1
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
2
|
Lu L, Yang Y, Shi G, He X, Xu X, Feng Y, Wang W, Li Z, Yang J, Li B, Sun G. Alterations in mitochondrial structure and function in response to environmental temperature changes in Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106330. [PMID: 38171258 DOI: 10.1016/j.marenvres.2023.106330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Global temperatures have risen as a result of climate change, and the resulting warmer seawater will exert physiological stresses on many aquatic animals, including Apostichopus japonicus. It has been suggested that the sensitivity of aquatic poikilothermal animals to climate change is closely related to mitochondrial function. Therefore, understanding the interaction between elevated temperature and mitochondrial functioning is key to characterizing organisms' responses to heat stress. However, little is known about the mitochondrial response to heat stress in A. japonicus. In this work, we investigated the morphological and functional changes of A. japonicus mitochondria under three representative temperatures, control temperature (18 °C), aestivation temperature (25 °C) and heat stress temperature (32 °C) temperatures using transmission electron microscopy (TEM) observation of mitochondrial morphology combined with proteomics and metabolomics techniques. The results showed that the mitochondrial morphology of A. japonicus was altered, with decreases in the number of mitochondrial cristae at 25 °C and mitochondrial lysis, fracture, and vacuolization at 32 °C. Proteomic and metabolomic analyses revealed 103 differentially expressed proteins and 161 differential metabolites at 25 °C. At 32 °C, the levels of 214 proteins and 172 metabolites were significantly altered. These proteins and metabolites were involved in the tricarboxylic acid (TCA) cycle, substance transport, membrane potential homeostasis, anti-stress processes, mitochondrial autophagy, and apoptosis. Furthermore, a hypothetical network of proteins and metabolites in A. japonicus mitochondria in response to temperature changes was constructed based on proteomic and metabolomic data. These results suggest that the dynamic regulation of mitochondrial energy metabolism, resistance to oxidative stress, autophagy, apoptosis, and mitochondrial morphology in A. japonicus may play important roles in the response to elevated temperatures. In summary, this study describes the response of A. japonicus mitochondria to temperature changes from the perspectives of morphology, proteins, and metabolites, which provided a better understanding the mechanisms of mitochondrial regulation under environment stress in marine echinoderms.
Collapse
Affiliation(s)
- Lixin Lu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yu Yang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Guojun Shi
- Hekou District Science and Technology Bureau, China
| | - Xiaohua He
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Bin Li
- Yantai Haiyu Marine Science and Technology Co. Ltd, Yantai, 264002, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| |
Collapse
|
3
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers KJ, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. Curr Biol 2024; 34:361-375.e9. [PMID: 38181793 DOI: 10.1016/j.cub.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 12/07/2023] [Indexed: 01/07/2024]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine live 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate the sequence and detail of shape changes, the tissues and molecular physiology involved, and the control of these movements. Morphometric analysis and targeted perturbation suggest that the movement is driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent canal system. Thermal proteome profiling and quantitative phosphoproteomics confirm the control of cellular relaxation by an Akt/NO/PKG/PKA pathway. Agitation-induced deflation leads to differential phosphorylation of proteins forming epithelial cell junctions, implying their mechanosensitive role. Unexpectedly, untargeted metabolomics detect a concomitant decrease in antioxidant molecules during deflation, reflecting an increase in reactive oxygen species. Together with the secretion of proteinases, cytokines, and granulin, this indicates an inflammation-like state of the deflating sponge reminiscent of vascular endothelial cells experiencing oscillatory shear stress. These results suggest the conservation of an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals and offer a possible mechanism for whole-body coordination through diffusible paracrine signals and mechanotransduction.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske J Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany; Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Rodriguez-Colman MJ, Dansen TB, Burgering BMT. FOXO transcription factors as mediators of stress adaptation. Nat Rev Mol Cell Biol 2024; 25:46-64. [PMID: 37710009 DOI: 10.1038/s41580-023-00649-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/16/2023]
Abstract
The forkhead box protein O (FOXO, consisting of FOXO1, FOXO3, FOXO4 and FOXO6) transcription factors are the mammalian orthologues of Caenorhabditis elegans DAF-16, which gained notoriety for its capability to double lifespan in the absence of daf-2 (the gene encoding the worm insulin receptor homologue). Since then, research has provided many mechanistic details on FOXO regulation and FOXO activity. Furthermore, conditional knockout experiments have provided a wealth of data as to how FOXOs control development and homeostasis at the organ and organism levels. The lifespan-extending capabilities of DAF-16/FOXO are highly correlated with their ability to induce stress response pathways. Exogenous and endogenous stress, such as cellular redox stress, are considered the main drivers of the functional decline that characterizes ageing. Functional decline often manifests as disease, and decrease in FOXO activity indeed negatively impacts on major age-related diseases such as cancer and diabetes. In this context, the main function of FOXOs is considered to preserve cellular and organismal homeostasis, through regulation of stress response pathways. Paradoxically, the same FOXO-mediated responses can also aid the survival of dysfunctional cells once these eventually emerge. This general property to control stress responses may underlie the complex and less-evident roles of FOXOs in human lifespan as opposed to model organisms such as C. elegans.
Collapse
Affiliation(s)
| | - Tobias B Dansen
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Boudewijn M T Burgering
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
5
|
Ruperti F, Becher I, Stokkermans A, Wang L, Marschlich N, Potel C, Maus E, Stein F, Drotleff B, Schippers K, Nickel M, Prevedel R, Musser JM, Savitski MM, Arendt D. Molecular profiling of sponge deflation reveals an ancient relaxant-inflammatory response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551666. [PMID: 37577507 PMCID: PMC10418225 DOI: 10.1101/2023.08.02.551666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
A hallmark of animals is the coordination of whole-body movement. Neurons and muscles are central to this, yet coordinated movements also exist in sponges that lack these cell types. Sponges are sessile animals with a complex canal system for filter-feeding. They undergo whole-body movements resembling "contractions" that lead to canal closure and water expulsion. Here, we combine 3D optical coherence microscopy, pharmacology, and functional proteomics to elucidate anatomy, molecular physiology, and control of these movements. We find them driven by the relaxation of actomyosin stress fibers in epithelial canal cells, which leads to whole-body deflation via collapse of the incurrent and expansion of the excurrent system, controlled by an Akt/NO/PKG/A pathway. A concomitant increase in reactive oxygen species and secretion of proteinases and cytokines indicate an inflammation-like state reminiscent of vascular endothelial cells experiencing oscillatory shear stress. This suggests an ancient relaxant-inflammatory response of perturbed fluid-carrying systems in animals.
