1
|
Guan A, Alibrandi L, Verma E, Sareen N, Guan Q, Lionetti V, Dhingra S. Clinical translation of mesenchymal stem cells in ischemic heart failure: Challenges and future perspectives. Vascul Pharmacol 2025; 159:107491. [PMID: 40112941 DOI: 10.1016/j.vph.2025.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Myocardial infarction (MI) with resulting congestive heart failure is one of the leading causes of death worldwide. Current therapies for treating MI, such as devices, traditional medicine, and surgeries, come with many limitations as patients in their final stages of heart failure have little chances of experiencing any reversible changes. In recent decades, Mesenchymal stem cell (MSC) based therapy has become one of the most popular and rapidly developing fields in treating MI. Their supremacy for clinical applications is partially due to their unique properties and encouraging pre-clinical outcomes in various animal disease models. However, the majority of clinical trials registered for MSC therapy for diverse human diseases, including MI, have fallen short of expectations. This review intends to discuss the recent advances in the clinical application of using MSCs for cardiac repair and discuss challenges facing the clinical translation of MSCs for cardiac regeneration such as restoration of endothelial-cardiomyocyte crosstalk, immunomodulation and immune rejection, poor homing and migration, as well as low retention and survival. Furthermore, we will discuss recent strategies being investigated to help overcome some of these challenges.
Collapse
Affiliation(s)
- Anqi Guan
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Lisa Alibrandi
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy
| | - Elika Verma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Qingdong Guan
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba; Department of Immunology and Internal Medicina, University of Manitoba, Winnipeg, Canada
| | - Vincenzo Lionetti
- TrancriLab, Laboratory of Basic and Applied Medical Sciences, Interdisciplinary Research Center "Health Science", Scuola Superiore Sant'Anna, Pisa, Italy.; UOSVD Anesthesiology and Intensive Care, Fondazione Toscana G. Monasterio, Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, Biomedical Engineering Program, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada.
| |
Collapse
|
2
|
Henden C, Fjerdingstad HB, Bjørnsen EG, Thiruchelvam-Kyle L, Daws MR, Inngjerdingen M, Glover JC, Dissen E. NK-cell cytotoxicity toward pluripotent stem cells and their neural progeny: impacts of activating and inhibitory receptors and KIR/HLA mismatch. Stem Cells 2025; 43:sxae083. [PMID: 39708357 PMCID: PMC11929945 DOI: 10.1093/stmcls/sxae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK-cell receptors and their ligands. Reporter cells expressing the activating receptor NKG2D responded strongly to embryonic stem (ES) cell lines and induced pluripotent stem (iPS) cell lines, whereas reporter cells expressing the activating receptors NKp30, NKp46, KIR2DS1, KIR2DS2, and KIR2DS4 did not respond. Human ES and iPS cells invariably expressed several ligands for NKG2D. Expression of HLA-C and HLA-E was lacking or low, insufficient to trigger reporter cells expressing the inhibitory receptors KIR2DL1, -2DL2, or -2DL3. Similar results were obtained for the pluripotent embryonic carcinoma cell lines NTERA-2 and 2102Ep, and also iPS-cell-derived neural progenitor cells. Importantly, neural progenitor cells and iPS-cell-derived motoneurons also expressed B7H6, the ligand for the activating receptor NKp30. In line with these observations, IL-2-stimulated NK cells showed robust cytotoxic responses to ES and iPS cells as well as to iPS-cell-derived motoneurons. No significant differences in cytotoxicity levels were observed between KIR/HLA matched and mismatched combinations of NK cells and pluripotent targets. Together, these data indicate that pluripotent stem cells and their neural progeny are targets for NK-cell killing both by failing to sufficiently express ligands for inhibitory receptors and by expression of ligands for activating receptors.
Collapse
Affiliation(s)
- Camilla Henden
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Hege B Fjerdingstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Elisabeth G Bjørnsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Lavanya Thiruchelvam-Kyle
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Michael R Daws
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0317 Oslo, Norway
| | - Joel C Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Erik Dissen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
3
|
Li YR, Zhou Y, Yu J, Kim YJ, Li M, Lee D, Zhou K, Chen Y, Zhu Y, Wang YC, Li Z, Yu Y, Dunn ZS, Guo W, Cen X, Husman T, Bajpai A, Kramer A, Wilson M, Fang Y, Huang J, Li S, Zhou Y, Zhang Y, Hahn Z, Zhu E, Ma F, Pan C, Lusis AJ, Zhou JJ, Seet CS, Kohn DB, Wang P, Zhou XJ, Pellegrini M, Puliafito BR, Larson SM, Yang L. Generation of allogeneic CAR-NKT cells from hematopoietic stem and progenitor cells using a clinically guided culture method. Nat Biotechnol 2025; 43:329-344. [PMID: 38744947 PMCID: PMC11919731 DOI: 10.1038/s41587-024-02226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024]
Abstract
Cancer immunotherapy with autologous chimeric antigen receptor (CAR) T cells faces challenges in manufacturing and patient selection that could be avoided by using 'off-the-shelf' products, such as allogeneic CAR natural killer T (AlloCAR-NKT) cells. Previously, we reported a system for differentiating human hematopoietic stem and progenitor cells into AlloCAR-NKT cells, but the use of three-dimensional culture and xenogeneic feeders precluded its clinical application. Here we describe a clinically guided method to differentiate and expand IL-15-enhanced AlloCAR-NKT cells with high yield and purity. We generated AlloCAR-NKT cells targeting seven cancers and, in a multiple myeloma model, demonstrated their antitumor efficacy, expansion and persistence. The cells also selectively depleted immunosuppressive cells in the tumor microenviroment and antagonized tumor immune evasion via triple targeting of CAR, TCR and NK receptors. They exhibited a stable hypoimmunogenic phenotype associated with epigenetic and signaling regulation and did not induce detectable graft versus host disease or cytokine release syndrome. These properties of AlloCAR-NKT cells support their potential for clinical translation.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Derek Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuning Chen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chen Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zachary Spencer Dunn
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Wenbin Guo
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinjian Cen
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany Husman
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aarushi Bajpai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adam Kramer
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Wilson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Fang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie Huang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shuo Li
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yonggang Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuchong Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe Hahn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, Los Angeles, CA, USA
- Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher S Seet
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Division of Hematology/Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Xianghong Jasmine Zhou
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences-The Collaboratory, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin R Puliafito
- Department of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah M Larson
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Isakova AA, Druzhkova IN, Mozherov AM, Mazur DV, Antipova NV, Krasnov KS, Fadeev RS, Gasparian ME, Yagolovich AV. Glioblastoma Sensitization to Therapeutic Effects by Glutamine Deprivation Depends on Cellular Phenotype and Metabolism. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1744-1758. [PMID: 39523113 DOI: 10.1134/s0006297924100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 11/16/2024]
Abstract
Glutamine plays an important role in tumor metabolism. It is known that the core region of solid tumors is deprived of glutamine, which affects tumor growth and spread. Here we investigated the effect of glutamine deprivation on cellular metabolism and sensitivity of human glioblastoma cells U87MG and T98G to drugs of various origin: alkylating cytostatic agent temozolomide; cytokine TRAIL DR5-B - agonist of the DR5 receptor; and GMX1778 - a targeted inhibitor of the enzyme nicotinamide phosphoribosyltransferase (NAMPT), limiting NAD biosynthesis. Bioinformatics analysis of the cell transcriptomes showed that U87MG cells have a more differentiated phenotype than T98G, and also differ in the expression profile of the genes associated with glutamine metabolism. Upon glutamine deprivation, growth rate of the U87MG and T98G cells decreased. Analysis of cellular metabolism by FLIM microscopy of NADH as well as assessment of lactate content in the medium showed that glutamine deprivation shifted metabolic status of the U87MG cells towards glycolysis. This was accompanied by the increase in expression of the stemness marker CD133, which collectively could indicate de-differentiation of these cells. At the same time, we observed increase in both expression of the DR5 receptor and sensitivity of the U87MG cells to DR5-B. On the contrary, glutamine deprivation of T98G cells induced metabolic shift towards oxidative phosphorylation, decrease in the DR5 expression and resistance to DR5-B. The effects of NAMPT inhibition also differed between the two cell lines and were opposite to the effects of DR5-B: upon glutamine deprivation, U87MG cells acquired resistance, while T98G cells were sensitized to GMX1778. Thus, phenotypic and metabolic differences between the two human glioblastoma cell lines caused divergent metabolic changes and contrasting responses to different targeted drugs during glutamine deprivation. These data should be considered when developing treatment strategies for glioblastoma via drug-mediated deprivation of amino acids, as well as when exploring novel therapeutic targets.
Collapse
Affiliation(s)
- Alina A Isakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina N Druzhkova
- Privolzhsky Research Medical University, Nizhny Novgorod, 603081, Russia
| | - Artem M Mozherov
- Privolzhsky Research Medical University, Nizhny Novgorod, 603081, Russia
| | - Diana V Mazur
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Nadezhda V Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kirill S Krasnov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Marine E Gasparian
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | |
Collapse
|
5
|
Taherian M, Bayati P, Mojtabavi N. Stem cell-based therapy for fibrotic diseases: mechanisms and pathways. Stem Cell Res Ther 2024; 15:170. [PMID: 38886859 PMCID: PMC11184790 DOI: 10.1186/s13287-024-03782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosis is a pathological process, that could result in permanent scarring and impairment of the physiological function of the affected organ; this condition which is categorized under the term organ failure could affect various organs in different situations. The involvement of the major organs, such as the lungs, liver, kidney, heart, and skin, is associated with a high rate of morbidity and mortality across the world. Fibrotic disorders encompass a broad range of complications and could be traced to various illnesses and impairments; these could range from simple skin scars with beauty issues to severe rheumatologic or inflammatory disorders such as systemic sclerosis as well as idiopathic pulmonary fibrosis. Besides, the overactivation of immune responses during any inflammatory condition causing tissue damage could contribute to the pathogenic fibrotic events accompanying the healing response; for instance, the inflammation resulting from tissue engraftment could cause the formation of fibrotic scars in the grafted tissue, even in cases where the immune system deals with hard to clear infections, fibrotic scars could follow and cause severe adverse effects. A good example of such a complication is post-Covid19 lung fibrosis which could impair the life of the affected individuals with extensive lung involvement. However, effective therapies that halt or slow down the progression of fibrosis are missing in the current clinical settings. Considering the immunomodulatory and regenerative potential of distinct stem cell types, their application as an anti-fibrotic agent, capable of attenuating tissue fibrosis has been investigated by many researchers. Although the majority of the studies addressing the anti-fibrotic effects of stem cells indicated their potent capabilities, the underlying mechanisms, and pathways by which these cells could impact fibrotic processes remain poorly understood. Here, we first, review the properties of various stem cell types utilized so far as anti-fibrotic treatments and discuss the challenges and limitations associated with their applications in clinical settings; then, we will summarize the general and organ-specific mechanisms and pathways contributing to tissue fibrosis; finally, we will describe the mechanisms and pathways considered to be employed by distinct stem cell types for exerting anti-fibrotic events.
