. elegans utilizes a relatively simple neural circuit to mediate avoidance responses to noxious stimuli such as the volatile odorant octanol. This avoidance behavior is modulated by dopamine. cat-2 mutant animals that are deficient in dopamine biosynthesis have an increased response latency to octanol compared to wild type animals, and this defect can be fully restored with the application of exogenous dopamine. Because this avoidance behavior is mediated by glutamatergic signaling between sensory neurons and premotor interneurons, we investigated the genetic interactions between dopaminergic signaling and ionotropic glutamate receptors. cat-2 mutant animals lacking either the GLR-1 or GLR-2 AMPA/kainate receptors displayed an increased response latency to octanol, which could be restored via exogenous dopamine. However, whereas cat-2 mutant animals lacking the NMR-1 NMDA receptor had increased response latency to octanol they were insensitive to exogenous dopamine. Mutants that lacked both AMPA/kainate and NMDA receptors were also insensitive to exogenous dopamine. Our results indicate that dopamine modulation of octanol avoidance requires NMR-1, consistent with NMR-1 as a potential downstream signaling target for dopamine.
Collapse
|
26
|
Pandey P, Mersha MD, Dhillon HS. A synergistic approach towards understanding the functional significance of dopamine receptor interactions. J Mol Signal 2013; 8:13. [PMID: 24308343 PMCID: PMC3878971 DOI: 10.1186/1750-2187-8-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 11/18/2013] [Indexed: 11/10/2022] Open
Abstract
The importance of the neurotransmitter dopamine (DA) in the nervous system is underscored by its role in a wide variety of physiological and neural functions in both vertebrates and invertebrates. Binding of dopamine to its membrane receptors initiates precise signaling cascades that result in specific cellular responses. Dopamine receptors belong to a super-family of G-protein coupled receptors (GPCRs) that are characterized by seven trans-membrane domains. In mammals, five dopamine receptors have been identified which are grouped into two different categories D1- and D2-like receptors. The interactions of DA receptors with other proteins including specific Gα subunits are critical in deciding the fate of downstream molecular events carried out by effector proteins. In this mini-review we provide a synopsis of known protein-protein interactions of DA receptors and a perspective on the potential synergistic utility of Caenorhabditis elegans as a model eukaryote with a comparatively simpler nervous system to gain insight on the neuronal and behavioral consequences of the receptor interactions.
Collapse
Affiliation(s)
| | | | - Harbinder S Dhillon
- Department of Biological Sciences, Center for Neuroscience Research, Delaware State University, Dover, DE 19901, USA.
| |
Collapse
|
27
|
Hofler C, Koelle MR. The G protein regulator AGS-3 allows C. elegans to alter behaviors in response to food deprivation. WORM 2013; 1:56-60. [PMID: 24058824 PMCID: PMC3670173 DOI: 10.4161/worm.19042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Behavioral responses to food deprivation are a fundamental aspect of nervous system function in all animals. In humans, these behavioral responses prevent dieting from being an effective remedy for obesity. Several signaling molecules in the mammalian brain act through G proteins of the Gαi/o family to mediate responses to food restriction. The mechanisms for neural response to food deprivation may be conserved across species, allowing the power of genetic model organisms to generate insights relevant to the problem of human obesity. In a recent study, we found that C. elegans uses Gαo signaling to mediate a number of behavioral changes that occur after food deprivation. Food deprivation causes biochemical changes in the G Protein Regulator (GPR) domain protein AGS-3 and AGS-3, together with the guanine nucleotide exchange factor RIC-8, activates Gαo signaling to alter food-seeking behavior. These proteins are all conserved in the human brain. Thus the study of behavioral responses to food deprivation in C. elegans may reveal the details of conserved molecular mechanisms underlying neural responses to food deprivation.