Collapse
Affiliation(s)
- Fabian Ruperti
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Collaboration for joint Ph.D. degree between EMBL and Heidelberg University, Faculty of Biosciences 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | - Ling Wang
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nick Marschlich
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Clement Potel
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Emanuel Maus
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Klaske Schippers
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Nickel
- Bionic Consulting Dr. Michael Nickel, 71686 Remseck am Neckar, Germany
| | - Robert Prevedel
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jacob M Musser
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Proteomics Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Cichocki F, Zhang B, Wu CY, Chiu E, Day A, O’Connor RS, Yackoubov D, Simantov R, McKenna DH, Cao Q, Defor TE, Janakiram M, Wangen R, Cayci Z, Snyder N, Kumar A, Grzywacz B, Hwang J, Geffen Y, Miller JS, Maakaron J, Bachanova V. Nicotinamide enhances natural killer cell function and yields remissions in patients with non-Hodgkin lymphoma. Sci Transl Med 2023; 15:eade3341. [PMID: 37467318 PMCID: PMC10859734 DOI: 10.1126/scitranslmed.ade3341] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Allogeneic natural killer (NK) cell adoptive transfer has shown the potential to induce remissions in relapsed or refractory leukemias and lymphomas, but strategies to enhance NK cell survival and function are needed to improve clinical efficacy. Here, we demonstrated that NK cells cultured ex vivo with interleukin-15 (IL-15) and nicotinamide (NAM) exhibited stable induction of l-selectin (CD62L), a lymphocyte adhesion molecule important for lymph node homing. High frequencies of CD62L were associated with elevated transcription factor forkhead box O1 (FOXO1), and NAM promoted the stability of FOXO1 by preventing proteasomal degradation. NK cells cultured with NAM exhibited metabolic changes associated with elevated glucose flux and protection against oxidative stress. NK cells incubated with NAM also displayed enhanced cytotoxicity and inflammatory cytokine production and preferentially persisted in xenogeneic adoptive transfer experiments. We also conducted a first-in-human phase 1 clinical trial testing adoptive transfer of NK cells expanded ex vivo with IL-15 and NAM (GDA-201) combined with monoclonal antibodies in patients with relapsed or refractory non-Hodgkin lymphoma (NHL) and multiple myeloma (MM) (NCT03019666). Cellular therapy with GDA-201 and rituximab was well tolerated and yielded an overall response rate of 74% in 19 patients with advanced NHL. Thirteen patients had a complete response, and 1 patient had a partial response. GDA-201 cells were detected for up to 14 days in blood, bone marrow, and tumor tissues and maintained a favorable metabolic profile. The safety and efficacy of GDA-201 in this study support further development as a cancer therapy.
Collapse
Affiliation(s)
- Frank Cichocki
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bin Zhang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cheng-Ying Wu
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Emily Chiu
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Abderrahman Day
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
- University of Minnesota Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roddy S. O’Connor
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - David H. McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qing Cao
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Todd E. Defor
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Murali Janakiram
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rose Wangen
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zuzan Cayci
- Division of Radiology, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nathaniel Snyder
- Metabolic Disease Research and Thrombosis Research Center, Departments of Cardiovascular Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19104, USA
| | - Akhilesh Kumar
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bartosz Grzywacz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin Hwang
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Jeffrey S. Miller
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joseph Maakaron
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Chang ZS, He ZM, Xia JB. FoxO3 Regulates the Progress and Development of Aging and Aging-Related Diseases. Curr Mol Med 2023; 23:991-1006. [PMID: 36239722 DOI: 10.2174/1566524023666221014140817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Aging is an inevitable risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases, cancer, and diabetes. Investigation into the molecular mechanisms involved in aging and longevity will benefit the treatment of age-dependent diseases and the development of preventative medicine for agingrelated diseases. Current evidence has revealed that FoxO3, encoding the transcription factor (FoxO)3, a key transcription factor that integrates different stimuli in the intrinsic and extrinsic pathways and is involved in cell differentiation, protein homeostasis, stress resistance and stem cell status, plays a regulatory role in longevity and in age-related diseases. However, the precise mechanisms by which the FoxO3 transcription factor modulates aging and promotes longevity have been unclear until now. Here, we provide a brief overview of the mechanisms by which FoxO3 mediates signaling in pathways involved in aging and aging-related diseases, as well as the current knowledge on the role of the FoxO3 transcription factor in the human lifespan and its clinical prospects. Ultimately, we conclude that FoxO3 signaling pathways, including upstream and downstream molecules, may be underlying therapeutic targets in aging and age-related diseases.
Collapse
Affiliation(s)
- Zao-Shang Chang
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Zhi-Ming He
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Jing-Bo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, Guangdong, China
| |
Collapse
|
8
|
Gui T, Burgering BMT. FOXOs: masters of the equilibrium. FEBS J 2022; 289:7918-7939. [PMID: 34610198 PMCID: PMC10078705 DOI: 10.1111/febs.16221] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
Forkhead box O (FOXO) transcription factors (TFs) are a subclass of the larger family of forkhead TFs. Mammalians express four members FOXO1, FOXO3, FOXO4, and FOXO6. The interest in FOXO function stems mostly from their observed role in determining lifespan, where in model organisms, increased FOXO activity results in extended lifespan. FOXOs act as downstream of several signaling pathway and are extensively regulated through post-translational modifications. The transcriptional program activated by FOXOs in various cell types, organisms, and under various conditions has been described and has shed some light on what the critical transcriptional targets are in mediating FOXO function. At the cellular level, these studies have revealed a role for FOXOs in cell metabolism, cellular redox, cell proliferation, DNA repair, autophagy, and many more. The general picture that emerges hereof is that FOXOs act to preserve equilibrium, and they are important for cellular homeostasis. Here, we will first briefly summarize the general knowledge of FOXO regulation and possible functions. We will use genomic stability to illustrate how FOXOs ensure homeostasis. Genomic stability is critical for maintaining genetic integrity, and therefore preventing disease. However, genomic mutations need to occur during lifetime to enable evolution, yet their accumulation is believed to be causative to aging. Therefore, the role of FOXO in genomic stability may underlie its role in lifespan and aging. Finally, we will come up with questions on some of the unknowns in FOXO function, the answer(s) to which we believe will further our understanding of FOXO function and ultimately may help to understand lifespan and its consequences.
Collapse
Affiliation(s)
- Tianshu Gui
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, University Medical Center Utrecht and the Oncode Institute, The Netherlands
| |
Collapse
|
9
|
Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, Martínez de la Fuente J. Photonic and magnetic materials for on-demand local drug delivery. Adv Drug Deliv Rev 2022; 191:114584. [PMID: 36273514 DOI: 10.1016/j.addr.2022.114584] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 02/06/2023]
Abstract
Nanomedicine has been considered a promising tool for biomedical research and clinical practice in the 21st century because of the great impact nanomaterials could have on human health. The generation of new smart nanomaterials, which enable time- and space-controlled drug delivery, improve the limitations of conventional treatments, such as non-specific targeting, poor biodistribution and permeability. These smart nanomaterials can respond to internal biological stimuli (pH, enzyme expression and redox potential) and/or external stimuli (such as temperature, ultrasound, magnetic field and light) to further the precision of therapies. To this end, photonic and magnetic nanoparticles, such as gold, silver and iron oxide, have been used to increase sensitivity and responsiveness to external stimuli. In this review, we aim to report the main and most recent systems that involve photonic or magnetic nanomaterials for external stimulus-responsive drug release. The uniqueness of this review lies in highlighting the versatility of integrating these materials within different carriers. This leads to enhanced performance in terms of in vitro and in vivo efficacy, stability and toxicity. We also point out the current regulatory challenges for the translation of these systems from the bench to the bedside, as well as the yet unresolved matter regarding the standardization of these materials.