Collapse
Affiliation(s)
- Marjan Taherian
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Paria Bayati
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Mojtabavi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sheikhlary S, Lopez DH, Moghimi S, Sun B. Recent Findings on Therapeutic Cancer Vaccines: An Updated Review. Biomolecules 2024; 14:503. [PMID: 38672519 PMCID: PMC11048403 DOI: 10.3390/biom14040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer remains one of the global leading causes of death and various vaccines have been developed over the years against it, including cell-based, nucleic acid-based, and viral-based cancer vaccines. Although many vaccines have been effective in in vivo and clinical studies and some have been FDA-approved, there are major limitations to overcome: (1) developing one universal vaccine for a specific cancer is difficult, as tumors with different antigens are different for different individuals, (2) the tumor antigens may be similar to the body's own antigens, and (3) there is the possibility of cancer recurrence. Therefore, developing personalized cancer vaccines with the ability to distinguish between the tumor and the body's antigens is indispensable. This paper provides a comprehensive review of different types of cancer vaccines and highlights important factors necessary for developing efficient cancer vaccines. Moreover, the application of other technologies in cancer therapy is discussed. Finally, several insights and conclusions are presented, such as the possibility of using cold plasma and cancer stem cells in developing future cancer vaccines, to tackle the major limitations in the cancer vaccine developmental process.
Collapse
Affiliation(s)
- Sara Sheikhlary
- Department of Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Humberto Lopez
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Sophia Moghimi
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| | - Bo Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, USA; (D.H.L.); (S.M.)
| |
Collapse
|
7
|
Oliveira JM, Zenzeluk J, Serrano-Nascimento C, Romano MA, Romano RM. A System Biology Approach Reveals New Targets for Human Thyroid Gland Toxicity in Embryos and Adult Individuals. Metabolites 2024; 14:226. [PMID: 38668354 PMCID: PMC11052307 DOI: 10.3390/metabo14040226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Compounds of natural or synthetic origin present in personal care products, food additives, and packaging may interfere with hormonal regulation and are called endocrine-disrupting chemicals (EDCs). The thyroid gland is an important target of these compounds. The objective of this study was to analyze public data on the human thyroid transcriptome and investigate potential new targets of EDCs in the embryonic and adult thyroid glands. We compared the public transcriptome data of adult and embryonic human thyroid glands and selected 100 up- or downregulated genes that were subsequently subjected to functional enrichment analysis. In the embryonic thyroid, the most highly expressed gene was PRMT6, which methylates arginine-4 of histone H2A (86.21%), and the downregulated clusters included plasma lipoprotein particles (39.24%) and endopeptidase inhibitory activity (24.05%). For the adult thyroid gland, the most highly expressed genes were related to the following categories: metallothionein-binding metals (56.67%), steroid hormone biosynthetic process (16.67%), and cellular response to vascular endothelial growth factor stimulus (6.67%). Several compounds ranging from antihypertensive drugs to enzyme inhibitors were identified as potentially harmful to thyroid gland development and adult function.
Collapse
Affiliation(s)
- Jeane Maria Oliveira
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| | - Jamilli Zenzeluk
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| | - Caroline Serrano-Nascimento
- Institute of Environmental, Chemical and Pharmaceutical Sciences (ICAQF), Department of Biological Sciences, Federal University of São Paulo (UNIFESP), Rua Professor Arthur Riedel, 275, Diadema 09972-270, SP, Brazil;
- Department of Medicine, Laboratory of Molecular and Translational Endocrinology Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo, 669-11º andar-L11E, São Paulo 04039-032, SP, Brazil
| | - Marco Aurelio Romano
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| | - Renata Marino Romano
- Department of Medicine, Laboratory of Reproductive Toxicology, State University of the Midwest (UNICENTRO), Alameda Élio Antonio Dalla Vecchia, nº 838, Guarapuava 85040-167, PR, Brazil; (J.M.O.); (J.Z.); (M.A.R.)
| |
Collapse
|
8
|
Yang Y, Ma B, Chen J, Liu D, Ma J, Li B, Hao J, Zhou X. Epigenetic regulation and factors that influence the effect of iPSCs-derived neural stem/progenitor cells (NS/PCs) in the treatment of spinal cord injury. Clin Epigenetics 2024; 16:30. [PMID: 38383473 PMCID: PMC10880347 DOI: 10.1186/s13148-024-01639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
Spinal cord injury (SCI) is a severe neurological disorder that causes neurological impairment and disability. Neural stem/progenitor cells (NS/PCs) derived from induced pluripotent stem cells (iPSCs) represent a promising cell therapy strategy for spinal cord regeneration and repair. However, iPSC-derived NS/PCs face many challenges and issues in SCI therapy; one of the most significant challenges is epigenetic regulation and that factors that influence this mechanism. Epigenetics refers to the regulation of gene expression and function by DNA methylation, histone modification, and chromatin structure without changing the DNA sequence. Previous research has shown that epigenetics plays a crucial role in the generation, differentiation, and transplantation of iPSCs, and can influence the quality, safety, and outcome of transplanted cells. In this study, we review the effects of epigenetic regulation and various influencing factors on the role of iPSC-derived NS/PCs in SCI therapy at multiple levels, including epigenetic reprogramming, regulation, and the adaptation of iPSCs during generation, differentiation, and transplantation, as well as the impact of other therapeutic tools (e.g., drugs, electrical stimulation, and scaffolds) on the epigenetic status of transplanted cells. We summarize our main findings and insights in this field and identify future challenges and directions that need to be addressed and explored.
Collapse
Affiliation(s)
- Yubiao Yang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Boyuan Ma
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Jinyu Chen
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China
| | - Derong Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jun Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jian Hao
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| | - Xianhu Zhou
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
9
|
Katsuyama N, Kawase T, Barakat C, Mizuno S, Tomita A, Ozeki K, Nishio N, Sato Y, Kajiya R, Shiraishi K, Takahashi Y, Ichinohe T, Nishikawa H, Akatsuka Y. T cell receptor-engineered T cells derived from target human leukocyte antigen-DPB1-specific T cell can be a potential tool for therapy against leukemia relapse following allogeneic hematopoietic cell transplantation. NAGOYA JOURNAL OF MEDICAL SCIENCE 2023; 85:779-796. [PMID: 38155626 PMCID: PMC10751490 DOI: 10.18999/nagjms.85.4.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/26/2023] [Indexed: 12/30/2023]
Abstract
Human leukocyte antigen (HLA)-DPB1 antigens are mismatched in approximately 70% of allogeneic hematopoietic stem cell transplantations (allo-HSCT) from HLA 10/10 matched unrelated donors. HLA-DP-mismatched transplantation was shown to be associated with an increase in acute graft-versus-host disease (GVHD) and a decreased risk of leukemia relapse due to the graft-versus-leukemia (GVL) effect. Immunotherapy targeting mismatched HLA-DP is considered reasonable to treat leukemia following allo-HCT if performed under non-inflammatory conditions. Therefore, we isolated CD4+ T cell clones that recognize mismatched HLA-DPB1 from healthy volunteer donors and generated T cell receptor (TCR)-gene-modified T cells for future clinical applications. Detailed analysis of TCR-T cells expressing TCR from candidate clone #17 demonstrated specificity to myeloid and monocytic leukemia cell lines that even expressed low levels of targeted HLA-DP. However, they did not react to non-hematopoietic cell lines with a substantial level of targeted HLA-DP expression, suggesting that the TCR recognized antigenic peptide is only present in some hematopoietic cells. This study demonstrated that induction of T cells specific for HLA-DP, consisting of hematopoietic cell lineage-derived peptide and redirection of T cells with cloned TCR cDNA by gene transfer, is feasible when using careful specificity analysis.
Collapse
Affiliation(s)
- Naoya Katsuyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Immune Regenerative Medicine, International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Carolyne Barakat
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Akihiro Tomita
- Department of Hematology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kazutaka Ozeki
- Department of Hematology and Oncology, JA Aichi Konan Kosei Hospital, Konan, Japan
| | - Nobuhiro Nishio
- Center for Advanced Medicine and Clinical Research, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshie Sato
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryoko Kajiya
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Shiraishi
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyoshi Nishikawa
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Akatsuka
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
10
|
Cuarental L, Ribagorda M, Ceballos MI, Pintor-Chocano A, Carriazo SM, Dopazo A, Vazquez E, Suarez-Alvarez B, Cannata-Ortiz P, Sanz AB, Ortiz A, Sanchez-Niño MD. The transcription factor Fosl1 preserves Klotho expression and protects from acute kidney injury. Kidney Int 2023; 103:686-701. [PMID: 36565807 DOI: 10.1016/j.kint.2022.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Increased expression of AP-1 transcription factor components has been reported in acute kidney injury (AKI). However, the role of specific components, such as Fosl1, in tubular cells or AKI is unknown. Upstream regulator analysis of murine nephrotoxic AKI transcriptomics identified AP-1 as highly upregulated. Among AP-1 canonical components, Fosl1 was found to be upregulated in two transcriptomics datasets from nephrotoxic murine AKI induced by folic acid or cisplatin and from proximal tubular cells exposed to TWEAK, a cytokine mediator of AKI. Fosl1 was minimally expressed in the kidneys of control uninjured mice. Increased Fosl1 protein was localized to proximal tubular cell nuclei in AKI. In human AKI, FOSL1 was found present in proximal tubular cells in kidney sections and in urine along with increased urinary FOSL1 mRNA. Selective Fosl1 deficiency in proximal tubular cells (Fosl1Δtub) increased the severity of murine cisplatin- or folate-induced AKI as characterized by lower kidney function, more severe kidney inflammation and Klotho downregulation. Indeed, elevated AP-1 activity was observed after cisplatin-induced AKI in Fosl1Δtub mice compared to wild-type mice. More severe Klotho downregulation preceded more severe kidney dysfunction. The Klotho promoter was enriched in Fosl1 binding sites and Fosl1 bound to the Klotho promoter in cisplatin-AKI. In cultured proximal tubular cells, Fosl1 targeting increased the proinflammatory response and downregulated Klotho. In vivo, recombinant Klotho administration protected Fosl1Δtub mice from cisplatin-AKI. Thus, increased proximal tubular Fosl1 expression during AKI is an adaptive response, preserves Klotho, and limits the severity of tubular cell injury and AKI.
