1
|
Bruno S, Schlaeger TM, Del Vecchio D. Epigenetic OCT4 regulatory network: stochastic analysis of cellular reprogramming. NPJ Syst Biol Appl 2024; 10:3. [PMID: 38184707 PMCID: PMC10771499 DOI: 10.1038/s41540-023-00326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 01/08/2024] Open
Abstract
Experimental studies have shown that chromatin modifiers have a critical effect on cellular reprogramming, i.e., the conversion of differentiated cells to pluripotent stem cells. Here, we develop a model of the OCT4 gene regulatory network that includes genes expressing chromatin modifiers TET1 and JMJD2, and the chromatin modification circuit on which these modifiers act. We employ this model to compare three reprogramming approaches that have been considered in the literature with respect to reprogramming efficiency and latency variability. These approaches are overexpression of OCT4 alone, overexpression of OCT4 with TET1, and overexpression of OCT4 with JMJD2. Our results show more efficient and less variable reprogramming when also JMJD2 and TET1 are overexpressed, consistent with previous experimental data. Nevertheless, TET1 overexpression can lead to more efficient reprogramming compared to JMJD2 overexpression. This is the case when the recruitment of DNA methylation by H3K9me3 is weak and the methyl-CpG-binding domain (MBD) proteins are sufficiently scarce such that they do not hamper TET1 binding to methylated DNA. The model that we developed provides a mechanistic understanding of existing experimental results and is also a tool for designing optimized reprogramming approaches that combine overexpression of cell-fate specific transcription factors (TFs) with targeted recruitment of epigenetic modifiers.
Collapse
Affiliation(s)
- Simone Bruno
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Thorsten M Schlaeger
- Boston Children's Hospital Stem Cell Program, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
2
|
Yelagandula R, Stecher K, Novatchkova M, Michetti L, Michlits G, Wang J, Hofbauer P, Vainorius G, Pribitzer C, Isbel L, Mendjan S, Schübeler D, Elling U, Brennecke J, Bell O. ZFP462 safeguards neural lineage specification by targeting G9A/GLP-mediated heterochromatin to silence enhancers. Nat Cell Biol 2023; 25:42-55. [PMID: 36604593 PMCID: PMC10038669 DOI: 10.1038/s41556-022-01051-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/10/2022] [Indexed: 01/07/2023]
Abstract
ZNF462 haploinsufficiency is linked to Weiss-Kruszka syndrome, a genetic disorder characterized by neurodevelopmental defects, including autism. Though conserved in vertebrates and essential for embryonic development, the molecular functions of ZNF462 remain unclear. We identified its murine homologue ZFP462 in a screen for mediators of epigenetic gene silencing. Here we show that ZFP462 safeguards neural lineage specification of mouse embryonic stem cells (ESCs) by targeting the H3K9-specific histone methyltransferase complex G9A/GLP to silence meso-endodermal genes. ZFP462 binds to transposable elements that are potential enhancers harbouring pluripotency and meso-endoderm transcription factor binding sites. Recruiting G9A/GLP, ZFP462 seeds heterochromatin, restricting transcription factor binding. Loss of ZFP462 in ESCs results in increased chromatin accessibility at target sites and ectopic expression of meso-endodermal genes. Taken together, ZFP462 confers lineage and locus specificity to the broadly expressed epigenetic regulator G9A/GLP. Our results suggest that aberrant activation of lineage non-specific genes in the neuronal lineage underlies ZNF462-associated neurodevelopmental pathology.
Collapse
Affiliation(s)
- Ramesh Yelagandula
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Karin Stecher
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Vienna, Austria
| | - Maria Novatchkova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luca Michetti
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Georg Michlits
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Pablo Hofbauer
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Gintautas Vainorius
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Carina Pribitzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Luke Isbel
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Julius Brennecke
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Department of Biochemistry and Molecular Medicine and Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Cabrera A, Edelstein HI, Glykofrydis F, Love KS, Palacios S, Tycko J, Zhang M, Lensch S, Shields CE, Livingston M, Weiss R, Zhao H, Haynes KA, Morsut L, Chen YY, Khalil AS, Wong WW, Collins JJ, Rosser SJ, Polizzi K, Elowitz MB, Fussenegger M, Hilton IB, Leonard JN, Bintu L, Galloway KE, Deans TL. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst 2022; 13:950-973. [PMID: 36549273 PMCID: PMC9880859 DOI: 10.1016/j.cels.2022.11.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.
Collapse
Affiliation(s)
- Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hailey I Edelstein
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fokion Glykofrydis
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Kasey S Love
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Sarah Lensch
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Mark Livingston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Yvonne Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA
| | - Ahmad S Khalil
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Wilson W Wong
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, Basel 4058, Switzerland
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Joshua N Leonard
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Strell P, Shetty A, Steer CJ, Low WC. Interspecies Chimeric Barriers for Generating Exogenic Organs and Cells for Transplantation. Cell Transplant 2022; 31:9636897221110525. [PMID: 36173102 PMCID: PMC9527994 DOI: 10.1177/09636897221110525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A growing need for organs and novel cell-based therapies has provided a niche for approaches like interspecies chimeras. To generate organs from one donor species in another host species requires techniques such as blastocyst complementation and gene editing to successfully create an embryo that has cells from both the donor and the host. However, the task of developing highly efficacious and competent interspecies chimeras is met by many challenges. These interspecies chimeric barriers impede the formation of chimeras, often leading to lower levels of chimeric competency. The barriers that need to be addressed include the evolutionary distance between species, stage-matching, temporal and spatial synchronization of developmental timing, interspecies cell competition and the survival of pluripotent stem cells and embryos, compatibility of ligand–receptor signaling between species, and the ethical concerns of forming such models. By overcoming the interspecies chimera barriers and creating highly competent chimeras, the technology of organ and cellular generation can be honed and refined to develop fully functioning exogenic organs, tissues, and cells for transplantation.
Collapse
Affiliation(s)
- Phoebe Strell
- Comparative and Molecular Bioscience Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Anala Shetty
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Clifford J Steer
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Department of Medicine, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Department of Genetics, Cell Biology and Genetics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Walter C Low
- Comparative and Molecular Bioscience Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota, Twin Cities, Minneapolis, MN, USA.,Department of Neurosurgery, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
5
|
AlAbdi L, Saha D, He M, Dar MS, Utturkar SM, Sudyanti PA, McCune S, Spears BH, Breedlove JA, Lanman NA, Gowher H. Oct4-Mediated Inhibition of Lsd1 Activity Promotes the Active and Primed State of Pluripotency Enhancers. Cell Rep 2021; 30:1478-1490.e6. [PMID: 32023463 DOI: 10.1016/j.celrep.2019.11.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/30/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
An aberrant increase in pluripotency gene (PpG) expression due to enhancer reactivation could induce stemness and enhance the tumorigenicity of cancer stem cells. Silencing of PpG enhancers (PpGe) during embryonic stem cell differentiation involves Lsd1-mediated H3K4me1 demethylation and DNA methylation. Here, we observed retention of H3K4me1 and DNA hypomethylation at PpGe associated with a partial repression of PpGs in F9 embryonal carcinoma cells (ECCs) post-differentiation. H3K4me1 demethylation in F9 ECCs could not be rescued by Lsd1 overexpression. Given our observation that H3K4me1 demethylation is accompanied by strong Oct4 repression in P19 ECCs, we tested if Oct4 interaction with Lsd1 affects its catalytic activity. Our data show a dose-dependent inhibition of Lsd1 activity by Oct4 and retention of H3K4me1 at PpGe in Oct4-overexpressing P19 ECCs. These data suggest that Lsd1-Oct4 interaction in cancer stem cells could establish a "primed" enhancer state that is susceptible to reactivation, leading to aberrant PpG expression.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Debapriya Saha
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Mohd Saleem Dar
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sagar M Utturkar
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Putu Ayu Sudyanti
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Stephen McCune
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Brice H Spears
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - James A Breedlove
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Nadia A Lanman
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
6
|
Abstract
In the past several decades, the establishment of in vitro models of pluripotency has ushered in a golden era for developmental and stem cell biology. Research in this arena has led to profound insights into the regulatory features that shape early embryonic development. Nevertheless, an integrative theory of the epigenetic principles that govern the pluripotent nucleus remains elusive. Here, we summarize the epigenetic characteristics that define the pluripotent state. We cover what is currently known about the epigenome of pluripotent stem cells and reflect on the use of embryonic stem cells as an experimental system. In addition, we highlight insights from super-resolution microscopy, which have advanced our understanding of the form and function of chromatin, particularly its role in establishing the characteristically "open chromatin" of pluripotent nuclei. Further, we discuss the rapid improvements in 3C-based methods, which have given us a means to investigate the 3D spatial organization of the pluripotent genome. This has aided the adaptation of prior notions of a "pluripotent molecular circuitry" into a more holistic model, where hotspots of co-interacting domains correspond with the accumulation of pluripotency-associated factors. Finally, we relate these earlier hypotheses to an emerging model of phase separation, which posits that a biophysical mechanism may presuppose the formation of a pluripotent-state-defining transcriptional program.