Collapse
|
28
|
Involvement of the G-protein-coupled dopamine/ecdysteroid receptor DopEcR in the behavioral response to sex pheromone in an insect. PLoS One 2013; 8:e72785. [PMID: 24023771 PMCID: PMC3762930 DOI: 10.1371/journal.pone.0072785] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/12/2013] [Indexed: 12/20/2022] Open
Abstract
Most animals including insects rely on olfaction to find their mating partners. In moths, males are attracted by female-produced sex pheromones inducing stereotyped sexual behavior. The behaviorally relevant olfactory information is processed in the primary olfactory centre, the antennal lobe (AL). Evidence is now accumulating that modulation of sex-linked behavioral output occurs through neuronal plasticity via the action of hormones and/or catecholamines. A G-protein-coupled receptor (GPCR) binding to 20-hydroxyecdysone, the main insect steroid hormone, and dopamine, has been identified in Drosophila (DmDopEcR), and was suggested to modulate neuronal signaling. In the male moth Agrotis ipsilon, the behavioral and central nervous responses to pheromone are age-dependent. To further unveil the mechanisms of this olfactory plasticity, we searched for DopEcR and tested its potential role in the behavioral response to sex pheromone in A. ipsilon males. Our results show that A. ipsilon DopEcR (named AipsDopEcR) is predominantly expressed in the nervous system. The corresponding protein was detected immunohistochemically in the ALs and higher brain centers including the mushroom bodies. Moreover, AipsDopEcR expression increased with age. Using a strategy of RNA interference, we also show that silencing of AipsDopEcR inhibited the behavioral response to sex pheromone in wind tunnel experiments. Altogether our results indicate that this GPCR is involved in the expression of sexual behavior in the male moth, probably by modulating the central nervous processing of sex pheromone through the action of one or both of its ligands.
Collapse
|
29
|
Mersha M, Formisano R, McDonald R, Pandey P, Tavernarakis N, Harbinder S. GPA-14, a Gα(i) subunit mediates dopaminergic behavioral plasticity in C. elegans. Behav Brain Funct 2013; 9:16. [PMID: 23607404 PMCID: PMC3679979 DOI: 10.1186/1744-9081-9-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 04/12/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Precise levels of specific neurotransmitters are required for appropriate neuronal functioning. The neurotransmitter dopamine is implicated in modulating behaviors, such as cognition, reward and memory. In the nematode Caenorhabditis elegans, the release of dopamine during behavioral plasticity is in part modulated through an acid-sensing ion channel expressed in its eight dopaminergic neurons. A D2-like C. elegans dopamine receptor DOP-2 co-expresses along with a Gα(i) subunit (GPA-14) in the anterior deirid (ADE) pair of dopaminergic neurons. FINDINGS In follow-up experiments to our recently reported in vitro physical interaction between DOP-2 and GPA-14, we have behaviorally characterized worms carrying deletion mutations in gpa-14 and/or dop-2. We found both mutants to display behavioral abnormalities in habituation as well as associative learning, and exogenous supply of dopamine was able to revert the observed behavioral deficits. The behavioral phenotypes of dop-2 and gpa-14 loss-of-function mutants were found to be remarkably similar, and we did not observe any cumulative defects in their double mutants. CONCLUSION Our results provide genetic and phenotypic support to our earlier in vitro results where we had shown that the DOP-2 dopamine receptor and the GPA-14 Gα(i) subunit physically interact with each other. Results from behavioral experiments presented here together with our previous in-vitro work suggests that the DOP-2 functions as a dopamine auto-receptor to modulate two types of learning, anterior touch habituation and chemosensory associative conditioning, through a G-protein complex that comprises GPA-14 as its Gα subunit.
Collapse
Affiliation(s)
- Mahlet Mersha
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
Dopamine is an ancient signaling molecule. It is responsible for maintaining the adaptability of behavioral outputs and is found across taxa. The following is a summary of the role of dopamine and the mechanisms of its function and dysfunction. We discuss our recent findings on dopaminergic control of behaviors in C. elegans and discuss its potential implications for work in the fields of C. elegans and Parkinson research.
Collapse
|
31
|
Sengupta P. The belly rules the nose: feeding state-dependent modulation of peripheral chemosensory responses. Curr Opin Neurobiol 2012; 23:68-75. [PMID: 22939570 DOI: 10.1016/j.conb.2012.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 07/25/2012] [Accepted: 08/02/2012] [Indexed: 10/27/2022]
Abstract
Feeding history and the presence of food dramatically alter chemosensory behaviors. Recent results indicate that internal nutritional state can gate peripheral gustatory and olfactory sensory responses to affect behavior. Focusing primarily on recent work in C. elegans and Drosophila, I describe the neuromodulatory mechanisms that translate feeding state information into changes in chemosensory neuron response properties and behavioral output.