Collapse
Affiliation(s)
- Leticia Cuarental
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Marta Ribagorda
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Maria I Ceballos
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Sol M Carriazo
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Enrique Vazquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Cannata-Ortiz
- Department of Pathology, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Maria D Sanchez-Niño
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain; Departamento de Farmacología, Universidad Autonoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
11
|
Hang S, Wang N, Sugimura R. T, NK, then macrophages: Recent advances and challenges in adaptive immunotherapy from human pluripotent stem cells. Differentiation 2023; 130:51-57. [PMID: 36682340 DOI: 10.1016/j.diff.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Adaptive cellular immunotherapy, especially chimeric antigen receptor-T (CAR-T) cell therapy, has advanced the treatment of hematological malignancy. However, major limitations still remain in the source of cells comes from the patients themselves. The use of human pluripotent stem cells to differentiate into immune cells, such as T cells, NK cells, and macrophages, then arm with chimeric antigen receptor (CAR) to enhance tumor killing has gained major attention. It is expected to solve the low number of immune cells recovery from patients, long waiting periods, and ethical issues(reprogramming somatic cells to produce induced pluripotent stem cells (iPS cells) avoids the ethical issues unique to embryonic stem cells (Lo and Parham, 2009). However, there are still major challenges to be further solved. This review summarizes the progress, challenges, and future direction in human pluripotent stem cell-based immunotherapy.
Collapse
Affiliation(s)
- Su Hang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Nan Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; Centre for Translational Stem Cell Biology, Hong Kong.
| |
Collapse
|
12
|
Chimienti R, Baccega T, Torchio S, Manenti F, Pellegrini S, Cospito A, Amabile A, Lombardo MT, Monti P, Sordi V, Lombardo A, Malnati M, Piemonti L. Engineering of immune checkpoints B7-H3 and CD155 enhances immune compatibility of MHC-I -/- iPSCs for β cell replacement. Cell Rep 2022; 40:111423. [PMID: 36170817 PMCID: PMC9532846 DOI: 10.1016/j.celrep.2022.111423] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/09/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) represent a source from which β cells can be derived for diabetes replacement therapy. However, their application may be hindered by immune-mediated responses. Although abrogation of major histocompatibility complex class I (MHC-I) can address this issue, it may trigger natural killer (NK) cells through missing-self recognition mechanisms. By profiling the relevant NK-activating ligands on iPSCs during in vitro differentiation into pancreatic β cells, we find that they express high levels of B7-H3 and CD155. Hypothesizing that such surface ligands could be involved in the amplification of NK-activating signals following missing-self, we generate MHC-I-deprived B7-H3−/−, CD155−/−, and B7-H3−/−/CD155−/− iPSCs. All engineered lines correctly differentiate into insulin-secreting β cells and are protected from cell lysis mediated by CD16dim and CD16+ NK subpopulations both in vitro and in vivo in NSG mice. Our data support targeted disruption of NK-activating ligands to enhance the transplant compatibility of MHC-I−/− iPSC pancreatic derivatives. MHC-I−/− cells are killed by NK cells via missing-self recognition mechanisms Stem cell-derived pancreatic progenitors (PPs) express B7-H3 and CD155 NK ligands B7-H3/CD155 knockout (KO) prevents killing of the MHC-I−/− cells by NKs in vitro B7-H3/CD155 KO increases immune compatibility of MHC-I−/− PPs in a mouse model
Collapse
Affiliation(s)
- Raniero Chimienti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; Unit of Viral Transmission and Evolution, Division of Immunology, Transplantation and Infectious Disease (DITID), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Tania Baccega
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Silvia Torchio
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Fabio Manenti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Silvia Pellegrini
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Alessandro Cospito
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Angelo Amabile
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Marta Tiffany Lombardo
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Angelo Lombardo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Mauro Malnati
- Unit of Viral Transmission and Evolution, Division of Immunology, Transplantation and Infectious Disease (DITID), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute (DRI), IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy.
| |
Collapse
|
13
|
Apavaloaei A, Hesnard L, Hardy MP, Benabdallah B, Ehx G, Thériault C, Laverdure JP, Durette C, Lanoix J, Courcelles M, Noronha N, Chauhan KD, Lemieux S, Beauséjour C, Bhatia M, Thibault P, Perreault C. Induced pluripotent stem cells display a distinct set of MHC I-associated peptides shared by human cancers. Cell Rep 2022; 40:111241. [PMID: 35977509 DOI: 10.1016/j.celrep.2022.111241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022] Open
Abstract
Previous reports showed that mouse vaccination with pluripotent stem cells (PSCs) induces durable anti-tumor immune responses via T cell recognition of some elusive oncofetal epitopes. We characterize the MHC I-associated peptide (MAP) repertoire of human induced PSCs (iPSCs) using proteogenomics. Our analyses reveal a set of 46 pluripotency-associated MAPs (paMAPs) absent from the transcriptome of normal tissues and adult stem cells but expressed in PSCs and multiple adult cancers. These paMAPs derive from coding and allegedly non-coding (48%) transcripts involved in pluripotency maintenance, and their expression in The Cancer Genome Atlas samples correlates with source gene hypomethylation and genomic aberrations common across cancer types. We find that several of these paMAPs were immunogenic. However, paMAP expression in tumors coincides with activation of pathways instrumental in immune evasion (WNT, TGF-β, and CDK4/6). We propose that currently available inhibitors of these pathways could synergize with immune targeting of paMAPs for the treatment of poorly differentiated cancers.
Collapse
Affiliation(s)
- Anca Apavaloaei
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Leslie Hesnard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Marie-Pierre Hardy
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | - Gregory Ehx
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Catherine Thériault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Chantal Durette
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Joël Lanoix
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mathieu Courcelles
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Nandita Noronha
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Kapil Dev Chauhan
- Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Christian Beauséjour
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pharmacology and Physiology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mick Bhatia
- Faculty of Health Sciences, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Chemistry, University of Montreal, Montreal, QC H3T 1J4, Canada.
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada; Department of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
14
|
An JH, Koh H, Ahn Y, Kim J, Han AR, Lee JY, Kim SU, Lee JH. Maintenance of Hypoimmunogenic Features via Regulation of Endogenous Antigen Processing and Presentation Machinery. Front Bioeng Biotechnol 2022; 10:936584. [PMID: 36032723 PMCID: PMC9416868 DOI: 10.3389/fbioe.2022.936584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 11/27/2022] Open
Abstract
Universally acceptable donor cells have been developed to address the unmet need for immunotypically matched materials for regenerative medicine. Since forced expression of hypoimmunogenic genes represses the immune response, we established universal pluripotent stem cells (PSCs) by replacing endogenous β2-microglobulin (β2m) with β2m directly conjugated to human leukocyte antigen (HLA)-G, thereby simultaneously suppressing HLA-I expression and the natural killer (NK) cell-mediated immune response. These modified human PSCs retained their pluripotency and differentiation capacity; however, surface presentation of HLA-G was absent from subsequently differentiated cells, particularly cells of neural lineages, due to the downregulation of antigen processing and presentation machinery (APM) genes. Induction of APM genes by overexpression of NLR-family CARD domain-containing 5 (NLRC5) or activator subunit of nuclear factor kappa B (NF-κB) heterodimer (RelA) recovered the surface expression of HLA-G and the hypoimmunogenicity of neural cells. Our findings enhance the utility of hypoimmunogenic cells as universal donors and will contribute to the development of off-the-shelf stem-cell therapeutics.
Collapse
Affiliation(s)
- Ju-Hyun An
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Hyebin Koh
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Yujin Ahn
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Jieun Kim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, South Korea
| | - A-Reum Han
- CHA Advanced Research Institute, Bundang CHA Hospital, CHA University, Seongnam, South Korea
| | - Ji Yoon Lee
- CHA Advanced Research Institute, Bundang CHA Hospital, CHA University, Seongnam, South Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
| | - Jong-Hee Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, South Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, South Korea
- *Correspondence: Jong-Hee Lee,
| |
Collapse
|
15
|
Lord A, Ficz G. Corrupted devolution: how normal cells are reborn as cancer precursors. Int J Biochem Cell Biol 2022; 149:106263. [DOI: 10.1016/j.biocel.2022.106263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022]
|
16
|
Xu R, Du S, Zhu J, Meng F, Liu B. Neoantigen-targeted TCR-T cell therapy for solid tumors: How far from clinical application. Cancer Lett 2022; 546:215840. [DOI: 10.1016/j.canlet.2022.215840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/09/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
|
17
|
Cardiac Cell Therapy with Pluripotent Stem Cell-Derived Cardiomyocytes: What Has Been Done and What Remains to Do? Curr Cardiol Rep 2022; 24:445-461. [PMID: 35275365 PMCID: PMC9068652 DOI: 10.1007/s11886-022-01666-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Exciting pre-clinical data presents pluripotent stem cell-derived cardiomyocytes (PSC-CM) as a novel therapeutic prospect following myocardial infarction, and worldwide clinical trials are imminent. However, despite notable advances, several challenges remain. Here, we review PSC-CM pre-clinical studies, identifying key translational hurdles. We further discuss cell production and characterization strategies, identifying markers that may help generate cells which overcome these barriers. RECENT FINDINGS PSC-CMs can robustly repopulate infarcted myocardium with functional, force generating cardiomyocytes. However, current differentiation protocols produce immature and heterogenous cardiomyocytes, creating related issues such as arrhythmogenicity, immunogenicity and poor engraftment. Recent efforts have enhanced our understanding of cardiovascular developmental biology. This knowledge may help implement novel differentiation or gene editing strategies that could overcome these limitations. PSC-CMs are an exciting therapeutic prospect. Despite substantial recent advances, limitations of the technology remain. However, with our continued and increasing biological understanding, these issues are addressable, with several worldwide clinical trials anticipated in the coming years.
Collapse
|
18
|
The Use of Trichostatin A during Pluripotent Stem Cell Generation Does Not Affect MHC Expression Level. Stem Cells Int 2022; 2022:9346767. [PMID: 35371264 PMCID: PMC8967593 DOI: 10.1155/2022/9346767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 01/02/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Pluripotent stem cells (PSCs) are considered as a potent tool for use in regenerative medicine. Highly efficient generation of PSCs through chromatin modulators such as trichostatin A (TSA) might change their MHC molecule expression profile. The efficiency of PSC generation and their immunogenicity is major obstacles for clinical use. Hence, we aim to investigate whether the use of TSA during PSC generation affects MHC expression level. Three PSC lines were generated by iPSCs, NT-ESCs, and IVF-ESCs' reprogramming methods from B6D2F1 mouse embryonic fibroblast cells. Established PSC lines were characterized by alkaline phosphatase assay (ALP) and immunocytochemistry. Their chromosome fidelity was checked by karyotyping. The expression level of pluripotent genes (oct4, nanog, sox2, klf4), HDACs (hdac1, hdac2, and hdac3), and immune-related genes (including Qa-1, Qa-2, H2kb, H2kd, H2db, H2db, CIITA, H2-IE-βb, H2-IE-βd) in iPSC and ESC lines were assessed by real-time PCR analysis. The presence of MHC molecules on the surface of pluripotent stem cells was also checked by flow cytometry technique. Significant increase of pluripotency markers, oct4, nanog, sox2, and klf4, was observed in 100 nM TSA-treated samples. 100 nM TSA induced significant upregulation of H2db in generated iPSCs. H2-IE-βd was remarkably downregulated in 50 and 100 nM TSA-treated iPSC lines. The expression level of other immune-related genes was not greatly affected by TSA in iPSC and NT-ESC lines. It is concluded that the use of short-term and low concentration of TSA during reprogramming in PSC generation procedure significantly increases PSC generation efficiency, but do not affect the MHC expression in established cell lines, which is in the benefit of cell transplantation in regenerative medicine.