Collapse
Affiliation(s)
| | - Eran Meshorer
- Department of Genetics, the Institute of Life Sciences
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel 9190400
| |
Collapse
|
7
|
Jan S, Dar MI, Wani R, Sandey J, Mushtaq I, Lateef S, Syed SH. Targeting EHMT2/ G9a for cancer therapy: Progress and perspective. Eur J Pharmacol 2020; 893:173827. [PMID: 33347828 DOI: 10.1016/j.ejphar.2020.173827] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Euchromatic histone lysine methyltransferase-2, also known as G9a, is a ubiquitously expressed SET domain-containing histone lysine methyltransferase linked with both facultative and constitutive heterochromatin formation and transcriptional repression. It is an essential developmental gene and reported to play role in embryonic development, establishment of proviral silencing in ES cells, tumor cell growth, metastasis, T-cell immune response, cocaine induced neural plasticity and cognition and adaptive behavior. It is mainly responsible for carrying out mono, di and tri methylation of histone H3K9 in euchromatin. G9a levels are elevated in many cancers and its selective inhibition is known to reduce the cell growth and induce autophagy, apoptosis and senescence. We carried out a thorough search of online literature databases including Pubmed, Scopus, Journal websites, Clinical trials etc to gather the maximum possible information related to the G9a. The main messages from the cited papers are presented in a systematic manner. Chemical structures were drawn by Chemdraw software. In this review, we shed light on current understanding of structure and biological activity of G9a, the molecular events directing its targeting to genomic regions and its post-translational modification. Finally, we discuss the current strategies to target G9a in different cancers and evaluate the available compounds and agents used to inhibit G9a functions. The review provides the present status and future directions of research in targeting G9a and provides the basis to persuade the development of novel strategies to target G9a -related effects in cancer cells.
Collapse
Affiliation(s)
- Suraya Jan
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohd Ishaq Dar
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rubiada Wani
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jagjeet Sandey
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Iqra Mushtaq
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sammar Lateef
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sajad Hussain Syed
- CSIR, Indian Institute of Integrative Medicine, Sanatnagar, 190005, Srinagar, Kashmir, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Chen T, Ali Al-Radhawi M, Sontag ED. A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks. Epigenetics 2020; 16:436-457. [PMID: 32842865 DOI: 10.1080/15592294.2020.1805686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cell-fate networks are traditionally studied within the framework of gene regulatory networks. This paradigm considers only interactions of genes through expressed transcription factors and does not incorporate chromatin modification processes. This paper introduces a mathematical model that seamlessly combines gene regulatory networks and DNA methylation (DNAm), with the goal of quantitatively characterizing the contribution of epigenetic regulation to gene silencing. The 'Basin of Attraction percentage' is introduced as a metric to quantify gene silencing abilities. As a case study, a computational and theoretical analysis is carried out for a model of the pluripotent stem cell circuit as well as a simplified self-activating gene model. The results confirm that the methodology quantitatively captures the key role that DNAm plays in enhancing the stability of the silenced gene state.
Collapse
Affiliation(s)
- Tianchi Chen
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - M Ali Al-Radhawi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Eduardo D Sontag
- Department of Bioengineering, Northeastern University, Boston, MA, USA.,Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA.,Laboratory of Systems Pharmacology, Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Shanak S, Helms V. DNA methylation and the core pluripotency network. Dev Biol 2020; 464:145-160. [PMID: 32562758 DOI: 10.1016/j.ydbio.2020.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023]
Abstract
From the onset of fertilization, the genome undergoes cell division and differentiation. All of these developmental transitions and differentiation processes include cell-specific signatures and gradual changes of the epigenome. Understanding what keeps stem cells in the pluripotent state and what leads to differentiation are fascinating and biomedically highly important issues. Numerous studies have identified genes, proteins, microRNAs and small molecules that exert essential effects. Notably, there exists a core pluripotency network that consists of several transcription factors and accessory proteins. Three eminent transcription factors, OCT4, SOX2 and NANOG, serve as hubs in this core pluripotency network. They bind to the enhancer regions of their target genes and modulate, among others, the expression levels of genes that are associated with Gene Ontology terms related to differentiation and self-renewal. Also, much has been learned about the epigenetic rewiring processes during these changes of cell fate. For example, DNA methylation dynamics is pivotal during embryonic development. The main goal of this review is to highlight an intricate interplay of (a) DNA methyltransferases controlling the expression levels of core pluripotency factors by modulation of the DNA methylation levels in their enhancer regions, and of (b) the core pluripotency factors controlling the transcriptional regulation of DNA methyltransferases. We discuss these processes both at the global level and in atomistic detail based on information from structural studies and from computer simulations.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Science, Arab-American University, Jenin, Palestine; Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany.
| |
Collapse
|
10
|
Patra SK. Roles of OCT4 in pathways of embryonic development and cancer progression. Mech Ageing Dev 2020; 189:111286. [PMID: 32531293 DOI: 10.1016/j.mad.2020.111286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Accepted: 06/06/2020] [Indexed: 12/11/2022]
Abstract
Somatic cells may be reprogrammed to pluripotent state by ectopic expression of certain transcription factors; namely, OCT4, SOX2, KLF4 and c-MYC. However, the molecular and cellular mechanisms are not adequately understood, especially for human embryonic development. Studies during the last five years implicated importance of OCT4 in human zygotic genome activation (ZGA), patterns of OCT4 protein folding and role of specialized sequences in binding to DNA for modulation of gene expression during development. Epigenetic modulation of OCT4 gene and post translational modifications of OCT4 protein activity in the context of multiple cancers are important issues. A consensus is emerging that chromatin organization and epigenetic landscape play crucial roles for the interactions of transcription factors, including OCT4 with the promoters and/or regulatory sequences of genes associated with human embryonic development (ZGA through lineage specification) and that when the epigenome niche is deregulated OCT4 helps in cancer progression, and how OCT4 silencing in somatic cells of adult organisms may impact ageing.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
11
|
Veland N, Lu Y, Hardikar S, Gaddis S, Zeng Y, Liu B, Estecio MR, Takata Y, Lin K, Tomida MW, Shen J, Saha D, Gowher H, Zhao H, Chen T. DNMT3L facilitates DNA methylation partly by maintaining DNMT3A stability in mouse embryonic stem cells. Nucleic Acids Res 2019; 47:152-167. [PMID: 30321403 PMCID: PMC6326784 DOI: 10.1093/nar/gky947] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022] Open
Abstract
DNMT3L (DNMT3-like), a member of the DNMT3 family, has no DNA methyltransferase activity but regulates de novo DNA methylation. While biochemical studies show that DNMT3L is capable of interacting with both DNMT3A and DNMT3B and stimulating their enzymatic activities, genetic evidence suggests that DNMT3L is essential for DNMT3A-mediated de novo methylation in germ cells but is dispensable for de novo methylation during embryogenesis, which is mainly mediated by DNMT3B. How DNMT3L regulates DNA methylation and what determines its functional specificity are not well understood. Here we show that DNMT3L-deficient mouse embryonic stem cells (mESCs) exhibit downregulation of DNMT3A, especially DNMT3A2, the predominant DNMT3A isoform in mESCs. DNA methylation analysis of DNMT3L-deficient mESCs reveals hypomethylation at many DNMT3A target regions. These results confirm that DNMT3L is a positive regulator of DNA methylation, contrary to a previous report that, in mESCs, DNMT3L regulates DNA methylation positively or negatively, depending on genomic regions. Mechanistically, DNMT3L forms a complex with DNMT3A2 and prevents DNMT3A2 from being degraded. Restoring the DNMT3A protein level in DNMT3L-deficient mESCs partially recovers DNA methylation. Thus, our work uncovers a role for DNMT3L in maintaining DNMT3A stability, which contributes to the effect of DNMT3L on DNMT3A-dependent DNA methylation.
Collapse
Affiliation(s)
- Nicolas Veland
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Swanand Hardikar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Sally Gaddis
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Marcos R Estecio
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yoko Takata
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Mary W Tomida
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Debapriya Saha
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Hongbo Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, Fudan University, Shanghai, People's Republic of China
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.,Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
12
|
Kang JG, Park JS, Ko JH, Kim YS. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci Rep 2019; 9:11960. [PMID: 31427598 PMCID: PMC6700181 DOI: 10.1038/s41598-019-48130-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Despite the increased interest in epigenetic research, its progress has been hampered by a lack of satisfactory tools to control epigenetic factors in specific genomic regions. Until now, many attempts to manipulate DNA methylation have been made using drugs but these drugs are not target-specific and have global effects on the whole genome. However, due to new genome editing technologies, potential epigenetic factors can now possibly be regulated in a site-specific manner. Here, we demonstrate the utility of CRISPR/Cas9 to modulate methylation at specific CpG sites and to elicit gene expression. We targeted the murine Oct4 gene which is transcriptionally locked due to hypermethylation at the promoter region in NIH3T3 cells. To induce site-specific demethylation at the Oct4 promoter region and its gene expression, we used the CRISPR/Cas9 knock-in and CRISPR/dCas9-Tet1 systems. Using these two approaches, we induced site-specific demethylation at the Oct4 promoter and confirmed the up-regulation of Oct4 expression. Furthermore, we confirmed that the synergistic effect of DNA demethylation and other epigenetic regulations increased the expression of Oct4 significantly. Based on our research, we suggest that our proven epigenetic editing methods can selectively modulate epigenetic factors such as DNA methylation and have promise for various applications in epigenetics.