Collapse
Affiliation(s)
- Ilaria Armenia
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain.
| | - Carlos Cuestas Ayllón
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Beatriz Torres Herrero
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Francesca Bussolari
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Gabriel Alfranca
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Valeria Grazú
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Jesús Martínez de la Fuente
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
10
|
Arinda BN, Innabi YA, Grasis JA, Oviedo NJ. Non-traditional roles of immune cells in regeneration: an evolutionary perspective. Development 2022; 149:275269. [PMID: 35502784 PMCID: PMC9124569 DOI: 10.1242/dev.199903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune cells are known to engage in pathogen defense. However, emerging research has revealed additional roles for immune cells, which are independent of their function in the immune response. Here, we underscore the ability of cells outside of the adaptive immune system to respond to recurring infections through the lens of evolution and cellular memory. With this in mind, we then discuss the bidirectional crosstalk between the immune cells and stem cells and present examples where these interactions regulate tissue repair and regeneration. We conclude by suggesting that comprehensive analyses of the immune system may enable biomedical applications in stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Beryl N Arinda
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Yacoub A Innabi
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Juris A Grasis
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, University of California, Merced, CA 95343, USA.,Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
11
|
Huygens C, Ribeiro Lopes M, Gaget K, Duport G, Peignier S, De Groef S, Parisot N, Calevro F, Callaerts P. Evolutionary diversification of insulin-related peptides (IRPs) in aphids and spatiotemporal distribution in Acyrthosiphon pisum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 141:103670. [PMID: 34666188 DOI: 10.1016/j.ibmb.2021.103670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Members of the insulin superfamily activate the evolutionarily highly conserved insulin/insulin-like growth factor signaling pathway, involved in regulation of growth, energy homeostasis, and longevity. In the current study we focus on aphids to gain more insight into the evolution of the IRPs and how they may contribute to regulation of the insulin-signaling pathway. Using the latest annotation of the pea aphid (Acyrthosiphon pisum) genome, and combining sequence alignments and phylogenetic analyses, we identified seven putative IRP encoding-genes, with IRP1-IRP4 resembling the classical insulin and insulin-like protein structures, and IRP5 and IRP6 bearing insulin-like growth factor (IGF) features. We also identified IRP11 as a new and structurally divergent IRP present in at least eight aphid genomes. Globally the ten aphid genomes analyzed in this work contain four to 15 IRPs, while only three IRPs were found in the genome of the grape phylloxera, a hemipteran insect representing an earlier evolutionary branch of the aphid group. Expression analyses revealed spatial and temporal variation in the expression patterns of the different A. pisum IRPs. IRP1 and IRP4 are expressed throughout all developmental stages and morphs in neuroendocrine cells of the brain, while IRP5 and IRP6 are expressed in the fat body. IRP2 is expressed in specific cells of the gut in aphids in non-crowded conditions and in the head of aphids under crowded conditions, IRP3 in salivary glands, and both IRP2 and IRP3 in the male morph. IRP11 expression is enriched in the carcass. This complex spatiotemporal expression pattern suggests functional diversification of the IRPs.
Collapse
Affiliation(s)
- C Huygens
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium; Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - M Ribeiro Lopes
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - K Gaget
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - G Duport
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - S Peignier
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - S De Groef
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium
| | - N Parisot
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France
| | - F Calevro
- Univ Lyon, INSA Lyon, INRAE, BF2I, UMR 203, 69621, Villeurbanne, France.
| | - P Callaerts
- Laboratory of Behavioral and Developmental Genetics, Department of Human Genetics, KULeuven, University of Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
12
|
Du S, Zheng H. Role of FoxO transcription factors in aging and age-related metabolic and neurodegenerative diseases. Cell Biosci 2021; 11:188. [PMID: 34727995 PMCID: PMC8561869 DOI: 10.1186/s13578-021-00700-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Aging happens to all of us as we live. Thanks to the improved living standard and discovery of life-saving medicines, our life expectancy has increased substantially across the world in the past century. However, the rise in lifespan leads to unprecedented increases in both the number and the percentage of individuals 65 years and older, accompanied by the increased incidences of age-related diseases such as type 2 diabetes mellitus and Alzheimer's disease. FoxO transcription factors are evolutionarily conserved molecules that play critical roles in diverse biological processes, in particular aging and metabolism. Their dysfunction is often found in the pathogenesis of many age-related diseases. Here, we summarize the signaling pathways and cellular functions of FoxO proteins. We also review the complex role of FoxO in aging and age-related diseases, with focus on type 2 diabetes and Alzheimer's disease and discuss the possibility of FoxO as a molecular link between aging and disease risks.
Collapse
Affiliation(s)
- Shuqi Du
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Abstract
The evolutionary theory of aging has set the foundations for a comprehensive understanding of aging. The biology of aging has listed and described the "hallmarks of aging," i.e., cellular and molecular mechanisms involved in human aging. The present paper is the first to infer the order of appearance of the hallmarks of bilaterian and thereby human aging throughout evolution from their presence in progressively narrower clades. Its first result is that all organisms, even non-senescent, have to deal with at least one mechanism of aging - the progressive accumulation of misfolded or unstable proteins. Due to their cumulation, these mechanisms are called "layers of aging." A difference should be made between the first four layers of unicellular aging, present in some unicellular organisms and in all multicellular opisthokonts, that stem and strike "from the inside" of individual cells and span from increasingly abnormal protein folding to deregulated nutrient sensing, and the last four layers of metacellular aging, progressively appearing in metazoans, that strike the cells of a multicellular organism "from the outside," i.e., because of other cells, and span from transcriptional alterations to the disruption of intercellular communication. The evolution of metazoans and eumetazoans probably solved the problem of aging along with the problem of unicellular aging. However, metacellular aging originates in the mechanisms by which the effects of unicellular aging are kept under control - e.g., the exhaustion of stem cells that contribute to replace damaged somatic cells. In bilaterians, additional functions have taken a toll on generally useless potentially limited lifespan to increase the fitness of organisms at the price of a progressively less efficient containment of the damage of unicellular aging. In the end, this picture suggests that geroscience should be more efficient in targeting conditions of metacellular aging rather than unicellular aging itself.
Collapse
Affiliation(s)
- Maël Lemoine
- CNRS, ImmunoConcEpT, UMR 5164, Univ. Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Barve A, Galande AA, Ghaskadbi SS, Ghaskadbi S. DNA Repair Repertoire of the Enigmatic Hydra. Front Genet 2021; 12:670695. [PMID: 33995496 PMCID: PMC8117345 DOI: 10.3389/fgene.2021.670695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Since its discovery by Abraham Trembley in 1744, hydra has been a popular research organism. Features like spectacular regeneration capacity, peculiar tissue dynamics, continuous pattern formation, unique evolutionary position, and an apparent lack of organismal senescence make hydra an intriguing animal to study. While a large body of work has taken place, particularly in the domain of evolutionary developmental biology of hydra, in recent years, the focus has shifted to molecular mechanisms underlying various phenomena. DNA repair is a fundamental cellular process that helps to maintain integrity of the genome through multiple repair pathways found across taxa, from archaea to higher animals. DNA repair capacity and senescence are known to be closely associated, with mutations in several repair pathways leading to premature ageing phenotypes. Analysis of DNA repair in an animal like hydra could offer clues into several aspects including hydra’s purported lack of organismal ageing, evolution of DNA repair systems in metazoa, and alternative functions of repair proteins. We review here the different DNA repair mechanisms known so far in hydra. Hydra genes from various DNA repair pathways show very high similarity with their vertebrate orthologues, indicating conservation at the level of sequence, structure, and function. Notably, most hydra repair genes are more similar to deuterostome counterparts than to common model invertebrates, hinting at ancient evolutionary origins of repair pathways and further highlighting the relevance of organisms like hydra as model systems. It appears that hydra has the full repertoire of DNA repair pathways, which are employed in stress as well as normal physiological conditions and may have a link with its observed lack of senescence. The close correspondence of hydra repair genes with higher vertebrates further demonstrates the need for deeper studies of various repair components, their interconnections, and functions in this early metazoan.