Collapse
|
19
|
Nair DSR, Thomas BB. Stem Cell-based Treatment Strategies for Degenerative Diseases of the Retina. Curr Stem Cell Res Ther 2022; 17:214-225. [PMID: 34348629 PMCID: PMC9129886 DOI: 10.2174/1574888x16666210804112104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND The main cause of progressive vision impairment in retinal degenerative diseases is the dysfunction of photoreceptors and the underlying retinal pigment epithelial cells. The inadequate regenerative capacity of the neural retina and lack of established therapeutic options demand the development of clinical-grade protocols to halt the degenerative process in the eye or replace the damaged cells by using stem cell-derived products. Recently, stem cell-based regenerative therapies have been at the forefront of clinical investigations for retinal dystrophies. OBJECTIVE This article will review different stem cell-based therapies currently employed for retinal degenerative diseases, recent clinical trials, and major challenges in the translation of these therapies from bench to bedside. METHODOLOGY A systematic literature review was conducted to identify potentially relevant articles published in MEDLINE/PubMed, Embase, ClinicalTrials.gov, Drugs@FDA, European Medicines Agency, and World Health Organization International Clinical Trials Registry Platform. RESULTS Transplantation of healthy cells to replace damaged cells in the outer retina is a clinically relevant concept because the inner retina that communicates with the visual areas of the brain remains functional even after the photoreceptors are completely lost. Various methods have been established for the differentiation of pluripotent stem cells into different retinal cell types that can be used for therapies. Factors released from transplanted somatic stem cells showed trophic support and photoreceptor rescue during the early stages of the disease. Several preclinical and phase I/II clinical studies using terminally differentiated photoreceptor/retinal pigment epithelial cells derived from pluripotent stem cells have shown proof of concept for visual restoration in Age-related Macular Degeneration (AMD), Stargardt disease, and Retinitis Pigmentosa (RP). CONCLUSION Cell replacement therapy has great potential for vision restoration. The results obtained from the initial clinical trials are encouraging and indicate its therapeutic benefits. The current status of the therapies suggests that there is a long way to go before these results can be applied to routine clinical practice. Input from the ongoing multicentre clinical trials will give a more refined idea for the future design of clinical-grade protocols to transplant GMP level HLA matched cells.
Collapse
Affiliation(s)
- Deepthi S. Rajendran Nair
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Biju B. Thomas
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA,USC Ginsburg Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, California, USA,Correspondence: , Tel: 323-442-5593
| |
Collapse
|
20
|
Gao Y, Pu J. Differentiation and Application of Human Pluripotent Stem Cells Derived Cardiovascular Cells for Treatment of Heart Diseases: Promises and Challenges. Front Cell Dev Biol 2021; 9:658088. [PMID: 34055788 PMCID: PMC8149736 DOI: 10.3389/fcell.2021.658088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are derived from human embryos (human embryonic stem cells) or reprogrammed from human somatic cells (human induced pluripotent stem cells). They can differentiate into cardiovascular cells, which have great potential as exogenous cell resources for restoring cardiac structure and function in patients with heart disease or heart failure. A variety of protocols have been developed to generate and expand cardiovascular cells derived from hPSCs in vitro. Precisely and spatiotemporally activating or inhibiting various pathways in hPSCs is required to obtain cardiovascular lineages with high differentiation efficiency. In this concise review, we summarize the protocols of differentiating hPSCs into cardiovascular cells, highlight their therapeutic application for treatment of cardiac diseases in large animal models, and discuss the challenges and limitations in the use of cardiac cells generated from hPSCs for a better clinical application of hPSC-based cardiac cell therapy.
Collapse
Affiliation(s)
- Yu Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
21
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
22
|
Bryan ER, Barrero RA, Cheung E, Tickner JAD, Trim LK, Richard D, McLaughlin EA, Beagley KW, Carey AJ. DNA damage contributes to transcriptional and immunological dysregulation of testicular cells during Chlamydia infection. Am J Reprod Immunol 2021; 86:e13400. [PMID: 33565167 DOI: 10.1111/aji.13400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 09/23/2020] [Accepted: 02/06/2021] [Indexed: 01/17/2023] Open
Abstract
Chlamydia is the most commonly reported sexually transmitted bacterial infection, with 127 million notifications worldwide each year. Both males and females are susceptible to the pathological impacts on fertility that Chlamydia infections can induce. However, male chlamydial infections, particularly within the upper reproductive tract, including the testis, are not well characterized. In this study, using mouse testicular cell lines, we examined the impact of infection on testicular cell lineage transcriptomes and potential mechanisms for this impact. The somatic cell lineages exhibited significantly fragmented genomes during infection. Likely resulting from this, each of the Leydig, Sertoli and germ cell lineages experienced extensive transcriptional dysregulation, leading to significant changes in cellular biological pathways, including interferon and germ-Sertoli cell signalling. The cell lineages, as well as isolated spermatozoa from infected mice, also contained globally hypomethylated DNA. Cumulatively, the DNA damage and epigenetic-mediated transcriptional dysregulation observed within testicular cells during chlamydial infection could result in the production of spermatozoa with abnormal epigenomes, resulting in previously observed subfertility in infected animals and congenital defects in their offspring.
Collapse
Affiliation(s)
- Emily R Bryan
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Roberto A Barrero
- eResearch Office and Division of Research & Innovation, Queensland University of Technology, Brisbane City, QLD, Australia
| | - Eddie Cheung
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Jacob A D Tickner
- School of Biomedical Sciences and Genomics and Precision Health Centre, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Logan K Trim
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Derek Richard
- School of Biomedical Sciences and Genomics and Precision Health Centre, Queensland University of Technology, Woolloongabba, QLD, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.,School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Kenneth W Beagley
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
| |
Collapse
|
23
|
Valadez-Barba V, Cota-Coronado A, Hernández-Pérez O, Lugo-Fabres PH, Padilla-Camberos E, Díaz NF, Díaz-Martínez NE. iPSC for modeling neurodegenerative disorders. Regen Ther 2021; 15:332-339. [PMID: 33426236 PMCID: PMC7770414 DOI: 10.1016/j.reth.2020.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative disorders such as Parkinson's and Alzheimer's disease, are fundamental health concerns all around the world. The development of novel treatments and new techniques to address these disorders, are being actively studied by researchers and medical personnel. In the present review we will discuss the application of induced Pluripotent Stem Cells (iPSCs) for cell-therapy replacement and disease modelling. The aim of iPSCs is to restore the functionality of the damaged tissue by replacing the impaired cells with competitive ones. To achieve this objective, iPSCs can be properly differentiated into virtually any cell fate and can be strongly translated into human health via in vitro and in vivo disease modeling for the development of new therapies, the discovery of biomarkers for several disorders, the elaboration and testing of new drugs as novel treatments, and as a tool for personalized medicine. Novel treatments to address neurodegenerative disorders. Induced pluripotent stem cell therapy and disease modelling. Parkinson's & Alzheimer's disease research.
Collapse
Key Words
- AD, Alzheimer's disease
- AFP, Alpha-Fetoprotein
- Alzheimer
- Aβ, β-Amyloid
- B-III-TUB, β–III–Tubulin
- BBB, Blood Brain Barrier
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeats
- DOPAL, 3,4-Dihydroxyphenylacetaldehyde
- EBs, Embryoid Bodies
- FLASH, Fast Length Adjustment of Short Reads
- LUHMES, Lund Human Mesencephalic Cell Line
- MHC, Mayor Histocompatibility Complex
- Neurodegenerative diseasaes
- PCR, Polymerase Chain Reaction
- PD, Parkinson's Disease
- Parkinson
- ROS, Reactive Oxygen Species
- SCs, Stem Cells
- SMA, Smooth-Muscle Antibody
- SNPc, Substantia Nigra Pars Compacta
- TH, Tyrosine Hydroxylase
- WGS, Whole Genome Sequencing
- gRNA, guide RNA
- hESC, Human Embryonic Stem Cells
- iPSCs
- iPSCs, Induced Pluripotent Stem Cells
- nsSNVs, nonsynonymous single nucleotide variants
- pTau, Phosphorylated Tau
Collapse
Affiliation(s)
- Valeria Valadez-Barba
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - A. Cota-Coronado
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
- The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC, 3052, Australia
| | - O.R. Hernández-Pérez
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - Pavel H. Lugo-Fabres
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - Eduardo Padilla-Camberos
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City, Mexico
| | - N. Emmanuel Díaz-Martínez
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Av. Normalistas 800, Colinas de las Normal, Jalisco, Mexico, P.C.44270
- Corresponding author. Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, A.C. Jalisco, Mexico.
| |
Collapse
|
24
|
Strategies for Cancer Immunotherapy Using Induced Pluripotency Stem Cells-Based Vaccines. Cancers (Basel) 2020; 12:cancers12123581. [PMID: 33266109 PMCID: PMC7760556 DOI: 10.3390/cancers12123581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
Despite improvements in cancer therapy, metastatic solid tumors remain largely incurable. Immunotherapy has emerged as a pioneering and promising approach for cancer therapy and management, and in particular intended for advanced tumors unresponsive to current therapeutics. In cancer immunotherapy, components of the immune system are exploited to eliminate cancer cells and treat patients. The recent clinical successes of immune checkpoint blockade and chimeric antigen receptor T cell therapies represent a turning point in cancer treatment. Despite their potential success, current approaches depend on efficient tumor antigen presentation which are often inaccessible, and most tumors turn refractory to current immunotherapy. Patient-derived induced pluripotent stem cells (iPSCs) have been shown to share several characteristics with cancer (stem) cells (CSCs), eliciting a specific anti-tumoral response when injected in rodent cancer models. Indeed, artificial cellular reprogramming has been widely compared to the biogenesis of CSCs. Here, we will discuss the state-of-the-art on the potential implication of cellular reprogramming and iPSCs for the design of patient-specific immunotherapeutic strategies, debating the similarities between iPSCs and cancer cells and introducing potential strategies that could enhance the efficiency and therapeutic potential of iPSCs-based cancer vaccines.