Collapse
Affiliation(s)
- Jeong Gu Kang
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Jin Suk Park
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea
| | - Jeong-Heosn Ko
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea.
| | - Yong-Sam Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Korea.
| |
Collapse
|
13
|
Zhang Y, Charlton J, Karnik R, Beerman I, Smith ZD, Gu H, Boyle P, Mi X, Clement K, Pop R, Gnirke A, Rossi DJ, Meissner A. Targets and genomic constraints of ectopic Dnmt3b expression. eLife 2018; 7:e40757. [PMID: 30468428 PMCID: PMC6251628 DOI: 10.7554/elife.40757] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/09/2018] [Indexed: 12/19/2022] Open
Abstract
DNA methylation plays an essential role in mammalian genomes and expression of the responsible enzymes is tightly controlled. Deregulation of the de novo DNA methyltransferase DNMT3B is frequently observed across cancer types, yet little is known about its ectopic genomic targets. Here, we used an inducible transgenic mouse model to delineate rules for abnormal DNMT3B targeting, as well as the constraints of its activity across different cell types. Our results explain the preferential susceptibility of certain CpG islands to aberrant methylation and point to transcriptional state and the associated chromatin landscape as the strongest predictors. Although DNA methylation and H3K27me3 are usually non-overlapping at CpG islands, H3K27me3 can transiently co-occur with DNMT3B-induced DNA methylation. Our genome-wide data combined with ultra-deep locus-specific bisulfite sequencing suggest a distributive activity of ectopically expressed Dnmt3b that leads to discordant CpG island hypermethylation and provides new insights for interpreting the cancer methylome.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Jocelyn Charlton
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of Genome RegulationMax Planck Institute for Molecular GeneticsBerlinGermany
| | - Rahul Karnik
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Isabel Beerman
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of PediatricsHarvard Medical SchoolMassachusettsUnited States
- Program in Cellular and Molecular Medicine, Division of Hematology/OncologyBoston Children's HospitalMassachusettsUnited States
| | - Zachary D Smith
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Hongcang Gu
- Broad Institute of MIT and HarvardMassachusettsUnited States
| | - Patrick Boyle
- Broad Institute of MIT and HarvardMassachusettsUnited States
| | - Xiaoli Mi
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Kendell Clement
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Ramona Pop
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
| | - Andreas Gnirke
- Broad Institute of MIT and HarvardMassachusettsUnited States
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of PediatricsHarvard Medical SchoolMassachusettsUnited States
- Program in Cellular and Molecular Medicine, Division of Hematology/OncologyBoston Children's HospitalMassachusettsUnited States
| | - Alexander Meissner
- Department of Stem Cell and Regenerative BiologyHarvard UniversityMassachusettsUnited States
- Department of Genome RegulationMax Planck Institute for Molecular GeneticsBerlinGermany
- Broad Institute of MIT and HarvardMassachusettsUnited States
| |
Collapse
|
14
|
Wollenzien H, Voigt E, Kareta MS. Somatic Pluripotent Genes in Tissue Repair, Developmental Disease, and Cancer. SPG BIOMED 2018; 1. [PMID: 31172135 DOI: 10.32392/biomed.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryonic stem cells possess the ability to differentiate into all cell types of the body. This pliable developmental state is achieved by the function of a series of pluripotency factors, classically identified as OCT4, SOX2, and NANOG. These pluripotency factors are responsible for activating the larger pluripotency networks and the self-renewal programs which give ES cells their unique characteristics. However, during differentiation pluripotency networks become downregulated as cells achieve greater lineage specification and exit the cell cycle. Typically the repression of pluripotency is viewed as a positive factor to ensure the fidelity of cellular identity by restricting cellular pliancy. Consistent with this view, the expression of pluripotency factors is greatly restricted in somatic cells. However, there are examples whereby cells either maintain or reactivate pluripotency factors to preserve the increased potential for the healing of wounds or tissue homeostasis. Additionally there are many examples where these pluripotency factors become reactivated in a variety of human pathologies, particularly cancer. In this review, we will summarize the somatic repression of pluripotency factors, their role in tissue homeostasis and wound repair, and the human diseases that are associated with pluripotency factor misregulation with an emphasis on their role in the etiology of multiple cancers.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Ellen Voigt
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA.,Department of Pediatrics, Sanford School of Medicine, 1400 W. 22nd St., Sioux Falls, SD 57105, USA.,Department of Chemistry and Biochemistry, South Dakota State University, 1175 Medary Ave, Brookings, SD 57006, USA
| |
Collapse
|
15
|
Canon E, Jouneau L, Blachère T, Peynot N, Daniel N, Boulanger L, Maulny L, Archilla C, Voisin S, Jouneau A, Godet M, Duranthon V. Progressive methylation of POU5F1 regulatory regions during blastocyst development. Reproduction 2018; 156:145-161. [PMID: 29866767 DOI: 10.1530/rep-17-0689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/01/2018] [Indexed: 01/14/2023]
Abstract
The POU5F1 gene encodes one of the 'core' transcription factors necessary to establish and maintain pluripotency in mammals. Its function depends on its precise level of expression, so its transcription has to be tightly regulated. To date, few conserved functional elements have been identified in its 5' regulatory region: a distal and a proximal enhancer, and a minimal promoter, epigenetic modifications of which interfere with POU5F1 expression and function in in vitro-derived cell lines. Also, its permanent inactivation in differentiated cells depends on de novo methylation of its promoter. However, little is known about the epigenetic regulation of POU5F1 expression in the embryo itself. We used the rabbit blastocyst as a model to analyze the methylation dynamics of the POU5F1 5' upstream region, relative to its regulated expression in different compartments of the blastocyst over a 2-day period of development. We evidenced progressive methylation of the 5' regulatory region and the first exon accompanying differentiation and the gradual repression of POU5F1 Methylation started in the early trophectoderm before complete transcriptional inactivation. Interestingly, the distal enhancer, which is known to be active in naïve pluripotent cells only, retained a very low level of methylation in primed pluripotent epiblasts and remained less methylated in differentiated compartments than the proximal enhancer. This detailed study identified CpGs with the greatest variations in methylation, as well as groups of CpGs showing a highly correlated behavior, during differentiation. Moreover, our findings evidenced few CpGs with very specific behavior during this period of development.
Collapse
Affiliation(s)
- E Canon
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Jouneau
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - T Blachère
- Univ LyonUniversité Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - N Peynot
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - N Daniel
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Boulanger
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - L Maulny
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - C Archilla
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - S Voisin
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - A Jouneau
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - M Godet
- Univ LyonUniversité Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, Bron, France
| | - V Duranthon
- UMR BDRINRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| |
Collapse
|
16
|
Hervouet E, Peixoto P, Delage-Mourroux R, Boyer-Guittaut M, Cartron PF. Specific or not specific recruitment of DNMTs for DNA methylation, an epigenetic dilemma. Clin Epigenetics 2018; 10:17. [PMID: 29449903 PMCID: PMC5807744 DOI: 10.1186/s13148-018-0450-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/30/2018] [Indexed: 11/28/2022] Open
Abstract
Our current view of DNA methylation processes is strongly moving: First, even if it was generally admitted that DNMT3A and DNMT3B are associated with de novo methylation and DNMT1 is associated with inheritance DNA methylation, these distinctions are now not so clear. Secondly, since one decade, many partners of DNMTs have been involved in both the regulation of DNA methylation activity and DNMT recruitment on DNA. The high diversity of interactions and the combination of these interactions let us to subclass the different DNMT-including complexes. For example, the DNMT3L/DNMT3A complex is mainly related to de novo DNA methylation in embryonic states, whereas the DNMT1/PCNA/UHRF1 complex is required for maintaining global DNA methylation following DNA replication. On the opposite to these unspecific DNA methylation machineries (no preferential DNA sequence), some recently identified DNMT-including complexes are recruited on specific DNA sequences. The coexistence of both types of DNA methylation (un/specific) suggests a close cooperation and an orchestration between these systems to maintain genome and epigenome integrities. Deregulation of these systems can lead to pathologic disorders.
Collapse
Affiliation(s)
- Eric Hervouet
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | - Paul Peixoto
- INSERM unit 1098, University of Bourgogne Franche-Comté, Besançon, France.,EPIGENExp (EPIgenetics and GENe EXPression Technical Platform), Besançon, France
| | | | | | - Pierre-François Cartron
- 3INSERM unit S1232, University of Nantes, Nantes, France.,4Institut de cancérologie de l'Ouest, Nantes, France.,REpiCGO (Cancéropole Grand-Ouest), Nantes, France.,EpiSAVMEN Networks, Nantes, Région Pays de la Loire France
| |
Collapse
|
17
|
Ren J, Hathaway NA, Crabtree GR, Muegge K. Tethering of Lsh at the Oct4 locus promotes gene repression associated with epigenetic changes. Epigenetics 2018; 13:173-181. [PMID: 28621576 PMCID: PMC5873361 DOI: 10.1080/15592294.2017.1338234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/25/2017] [Accepted: 05/24/2017] [Indexed: 10/19/2022] Open
Abstract
Lsh is a chromatin remodeling factor that regulates DNA methylation and chromatin function in mammals. The dynamics of these chromatin changes and whether they are directly controlled by Lsh remain unclear. To understand the molecular mechanisms of Lsh chromatin controlled regulation of gene expression, we established a tethering system that recruits a Gal4-Lsh fusion protein to an engineered Oct4 locus through Gal4 binding sites in murine embryonic stem (ES) cells. We examined the molecular epigenetic events induced by Lsh binding including: histone modification, DNA methylation and chromatin accessibility to determine nucleosome occupancy before and after embryonic stem cell differentiation. Our results indicate that Lsh assists gene repression upon binding to the Oct4 promoter region. Furthermore, we detected less chromatin accessibility and reduced active histone modifications at the tethered site in undifferentiated ES, while GFP reporter gene expression and DNA methylation patterns remained unchanged at this stage. Upon differentiation, association of Lsh promotes transcriptional repression of the reporter gene accompanied by the increase of repressive histone marks and a gain of DNA methylation at distal and proximal Oct4 enhancer sites. Taken together, this approach allowed us to examine Lsh mediated epigenetic regulation as a dynamic process and revealed chromatin accessibility changes as the primary consequence of Lsh function.