Collapse
Affiliation(s)
- Piali Sengupta
- Department of Biology and the National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
32
|
Komuniecki R, Law WJ, Jex A, Geldhof P, Gray J, Bamber B, Gasser RB. Monoaminergic signaling as a target for anthelmintic drug discovery: receptor conservation among the free-living and parasitic nematodes. Mol Biochem Parasitol 2012; 183:1-7. [PMID: 22343182 PMCID: PMC3403675 DOI: 10.1016/j.molbiopara.2012.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/01/2012] [Accepted: 02/02/2012] [Indexed: 01/20/2023]
Abstract
This review is designed to summarize the information on monoamine-dependent paralysis as a target for anthelmintic development, examine the conservation of monoamine receptors in the genomes of both free-living and parasitic nematodes, and highlight the utility of the Caenorhabditis elegans model system for dissecting the monoaminergic modulation of locomotory decision-making.
Collapse
Affiliation(s)
- Richard Komuniecki
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, United States.
| | | | | | | | | | | | | |
Collapse
|
33
|
Komuniecki R, Harris G, Hapiak V, Wragg R, Bamber B. Monoamines activate neuropeptide signaling cascades to modulate nociception in C. elegans: a useful model for the modulation of chronic pain? INVERTEBRATE NEUROSCIENCE 2011; 12:53-61. [PMID: 22143253 DOI: 10.1007/s10158-011-0127-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 11/15/2011] [Indexed: 12/13/2022]
Abstract
Monoamines and neuropeptides interact to modulate key behaviors in most organisms. This review is focused on the interaction between octopamine (OA) and an array of neuropeptides in the inhibition of a simple, sensory-mediated aversive behavior in the C. elegans model system and describes the role of monoamines in the activation of global peptidergic signaling cascades. OA has been often considered the invertebrate counterpart of norepinephrine, and the review also highlights the similarities between OA inhibition in C. elegans and the noradrenergic modulation of pain in higher organisms.
Collapse
Affiliation(s)
- Rick Komuniecki
- Department of Biological Sciences, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606, USA.
| | | | | | | | | |
Collapse
|
34
|
Monoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans. EMBO J 2011; 31:667-78. [PMID: 22124329 PMCID: PMC3273394 DOI: 10.1038/emboj.2011.422] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/28/2011] [Indexed: 01/25/2023] Open
Abstract
Pain modulation is complex, but noradrenergic signalling promotes anti-nociception, with α(2)-adrenergic agonists used clinically. To better understand the noradrenergic/peptidergic modulation of nociception, we examined the octopaminergic inhibition of aversive behaviour initiated by the Caenorhabditis elegans nociceptive ASH sensory neurons. Octopamine (OA), the invertebrate counterpart of norepinephrine, modulates sensory-mediated reversal through three α-adrenergic-like OA receptors. OCTR-1 and SER-3 antagonistically modulate ASH signalling directly, with OCTR-1 signalling mediated by Gα(o). In contrast, SER-6 inhibits aversive responses by stimulating the release of an array of 'inhibitory' neuropeptides that activate receptors on sensory neurons mediating attraction or repulsion, suggesting that peptidergic signalling may integrate multiple sensory inputs to modulate locomotory transitions. These studies highlight the complexity of octopaminergic/peptidergic interactions, the role of OA in activating global peptidergic signalling cascades and the similarities of this modulatory network to the noradrenergic inhibition of nociception in mammals, where norepinephrine suppresses chronic pain through inhibitory α(2)-adrenoreceptors on afferent nociceptors and stimulatory α(1)-receptors on inhibitory peptidergic interneurons.