Collapse
|
25
|
Tang L, Yao T, Fang M, Zheng X, Chen G, Li M, Wang D, Li X, Ma H, Wang X, Qian Y, Zhou F. Genomic DNA methylation in HLA-Cw*0602 carriers and non-carriers of psoriasis. J Dermatol Sci 2020; 99:23-29. [PMID: 32522384 DOI: 10.1016/j.jdermsci.2020.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND HLA-Cw*0602 has long been established as one of the most important genetic biomarkers in psoriasis. However, the epigenetic and gene expression differences between HLA-Cw*0602 carriers and non-carriers has not yet been investigated. OBJECTIVE We aim to explore the whole-genome methylation and gene expression differences between HLA-Cw*0602 carriers and non-carriers. METHODS HLA imputation was performed to get landscape of variants in this region. Genome-wide DNA methylation was compared between positive and negative HLA-Cw*0602 groups. Eleven methylation loci were selected for further validation in additional 43 cases. For differentially methylated genes, GO and KEGG were used to annotate gene functions. RESULTS We imputed 29,948 variants based on the constructed HLA reference panels, and obtained 42 HLA-Cw*0602 carriers and 72 non-carriers. Significant methylation differences were detected at 4321 sites (811 hypo- and 3510 hypermethylated). The cg02607779 (KLF7, P = 0.001), cg06936779 (PIP5K1A, P = 0.002), cg03860400 (BTBD10, P = 0.017) and cg26112390 (GOLGA2P5, P = 0.019) were identified and validated to be the significant CpGs contributed to different HLA-C*0602 groups. Among the hypo- and hypermethylated sites, the top CpGs were in gene body and CpG island. CONCLUSION We performed the first whole-genome study on methylation differences between psoriatic individuals with or without HLA-Cw*0602, and found the key methylation sites which may contribute to the carrying status of HLA-Cw*0602. Methylation loci located in gene body and CpG island are more likely to affect the methylation levels in HLA-Cw*0602 carriers. This integrated analysis shed light on novel insights into the pathogenic mechanisms of genomic methylation in different HLA genotypes of psoriasis.
Collapse
Affiliation(s)
- Lili Tang
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Tianyu Yao
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Miaohong Fang
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Xiaodong Zheng
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Gang Chen
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Mengqing Li
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Dan Wang
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China
| | - Xinyu Li
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Haining Ma
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Xiangru Wang
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Yunhong Qian
- The First Clinical Medical College of Anhui Medical University, Anhui Province, Hefei, China
| | - Fusheng Zhou
- Department of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei, China; Institute of Dermatology, Anhui Medical University, Hefei, China; Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, China; State Key Laboratory Incubation Base of Dermatology, Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, China.
| |
Collapse
|
26
|
Kaur K, Kozlowska AK, Topchyan P, Ko MW, Ohanian N, Chiang J, Cook J, Maung PO, Park SH, Cacalano N, Fang C, Jewett A. Probiotic-Treated Super-Charged NK Cells Efficiently Clear Poorly Differentiated Pancreatic Tumors in Hu-BLT Mice. Cancers (Basel) 2019; 12:cancers12010063. [PMID: 31878338 PMCID: PMC7017229 DOI: 10.3390/cancers12010063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/01/2023] Open
Abstract
Abstract: Background and Aims: We have previously demonstrated that the stage of differentiation of tumors has profound effect on the function of NK cells, and that stem-like/poorly differentiated tumors were preferentially targeted by the NK cells. Therefore, in this study we determined the role of super-charged NK cells in immune mobilization, lysis, and differentiation of stem-like/undifferentiated tumors implanted in the pancreas of humanized-BLT (hu-BLT) mice fed with or without AJ2 probiotics. The phenotype, growth rate and metastatic potential of pancreatic tumors differentiated by the NK cells (NK-differentiated) or patient derived differentiated or stem-like/undifferentiated pancreatic tumors were investigated. Methods: Pancreatic tumor implantation was performed in NSG and hu-BLT mice. Stage of differentiation of tumors was determined using our published criteria for well-differentiated tumors exhibiting higher surface expression of MHC- class I, CD54, and PD-L1 (B7H1) and lower expression of CD44 receptors. The inverse was seen for poorly-differentiated tumors. Results: Stem-like/undifferentiated pancreatic tumors grew rapidly and formed large tumors and exhibited lower expression of above-mentioned differentiation antigens in the pancreas of NSG and hu-BLT mice. Unlike stem-like/undifferentiated tumors, NK-differentiated MP2 (MiaPaCa-2) tumors or patient-derived differentiated tumors were not able to grow or grew smaller tumors, and were unable to metastasize in NSG or hu-BLT mice, and they were susceptible to chemotherapeutic drugs. Stem-like/undifferentiated pancreatic tumors implanted in the pancreas of hu-BLT mice and injected with super-charged NK cells formed much smaller tumors, proliferated less, and exhibited differentiated phenotype. When differentiation of stem-like tumors by the NK cells was prevented by the addition of antibodies to IFN-γ and TNF-α, tumors grew rapidly and metastasized, and they remained resistant to chemotherapeutic drugs. Greater numbers of immune cells infiltrated the tumors of NK-injected and AJ2-probiotic bacteria-fed mice. Moreover, increased IFN-γ secretion in the presence of decreased IL-6 was seen in tumors resected and cultured from NK-injected and AJ2 fed mice. Tumor-induced decreases in NK cytotoxicity and IFN-γ secretion were restored/increased within PBMCs, spleen, and bone marrow when mice received NK cells and were fed with AJ2. Conclusion: NK cells prevent growth of pancreatic tumors through lysis and differentiation, thereby curtailing the growth and metastatic potential of stem-like/undifferentiated-tumors.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Anna Karolina Kozlowska
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
- Department of Tumor Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Paytsar Topchyan
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Meng-Wei Ko
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Nick Ohanian
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Jessica Chiang
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Jessica Cook
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Phyu Ou Maung
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - So-Hyun Park
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
| | - Nicholas Cacalano
- The Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA;
- Department of Radiation Oncology, Division of Molecular and Cellular Oncology, UCLA School of Dentistry and Medicine, Los Angeles, CA 90095, USA
| | - Changge Fang
- BioPro Diagnostics, LLC, 4919 Brook Hills Drive, Annandale, VA 22003, USA;
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, Department of Dentistry, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA; (K.K.); (A.K.K.); (P.T.); (M.-W.K.); (N.O.); (J.C.); (J.C.); (P.O.M.); (S.-H.P.)
- The Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA;
- Correspondence: ; Tel.: +1-310-968-4994; Fax: +1-310-794-7109
| |
Collapse
|
27
|
Kot M, Baj-Krzyworzeka M, Szatanek R, Musiał-Wysocka A, Suda-Szczurek M, Majka M. The Importance of HLA Assessment in "Off-the-Shelf" Allogeneic Mesenchymal Stem Cells Based-Therapies. Int J Mol Sci 2019; 20:E5680. [PMID: 31766164 PMCID: PMC6888380 DOI: 10.3390/ijms20225680] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
The need for more effective therapies of chronic and acute diseases has led to the attempts of developing more adequate and less invasive treatment methods. Regenerative medicine relies mainly on the therapeutic potential of stem cells. Mesenchymal stem cells (MSCs), due to their immunosuppressive properties and tissue repair abilities, seem to be an ideal tool for cell-based therapies. Taking into account all available sources of MSCs, perinatal tissues become an attractive source of allogeneic MSCs. The allogeneic MSCs provide "off-the-shelf" cellular therapy, however, their allogenicity may be viewed as a limitation for their use. Moreover, some evidence suggests that MSCs are not as immune-privileged as it was previously reported. Therefore, understanding their interactions with the recipient's immune system is crucial for their successful clinical application. In this review, we discuss both autologous and allogeneic application of MSCs, focusing on current approaches to allogeneic MSCs therapies, with a particular interest in the role of human leukocyte antigens (HLA) and HLA-matching in allogeneic MSCs transplantation. Importantly, the evidence from the currently completed and ongoing clinical trials demonstrates that allogeneic MSCs transplantation is safe and seems to cause no major side-effects to the patient. These findings strongly support the case for MSCs efficacy in treatment of a variety of diseases and their use as an "off-the-shelf" medical product.
Collapse
Affiliation(s)
- Marta Kot
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.B.-K.); (R.S.)
| | - Rafał Szatanek
- Department of Clinical Immunology, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.B.-K.); (R.S.)
| | - Aleksandra Musiał-Wysocka
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| | - Magdalena Suda-Szczurek
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Medical College, Jagiellonian University, Wielicka 265, 30-663 Kraków, Poland; (M.K.); (A.M.-W.); (M.S.-S.)
| |
Collapse
|
28
|
Abstract
The worldwide increase in the number of patients with end-stage renal disease leads to a growing waiting list for kidney transplantation resulting from the scarcity of kidney donors. Therefore, alternative treatment options for patients with end-stage renal disease are being sought. In vitro differentiation of stem cells into renal tissue is a promising approach to repair nonfunctional kidney tissue. Impressive headway has been made in the use of stem cells with the use of adult renal progenitor cells, embryonic stem cells, and induced pluripotent stem cells for the development toward primitive kidney structures. Currently, efforts are directed at improving long-term maintenance and stability of the cells. This review aims to provide a comprehensive overview of the cell sources used for the generation of kidney cells and strategies used for transplantation in in vivo models. Furthermore, it provides a perspective on stability and safety during future clinical application of in vitro generated kidney cells.