Collapse
Affiliation(s)
- Jianke Ren
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Nathaniel A. Hathaway
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Gerald R. Crabtree
- Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Howard Hughes Medical Institute, CA, USA
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Mouse Cancer Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
18
|
Kar S, Patra SK. Overexpression of OCT4 induced by modulation of histone marks plays crucial role in breast cancer progression. Gene 2018; 643:35-45. [DOI: 10.1016/j.gene.2017.11.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/17/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023]
|
19
|
Petell CJ, Loiseau G, Gandy R, Pradhan S, Gowher H. A refined DNA methylation detection method using MspJI coupled quantitative PCR. Anal Biochem 2017. [PMID: 28624296 DOI: 10.1016/j.ab.2017.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA methylation is a highly conserved epigenetic modification with critical roles ranging from protection against phage infection in bacteria to the regulation of gene expression in mammals. DNA methylation at specific sequences can be measured by using methylation dependent or sensitive restriction enzymes coupled to semi- or quantitative PCR (MD-qPCR). This study reports a refined MD-qPCR method for detecting gain or loss of DNA methylation at specific sites through the specific use of MspJI or HpaII, respectively. By employing varying concentrations of DNA with methylation ranging from 0 to 100%, our data provide evidence that compared to HpaII, MspJI increases the sensitivity and accuracy of detecting relative DNA methylation gains by MD-qPCR. We also show that the MspJI-coupled MD-qPCR can accurately determine the percent gain in DNA methylation at the Sall4 enhancer and is more sensitive than HpaII in detecting relative gains in DNA methylation at the Oct4 proximal enhancer during embryonic stem cell (ESC) differentiation. The high specificity and sensitivity of this targeted approach increases its potential as a diagnostic tool to detect relatively smaller gains in DNA methylation at specific sites from limited amounts of sample.
Collapse
Affiliation(s)
- Christopher J Petell
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Gilbert Loiseau
- College of William and Mary, Williamsburg, VA 23187, United States
| | - Ryan Gandy
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Sriharsa Pradhan
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938, United States
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
20
|
Ross PJ, Canovas S. Mechanisms of epigenetic remodelling during preimplantation development. Reprod Fertil Dev 2017; 28:25-40. [PMID: 27062872 DOI: 10.1071/rd15365] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetics involves mechanisms independent of modifications in the DNA sequence that result in changes in gene expression and are maintained through cell divisions. Because all cells in the organism contain the same genetic blueprint, epigenetics allows for cells to assume different phenotypes and maintain them upon cell replication. As such, during the life cycle, there are moments in which the epigenetic information needs to be reset for the initiation of a new organism. In mammals, the resetting of epigenetic marks occurs at two different moments, which both happen to be during gestation, and include primordial germ cells (PGCs) and early preimplantation embryos. Because epigenetic information is reversible and sensitive to environmental changes, it is probably no coincidence that both these extensive periods of epigenetic remodelling happen in the female reproductive tract, under a finely controlled maternal environment. It is becoming evident that perturbations during the extensive epigenetic remodelling in PGCs and embryos can lead to permanent and inheritable changes to the epigenome that can result in long-term changes to the offspring derived from them, as indicated by the Developmental Origins of Health and Disease (DOHaD) hypothesis and recent demonstration of inter- and trans-generational epigenetic alterations. In this context, an understanding of the mechanisms of epigenetic remodelling during early embryo development is important to assess the potential for gametic epigenetic mutations to contribute to the offspring and for new epimutations to be established during embryo manipulations that could affect a large number of cells in the offspring. It is of particular interest to understand whether and how epigenetic information can be passed on from the gametes to the embryo or offspring, and whether abnormalities in this process could lead to transgenerationally inheritable phenotypes. The aim of this review is to highlight recent progress made in understanding the nature and mechanisms of epigenetic remodelling that ensue after fertilisation.
Collapse
Affiliation(s)
- Pablo Juan Ross
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Sebastian Canovas
- LARCEL (Laboratorio Andaluz de Reprogramación Celular), BIONAND, Centro Andaluz de Nanomedicina y Biotecnología Campanillas, Malaga 29590, Spain
| |
Collapse
|
21
|
Bayarsaihan D. Deciphering the Epigenetic Code in Embryonic and Dental Pulp Stem Cells. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:539-563. [PMID: 28018144 PMCID: PMC5168831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A close cooperation between chromatin states, transcriptional modulation, and epigenetic modifications is required for establishing appropriate regulatory circuits underlying self-renewal and differentiation of adult and embryonic stem cells. A growing body of research has established that the epigenome topology provides a structural framework for engaging genes in the non-random chromosomal interactions to orchestrate complex processes such as cell-matrix interactions, cell adhesion and cell migration during lineage commitment. Over the past few years, the functional dissection of the epigenetic landscape has become increasingly important for understanding gene expression dynamics in stem cells naturally found in most tissues. Adult stem cells of the human dental pulp hold great promise for tissue engineering, particularly in the skeletal and tooth regenerative medicine. It is therefore likely that progress towards pulp regeneration will have a substantial impact on the clinical research. This review summarizes the current state of knowledge regarding epigenetic cues that have evolved to regulate the pluripotent differentiation potential of embryonic stem cells and the lineage determination of developing dental pulp progenitors.
Collapse
Affiliation(s)
- Dashzeveg Bayarsaihan
- Institute for System Genomics and Center for Regenerative Medicine and Skeletal Development, University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
22
|
Respuela P, Rada-Iglesias A. Enhancer Remodeling During Early Mammalian Embryogenesis: Lessons for Somatic Reprogramming, Rejuvenation, and Aging. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med 2016; 22:657-65. [PMID: 27183216 PMCID: PMC4899256 DOI: 10.1038/nm.4109] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/13/2016] [Indexed: 01/18/2023]
Abstract
There are controversial claims that the embryonic stem cell (ESC) pluripotency factor OCT4 is activated in somatic cells, but there is no evidence it plays a functional role in these cells. Herein we demonstrate that smooth muscle cell (SMC)-specific conditional knockout of Oct4 within Apoe−/− mice resulted in increased lesion size and changes consistent with decreased plaque stability including a thinner fibrous cap, increased necrotic core, and increased intra-plaque hemorrhage. Results of SMC-lineage tracing studies showed that these changes were likely due to marked reductions in SMC number within lesions including impaired SMC migration and investment within the fibrous cap. Re-activation of Oct4 within SMCs was associated with hydroxymethylation of the Oct4 promoter and was HIF1α- and KLF4-dependent. Results provide the first direct evidence that OCT4 plays a functional role in somatic cells and highlight the importance of further investigation of possible OCT4 functions in normal and diseased somatic cells.
Collapse
|
24
|
Petell CJ, Alabdi L, He M, San Miguel P, Rose R, Gowher H. An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation. Nucleic Acids Res 2016; 44:7605-17. [PMID: 27179026 PMCID: PMC5027477 DOI: 10.1093/nar/gkw426] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022] Open
Abstract
Coordinated regulation of gene expression that involves activation of lineage specific genes and repression of pluripotency genes drives differentiation of embryonic stem cells (ESC). For complete repression of pluripotency genes during ESC differentiation, chromatin at their enhancers is silenced by the activity of the Lsd1-Mi2/NuRD complex. The mechanism/s that regulate DNA methylation at these enhancers are largely unknown. Here, we investigated the affect of the Lsd1-Mi2/NuRD complex on the dynamic regulatory switch that induces the local interaction of histone tails with the Dnmt3 ATRX-DNMT3-DNMT3L (ADD) domain, thus promoting DNA methylation at the enhancers of a subset of pluripotency genes. This is supported by previous structural studies showing a specific interaction between Dnmt3-ADD domain with H3K4 unmethylated histone tails that is disrupted by histone H3K4 methylation and histone acetylation. Our data suggest that Dnmt3a activity is triggered by Lsd1-Mi2/NuRD-mediated histone deacetylation and demethylation at these pluripotency gene enhancers when they are inactivated during mouse ESC differentiation. Using Dnmt3 knockout ESCs and the inhibitors of Lsd1 and p300 histone modifying enzymes during differentiation of E14Tg2A and ZHBTc4 ESCs, our study systematically reveals this mechanism and establishes that Dnmt3a is both reader and effector of the epigenetic state at these target sites.