Collapse
Affiliation(s)
- Apurva Barve
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India.,Centre of Excellence in Science and Mathematics Education, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Alisha A Galande
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| | - Saroj S Ghaskadbi
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Surendra Ghaskadbi
- Developmental Biology Group, MACS-Agharkar Research Institute, Pune, India
| |
Collapse
|
15
|
Lyon P, Kuchling F. Valuing what happens: a biogenic approach to valence and (potentially) affect. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190752. [PMID: 33487109 DOI: 10.1098/rstb.2019.0752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Valence is half of the pair of properties that constitute core affect, the foundation of emotion. But what is valence, and where is it found in the natural world? Currently, this question cannot be answered. The idea that emotion is the body's way of driving the organism to secure its survival, thriving and reproduction runs like a leitmotif from the pathfinding work of Antonio Damasio through four book-length neuroscientific accounts of emotion recently published by the field's leading practitioners. Yet while Damasio concluded 20 years ago that the homeostasis-affect linkage is rooted in unicellular life, no agreement exists about whether even non-human animals with brains experience emotions. Simple neural animals-those less brainy than bees, fruit flies and other charismatic invertebrates-are not even on the radar of contemporary affective research, to say nothing of aneural organisms. This near-sightedness has effectively denied the most productive method available for getting a grip on highly complex biological processes to a scientific domain whose importance for understanding biological decision-making cannot be underestimated. Valence arguably is the fulcrum around which the dance of life revolves. Without the ability to discriminate advantage from harm, life very quickly comes to an end. In this paper, we review the concept of valence, where it came from, the work it does in current leading theories of emotion, and some of the odd features revealed via experiment. We present a biologically grounded framework for investigating valence in any organism and sketch a preliminary pathway to a computational model. This article is part of the theme issue 'Basal cognition: conceptual tools and the view from the single cell'.
Collapse
Affiliation(s)
- Pamela Lyon
- Southgate Institute for Health, Society and Equity, Flinders University of South Australia, Adelaide, South Australia, Australia
| | - Franz Kuchling
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
16
|
Ottaviani A, Eid R, Zoccola D, Pousse M, Dubal JM, Barajas E, Jamet K, Lebrigand K, Lapébie P, Baudoin C, Giraud-Panis MJ, Rouan A, Beauchef G, Guéré C, Vié K, Barbry P, Tambutté S, Gilson E, Allemand D. Longevity strategies in response to light in the reef coral Stylophora pistillata. Sci Rep 2020; 10:19937. [PMID: 33203910 PMCID: PMC7673115 DOI: 10.1038/s41598-020-76925-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Aging is a multifactorial process that results in progressive loss of regenerative capacity and tissue function while simultaneously favoring the development of a large array of age-related diseases. Evidence suggests that the accumulation of senescent cells in tissue promotes both normal and pathological aging. Oxic stress is a key driver of cellular senescence. Because symbiotic long-lived reef corals experience daily hyperoxic and hypoxic transitions, we hypothesized that these long-lived animals have developed specific longevity strategies in response to light. We analyzed transcriptome variation in the reef coral Stylophora pistillata during the day-night cycle and revealed a signature of the FoxO longevity pathway. We confirmed this pathway by immunofluorescence using antibodies against coral FoxO to demonstrate its nuclear translocation. Through qPCR analysis of nycthemeral variations of candidate genes under different light regimens, we found that, among genes that were specifically up- or downregulated upon exposure to light, human orthologs of two "light-up" genes (HEY1 and LONF3) exhibited anti-senescence properties in primary human fibroblasts. Therefore, these genes are interesting candidates for counteracting skin aging. We propose a large screen for other light-up genes and an investigation of the biological response of reef corals to light (e.g., metabolic switching) to elucidate these processes and identify effective interventions for promoting healthy aging in humans.
Collapse
Affiliation(s)
- Alexandre Ottaviani
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France.
| | - Rita Eid
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | | | - Mélanie Pousse
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Jean-Marc Dubal
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | | | - Karine Jamet
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, 06560, Sophia Antipolis, France
| | - Pascal Lapébie
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Christian Baudoin
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | | | - Alice Rouan
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France
| | - Gallic Beauchef
- Laboratoires Clarins, 12 avenue de la porte des Ternes, 75017, Paris, France
| | - Christelle Guéré
- Laboratoires Clarins, 12 avenue de la porte des Ternes, 75017, Paris, France
| | - Katell Vié
- Laboratoires Clarins, 12 avenue de la porte des Ternes, 75017, Paris, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, 06560, Sophia Antipolis, France
| | | | - Eric Gilson
- Medical School of Nice, CNRS, INSERM, IRCAN, Université Côte d'Azur, Nice, France. .,Department of Genetics, CHU, Nice, France.
| | | |
Collapse
|
17
|
Moros M, Lewinska A, Merola F, Ferraro P, Wnuk M, Tino A, Tortiglione C. Gold Nanorods and Nanoprisms Mediate Different Photothermal Cell Death Mechanisms In Vitro and In Vivo. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13718-13730. [PMID: 32134240 DOI: 10.1021/acsami.0c02022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photothermal therapy (PTT) is an efficient method of inducing localized hyperthermia and can be achieved using gold nanoparticles as photothermal agents. However, there are many hurdles to get over before this therapy can safely reach the clinics, including nanoparticles' optimal shape and the accurate prediction of cellular responses. Here, we describe the synthesis of gold nanorods and nanoprisms with similar surface plasmon resonances in the near-infrared (NIR) and comparable photothermal conversion efficiencies and characterize the response to NIR irradiation in two biological systems, melanoma cells and the small invertebrate Hydra vulgaris. By integrating animal, cellular, and molecular biology approaches, we show a diverse outcome of nanorods and nanoprisms on the two systems, sustained by the elicitation of different pathways, from necrosis to programmed cell death mechanisms (apoptosis and necroptosis). The comparative multilevel analysis shows great accuracy of in vivo invertebrate models to predict overall responses to photothermal challenging and superior photothermal performance of nanoprisms. Understanding the molecular pathways of these responses may help develop optimized nanoheaters that, safe by design, may improve PTT efficacy for clinical purposes.