Collapse
|
29
|
Affiliation(s)
- Claudia Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Okada M, Tada Y, Seki T, Tohyama S, Fujita J, Suzuki T, Shimomura M, Ofuji K, Kishino Y, Nakajima K, Tanosaki S, Someya S, Kanazawa H, Senju S, Nakatsura T, Fukuda K. Selective elimination of undifferentiated human pluripotent stem cells using pluripotent state-specific immunogenic antigen Glypican-3. Biochem Biophys Res Commun 2019; 511:711-717. [DOI: 10.1016/j.bbrc.2019.02.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/18/2022]
|
31
|
Hematopoiesis by iPSC-derived hematopoietic stem cells of aplastic anemia that escape cytotoxic T-cell attack. Blood Adv 2019; 2:390-400. [PMID: 29472446 DOI: 10.1182/bloodadvances.2017013342] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/07/2018] [Indexed: 01/14/2023] Open
Abstract
Hematopoietic stem cells (HSCs) that lack HLA-class I alleles as a result of copy-number neutral loss of heterozygosity of the short arm of chromosome 6 (6pLOH) or HLA allelic mutations often constitute hematopoiesis in patients with acquired aplastic anemia (AA), but the precise mechanisms underlying clonal hematopoiesis induced by these HLA-lacking (HLA-) HSCs remain unknown. To address this issue, we generated induced pluripotent stem cells (iPSCs) from an AA patient who possessed HLA-B4002-lacking (B4002-) leukocytes. Three different iPSC clones (wild-type [WT], 6pLOH+, and B*40:02-mutant) were established from the patient's monocytes. Three-week cultures of the iPSCs in the presence of various growth factors produced hematopoietic cells that make up 50% to 70% of the CD34+ cells of each phenotype. When 106 iPSC-derived CD34+ (iCD34+) cells with the 3 different genotypes were injected into the femoral bone of C57BL/6.Rag2 mice, 2.1% to 7.3% human multilineage CD45+ cells of each HLA phenotype were detected in the bone marrow, spleen, and peripheral blood of the mice at 9 to 12 weeks after the injection, with no significant difference in the human:mouse chimerism ratio among the 3 groups. Stimulation of the patient's CD8+ T cells with the WT iCD34+ cells generated a cytotoxic T lymphocyte (CTL) line capable of killing WT iCD34+ cells but not B4002- iCD34+ cells. These data suggest that B4002- iCD34+ cells show a repopulating ability similar to that of WT iCD34+ cells when autologous T cells are absent and CTL precursors capable of selectively killing WT HSCs are present in the patient's peripheral blood.
Collapse
|
32
|
Jang Y, Choi J, Park N, Kang J, Kim M, Kim Y, Ju JH. Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Exp Mol Med 2019; 51:1-11. [PMID: 30617277 PMCID: PMC6323054 DOI: 10.1038/s12276-018-0190-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 08/06/2018] [Accepted: 09/09/2018] [Indexed: 12/18/2022] Open
Abstract
Pluripotent stem cell transplantation is a promising regenerative strategy for treating intractable diseases. However, securing human leukocyte antigen (HLA)-matched donor stem cells is extremely difficult. The traditional approach for generating such cells is to establish homozygous pluripotent stem cell lines. Unfortunately, because of HLA diversity, this strategy is too time-consuming to be of practical use. HLA engineering of donor stem cells has been proposed recently as a means to evade graft-versus-host rejection in stem cell allotransplantation. This approach would be advantageous in both time and cost to the traditional method, but its feasibility must be investigated. In this study, we used CRISPR/Cas9 to knockout HLA-B from inducible pluripotent stem cells (iPSCs) with heterogenous HLA-B and showed that the HLA-B knockout iPSCs resulted in less immunogenicity in HLA-B antisera than that in the control. Our results support the feasibility of HLA-engineered iPSCs in stem cell allotransplantation. Blocking the expression of genes that regulate the immune response in therapeutic stem cells could increase the chances of success following transplantation. Discrepancies between human leukocyte antigen (HLA) genes in a patient and those in transplanted stem cells can cause a damaging immune response and transplantation failure, yet matching HLA types between donors and recipients is notoriously difficult. Ji Hyeon Ju at The Catholic University of Korea in Seoul and colleagues have used the CRISPR/Cas9 gene editing system to introduce a mutation in the HLA-B gene that prevents its expression in pluripotent stem cells derived from adult cells. These modified cells not only retain their capacity to self-renew and differentiate, they are also less likely to trigger an immune response. This promising new approach could reduce the time and cost of developing effective stem cell therapies.
Collapse
Affiliation(s)
- Yeonsue Jang
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.,Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, Seoul, 137-701, South Korea
| | - Jinhyeok Choi
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Narae Park
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Jaewoo Kang
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea. .,Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, Seoul, 137-701, South Korea. .,Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, 137-701, South Korea.
| |
Collapse
|
33
|
Heninger E, Krueger TEG, Thiede SM, Sperger JM, Byers BL, Kircher MR, Kosoff D, Yang B, Jarrard DF, McNeel DG, Lang JM. Inducible expression of cancer-testis antigens in human prostate cancer. Oncotarget 2018; 7:84359-84374. [PMID: 27769045 PMCID: PMC5341296 DOI: 10.18632/oncotarget.12711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
Immune tolerance to self-antigens can limit robust anti-tumor immune responses in the use of tumor vaccines. Expression of novel tumor associated antigens can improve immune recognition and lysis of tumor cells. The cancer-testis antigen (CTA) family of proteins has been hypothesized to be an ideal class of antigens due to tumor-restricted expression, a subset of which have been found to induce antibody responses in patients with prostate disease. We demonstrate that CTA expression is highly inducible in five different Prostate Cancer (PC) cell lines using a hypomethylating agent 5-Aza-2′-deoxycytidine (5AZA) and/or a histone deacetylase inhibitor LBH589. These CTAs include NY-ESO1, multiple members of the MAGE and SSX families and NY-SAR35. A subset of CTAs is synergistically induced by the combination of 5AZA and LBH589. We developed an ex vivo organ culture using human PC biopsies for ex vivo drug treatments to evaluate these agents in clinical samples. These assays found significant induction of SSX2 in 9/9 distinct patient samples and NY-SAR35 in 7/9 samples. Further, we identify expression of SSX2 in circulating tumor cells (CTC) from patients with advanced PC. These results indicate that epigenetic modifying agents can induce expression of a broad range of neoantigens in human PC and may serve as a useful adjunctive therapy with novel tumor vaccines and checkpoint inhibitors.
Collapse
Affiliation(s)
- Erika Heninger
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Timothy E G Krueger
- University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Stephanie M Thiede
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Jamie M Sperger
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Brianna L Byers
- University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Madison R Kircher
- University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Bing Yang
- Department of Urology, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - David F Jarrard
- Department of Urology, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| |
Collapse
|
34
|
Sachamitr P, Leishman AJ, Davies TJ, Fairchild PJ. Directed Differentiation of Human Induced Pluripotent Stem Cells into Dendritic Cells Displaying Tolerogenic Properties and Resembling the CD141 + Subset. Front Immunol 2018; 8:1935. [PMID: 29358940 PMCID: PMC5766641 DOI: 10.3389/fimmu.2017.01935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has begun to revolutionize cell therapy by providing a convenient source of rare cell types not normally available from patients in sufficient numbers for therapeutic purposes. In particular, the development of protocols for the differentiation of populations of leukocytes as diverse as naïve T cells, macrophages, and natural killer cells provides opportunities for their scale-up and quality control prior to administration. One population of leukocytes whose therapeutic potential has yet to be explored is the subset of conventional dendritic cells (DCs) defined by their surface expression of CD141. While these cells stimulate cytotoxic T cells in response to inflammation through the cross-presentation of viral and tumor-associated antigens in an MHC class I-restricted manner, under steady-state conditions CD141+ DCs resident in interstitial tissues are focused on the maintenance of homeostasis through the induction of tolerance to local antigens. Here, we describe protocols for the directed differentiation of human iPSCs into a mixed population of CD11c+ DCs through the spontaneous formation of embryoid bodies and exposure to a cocktail of growth factors, the scheduled withdrawal of which serves to guide the process of differentiation. Furthermore, we describe the enrichment of DCs expressing CD141 through depletion of CD1c+ cells, thereby obtaining a population of “untouched” DCs unaffected by cross-linking of surface CD141. The resulting cells display characteristic phagocytic and endocytic capacity and acquire an immunostimulatory phenotype following exposure to inflammatory cytokines and toll-like receptor agonists. Nevertheless, under steady-state conditions, these cells share some of the tolerogenic properties of tissue-resident CD141+ DCs, which may be further reinforced by exposure to a range of pharmacological agents including interleukin-10, rapamycin, dexamethasone, and 1α,25-dihydoxyvitamin D3. Our protocols therefore provide access to a novel source of DCs analogous to the CD141+ subset under steady-state conditions in vivo and may, therefore, find utility in the treatment of a range of disease states requiring the establishment of immunological tolerance.
Collapse
Affiliation(s)
- Patty Sachamitr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alison J Leishman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
35
|
Shi B, Thomas AJ, Benninghoff AD, Sessions BR, Meng Q, Parasar P, Rutigliano HM, White KL, Davies CJ. Genetic and epigenetic regulation of major histocompatibility complex class I gene expression in bovine trophoblast cells. Am J Reprod Immunol 2017; 79. [PMID: 29131441 PMCID: PMC5728445 DOI: 10.1111/aji.12779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/10/2017] [Indexed: 11/28/2022] Open
Abstract
Problem The regulatory mechanisms governing differential expression of classical major histocompatibility complex (MHC) class I (MHC‐Ia) and non‐classical MHC class I (MHC‐Ib) genes are poorly understood. Method of study Quantitative reverse transcription‐ polymerase chain reaction (PCR) was used to compare the abundance of MHC‐I transcripts and related transcription factors in peripheral blood mononuclear cells (PBMC) and placental trophoblast cells (PTC). Methylation of MHC‐I CpG islands was detected by bisulfite treatment and next‐generation sequencing. Demethylation of PBMC and PTC with 5′‐aza‐deoxycytidine was used to assess the role of methylation in gene regulation. Results MHC‐I expression was higher in PBMC than PTC and was correlated with expression of IRF1, class II MHC transactivator (CIITA), and STAT1. The MHC‐Ia genes and BoLA‐NC1 were devoid of CpG methylation in PBMC and PTC. In contrast, CpG sites in the gene body of BoLA‐NC2, ‐NC3, and ‐NC4 were highly methylated in PBMC but largely unmethylated in normal PTC and moderately methylated in somatic cell nuclear transfer PTC. In PBMC, demethylation resulted in upregulation of MHC‐Ib by 2.8‐ to 6‐fold, whereas MHC‐Ia transcripts were elevated less than 2‐fold. Conclusion DNA methylation regulates bovine MHC‐Ib expression and is likely responsible for the different relative levels of MHC‐Ib to MHC‐Ia transcripts in PBMC and PTC.