Collapse
|
35
|
AGS-3 alters Caenorhabditis elegans behavior after food deprivation via RIC-8 activation of the neural G protein G αo. J Neurosci 2011; 31:11553-62. [PMID: 21832186 DOI: 10.1523/jneurosci.2072-11.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Proteins containing the G protein regulator (GPR) domain bind the major neural G protein Gα(o) in vitro. However, the biological functions of GPR proteins in neurons remain undefined, and based on the in vitro activities of GPR proteins it is unclear whether these proteins activate or inhibit G protein signaling in vivo. We found that the conserved GPR domain protein AGS-3 activates Gα(o) signaling in vivo to allow Caenorhabditis elegans to alter several behaviors after food deprivation, apparently so that the animals can more effectively seek food. AGS-3 undergoes a progressive change in its biochemical fractionation upon food deprivation, suggesting that effects of food deprivation are mediated by modifying this protein. We analyzed one C. elegans food-regulated behavior in depth; AGS-3 activates Gα(o) in the ASH chemosensory neurons to allow food-deprived animals to delay response to the aversive stimulus octanol. Genetic epistasis experiments show the following: (1) AGS-3 and the guanine nucleotide exchange factor RIC-8 act in ASH in a mutually dependent fashion to activate Gα(o); (2) this activation requires interaction of the GPR domains of AGS-3 with Gα(o); and (3) Gα(o)-GTP is ultimately the signaling molecule that acts in ASH to delay octanol response. These results identify a biological role for AGS-3 in response to food deprivation and indicate the mechanism for its activation of Gα(o) signaling in vivo.
Collapse
|
36
|
Harris G, Korchnak A, Summers P, Hapiak V, Law WJ, Stein AM, Komuniecki P, Komuniecki R. Dissecting the serotonergic food signal stimulating sensory-mediated aversive behavior in C. elegans. PLoS One 2011; 6:e21897. [PMID: 21814562 PMCID: PMC3140990 DOI: 10.1371/journal.pone.0021897] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/08/2011] [Indexed: 11/18/2022] Open
Abstract
Nutritional state often modulates olfaction and in Caenorhabditis elegans food stimulates aversive responses mediated by the nociceptive ASH sensory neurons. In the present study, we have characterized the role of key serotonergic neurons that differentially modulate aversive behavior in response to changing nutritional status. The serotonergic NSM and ADF neurons play antagonistic roles in food stimulation. NSM 5-HT activates SER-5 on the ASHs and SER-1 on the RIA interneurons and stimulates aversive responses, suggesting that food-dependent serotonergic stimulation involves local changes in 5-HT levels mediated by extrasynaptic 5-HT receptors. In contrast, ADF 5-HT activates SER-1 on the octopaminergic RIC interneurons to inhibit food-stimulation, suggesting neuron-specific stimulatory and inhibitory roles for SER-1 signaling. Both the NSMs and ADFs express INS-1, an insulin-like peptide, that appears to cell autonomously inhibit serotonergic signaling. Food also modulates directional decisions after reversal is complete, through the same serotonergic neurons and receptors involved in the initiation of reversal, and the decision to continue forward or change direction after reversal is dictated entirely by nutritional state. These results highlight the complexity of the "food signal" and serotonergic signaling in the modulation of sensory-mediated aversive behaviors.
Collapse
Affiliation(s)
- Gareth Harris
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Amanda Korchnak
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Philip Summers
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Vera Hapiak
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Wen Jing Law
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Andrew M. Stein
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Patricia Komuniecki
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Richard Komuniecki
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ezcurra M, Tanizawa Y, Swoboda P, Schafer WR. Food sensitizes C. elegans avoidance behaviours through acute dopamine signalling. EMBO J 2011; 30:1110-22. [PMID: 21304491 DOI: 10.1038/emboj.2011.22] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/07/2011] [Indexed: 01/28/2023] Open
Abstract
Many behavioural states are modulated by food availability and nutritional status. Here, we report that in Caenorhabditis elegans, the presence of an external food source enhances avoidance responses to soluble repellents sensed by the polymodal ASH neurons. This enhancement requires dopamine signalling and is mimicked by exogenous dopamine. Food modulation is dependent on the mechanosensory cilia of the dopaminergic neurons, indicating that dopamine is released in response to sensation of bacteria. Activation of the dopamine neurons leads within seconds to a transient state of increased sensory acuity. In vivo imaging experiments indicate that this dopamine-dependent sensitization results in part from modality-specific increases in the magnitude and duration of gustatory responses in the ASH neurons. The D1-like dopamine receptor DOP-4 acts cell autonomously in ASH to mediate effects on response magnitude. Thus, dopamine functions as a direct signal of the presence of food to control context-dependent behavioural states.