Collapse
Affiliation(s)
| | - Lama Alabdi
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ming He
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Phillip San Miguel
- DNA Sequencing Core Facility, Purdue University, West Lafayette, IN 47907, USA
| | - Richard Rose
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
25
|
Canovas S, Ross PJ. Epigenetics in preimplantation mammalian development. Theriogenology 2016; 86:69-79. [PMID: 27165992 DOI: 10.1016/j.theriogenology.2016.04.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 02/27/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
Fertilization is a very dynamic period of comprehensive chromatin remodeling, from which two specialized cells result in a totipotent zygote. The formation of a totipotent cell requires extensive epigenetic remodeling that, although independent of modifications in the DNA sequence, still entails a profound cell-fate change, supported by transcriptional profile modifications. As a result of finely tuned interactions between numerous mechanisms, the goal of fertilization is to form a full healthy new individual. To avoid the persistence of alterations in epigenetic marks, the epigenetic information contained in each gamete is reset during early embryogenesis. Covalent modification of DNA by methylation, as well as posttranslational modifications of histone proteins and noncoding RNAs, appears to be the main epigenetic mechanisms that control gene expression. These allow different cells in an organism to express different transcription profiles, despite each cell containing the same DNA sequence. In the context of replacement of spermatic protamine with histones from the oocyte, active cell division, and specification of different lineages, active and passive mechanisms of epigenetic remodeling have been revealed as critical for editing the epigenetic profile of the early embryo. Importantly, redundant factors and mechanisms are likely in place, and only a few have been reported as critical for fertilization or embryo survival by the use of knockout models. The aim of this review is to highlight the main mechanisms of epigenetic remodeling that ensue after fertilization in mammals.
Collapse
Affiliation(s)
- Sebastian Canovas
- LARCEL (Laboratorio Andaluz de Reprogramacion Celular), BIONAND, Centro Andaluz de Nanomedicina y Biotecnologia Campanillas, Malaga, Spain.
| | - Pablo Juan Ross
- Department of Animal Science, University of California, Davis, California, USA.
| |
Collapse
|
26
|
Steinritz D, Schmidt A, Balszuweit F, Thiermann H, Simons T, Striepling E, Bölck B, Bloch W. Epigenetic modulations in early endothelial cells and DNA hypermethylation in human skin after sulfur mustard exposure. Toxicol Lett 2016; 244:95-102. [DOI: 10.1016/j.toxlet.2015.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/13/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
|
27
|
Auclair G, Borgel J, Sanz LA, Vallet J, Guibert S, Dumas M, Cavelier P, Girardot M, Forné T, Feil R, Weber M. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome Res 2015; 26:192-202. [PMID: 26576615 PMCID: PMC4728372 DOI: 10.1101/gr.198291.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/13/2015] [Indexed: 12/30/2022]
Abstract
The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2−/− embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development.
Collapse
Affiliation(s)
- Ghislain Auclair
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, 67412 Illkirch, France
| | - Julie Borgel
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Lionel A Sanz
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Judith Vallet
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, 67412 Illkirch, France
| | - Sylvain Guibert
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, 67412 Illkirch, France
| | - Michael Dumas
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, 67412 Illkirch, France
| | - Patricia Cavelier
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Michael Girardot
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Thierry Forné
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics, CNRS UMR5535, University of Montpellier, 34293 Montpellier, France
| | - Michael Weber
- CNRS, University of Strasbourg, UMR7242 Biotechnology and Cell Signaling, 67412 Illkirch, France
| |
Collapse
|
28
|
Sarabi MM, Naghibalhossaini F. Association of DNA methyltransferases expression with global and gene-specific DNA methylation in colorectal cancer cells. Cell Biochem Funct 2015; 33:427-33. [PMID: 26416384 DOI: 10.1002/cbf.3126] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/14/2022]
Abstract
There are conflicting reports regarding the association between DNA methyltransferases (DNMTs) expression and global or gene-specific DNA methylation in colorectal cancer (CRC) cells. To correlate DNMTs expression with DNA methylation, we quantified DNMT1, DNMT3A and DNMT3B mRNA levels in five CRC cell lines (HCT116, LS180, HT29/219, Caco2 and SW742) by real-time reverse-transcriptase polymerase chain reaction (PCR) assay. In addition, we examined the global 5-methyl cytosine levels and the methylation patterns of 12 CpG islands in these CRC cells by enzyme-linked immunosorbent assay and methylation-specific PCR methods, respectively. The average expression levels of three DNMTs in HCT116, Caco2, HT29/219 and SW742, relative to the expression level in LS180 (taken to be 1), were 90.1, 31.6, 2.66 and 1.86. Our data indicated that overall about 1.45%, 1.03%, 0.98%, 0.86% and 0.85% of the cytosines were methylated in the genome of HCT116, Caco2, HT29/219, SW742 and LS180 cells, respectively. The 5-mC percentages were positively correlated with the relative cellular DNMTs expression in five CRC cell lines as verified by Pearson correlation test. However, we found no positive correlation between mRNA expression of DNMTs and gene promoter hypermethylation in these cells. Our results suggest that cellular DNMT expression is positively correlated with global DNA methylation level but not with regional DNA hypermethylation at each locus.
Collapse
Affiliation(s)
- Mostafa Moradi Sarabi
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fakhraddin Naghibalhossaini
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
29
|
Liao X, Liao Y, Zou Y, Li G, Liao C. Epigenetic modifications of histone H3 during the transdifferentiation of Thy-1(+) Lin(‑) bone marrow cells into hepatocytes. Mol Med Rep 2015; 12:7561-7. [PMID: 26459745 DOI: 10.3892/mmr.2015.4384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 08/25/2015] [Indexed: 11/06/2022] Open
Abstract
The epigenetic modifications during the transdifferentiation of adult stem cells remain to be fully elucidated. In the present study, the histone H3 modifications during the transdifferentiation of rat Thy‑1(+) Lin(‑) bone marrow cells into hepatocytes in vitro were examined, which involved performing hepatocyte growth factor-mediated transdifferentiation of bone marrow Thy-1(+) Lin(‑) cells into hepatic lineage cells. Subsequently, the hepatocyte-specific markers, cytokeratin‑18 (CK‑18), albumin (ALB) and α‑fetoprotein (AFP) were examined by immunofluorescence staining or reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Changes in the key pluripotency factor, octamer‑binding transcription factor 4 (OCT4) and histone modifications, including the dimethylation and acetylation of H3 at lysine 9 (H3K9me2 and H3K9ac), lysine 14 (H3K14me2 and H3K14ac) and lysine 27 (H3K27me2 and H3K27ac), were also investigated by RT-qPCR, immunofluorescence staining or western blot analysis The mRNA expression levels of AFP and ALB were detected in the bone marrow stem cell‑derived hepatic lineage cells on days 7 and 14 following induction, and CK‑18 was detected on day 14 following induction. During the transdifferentiation of the bone marrow Thy‑1(+) Lin(‑) cells into hepatocytes, the mRNA expression of OCT4 was significantly reduced, and the levels of H3K9me2, H3K9ac, H3K14me2, H3K14ac, H3K27me2 and H3K27ac were increased significantly, compared with the levels at baseline (P<0.05). Therefore, the results of the present study demonstrated that histone H3 modifications at lysine 9, 14 and 27 are involved in the regulation of transcription during the transdifferentiation of bone marrow stem cells to hepatic lineage cells.
Collapse
Affiliation(s)
- Xinxin Liao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yixin Liao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yantai Zou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guanhong Li
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Caixian Liao
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
30
|
Pluripotency transcription factor Oct4 mediates stepwise nucleosome demethylation and depletion. Mol Cell Biol 2015; 35:1014-25. [PMID: 25582194 DOI: 10.1128/mcb.01105-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mechanisms whereby the crucial pluripotency transcription factor Oct4 regulates target gene expression are incompletely understood. Using an assay system based on partially differentiated embryonic stem cells, we show that Oct4 opposes the accumulation of local H3K9me2 and subsequent Dnmt3a-mediated DNA methylation. Upon binding DNA, Oct4 recruits the histone lysine demethylase Jmjd1c. Chromatin immunoprecipitation (ChIP) time course experiments identify a stepwise Oct4 mechanism involving Jmjd1c recruitment and H3K9me2 demethylation, transient FACT (facilitates chromatin transactions) complex recruitment, and nucleosome depletion. Genome-wide and targeted ChIP confirms binding of newly synthesized Oct4, together with Jmjd1c and FACT, to the Pou5f1 enhancer and a small number of other Oct4 targets, including the Nanog promoter. Histone demethylation is required for both FACT recruitment and H3 depletion. Jmjd1c is required to induce endogenous Oct4 expression and fully reprogram fibroblasts to pluripotency, indicating that the assay system identifies functional Oct4 cofactors. These findings indicate that Oct4 sequentially recruits activities that catalyze histone demethylation and depletion.