Collapse
Affiliation(s)
- Bi Shi
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Benjamin R Sessions
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Parveen Parasar
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Heloisa M Rutigliano
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Christopher J Davies
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,Center for Integrated BioSystems, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| |
Collapse
|
36
|
Combining membrane proteomics and computational three-way pathway analysis revealed signalling pathways preferentially regulated in human iPSCs and human ESCs. Sci Rep 2017; 7:15055. [PMID: 29118436 PMCID: PMC5678157 DOI: 10.1038/s41598-017-15347-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022] Open
Abstract
Owing to the clinical potential of human induced pluripotent stem cells (hiPSCs) in regenerative medicine, a thorough examination of the similarities and differences between hiPSCs and human embryonic stem cells (hESCs) has become indispensable. Moreover, as the important roles of membrane proteins in biological signalling, functional analyses of membrane proteome are therefore promising. In this study, a pathway analysis by the bioinformatics tool GSEA was first performed to identify significant pathways associated with the three comparative membrane proteomics experiments: hiPSCs versus precursor human foreskin fibroblasts (HFF), hESCs versus precursor HFF, and hiPSCs versus hESCs. A following three-way pathway comparison was conducted to identify the differentially regulated pathways that may contribute to the differences between hiPSCs and hESCs. Our results revealed that pathways related to oxidative phosphorylation and focal adhesion may undergo incomplete regulations during the reprogramming process. This hypothesis was supported by another public proteomics dataset to a certain degree. The identified pathways and their core enriched proteins could serve as the starting point to explore the possible ways to make hiPSCs closer to hESCs.
Collapse
|
37
|
HLA and Histo-Blood Group Antigen Expression in Human Pluripotent Stem Cells and their Derivatives. Sci Rep 2017; 7:13072. [PMID: 29026098 PMCID: PMC5638960 DOI: 10.1038/s41598-017-12231-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/06/2017] [Indexed: 01/03/2023] Open
Abstract
One prerequisite for a successful clinical outcome of human pluripotent stem cell (hPSC) based therapies is immune compatibility between grafted cells/tissue and recipient. This study explores immune determinants of human embryonic stem cell lines (hESC) and induced human pluripotent stem cell (hiPSC) lines and hepatocyte- and cardiomyocyte-like cells derived from these cells. HLA class I was expressed on all pluripotent hPSC lines which upon differentiation into hepatocyte-like cells was considerably reduced in contrast to cardiomyocyte-like cells which retained class I antigens. No HLA class II antigens were found in the pluripotent or differentiated cells. Histo-blood group carbohydrate antigens SSEA-3/SSEA-4/SSEA-5, Globo H, A, Lex/Ley and sialyl-lactotetra were expressed on all hPSC lines. Blood group AB(O)H antigen expression was in accordance with ABO genotype. Interestingly, only a subpopulation of A1O1 cells expressed A. During differentiation of hPSC, some histo-blood group antigens showed congruent alteration patterns while expression of other antigens differed between the cell lines. No systematic difference in the hPSC cell surface tissue antigen expression was detected. In conclusion, hPSC and their derivatives express cell surface antigens that may cause an immune rejection. Furthermore, tissue antigen expression must be established for each individual stem cell line prior to clinical application.
Collapse
|
38
|
Sultan M, Coyle KM, Vidovic D, Thomas ML, Gujar S, Marcato P. Hide-and-seek: the interplay between cancer stem cells and the immune system. Carcinogenesis 2017; 38:107-118. [PMID: 27866156 DOI: 10.1093/carcin/bgw115] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/15/2016] [Indexed: 12/26/2022] Open
Abstract
The enhanced ability of cancer stem cells (CSCs) to give rise to new tumors suggests that these cells may also have an advantage in evading immune detection and elimination. This tumor-forming ability, combined with the known plasticity of the immune system, which can play both protumorigenic and antitumorigenic roles, has motivated investigations into the interaction between CSCs and the immune system. Herein, we review the interplay between host immunity and CSCs by examining the immune-related mechanisms that favor CSCs and the CSC-mediated expansion of protumorigenic immune cells. Furthermore, we discuss immune cells, such as natural killer cells, that preferentially target CSCs and the strategies used by CSCs to evade immune detection and destruction. An increased understanding of these interactions and the pathways that regulate them may allow us to harness immune system components to create new adjuvant therapies that eradicate CSCs and improve patient survival.
Collapse
Affiliation(s)
| | | | | | | | - Shashi Gujar
- Department of Pathology and.,Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Paola Marcato
- Department of Pathology and.,Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
39
|
Sackett SD, Rodriguez A, Odorico JS. The Nexus of Stem Cell-Derived Beta-Cells and Genome Engineering. Rev Diabet Stud 2017. [PMID: 28632820 DOI: 10.1900/rds.2017.14.39] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetes, type 1 and type 2 (T1D and T2D), are diseases of epidemic proportions, which are complicated and defined by genetics, epigenetics, environment, and lifestyle choices. Current therapies consist of whole pancreas or islet transplantation. However, these approaches require life-time immunosuppression, and are compounded by the paucity of available donors. Pluripotent stem cells have advanced research in the fields of stem cell biology, drug development, disease modeling, and regenerative medicine, and importantly allows for the interrogation of therapeutic interventions. Recent developments in beta-cell differentiation and genomic modifications are now propelling investigations into the mechanisms behind beta-cell failure and autoimmunity, and offer new strategies for reducing the propensity for immunogenicity. This review discusses the derivation of endocrine lineage cells from human pluripotent stem cells for the treatment of diabetes, and how the editing or manipulation of their genomes can transcend many of the remaining challenges of stem cell technologies, leading to superior transplantation and diabetes drug discovery platforms.
Collapse
Affiliation(s)
- Sara D Sackett
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Aida Rodriguez
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| | - Jon S Odorico
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53711, USA
| |
Collapse
|
40
|
Clinical Application of Pluripotent Stem Cells: An Alternative Cell-Based Therapy for Treating Liver Diseases? Transplantation 2017; 100:2548-2557. [PMID: 27495745 DOI: 10.1097/tp.0000000000001426] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The worldwide shortage of donor livers for organ and hepatocyte transplantation has prompted the search for alternative therapies for intractable liver diseases. Cell-based therapy is envisaged as a useful therapeutic option to recover and stabilize the lost metabolic function for acute liver failure, end-stage and congenital liver diseases, or for those patients who are not considered eligible for organ transplantation. In recent years, research to identify alternative and reliable cell sources for transplantation that can be derived by reproducible methods has been encouraged. Human pluripotent stem cells (PSCs), which comprise both embryonic and induced PSCs, may offer many advantages as an alternative to hepatocytes for liver cell therapy. Their capacity for expansion, hepatic differentiation and self-renewal make them a promising source of unlimited numbers of hepatocyte-like cells for treating and repairing damaged livers. Immunogenicity and tumorigenicity of human PSCs remain the bottleneck for successful clinical application. However, recent advances made to develop disease-corrected hepatocyte-like cells from patients' human-induced PSCs by gene editing have opened up many potential gateways for the autologous treatment of hereditary liver diseases, which may likely reduce the risk of rejection and the need for lifelong immunosuppression. Well-defined methods to reduce the expression of oncogenic genes in induced PSCs, including protocols for their complete and safe hepatic differentiation, should be established to minimize the tumorigenicity of transplanted cells. On top of this, such new strategies are currently being rigorously tested and validated in preclinical studies before they can be safely transferred to clinical practice with patients.
Collapse
|
41
|
Jones MK, Lu B, Girman S, Wang S. Cell-based therapeutic strategies for replacement and preservation in retinal degenerative diseases. Prog Retin Eye Res 2017; 58:1-27. [PMID: 28111323 PMCID: PMC5441967 DOI: 10.1016/j.preteyeres.2017.01.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/13/2022]
Abstract
Cell-based therapeutics offer diverse options for treating retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP). AMD is characterized by both genetic and environmental risks factors, whereas RP is mainly a monogenic disorder. Though treatments exist for some patients with neovascular AMD, a majority of retinal degenerative patients have no effective therapeutics, thus indicating a need for universal therapies to target diverse patient populations. Two main cell-based mechanistic approaches are being tested in clinical trials. Replacement therapies utilize cell-derived retinal pigment epithelial (RPE) cells to supplant lost or defective host RPE cells. These cells are similar in morphology and function to native RPE cells and can potentially supplant the responsibilities of RPE in vivo. Preservation therapies utilize supportive cells to aid in visual function and photoreceptor preservation partially by neurotrophic mechanisms. The goal of preservation strategies is to halt or slow the progression of disease and maintain remaining visual function. A number of clinical trials are testing the safety of replacement and preservation cell therapies in patients; however, measures of efficacy will need to be further evaluated. In addition, a number of prevailing concerns with regards to the immune-related response, longevity, and functionality of the grafted cells will need to be addressed in future trials. This review will summarize the current status of cell-based preclinical and clinical studies with a focus on replacement and preservation strategies and the obstacles that remain regarding these types of treatments.
Collapse
Affiliation(s)
- Melissa K Jones
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Bin Lu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Sergey Girman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Shaomei Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave., Los Angeles, CA 90095, USA.
| |
Collapse
|
42
|
The role of methylation, DNA polymorphisms and microRNAs on HLA-G expression in human embryonic stem cells. Stem Cell Res 2017; 19:118-127. [DOI: 10.1016/j.scr.2017.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 11/29/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022] Open
|
43
|
Kozlowska AK, Topchyan P, Kaur K, Tseng HC, Teruel A, Hiraga T, Jewett A. Differentiation by NK cells is a prerequisite for effective targeting of cancer stem cells/poorly differentiated tumors by chemopreventive and chemotherapeutic drugs. J Cancer 2017; 8:537-554. [PMID: 28367234 PMCID: PMC5370498 DOI: 10.7150/jca.15989] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/24/2016] [Indexed: 01/04/2023] Open
Abstract
Natural Killer (NK) cells target oral, pancreatic, lung, breast, glioblastoma and melanoma stem-like/poorly differentiated tumors. Differentiation of the abovementioned tumors with supernatants from split-anergized NK cells decreases their susceptibility to NK cells, but increases their sensitivity to cisplatin (CDDP)-mediated cell death. Breast and melanoma tumor cells with CD44 knockdown display enhanced susceptibility to NK cell-mediated lysis, potentially due to decreased differentiation. We also demonstrate that sulindac, a non-steroidal anti-inflammatory drug and a chemopreventive agent, not only limits the growth of oral tumor cells, but also aids in cancer cell elimination by NK cells. Treatment of oral tumors with sulindac, but not adriamycin inversely modulates the expression and function of NFκB and JNK, resulting in a significant down-regulation of IL-6, and VEGF secretion by oral tumor cells. In addition, increased secretion of IL-6 and VEGF is blocked by sulindac during interaction of oral tumors with NK cells. Sulindac treatment prevents synergistic induction of VEGF secretion by the tumor cells after their co-culture with untreated NK cells since non-activated NK cells lack the ability to efficiently kill tumor cells. Moreover, sulindac is able to profoundly reduce VEGF secretion by tumor cells cultured with IL-2 activated NK cells, which are able to significantly lyse the tumor cells. Based on the data presented in this study, we propose the following combinatorial approach for the treatment of stem-like/ poorly differentiated tumors in cancer patients with metastatic disease. Stem-like/ poorly differentiated tumor cells may in part undergo lysis or differentiation after NK cell immunotherapy, followed by treatment of differentiated tumors with chemotherapy and chemopreventive agents to eliminate the bulk of the tumor. This dual approach should limit tumor growth and prevent metastasis.