Collapse
Affiliation(s)
- Maria Moros
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Anna Lewinska
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Francesco Merola
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Pietro Ferraro
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Maciej Wnuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Angela Tino
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Claudia Tortiglione
- Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello", Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Italy
| |
Collapse
|
18
|
Giraud-Billoud M, Rivera-Ingraham GA, Moreira DC, Burmester T, Castro-Vazquez A, Carvajalino-Fernández JM, Dafre A, Niu C, Tremblay N, Paital B, Rosa R, Storey JM, Vega IA, Zhang W, Yepiz-Plascencia G, Zenteno-Savin T, Storey KB, Hermes-Lima M. Twenty years of the ‘Preparation for Oxidative Stress’ (POS) theory: Ecophysiological advantages and molecular strategies. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:36-49. [DOI: 10.1016/j.cbpa.2019.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022]
|
19
|
Cary GA, Wolff A, Zueva O, Pattinato J, Hinman VF. Analysis of sea star larval regeneration reveals conserved processes of whole-body regeneration across the metazoa. BMC Biol 2019; 17:16. [PMID: 30795750 PMCID: PMC6385403 DOI: 10.1186/s12915-019-0633-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Background Metazoan lineages exhibit a wide range of regenerative capabilities that vary among developmental stage and tissue type. The most robust regenerative abilities are apparent in the phyla Cnidaria, Platyhelminthes, and Echinodermata, whose members are capable of whole-body regeneration (WBR). This phenomenon has been well characterized in planarian and hydra models, but the molecular mechanisms of WBR are less established within echinoderms, or any other deuterostome system. Thus, it is not clear to what degree aspects of this regenerative ability are shared among metazoa. Results We characterize regeneration in the larval stage of the Bat Star (Patiria miniata). Following bisection along the anterior-posterior axis, larvae progress through phases of wound healing and re-proportioning of larval tissues. The overall number of proliferating cells is reduced following bisection, and we find evidence for a re-deployment of genes with known roles in embryonic axial patterning. Following axial respecification, we observe a significant localization of proliferating cells to the wound region. Analyses of transcriptome data highlight the molecular signatures of functions that are common to regeneration, including specific signaling pathways and cell cycle controls. Notably, we find evidence for temporal similarities among orthologous genes involved in regeneration from published Platyhelminth and Cnidarian regeneration datasets. Conclusions These analyses show that sea star larval regeneration includes phases of wound response, axis respecification, and wound-proximal proliferation. Commonalities of the overall process of regeneration, as well as gene usage between this deuterostome and other species with divergent evolutionary origins reveal a deep similarity of whole-body regeneration among the metazoa. Electronic supplementary material The online version of this article (10.1186/s12915-019-0633-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Andrew Wolff
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Olga Zueva
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Joseph Pattinato
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Mellon Institute, 4400 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
20
|
Gold DA, Katsuki T, Li Y, Yan X, Regulski M, Ibberson D, Holstein T, Steele RE, Jacobs DK, Greenspan RJ. The genome of the jellyfish Aurelia and the evolution of animal complexity. Nat Ecol Evol 2018; 3:96-104. [PMID: 30510179 DOI: 10.1038/s41559-018-0719-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 10/12/2018] [Indexed: 11/09/2022]
Abstract
We present the genome of the moon jellyfish Aurelia, a genome from a cnidarian with a medusa life stage. Our analyses suggest that gene gain and loss in Aurelia is comparable to what has been found in its morphologically simpler relatives-the anthozoan corals and sea anemones. RNA sequencing analysis does not support the hypothesis that taxonomically restricted (orphan) genes play an oversized role in the development of the medusa stage. Instead, genes broadly conserved across animals and eukaryotes play comparable roles throughout the life cycle. All life stages of Aurelia are significantly enriched in the expression of genes that are hypothesized to interact in protein networks found in bilaterian animals. Collectively, our results suggest that increased life cycle complexity in Aurelia does not correlate with an increased number of genes. This leads to two possible evolutionary scenarios: either medusozoans evolved their complex medusa life stage (with concomitant shifts into new ecological niches) primarily by re-working genetic pathways already present in the last common ancestor of cnidarians, or the earliest cnidarians had a medusa life stage, which was subsequently lost in the anthozoans. While we favour the earlier hypothesis, the latter is consistent with growing evidence that many of the earliest animals were more physically complex than previously hypothesized.
Collapse
Affiliation(s)
- David A Gold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA. .,Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, USA.
| | - Takeo Katsuki
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA.
| | - Yang Li
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Xifeng Yan
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - David Ibberson
- Deep Sequencing Core Facility, Cell Networks, Heidelberg University, Heidelberg, Germany
| | - Thomas Holstein
- Department of Molecular Evolution and Genomics, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Robert E Steele
- Department of Biological Chemistry and Developmental Biology Center, University of California Irvine, Irvine, CA, USA
| | - David K Jacobs
- Department of Ecology and Evolution, University of California Los Angeles, Los Angeles, CA, USA
| | - Ralph J Greenspan
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA. .,Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA. .,Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Fadl AEA, Mahfouz ME, El-Gamal MMT, Heyland A. Onset of feeding in juvenile sea urchins and its relation to nutrient signalling. INVERTEBR REPROD DEV 2018. [DOI: 10.1080/07924259.2018.1513873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alyaa Elsaid Abdelaziz Fadl
- Department of Integrative Biology, Faculty of Biological science, University of Guelph, Guelph, Ontario, Canada
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | - Magdy Elsayed Mahfouz
- Department of Zoology, Faculty of Science, University of Kafrelsheikh, Kafr Elsheikh, Egypt
| | | | - Andreas Heyland
- Department of Integrative Biology, Faculty of Biological science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Erkenbrack EM, Maziarz JD, Griffith OW, Liang C, Chavan AR, Nnamani MC, Wagner GP. The mammalian decidual cell evolved from a cellular stress response. PLoS Biol 2018; 16:e2005594. [PMID: 30142145 PMCID: PMC6108454 DOI: 10.1371/journal.pbio.2005594] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/29/2018] [Indexed: 11/19/2022] Open
Abstract
Among animal species, cell types vary greatly in terms of number and kind. The number of cell types found within an organism differs considerably between species, and cell type diversity is a significant contributor to differences in organismal structure and function. These observations suggest that cell type origination is a significant source of evolutionary novelty. The molecular mechanisms that result in the evolution of novel cell types, however, are poorly understood. Here, we show that a novel cell type of eutherians mammals, the decidual stromal cell (DSC), evolved by rewiring an ancestral cellular stress response. We isolated the precursor cell type of DSCs, endometrial stromal fibroblasts (ESFs), from the opossum Monodelphis domestica. We show that, in opossum ESFs, the majority of decidual core regulatory genes respond to decidualizing signals but do not regulate decidual effector genes. Rather, in opossum ESFs, decidual transcription factors function in apoptotic and oxidative stress response. We propose that rewiring of cellular stress responses was an important mechanism for the evolution of the eutherian decidual cell type.