Collapse
|
31
|
Affiliation(s)
- Chris O'Neill
- Kolling Institute for Medical Research, Sydney Medical School, Royal North Shore Hospital, NSW, 2065 Australia
| |
Collapse
|
32
|
Bittencourt D, Lee BH, Gao L, Gerke DS, Stallcup MR. Role of distinct surfaces of the G9a ankyrin repeat domain in histone and DNA methylation during embryonic stem cell self-renewal and differentiation. Epigenetics Chromatin 2014; 7:27. [PMID: 25478012 PMCID: PMC4255711 DOI: 10.1186/1756-8935-7-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 09/09/2014] [Indexed: 11/13/2022] Open
Abstract
Background Epigenetic modifications such as histone and DNA methylation are essential for silencing pluripotency genes during embryonic stem cell (ESC) differentiation. G9a is the major histone H3 Lys9 (H3K9) methyltransferase in euchromatin and is required for the de novo DNA methylation of the key regulator of pluripotency Oct3/4 during ESC differentiation. Surprisingly, the catalytic activity of G9a is not required for its role in de novo DNA methylation and the precise molecular mechanisms of G9a in this process are poorly understood. It has been suggested that the G9a ankyrin repeat domain, which can interact with both H3K9me2 and the DNA methyltransferase DNMT3A, could facilitate de novo DNA methylation by bridging the interaction between DNMT3A and H3K9me2-marked chromatin. Results Here, we demonstrate that the G9a ankyrin domain H3K9me2-binding function is not required for the de novo DNA methylation of Oct3/4 during ESC differentiation. Moreover, we show that the interaction between the G9a ankyrin domain and DNMT3A is not sufficient to ensure efficient de novo DNA methylation. More importantly, we characterize a specific residue of the G9a ankyrin domain (Asp905) that is critical for both maintaining cellular H3K9me2 levels in undifferentiated ESCs and for the establishment of de novo DNA methylation during differentiation. Conclusions These results represent an exciting breakthrough, which reveals 1) an unexpected critical biological function of the G9a ankyrin domain in global histone H3K9 methylation and 2) valuable insights into the molecular mechanisms and interaction surfaces through which G9a regulates de novo DNA methylation of Oct3/4 during ESC differentiation.
Collapse
Affiliation(s)
- Danielle Bittencourt
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, NOR 6314, 1441 Eastlake Avenue, Los Angeles 90089-9176, CA, USA
| | - Brian H Lee
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, NOR 6314, 1441 Eastlake Avenue, Los Angeles 90089-9176, CA, USA
| | - Lu Gao
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, NOR 6314, 1441 Eastlake Avenue, Los Angeles 90089-9176, CA, USA
| | - Daniel S Gerke
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, NOR 6314, 1441 Eastlake Avenue, Los Angeles 90089-9176, CA, USA
| | - Michael R Stallcup
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, NOR 6314, 1441 Eastlake Avenue, Los Angeles 90089-9176, CA, USA
| |
Collapse
|
33
|
Radzisheuskaya A, Silva JCR. Do all roads lead to Oct4? the emerging concepts of induced pluripotency. Trends Cell Biol 2013; 24:275-84. [PMID: 24370212 PMCID: PMC3976965 DOI: 10.1016/j.tcb.2013.11.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/18/2022]
Abstract
Oct4 has unique and diverse functions in reprogramming. Oct4 is essential for lineage specification. Oct4 regulates multiple contrasting processes of cell identity change. Oct4 function may be regulated by cellular context and environment.
Pluripotent cells have the potential to differentiate into all of the cell types of an animal. This unique cell state is governed by an interconnected network of transcription factors. Among these, Oct4 plays an essential role both in the development of pluripotent cells in the embryo and in the self-renewal of its in vitro counterpart, embryonic stem (ES) cells. Furthermore, Oct4 is one of the four Yamanaka factors and its overexpression alone can generate induced pluripotent stem (iPS) cells. Recent reports underscore Oct4 as an essential regulator of opposing cell state transitions, such as pluripotency establishment and differentiation into embryonic germ lineages. Here we discuss these recent studies and the potential mechanisms underlying these contrasting functions of Oct4.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - José C R Silva
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
34
|
Yu C, Zhang YL, Pan WW, Li XM, Wang ZW, Ge ZJ, Zhou JJ, Cang Y, Tong C, Sun QY, Fan HY. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins. Science 2013; 342:1518-1521. [PMID: 24357321 DOI: 10.1126/science.1244587] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The duration of a woman's reproductive period is determined by the size and persistence of a dormant oocyte pool. Specific oocyte genes are essential for follicle maintenance and female fertility. The mechanisms that regulate the expression of these genes are poorly understood. We found that a cullin-ring finger ligase-4 (CRL4) complex was crucial in this process. Oocyte-specific deletion of the CRL4 linker protein DDB1 or its substrate adaptor VPRBP (also known as DCAF1) caused rapid oocyte loss, premature ovarian insufficiency, and silencing of fertility maintaining genes. CRL4(VPRBP) activates the TET methylcytosine dioxygenases, which are involved in female germ cell development and zygote genome reprogramming. Hence, CRL4(VPRBP) ubiquitin ligase is a guardian of female reproductive life in germ cells and a maternal reprogramming factor after fertilization.
Collapse
Affiliation(s)
- Chao Yu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jerabek S, Merino F, Schöler HR, Cojocaru V. OCT4: dynamic DNA binding pioneers stem cell pluripotency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:138-54. [PMID: 24145198 DOI: 10.1016/j.bbagrm.2013.10.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Abstract
OCT4 was discovered more than two decades ago as a transcription factor specific to early embryonic development. Early studies with OCT4 were descriptive and looked at determining the functional roles of OCT4 in the embryo as well as in pluripotent cell lines derived from embryos. Later studies showed that OCT4 was one of the transcription factors in the four-factor cocktail required for reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and that it is the only factor that cannot be substituted in this process by other members of the same protein family. In recent years, OCT4 has emerged as a master regulator of the induction and maintenance of cellular pluripotency, with crucial roles in the early stages of differentiation. Currently, mechanistic studies look at elucidating the molecular details of how OCT4 contributes to establishing selective gene expression programs that define different developmental stages of pluripotent cells. OCT4 belongs to the POU family of proteins, which have two conserved DNA-binding domains connected by a variable linker region. The functions of OCT4 depend on its ability to recognize and bind to DNA regulatory regions alone or in cooperation with other transcription factors and on its capacity to recruit other factors required to regulate the expression of specific sets of genes. Undoubtedly, future iPSC-based applications in regenerative medicine will benefit from understanding how OCT4 functions. Here we provide an integrated view of OCT4 research conducted to date by reviewing the different functional roles for OCT4 and discussing the current progress in understanding their underlying molecular mechanisms. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Stepan Jerabek
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Felipe Merino
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| | - Vlad Cojocaru
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
36
|
Jiao F, Wang X, Yan Z, Liu C, Yue Z, Li Z, Ma Y, Li Y, Wang J. Effect of dynamic DNA methylation and histone acetylation on cPouV expression in differentiation of chick embryonic germ cells. Stem Cells Dev 2013; 22:2725-35. [PMID: 23750509 DOI: 10.1089/scd.2013.0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As a crucial pluripotency-related factor, the epigenetic regulation of Oct4 has been studied intensively in mammalians. However, its dynamic changes of DNA methylation and histone modification in avians remain poorly understood. In the present study, we first described the alterations of DNA methylation and histone acetylation in the promoter of chicken PouV (cPouV; the homologue of Oct4 in avian) during chick embryonic germ (EG) cell differentiation. The epigenetic modification analysis showed that DNA methylation in the cPouV promoter increased obviously, while histone acetylation decreased dramatically detected by chromatin immunoprecipitation assay in the process of differentiation. Gene expression analysis detection indicated that the levels of DNA methyltransferase 3a (Dnmt 3a), Dnmt 3b, and histone deacetylase 3 (HDAC 3) transcripts were significantly high, whereas the relative abundance of Dnmt 1, histone acetyltransferase (HAT), and cPouV mRNA was significantly decreased during the conversion of EG to embryoid body-like structures (EBs), which was correlated with the increased level of methylation and reduced level of H3 acetylation. Moreover, in vitro methylation assay indicated that the reporter gene was remarkably inhibited by the methylated promoter of cPouV. To further understand the effect of epigenetic modifiers on cPouV expression, we performed an analysis of EB cells treated with trichostatin A (TSA), Aza-2'-deoxycytidine (Aza), or TSA plus Aza (TSA/Aza). We observed that the effect of TSA/Aza is more sensitive to the reactivation of cPouV compared with TSA or Aza, indicating that these epigenetic inhibitors can function synergistically to facilitate the reprogramming process. The present study provided evidences that a critical role for cPouV activation/repression by DNA methylation and/or histone modifications is involved in the pluripotency maintenance and differentiation process of chick EG.