Collapse
Affiliation(s)
- Marina Ezcurra
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | |
Collapse
|
38
|
Enhancement of odor avoidance regulated by dopamine signaling in Caenorhabditis elegans. J Neurosci 2011; 30:16365-75. [PMID: 21123582 DOI: 10.1523/jneurosci.6023-09.2010] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The enhancement of sensory responses after prior exposure to a stimulus is a fundamental mechanism of neural function in animals. Its molecular basis, however, has not been studied in as much depth as the reduction of sensory responses, such as adaptation or habituation. We report here that the avoidance behavior of the nematode Caenorhabditis elegans in response to repellent odors (2-nonanone or 1-octanol) is enhanced rather than reduced after preexposure to the odors. This enhancement effect of preexposure was maintained for at least 1 h after the conditioning. The enhancement of 2-nonanone avoidance was not dependent on the presence or absence of food during conditioning, which generally functions as a strong positive or negative unconditioned stimulus in the animals. These results suggest that the enhancement is acquired as a type of nonassociative learning. In addition, genetic and pharmacological analyses revealed that the enhancement of 2-nonanone avoidance requires dopamine signaling via D(2)-like dopamine receptor DOP-3, which functions in a pair of RIC interneurons to regulate the enhancement. Because dopamine signaling has been tightly linked with food-related information to modulate various behaviors of C. elegans, it may play different role in the regulation of the enhancement of 2-nonanone avoidance. Thus, our data suggest a new genetic and pharmacological paradigm for nonassociative enhancement of neural responses that is regulated by dopamine signaling.
Collapse
|
39
|
Esposito G, Amoroso MR, Bergamasco C, Di Schiavi E, Bazzicalupo P. The G protein regulators EGL-10 and EAT-16, the Giα GOA-1 and the G(q)α EGL-30 modulate the response of the C. elegans ASH polymodal nociceptive sensory neurons to repellents. BMC Biol 2010; 8:138. [PMID: 21070627 PMCID: PMC2996360 DOI: 10.1186/1741-7007-8-138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/11/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polymodal, nociceptive sensory neurons are key cellular elements of the way animals sense aversive and painful stimuli. In Caenorhabditis elegans, the polymodal nociceptive ASH sensory neurons detect aversive stimuli and release glutamate to generate avoidance responses. They are thus useful models for the nociceptive neurons of mammals. While several molecules affecting signal generation and transduction in ASH have been identified, less is known about transmission of the signal from ASH to downstream neurons and about the molecules involved in its modulation. RESULTS We discovered that the regulator of G protein signalling (RGS) protein, EGL-10, is required for appropriate avoidance responses to noxious stimuli sensed by ASH. As it does for other behaviours in which it is also involved, egl-10 interacts genetically with the G(o)/(i)α protein GOA-1, the G(q)α protein EGL-30 and the RGS EAT-16. Genetic, behavioural and Ca²(+) imaging analyses of ASH neurons in live animals demonstrate that, within ASH, EGL-10 and GOA-1 act downstream of stimulus-evoked signal transduction and of the main transduction channel OSM-9. EGL-30 instead appears to act upstream by regulating Ca²(+) transients in response to aversive stimuli. Analysis of the delay in the avoidance response, of the frequency of spontaneous inversions and of the genetic interaction with the diacylglycerol kinase gene, dgk-1, indicate that EGL-10 and GOA-1 do not affect signal transduction and neuronal depolarization in response to aversive stimuli but act in ASH to modulate downstream transmission of the signal. CONCLUSIONS The ASH polymodal nociceptive sensory neurons can be modulated not only in their capacity to detect stimuli but also in the efficiency with which they respond to them. The Gα and RGS molecules studied in this work are conserved in evolution and, for each of them, mammalian orthologs can be identified. The discovery of their role in the modulation of signal transduction and signal transmission of nociceptors may help us to understand how pain is generated and how its control can go astray (such as chronic pain) and may suggest new pain control therapies.
Collapse
Affiliation(s)
- Giovanni Esposito
- Istituto di Genetica e Biofisica A, IGB, CNR, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | | | | | | | | |
Collapse
|