Collapse
Affiliation(s)
- Eric M. Erkenbrack
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Jamie D. Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Oliver W. Griffith
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
- School of Biosciences, University of Melbourne, Melbourne, Australia
| | - Cong Liang
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Arun R. Chavan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Mauris C. Nnamani
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Günter P. Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, United States of America
- Systems Biology Institute, Yale University, West Haven, Connecticut, United States of America
- Department of Obstetrics, Gynecology, and Reproductive Science, Yale University Medical School, New Haven, Connecticut, United States of America
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
23
|
Mortzfeld BM, Taubenheim J, Fraune S, Klimovich AV, Bosch TCG. Stem Cell Transcription Factor FoxO Controls Microbiome Resilience in Hydra. Front Microbiol 2018; 9:629. [PMID: 29666616 PMCID: PMC5891625 DOI: 10.3389/fmicb.2018.00629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/19/2018] [Indexed: 01/18/2023] Open
Abstract
The aging process is considered to be the result of accumulating cellular deterioration in an individual organism over time. It can be affected by the combined influence of genetic, epigenetic, and environmental factors including life-style-associated events. In the non-senescent freshwater polyp Hydra, one of the classical model systems for evolutionary developmental biology and regeneration, transcription factor FoxO modulates both stem cell proliferation and innate immunity. This provides strong support for the role of FoxO as a critical rate-of-aging regulator. However, how environmental factors interact with FoxO remains unknown. Here, we find that deficiency in FoxO signaling in Hydra leads to dysregulation of antimicrobial peptide expression and that FoxO loss-of-function polyps are impaired in selection for bacteria resembling the native microbiome and more susceptible to colonization of foreign bacteria. These findings reveal a key role of FoxO signaling in the communication between host and microbiota and embed the evolutionary conserved longevity factor FoxO into the holobiont concept.
Collapse
Affiliation(s)
| | - Jan Taubenheim
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sebastian Fraune
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
24
|
Xin Z, Ma Z, Hu W, Jiang S, Yang Z, Li T, Chen F, Jia G, Yang Y. FOXO1/3: Potential suppressors of fibrosis. Ageing Res Rev 2018; 41:42-52. [PMID: 29138094 DOI: 10.1016/j.arr.2017.11.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/07/2017] [Accepted: 11/08/2017] [Indexed: 02/06/2023]
Abstract
Fibrosis is a universally age-related disease that involves nearly all organs. It is typically initiated by organic injury and eventually results in organ failure. There are still few effective therapeutic strategy targets for fibrogenesis. Forkhead box proteins O1 and O3 (FOXO1/3) have been shown to have favorable inhibitory effects on fibroblast activation and subsequent extracellular matrix production and can ameliorate fibrosis levels in numerous organs, including the heart, liver, lung, and kidney; they are therefore promising targets for anti-fibrosis therapy. Moreover, we can develop appropriate strategies to make the best use of FOXO1/3's anti-fibrosis properties. The information reviewed here should be significant for understanding the roles of FOXO1/3 in fibrosis and should contribute to the design of further studies related to FOXO1/3 and the fibrotic response and shed light on a potential treatment for fibrosis.
Collapse
Affiliation(s)
- Zhenlong Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Guozhan Jia
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
25
|
Deines P, Lachnit T, Bosch TCG. Competing forces maintain theHydrametaorganism. Immunol Rev 2017; 279:123-136. [DOI: 10.1111/imr.12564] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peter Deines
- Zoological Institute; Christian Albrechts University Kiel; Kiel Germany
| | - Tim Lachnit
- Zoological Institute; Christian Albrechts University Kiel; Kiel Germany
| | | |
Collapse
|
26
|
Sebestyén F, Póliska S, Rácz R, Bereczki J, Lénárt K, Barta Z, Lendvai ÁZ, Tökölyi J. Insulin/IGF Signaling and Life History Traits in Response to Food Availability and Perceived Density in the Cnidarian Hydra vulgaris. Zoolog Sci 2017; 34:318-325. [PMID: 28770685 DOI: 10.2108/zs160171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Insulin/insulin-like growth factor signaling (IIS) is thought to be a central mediator of life history traits, but the generality of its role is not clear. Here, we investigated mRNA expression levels of three insulin-like peptide genes, the insulin-like receptor htk7, as well as several antioxidant genes, and the heat-shock protein hsp70 in the freshwater cnidarian Hydra vulgaris. Hydra polyps were exposed to a combination of different levels of food and perceived population density to manipulate life history traits (asexual reproduction and oxidative stress tolerance). We found that stress tolerance and the rate of asexual reproduction increased with food, and that these two effects were in significant interaction. Exposing animals to high perceived density resulted in increased stress tolerance or reduced reproduction only on lower food levels, but not on high food. The insulin-like receptor htk7 and the antioxidant gene catalase were significantly upregulated in the high density treatments. However, the expression level of insulin-like peptide genes, most antioxidant genes, and hsp70 were not affected by the experimental treatments. The higher expression level of htk7 may suggest that animals maintain a higher level of preparedness for insulin-like ligands at high population densities. However, the lack of difference between food levels suggests that IIS is not involved in regulating asexual reproduction and stress tolerance in hydra, or that its role is more subtle than a simple model of life history regulation would suggest.
Collapse
Affiliation(s)
- Flóra Sebestyén
- 1 MTA-DE "Lendület" Behavioral Ecology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Szilárd Póliska
- 2 Department of Biochemistry and Molecular Biology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Rita Rácz
- 1 MTA-DE "Lendület" Behavioral Ecology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Judit Bereczki
- 1 MTA-DE "Lendület" Behavioral Ecology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Kinga Lénárt
- 1 MTA-DE "Lendület" Behavioral Ecology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Zoltán Barta
- 1 MTA-DE "Lendület" Behavioral Ecology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Ádám Z Lendvai
- 3 Dept. of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| | - Jácint Tökölyi
- 1 MTA-DE "Lendület" Behavioral Ecology Research Group, Dept. of Evolutionary Zoology, University of Debrecen, 4032 Debrecen, Egyetem tér 1., Hungary
| |
Collapse
|
27
|
Mortzfeld BM, Bosch TCG. Eco-Aging: stem cells and microbes are controlled by aging antagonist FoxO. Curr Opin Microbiol 2017; 38:181-187. [DOI: 10.1016/j.mib.2017.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 01/10/2023]
|
28
|
The c-Jun N-terminal kinase prevents oxidative stress induced by UV and thermal stresses in corals and human cells. Sci Rep 2017; 7:45713. [PMID: 28374828 PMCID: PMC5379690 DOI: 10.1038/srep45713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Coral reefs are of major ecological and socio-economic interest. They are threatened by global warming and natural pressures such as solar ultraviolet radiation. While great efforts have been made to understand the physiological response of corals to these stresses, the signalling pathways involved in the immediate cellular response exhibited by corals remain largely unknown. Here, we demonstrate that c-Jun N-terminal kinase (JNK) activation is involved in the early response of corals to thermal and UV stress. Furthermore, we found that JNK activity is required to repress stress-induced reactive oxygen species (ROS) accumulation in both the coral Stylophora pistillata and human skin cells. We also show that inhibiting JNK activation under stress conditions leads to ROS accumulation, subsequent coral bleaching and cell death. Taken together, our results suggest that an ancestral response, involving the JNK pathway, is remarkably conserved from corals to human, protecting cells from the adverse environmental effects.