Collapse
Affiliation(s)
- Fei Jiao
- 1 Department of Biochemistry and Molecular Biology, Binzhou Medical College , Yantai, Shandong Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen Q, Qiu C, Huang Y, Jiang L, Huang Q, Guo L, Liu T. Human amniotic epithelial cell feeder layers maintain iPS cell pluripotency by inhibiting endogenous DNA methyltransferase 1. Exp Ther Med 2013; 6:1145-1154. [PMID: 24223636 PMCID: PMC3820821 DOI: 10.3892/etm.2013.1279] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/22/2013] [Indexed: 12/16/2022] Open
Abstract
Maintaining induced pluripotent stem (iPS) cells in an undifferentiated, self-renewing state during long-term cultivation is, at present, a major challenge. We previously showed that human amniotic epithelial cells (HuAECs) were able to provide a good source of feeder cells for mouse and human embryonic or spermatogonial stem cells; however, the epigenetic mechanisms have not been elucidated. In the present study, mouse embryonic fibroblasts (MEFs) and HuAECs were compared as feeder layers for the long-term culture of human iPS cells. The HuAEC feeders allowed human iPS cells to maintain a high level of alkaline phosphatase (AP) activity and to express key stem cell markers during long-term subculture whereas the MEF feeders did not,. Moreover, the HuAEC feeders significantly affected the cell cycle regulation of the iPS cells, maintaining them in the resting stage and the early stage of DNA synthesis (G0/G1 stage). Furthermore, the CpG islands of the Nanog and Oct4 promoters were hypomethylated, while the Nanog- and Oct4-specific loci exhibited higher levels of histone H3 acetylation and lower levels of H3K27 trimethylation in iPS cells cultured on HuAECs compared with those cultured on MEFs. The DNA methyltransferase 1 (DNMT1) expression in iPS cells cultured on HuAECs was shown to be lower than in those cultured on MEFs. In addition, DNMT1-silenced human iPS cells were able to maintain pluripotency over long-term culture on MEFs. In combination, these results suggest that endogenous DNMT1 expression in human iPS cells may be regulated by HuAEC feeder cells and that Nanog and Oct4 are crucial components required for the maintenance of iPS cells in an undifferentiated, proliferative state, capable of self-renewal.
Collapse
Affiliation(s)
- Qing Chen
- Shanghai Pudong New Area Gongli Hospital, Shanghai 200135
| | | | | | | | | | | | | |
Collapse
|
38
|
Přikrylová T, Pacherník J, Kozubek S, Bártová E. Epigenetics and chromatin plasticity in embryonic stem cells. World J Stem Cells 2013; 5:73-85. [PMID: 23951389 PMCID: PMC3744133 DOI: 10.4252/wjsc.v5.i3.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/18/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023] Open
Abstract
The study of embryonic stem cells is in the spotlight in many laboratories that study the structure and function of chromatin and epigenetic processes. The key properties of embryonic stem cells are their capacity for self-renewal and their pluripotency. Pluripotent stem cells are able to differentiate into the cells of all three germ layers, and because of this property they represent a promising therapeutic tool in the treatment of diseases such as Parkinson's disease and diabetes, or in the healing of lesions after heart attack. As the basic nuclear unit, chromatin is responsible for the regulation of the functional status of cells, including pluripotency and differentiation. Therefore, in this review we discuss the functional changes in chromatin during differentiation and the correlation between epigenetics events and the differentiation potential of embryonic stem cells. In particular we focus on post-translational histone modification, DNA methylation and the heterochromatin protein HP1 and its unique function in mouse and human embryonic stem cells.
Collapse
Affiliation(s)
- Terézia Přikrylová
- Terézia Přikrylová, Stanislav Kozubek, Eva Bártová, Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
| | | | | | | |
Collapse
|
39
|
Fang X, Corrales J, Thornton C, Scheffler BE, Willett KL. Global and gene specific DNA methylation changes during zebrafish development. Comp Biochem Physiol B Biochem Mol Biol 2013; 166:99-108. [PMID: 23876386 DOI: 10.1016/j.cbpb.2013.07.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023]
Abstract
DNA methylation is dynamic through the life of an organism. Previous studies have primarily focused on DNA methylation changes during very early embryogenesis. In this study, global and gene specific DNA methylation in zebrafish (Danio rerio) embryos, larvae and adult livers were compared. The percent methylation of cytosines was low in 2 to 4.3h post fertilization (hpf) zebrafish embryos and was consistently higher in zebrafish older than 6 hpf. Furthermore, quantitative real-time PCR (qPCR) results showed relatively high DNA methyltransferase 1 (dnmt1) and low glycine N-methyltransferase (gnmt) mRNA expression in early embryogenesis. By studying methylation patterns and gene expression of five developmentally important genes, namely vasa, Ras-association domain family member 1 (rassf1), telomerase reverse transcriptase (tert), c-jun and c-myca, we found that the timing of changes in DNA methylation patterns was gene specific, and changes in gene expression were not necessarily correlated with the DNA methylation patterns.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pharmacology and Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | | | | | | |
Collapse
|
40
|
Karnik R, Meissner A. Browsing (Epi)genomes: a guide to data resources and epigenome browsers for stem cell researchers. Cell Stem Cell 2013; 13:14-21. [PMID: 23827707 PMCID: PMC3750740 DOI: 10.1016/j.stem.2013.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over the past years we have witnessed an explosion in the generation of freely available genome-wide data sets, including maps of various histone modifications, transcription factor binding, DNase hypersensitivity, and DNA methylation, which provide valuable resources for data validation, exploration, and hypothesis generation. The goal of this review is to provide the reader with information on where to find many of the data sets and how to utilize the various (epi)genome browsers for display and initial analysis. We provide selected examples to highlight key features and demonstrate the application of these browsers to stem cell biology.
Collapse
Affiliation(s)
- Rahul Karnik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | |
Collapse
|
41
|
Gaspar-Maia A, Qadeer ZA, Hasson D, Ratnakumar K, Leu NA, Leroy G, Liu S, Costanzi C, Valle-Garcia D, Schaniel C, Lemischka I, Garcia B, Pehrson JR, Bernstein E. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat Commun 2013; 4:1565. [PMID: 23463008 PMCID: PMC4055026 DOI: 10.1038/ncomms2582] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/07/2013] [Indexed: 12/20/2022] Open
Abstract
The chromatin template imposes an epigenetic barrier during the process of somatic cell reprogramming. Here, using fibroblasts derived from macroH2A double knockout mice we show that these histone variants act cooperatively as a barrier to induced pluripotency. Through manipulation of macroH2A isoforms, we further demonstrate that macroH2A2 is the predominant barrier to reprogramming. Genomic analyses reveal that macroH2A1 and macroH2A2, together with H3K27me3, co-occupy pluripotency genes in wild type fibroblasts. In particular, we find macroH2A isoforms to be highly enriched at target genes of the K27me3 demethylase, Utx, which are reactivated early in iPS reprogramming. Finally, while macroH2A double knockout induced pluripotent cells are able to differentiate properly in vitro and in vivo, such differentiated cells retain the ability to return to a stem-like state. Therefore, we propose that macroH2A isoforms provide a redundant silencing layer or terminal differentiation ‘lock’ at critical pluripotency genes that presents as an epigenetic barrier when differentiated cells are challenged to reprogram.
Collapse
Affiliation(s)
- Alexandre Gaspar-Maia
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gao L, Thilakavathy K, Nordin N. A plethora of human pluripotent stem cells. Cell Biol Int 2013; 37:875-87. [DOI: 10.1002/cbin.10120] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/15/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Liyang Gao
- Clinical Genetics Unit; Department of Obstetrics & Gynaecology; Faculty of Medicine & Health Sciences; Universiti Putra Malaysia; 43400; UPM Serdang; Selangor; Malaysia
| | | | | |
Collapse
|
43
|
Abstract
DNA methylation is among the best studied epigenetic modifications and is essential to mammalian development. Although the methylation status of most CpG dinucleotides in the genome is stably propagated through mitosis, improvements to methods for measuring methylation have identified numerous regions in which it is dynamically regulated. In this Review, we discuss key concepts in the function of DNA methylation in mammals, stemming from more than two decades of research, including many recent studies that have elucidated when and where DNA methylation has a regulatory role in the genome. We include insights from early development, embryonic stem cells and adult lineages, particularly haematopoiesis, to highlight the general features of this modification as it participates in both global and localized epigenetic regulation.
Collapse
|
44
|
Schmidt CS, Bultmann S, Meilinger D, Zacher B, Tresch A, Maier KC, Peter C, Martin DE, Leonhardt H, Spada F. Global DNA hypomethylation prevents consolidation of differentiation programs and allows reversion to the embryonic stem cell state. PLoS One 2012; 7:e52629. [PMID: 23300728 PMCID: PMC3531338 DOI: 10.1371/journal.pone.0052629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 11/19/2012] [Indexed: 11/18/2022] Open
Abstract
DNA methylation patterns change dynamically during mammalian development and lineage specification, yet scarce information is available about how DNA methylation affects gene expression profiles upon differentiation. Here we determine genome-wide transcription profiles during undirected differentiation of severely hypomethylated (Dnmt1−/−) embryonic stem cells (ESCs) as well as ESCs completely devoid of DNA methylation (Dnmt1−/−;Dnmt3a−/−;Dnmt3b−/− or TKO) and assay their potential to transit in and out of the ESC state. We find that the expression of only few genes mainly associated with germ line function and the X chromosome is affected in undifferentiated TKO ESCs. Upon initial differentiation as embryoid bodies (EBs) wild type, Dnmt1−/− and TKO cells downregulate pluripotency associated genes and upregulate lineage specific genes, but their transcription profiles progressively diverge upon prolonged EB culture. While Oct4 protein levels are completely and homogeneously suppressed, transcription of Oct4 and Nanog is not completely silenced even at late stages in both Dnmt1−/− and TKO EBs. Despite late wild type and Dnmt1−/− EBs showing a much higher degree of concordant expression, after EB dissociation and replating under pluripotency promoting conditions both Dnmt1−/− and TKO cells, but not wild type cells rapidly revert to expression profiles typical of undifferentiated ESCs. Thus, while DNA methylation seems not to be critical for initial activation of differentiation programs, it is crucial for permanent restriction of developmental fate during differentiation.