Collapse
Affiliation(s)
- Anna Karolina Kozlowska
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA.; Department of Tumor Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Paytsar Topchyan
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Kawaljit Kaur
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Han-Ching Tseng
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Antonia Teruel
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Toru Hiraga
- Department of Histology and Cell Biology Matsumoto Dental University, Gobara-Hirooka, Shiojiri, Nagano, Japan
| | - Anahid Jewett
- The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, The Jonsson Comprehensive Cancer Center, Dental Research Institute, Division of Oral Biology and Oral Medicine. UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, Takahashi M. Lack of T Cell Response to iPSC-Derived Retinal Pigment Epithelial Cells from HLA Homozygous Donors. Stem Cell Reports 2016; 7:619-634. [PMID: 27641646 PMCID: PMC5063628 DOI: 10.1016/j.stemcr.2016.08.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/25/2016] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
Allografts of retinal pigment epithelial (RPE) cells have been considered for the treatment of ocular diseases. We recently started the transplantation of induced pluripotent stem cell (iPSC)-derived RPE cells for patients with age-related macular degeneration (autogenic grafts). However, there are at least two problems with this approach: (1) high cost, and (2) uselessness for acute patients. To resolve these issues, we established RPE cells from induced iPSCs in HLA homozygote donors. In vitro, human T cells directly recognized allogeneic iPSC-derived RPE cells that expressed HLA class I/II antigens. However, these T cells failed to respond to HLA-A, -B, and -DRB1-matched iPSC-derived RPE cells from HLA homozygous donors. Because of the lack of T cell response to iPSC-derived RPE cells from HLA homozygous donors, we can use these allogeneic iPSC-derived RPE cells in future clinical trials if the recipient and donor are HLA matched.
Collapse
Affiliation(s)
- Sunao Sugita
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Yuko Iwasaki
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University Graduate School of Medicine and Dental Sciences, Tokyo 113-8519, Japan
| | - Kenichi Makabe
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takafumi Kimura
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Takaomi Futagami
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; HLA Foundation Laboratory, Kyoto 600-8813, Japan
| | - Shinji Suegami
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; HLA Foundation Laboratory, Kyoto 600-8813, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
45
|
Histone Deacetylase Inhibitors Enhance CD4 T Cell Susceptibility to NK Cell Killing but Reduce NK Cell Function. PLoS Pathog 2016; 12:e1005782. [PMID: 27529554 PMCID: PMC4986965 DOI: 10.1371/journal.ppat.1005782] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
In the search for a cure for HIV-1 infection, histone deacetylase inhibitors (HDACi) are being investigated as activators of latently infected CD4 T cells to promote their targeting by cytotoxic T-lymphocytes (CTL). However, HDACi may also inhibit CTL function, suggesting different immunotherapy approaches may need to be explored. Here, we study the impact of different HDACi on both Natural Killer (NK) and CTL targeting of HIV-1 infected cells. We found HDACi down-regulated HLA class I expression independently of HIV-1 Nef which, without significantly compromising CTL function, led to enhanced targeting by NK cells. HDACi-treated HIV-1-infected CD4 T cells were also more effectively cleared than untreated controls during NK co-culture. However, HDACi impaired NK function, reducing degranulation and killing capacity. Depending on the HDACi and dose, this impairment could counteract the benefit gained by treating infected target cells. These data suggest that following HDACi-induced HLA class I down-regulation NK cells kill HIV-1-infected cells, although HDACi-mediated NK cell inhibition may negate this effect. Our data emphasize the importance of studying the effects of potential interventions on both targets and effectors. Antiretroviral therapy successfully controls HIV-1 viraemia and can restore life expectancy to within normal limits. However, antiretroviral therapy is not a cure as HIV-1 persists in a treatment-resistant latent reservoir. Therapy also comes with a high cost, side effects, and a lifetime commitment to pills. Therefore, there is growing interest in finding a cure. One proposed strategy is to use novel agents to stimulate HIV-1 transcription in latently-infected cells, after which the cells could be targeted and cleared by the immune system. Of current interest are the latency-reversing histone deacetylase inhibitors (HDACi), with CD8 T cells and NK cells potentially serving as the HIV-1 killing agents. However, previous studies suggested HDACi negatively affected CD8 T cell function, compromising their role as killers. Here we studied whether NK cells might serve as effective killers of HDACi treated CD4 T cells, especially as HDACi may induce HLA class I down-regulation. We found that although treating infected cells with HDACi resulted in HLA class I down-regulation and enhanced their visibility to NK cells, HDACi inhibited NK cell function overall, suggesting additional killing strategies will be required.
Collapse
|
46
|
Chen M, Wang Y, Yao X, Li C, Jiang M, Cui P, Wang B. Hypermethylation of HLA-C may be an epigenetic marker in psoriasis. J Dermatol Sci 2016; 83:10-6. [DOI: 10.1016/j.jdermsci.2016.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/13/2016] [Accepted: 04/13/2016] [Indexed: 10/22/2022]
|
47
|
Mousavinejad M, Andrews PW, Shoraki EK. Current Biosafety Considerations in Stem Cell Therapy. CELL JOURNAL 2016; 18:281-7. [PMID: 27540533 PMCID: PMC4988427 DOI: 10.22074/cellj.2016.4324] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Stem cells can be valuable model systems for drug discovery and modelling human diseases as well as to investigate cellular interactions and molecular events in the early stages of development. Controlling the differentiation of stem cells into specific germ layers provides a potential source of highly specialized cells for therapeutic applications. In recent years, finding individual properties of stem cells such as their ultimate self-renewal capacity and the generation of particular cell lines by differentiation under specific culture conditions underpins the development of regenerative therapies. These futures make stem cells a leading candidate to treat a wide range of diseases. Nevertheless, as with all novel treatments, safety issues are one of the barriers that should be overcome to guarantee the quality of a patient's life after stem cell therapy. Many studies have pointed to a large gap in our knowledge about the therapeutic applications of these cells. This gap clearly shows the importance of biosafety concerns for the current status of cell-based therapies, even more than their therapeutic efficacy. Currently, scientists report that tumorigenicity and immunogenicity are the two most important associated cell-based therapy risks. In principle, intrinsic factors such as cell characteristics and extrinsic elements introduced by manufacturing of stem cells can result in tumor formation and immunological reactions after stem cell transplantation. Therapeutic research shows there are many biological questions regarding safety issues of stem cell clinical applications. Stem cell therapy is a rapidly advancing field that needs to focus more on finding a comprehensive technology for assessing risk. A variety of risk factors (from intrinsic to extrinsic) should be considered for safe clinical stem cell therapies.
Collapse
Affiliation(s)
- Masoumeh Mousavinejad
- Centre for Stem Cell Biology (CSCB), Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Peter W Andrews
- Centre for Stem Cell Biology (CSCB), Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Elham Kargar Shoraki
- Department of Biological Sciences, Faculty of Science, Tehran Kharazmi University, Tehran, Iran
| |
Collapse
|
48
|
Lan T, Wang L, Xu L, Jin N, Yan G, Xia J, Wang H, Zhuang G, Gao C, Meng L, Du F, Zhou Q, Qi Z. Induced Pluripotent Stem Cells Can Effectively Differentiate into Multiple Functional Lymphocyte Lineages In Vivo with Negligible Bias. Stem Cells Dev 2016; 25:462-71. [DOI: 10.1089/scd.2015.0248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Tianshu Lan
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Libin Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Lin Xu
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Ning Jin
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Guoliang Yan
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Junjie Xia
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Hailong Wang
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Guohong Zhuang
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Chang Gao
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Luxi Meng
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Feifei Du
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhongquan Qi
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
49
|
Emerging Implications for Extracellular Matrix-Based Technologies in Vascularized Composite Allotransplantation. Stem Cells Int 2016; 2016:1541823. [PMID: 26839554 PMCID: PMC4709778 DOI: 10.1155/2016/1541823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Despite recent progress in vascularized composite allotransplantation (VCA), limitations including complex, high dose immunosuppression regimens, lifelong risk of toxicity from immunosuppressants, acute and most critically chronic graft rejection, and suboptimal nerve regeneration remain particularly challenging obstacles restricting clinical progress. When properly configured, customized, and implemented, biomaterials derived from the extracellular matrix (ECM) retain bioactive molecules and immunomodulatory properties that can promote stem cell migration, proliferation and differentiation, and constructive functional tissue remodeling. The present paper reviews the emerging implications of ECM-based technologies in VCA, including local immunomodulation, tissue repair, nerve regeneration, minimally invasive graft targeted drug delivery, stem cell transplantation, and other donor graft manipulation.
Collapse
|
50
|
Kim J, Hall RR, Lesniak MS, Ahmed AU. Stem Cell-Based Cell Carrier for Targeted Oncolytic Virotherapy: Translational Opportunity and Open Questions. Viruses 2015; 7:6200-17. [PMID: 26633462 PMCID: PMC4690850 DOI: 10.3390/v7122921] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022] Open
Abstract
Oncolytic virotherapy for cancer is an innovative therapeutic option where the ability of a virus to promote cell lysis is harnessed and reprogrammed to selectively destroy cancer cells. Such treatment modalities exhibited antitumor activity in preclinical and clinical settings and appear to be well tolerated when tested in clinical trials. However, the clinical success of oncolytic virotherapy has been significantly hampered due to the inability to target systematic metastasis. This is partly due to the inability of the therapeutic virus to survive in the patient circulation, in order to target tumors at distant sites. An early study from various laboratories demonstrated that cells infected with oncolytic virus can protect the therapeutic payload form the host immune system as well as function as factories for virus production and enhance the therapeutic efficacy of oncolytic virus. While a variety of cell lineages possessed potential as cell carriers, copious investigation has established stem cells as a very attractive cell carrier system in oncolytic virotherapy. The ideal cell carrier desire to be susceptible to viral infection as well as support viral infection, maintain immunosuppressive properties to shield the loaded viruses from the host immune system, and most importantly possess an intrinsic tumor homing ability to deliver loaded viruses directly to the site of the metastasis—all qualities stem cells exhibit. In this review, we summarize the recent work in the development of stem cell-based carrier for oncolytic virotherapy, discuss the advantages and disadvantages of a variety of cell carriers, especially focusing on why stem cells have emerged as the leading candidate, and finally propose a future direction for stem cell-based targeted oncolytic virotherapy that involves its establishment as a viable treatment option for cancer patients in the clinical setting.
Collapse
Affiliation(s)
- Janice Kim
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Robert R Hall
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Maciej S Lesniak
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| | - Atique U Ahmed
- The Department of Surgery and the Brain Tumor Center, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|