Collapse
|
29
|
Flici H, Schnitzler CE, Millane RC, Govinden G, Houlihan A, Boomkamp SD, Shen S, Baxevanis AD, Frank U. An Evolutionarily Conserved SoxB-Hdac2 Crosstalk Regulates Neurogenesis in a Cnidarian. Cell Rep 2017; 18:1395-1409. [PMID: 28178518 PMCID: PMC5312794 DOI: 10.1016/j.celrep.2017.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/09/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022] Open
Abstract
SoxB transcription factors and histone deacetylases (HDACs) are each major players in the regulation of neurogenesis, but a functional link between them has not been previously demonstrated. Here, we show that SoxB2 and Hdac2 act together to regulate neurogenesis in the cnidarian Hydractinia echinata during tissue homeostasis and head regeneration. We find that misexpression of SoxB genes modifies the number of neural cells in all life stages and interferes with head regeneration. Hdac2 was co-expressed with SoxB2, and its downregulation phenocopied SoxB2 knockdown. We also show that SoxB2 and Hdac2 promote each other's transcript levels, but Hdac2 counteracts this amplification cycle by deacetylating and destabilizing SoxB2 protein. Finally, we present evidence for conservation of these interactions in human neural progenitors. We hypothesize that crosstalk between SoxB transcription factors and Hdac2 is an ancient feature of metazoan neurogenesis and functions to stabilize the correct levels of these multifunctional proteins.
Collapse
Affiliation(s)
- Hakima Flici
- Centre for Chromosome Biology (CCB), School of Natural Sciences, National University of Ireland, Galway H91 CF50, Ireland
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA; Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-8002, USA
| | - R Cathriona Millane
- Centre for Chromosome Biology (CCB), School of Natural Sciences, National University of Ireland, Galway H91 CF50, Ireland
| | - Graham Govinden
- Centre for Chromosome Biology (CCB), School of Natural Sciences, National University of Ireland, Galway H91 CF50, Ireland
| | - Amy Houlihan
- Centre for Chromosome Biology (CCB), School of Natural Sciences, National University of Ireland, Galway H91 CF50, Ireland
| | - Stephanie D Boomkamp
- Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Galway H91 CF50, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Galway H91 CF50, Ireland
| | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-8002, USA
| | - Uri Frank
- Centre for Chromosome Biology (CCB), School of Natural Sciences, National University of Ireland, Galway H91 CF50, Ireland.
| |
Collapse
|
30
|
Tökölyi J, Ősz Z, Sebestyén F, Barta Z. Resource allocation and post-reproductive degeneration in the freshwater cnidarian Hydra oligactis (Pallas, 1766). ZOOLOGY 2017; 120:110-116. [DOI: 10.1016/j.zool.2016.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/22/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
|
31
|
Gahan JM, Bradshaw B, Flici H, Frank U. The interstitial stem cells in Hydractinia and their role in regeneration. Curr Opin Genet Dev 2016; 40:65-73. [DOI: 10.1016/j.gde.2016.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/26/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
|
32
|
Martins R, Lithgow GJ, Link W. Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 2016; 15:196-207. [PMID: 26643314 PMCID: PMC4783344 DOI: 10.1111/acel.12427] [Citation(s) in RCA: 515] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2015] [Indexed: 12/19/2022] Open
Abstract
Aging constitutes the key risk factor for age‐related diseases such as cancer and cardiovascular and neurodegenerative disorders. Human longevity and healthy aging are complex phenotypes influenced by both environmental and genetic factors. The fact that genetic contribution to lifespan strongly increases with greater age provides basis for research on which “protective genes” are carried by long‐lived individuals. Studies have consistently revealed FOXO (Forkhead box O) transcription factors as important determinants in aging and longevity. FOXO proteins represent a subfamily of transcription factors conserved from Caenorhabditis elegans to mammals that act as key regulators of longevity downstream of insulin and insulin‐like growth factor signaling. Invertebrate genomes have one FOXO gene, while mammals have four FOXO genes: FOXO1, FOXO3, FOXO4, and FOXO6. In mammals, this subfamily is involved in a wide range of crucial cellular processes regulating stress resistance, metabolism, cell cycle arrest, and apoptosis. Their role in longevity determination is complex and remains to be fully elucidated. Throughout this review, the mechanisms by which FOXO factors contribute to longevity will be discussed in diverse animal models, from Hydra to mammals. Moreover, compelling evidence of FOXOs as contributors for extreme longevity and health span in humans will be addressed.
Collapse
Affiliation(s)
- Rute Martins
- Regenerative Medicine Program Department of Biomedical Sciences and Medicine University of Algarve Campus de Gambelas 8005‐139 Faro Portugal
| | | | - Wolfgang Link
- Regenerative Medicine Program Department of Biomedical Sciences and Medicine University of Algarve Campus de Gambelas 8005‐139 Faro Portugal
- Centre for Biomedical Research (CBMR) University of Algarve Campus de Gambelas 8005‐139 Faro Portugal
| |
Collapse
|
33
|
Buzgariu W, Al Haddad S, Tomczyk S, Wenger Y, Galliot B. Multi-functionality and plasticity characterize epithelial cells in Hydra. Tissue Barriers 2015; 3:e1068908. [PMID: 26716072 PMCID: PMC4681288 DOI: 10.1080/21688370.2015.1068908] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/09/2023] Open
Abstract
Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra.
Collapse
Affiliation(s)
- W Buzgariu
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - S Al Haddad
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - S Tomczyk
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - Y Wenger
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| | - B Galliot
- Department of Genetics and Evolution; Institute of Genetics and Genomics in Geneva (IGe3); Faculty of Sciences; University of Geneva; Geneva, Switzerland
| |
Collapse
|
34
|
Petersen HO, Höger SK, Looso M, Lengfeld T, Kuhn A, Warnken U, Nishimiya-Fujisawa C, Schnölzer M, Krüger M, Özbek S, Simakov O, Holstein TW. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration. Mol Biol Evol 2015; 32:1928-47. [PMID: 25841488 PMCID: PMC4833066 DOI: 10.1093/molbev/msv079] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration.
Collapse
Affiliation(s)
- Hendrik O Petersen
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Stefanie K Höger
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Mario Looso
- Max Planck Institute (MPI) for Heart and Lung Research, Bad Nauheim, Germany
| | - Tobias Lengfeld
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anne Kuhn
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiemi Nishimiya-Fujisawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Martina Schnölzer
- Functional Proteome Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Krüger
- Max Planck Institute (MPI) for Heart and Lung Research, Bad Nauheim, Germany CECAD, University of Cologne, Germany
| | - Suat Özbek
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Oleg Simakov
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
35
|
Bellantuono AJ, Bridge D, Martínez DE. Hydra as a tractable, long-lived model system for senescence. INVERTEBR REPROD DEV 2014; 59:39-44. [PMID: 26136619 PMCID: PMC4464093 DOI: 10.1080/07924259.2014.938196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/02/2014] [Indexed: 12/14/2022]
Abstract
Hydra represents a unique model system for the study of senescence, with the opportunity for the comparison of non-aging and induced senescence. Hydra maintains three stem cell lineages, used for continuous tissue morphogenesis and replacement. Recent work has elucidated the roles of the insulin/IGF-1 signaling target FoxO, of Myc proteins, and of PIWI proteins in Hydra stem cells. Under laboratory culture conditions, Hydra vulgaris show no signs of aging even under long-term study. In contrast, Hydra oligactis can be experimentally induced to undergo reproduction-associated senescence. This provides a powerful comparative system for future studies.