Collapse
Affiliation(s)
- Christine S. Schmidt
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Sebastian Bultmann
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Daniela Meilinger
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Benedikt Zacher
- Gene Center, Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Achim Tresch
- Gene Center, Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
- Institute for Genetics, Botanical Institute, University of Cologne, Cologne, Germany
- Department for Computational Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kerstin C. Maier
- Gene Center, Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Christian Peter
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Dietmar E. Martin
- Gene Center, Department of Biochemistry, Ludwig Maximilians University Munich, Munich, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
| | - Fabio Spada
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, Ludwig Maximilians University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
45
|
Marandel L, Labbe C, Bobe J, Jammes H, Lareyre JJ, Le Bail PY. Do not put all teleosts in one net: focus on the sox2 and pou2 genes. Comp Biochem Physiol B Biochem Mol Biol 2012; 164:69-79. [PMID: 23142214 DOI: 10.1016/j.cbpb.2012.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 10/27/2012] [Accepted: 10/27/2012] [Indexed: 11/16/2022]
Abstract
The Pou2 and Sox2 proteins are major transcription factors for development and cell differentiation. In teleosts, the expression patterns of pou2 or sox2 are different between species from distant families, suggesting different regulatory mechanisms of gene expression. In this study, we assessed the divergences among teleosts, including within closely related species. The pou2 and sox2 gene expression patterns were characterised over several developmental stages in a cyprinid model, i.e., the goldfish, and the potential regulation sites of these genes within teleost conserved regions were localised. During embryonic development, differences in the expression patterns between the goldfish and other teleosts, including zebrafish, were observed for both genes. The in silico analysis of the 5' flanking regions of the pou2 gene showed high conservation within teleosts, whereas the sox2 sequence diverged in tetraodontiforms. Certain putative cis regulatory elements were common to all teleosts, whereas others were found only in cyprinids. The analysis of the DNA methylation patterns of the pou2 and sox2 upstream sequences revealed that the studied CpG sites remained hypomethylated at all stages of embryo development in both genes. In contrast, in the adult fin, the studied CpG sites were hypermethylated in pou2 but not in sox2, suggesting the existence of methylation-sensitive regions in pou2. Overall, although most similarities at the level of the gene regulatory sites were found within cyprinids, the expression pattern of pou2 or sox2 during development differs between cyprinids species.
Collapse
Affiliation(s)
- Lucie Marandel
- INRA, UR1037 Fish Physiology and Genomics, Biogenouest, Campus de Beaulieu, F-35000 Rennes, France
| | | | | | | | | | | |
Collapse
|
46
|
Hathaway NA, Bell O, Hodges C, Miller EL, Neel DS, Crabtree GR. Dynamics and memory of heterochromatin in living cells. Cell 2012; 149:1447-60. [PMID: 22704655 DOI: 10.1016/j.cell.2012.03.052] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 01/05/2012] [Accepted: 03/19/2012] [Indexed: 02/03/2023]
Abstract
Posttranslational histone modifications are important for gene regulation, yet the mode of propagation and the contribution to heritable gene expression states remains controversial. To address these questions, we developed a chromatin in vivo assay (CiA) system employing chemically induced proximity to initiate and terminate chromatin modifications in living cells. We selectively recruited HP1α to induce H3K9me3-dependent gene silencing and describe the kinetics and extent of chromatin modifications at the Oct4 locus in fibroblasts and pluripotent cells. H3K9me3 propagated symmetrically and continuously at average rates of ~0.18 nucleosomes/hr to produce domains of up to 10 kb. After removal of the HP1α stimulus, heterochromatic domains were heritably transmitted, undiminished through multiple cell generations. Our data enabled quantitative modeling of reaction kinetics, which revealed that dynamic competition between histone marking and turnover, determines the boundaries and stability of H3K9me3 domains. This framework predicts the steady-state dynamics and spatial features of the majority of euchromatic H3K9me3 domains over the genome.
Collapse
Affiliation(s)
- Nathaniel A Hathaway
- Howard Hughes Medical Institute, Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
47
|
Zhang Y, Shu J, Si J, Shen L, Estecio MRH, Issa JPJ. Repetitive elements and enforced transcriptional repression co-operate to enhance DNA methylation spreading into a promoter CpG-island. Nucleic Acids Res 2012; 40:7257-68. [PMID: 22600741 PMCID: PMC3424568 DOI: 10.1093/nar/gks429] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Repression of many tumor suppressor genes in cancer is concurrent with aberrantly increased DNA methylation levels at promoter CpG islands (CGIs). About one-fourth of empirically defined human promoters are surrounded by or contain clustered repetitive elements. It was previously observed that a sharp transition of methylation exists between highly methylated repetitive elements and unmethylated promoter-CGIs in normal tissues. The factors that lead to aberrant CGI hypermethylation in cancer remain poorly understood. Here, we established a site-specific integration system with enforced local transcriptional repression in colorectal cancer cells and monitored the occurrence of initial de novo methylation at specific CG sites adjacent to the CGI of the INSL6 promoter, which could be accelerated by binding a KRAB-containing transcriptional factor. Additional repetitive elements from P16 and RIL (PDLIM4), if situated adjacent to the promoter of INSL6, could confer DNA methylation spreading into the CGI particularly in the setting of KRAB-factor binding. However, a repressive chromatin alone was not sufficient to initiate DNA methylation, which required specific DNA sequences and was integration-site (and/or cell-line) specific. Overall, these results demonstrate a requirement for specific DNA sequences to trigger de novo DNA methylation, and repetitive elements as cis-regulatory factors to cooperate with advanced transcriptional repression in promoting methylation spreading.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
How DNA methyltransferases, with their limited target specificity, establish cell-type-specific epigenetic patterns is poorly understood. Schübeler and colleagues (Lienert et al., 2011) now show that methylation-determining regions (MDRs) within promoter regions are sufficient to recapitulate endogenous patterns and dynamics of DNA methylation.
Collapse
Affiliation(s)
- Alexander Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
49
|
Bogdanović O, van Heeringen SJ, Veenstra GJC. The epigenome in early vertebrate development. Genesis 2012; 50:192-206. [PMID: 22139962 PMCID: PMC3294079 DOI: 10.1002/dvg.20831] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 01/04/2023]
Abstract
Epigenetic regulation defines the commitment and potential of cells, including the limitations in their competence to respond to inducing signals. This review discusses the developmental origins of chromatin state in Xenopus and other vertebrate species and provides an overview of its use in genome annotation. In most metazoans the embryonic genome is transcriptionally quiescent after fertilization. This involves nucleosome-dense chromatin, repressors and a temporal deficiency in the transcription machinery. Active histone modifications such as H3K4me3 appear in pluripotent blastula embryos, whereas repressive marks such as H3K27me3 show a major increase in enrichment during late blastula and gastrula stages. The H3K27me3 modification set by Polycomb restricts ectopic lineage-specific gene expression. Pluripotent chromatin in Xenopus embryos is relatively unconstrained, whereas the pluripotent cell lineage in mammalian embryos harbors a more enforced type of pluripotent chromatin.
Collapse
Affiliation(s)
- Ozren Bogdanović
- Radboud University Nijmegen, Dept. Molecular Biology, Faculty of Science, Nijmegen Centre of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Simon J. van Heeringen
- Radboud University Nijmegen, Dept. Molecular Biology, Faculty of Science, Nijmegen Centre of Molecular Life Sciences, Nijmegen, The Netherlands
| | - Gert Jan C. Veenstra
- Radboud University Nijmegen, Dept. Molecular Biology, Faculty of Science, Nijmegen Centre of Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
50
|
Chang Y, Sun L, Kokura K, Horton JR, Fukuda M, Espejo A, Izumi V, Koomen JM, Bedford MT, Zhang X, Shinkai Y, Fang J, Cheng X. MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat Commun 2011; 2:533. [PMID: 22086334 DOI: 10.1038/ncomms1549] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/13/2011] [Indexed: 12/18/2022] Open
Abstract
DNA CpG methylation and histone H3 lysine 9 (H3K9) methylation are two major repressive epigenetic modifications, and these methylations are positively correlated with one another in chromatin. Here we show that G9a or G9a-like protein (GLP) dimethylate the amino-terminal lysine 44 (K44) of mouse Dnmt3a (equivalent to K47 of human DNMT3A) in vitro and in cells overexpressing G9a or GLP. The chromodomain of MPP8 recognizes the dimethylated Dnmt3aK44me2. MPP8 also interacts with self-methylated GLP in a methylation-dependent manner. The MPP8 chromodomain forms a dimer in solution and in crystals, suggesting that a dimeric MPP8 molecule could bridge the methylated Dnmt3a and GLP, resulting in a silencing complex of Dnmt3a-MPP8-GLP/G9a on chromatin templates. Together, these findings provide a molecular explanation, at least in part, for the co-occurrence of DNA methylation and H3K9 methylation in chromatin.
Collapse
Affiliation(s)
- Yanqi Chang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|