Collapse
Affiliation(s)
| | - Diane Bridge
- Department of Biology, Elizabethtown College , Elizabethtown , PA , USA
| | | |
Collapse
|
36
|
Elran R, Raam M, Kraus R, Brekhman V, Sher N, Plaschkes I, Chalifa-Caspi V, Lotan T. Early and late response of Nematostella vectensis transcriptome to heavy metals. Mol Ecol 2014; 23:4722-36. [PMID: 25145541 DOI: 10.1111/mec.12891] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/22/2014] [Accepted: 08/13/2014] [Indexed: 12/28/2022]
Abstract
Environmental contamination from heavy metals poses a global concern for the marine environment, as heavy metals are passed up the food chain and persist in the environment long after the pollution source is contained. Cnidarians play an important role in shaping marine ecosystems, but environmental pollution profoundly affects their vitality. Among the cnidarians, the sea anemone Nematostella vectensis is an advantageous model for addressing questions in molecular ecology and toxicology as it tolerates extreme environments and its genome has been published. Here, we employed a transcriptome-wide RNA-Seq approach to analyse N. vectensis molecular defence mechanisms against four heavy metals: Hg, Cu, Cd and Zn. Altogether, more than 4800 transcripts showed significant changes in gene expression. Hg had the greatest impact on up-regulating transcripts, followed by Cu, Zn and Cd. We identified, for the first time in Cnidaria, co-up-regulation of immediate-early transcription factors such as Egr1, AP1 and NF-κB. Time-course analysis of these genes revealed their early expression as rapidly as one hour after exposure to heavy metals, suggesting that they may complement or substitute for the roles of the metal-mediating Mtf1 transcription factor. We further characterized the regulation of a large array of stress-response gene families, including Hsp, ABC, CYP members and phytochelatin synthase, that may regulate synthesis of the metal-binding phytochelatins instead of the metallothioneins that are absent from Cnidaria genome. This study provides mechanistic insight into heavy metal toxicity in N. vectensis and sheds light on ancestral stress adaptations.
Collapse
Affiliation(s)
- Ron Elran
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Juliano CE, Lin H, Steele RE. Generation of transgenic Hydra by embryo microinjection. J Vis Exp 2014:51888. [PMID: 25285460 DOI: 10.3791/51888] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As a member of the phylum Cnidaria, the sister group to all bilaterians, Hydra can shed light on fundamental biological processes shared among multicellular animals. Hydra is used as a model for the study of regeneration, pattern formation, and stem cells. However, research efforts have been hampered by lack of a reliable method for gene perturbations to study molecular function. The development of transgenic methods has revitalized the study of Hydra biology(1). Transgenic Hydra allow for the tracking of live cells, sorting to yield pure cell populations for biochemical analysis, manipulation of gene function by knockdown and over-expression, and analysis of promoter function. Plasmid DNA injected into early stage embryos randomly integrates into the genome early in development. This results in hatchlings that express transgenes in patches of tissue in one or more of the three lineages (ectodermal epithelial, endodermal epithelial, or interstitial). The success rate of obtaining a hatchling with transgenic tissue is between 10% and 20%. Asexual propagation of the transgenic hatchling is used to establish a uniformly transgenic line in a particular lineage. Generating transgenic Hydra is surprisingly simple and robust, and here we describe a protocol that can be easily implemented at low cost.
Collapse
Affiliation(s)
- Celina E Juliano
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine;
| | - Haifan Lin
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine
| | - Robert E Steele
- Department of Biological Chemistry and the Developmental Biology Center, University of California, Irvine;
| |
Collapse
|
38
|
Schaible R, Sussman M, Kramer BH. Aging and potential for self-renewal: hydra living in the age of aging - a mini-review. Gerontology 2014; 60:548-56. [PMID: 25012456 DOI: 10.1159/000360397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 02/06/2014] [Indexed: 11/19/2022] Open
Abstract
Hydra present an interesting deviation from typical life histories: they have an extensive capacity to regenerate and self-renew and seem to defy the aging process. Hydra have the ability to decouple the aging process from their life history and therefore provide us with a unique opportunity to gain insight into the aging process not only for basal hydrozoans but also for other species across the tree of life. We argue that under steady feeding and asexual reproduction Hydra species are able to escape aging as a result of high levels of cell proliferation and regenerative ability. We further highlight cellular processes for stem cell maintenance, such as the telomere dynamic, which prevent the accumulation of damage and protect against diseases and pathogens that mediate this condition. In addition, we discuss the causes of aging in other Hydra species.
Collapse
Affiliation(s)
- Ralf Schaible
- Max Planck Institute for Demographic Research, Rostock, Germany
| | | | | |
Collapse
|
39
|
Tökölyi J, Rosa ME, Bradács F, Barta Z. Life history trade-offs and stress tolerance in green hydra (Hydra viridissima Pallas 1766): the importance of nutritional status and perceived population density. Ecol Res 2014. [DOI: 10.1007/s11284-014-1176-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Richardson RB, Allan DS, Le Y. Greater organ involution in highly proliferative tissues associated with the early onset and acceleration of ageing in humans. Exp Gerontol 2014; 55:80-91. [DOI: 10.1016/j.exger.2014.03.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 03/18/2014] [Accepted: 03/20/2014] [Indexed: 01/14/2023]
|
41
|
Tomczyk S, Fischer K, Austad S, Galliot B. Hydra, a powerful model for aging studies. INVERTEBR REPROD DEV 2014; 59:11-16. [PMID: 26120246 PMCID: PMC4463768 DOI: 10.1080/07924259.2014.927805] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 04/22/2014] [Indexed: 01/25/2023]
Abstract
Cnidarian Hydra polyps escape senescence, most likely due to the robust activity of their three stem cell populations. These stem cells continuously self-renew in the body column and differentiate at the extremities following a tightly coordinated spatial pattern. Paul Brien showed in 1953 that in one particular species, Hydra oligactis, cold-dependent sexual differentiation leads to rapid aging and death. Here, we review the features of this inducible aging phenotype. These cellular alterations, detected several weeks after aging was induced, are characterized by a decreasing density of somatic interstitial cell derivatives, a disorganization of the apical nervous system, and a disorganization of myofibers of the epithelial cells. Consequently, tissue replacement required to maintain homeostasis, feeding behavior, and contractility of the animal are dramatically affected. Interestingly, this aging phenotype is not observed in all H. oligactis strains, thus providing a powerful experimental model for investigations of the genetic control of aging. Given the presence in the cnidarian genome of a large number of human orthologs that have been lost in ecdysozoans, such approaches might help uncover novel regulators of aging in vertebrates.
Collapse
Affiliation(s)
- Szymon Tomczyk
- Faculty of Sciences, Department of Genetics and Evolution, University of Geneva , Geneva , Switzerland
| | - Kathleen Fischer
- Department of Biology, University of Alabama at Birmingham UAB , Birmingham , AL , USA
| | - Steven Austad
- Department of Biology, University of Alabama at Birmingham UAB , Birmingham , AL , USA
| | - Brigitte Galliot
- Faculty of Sciences, Department of Genetics and Evolution, University of Geneva , Geneva , Switzerland
| |
Collapse
|
42
|
Calautti E. Akt modes of stem cell regulation: more than meets the eye? Discoveries (Craiova) 2013; 1:e8. [PMID: 32309540 PMCID: PMC6941558 DOI: 10.15190/d.2013.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Akt signaling regulates many cellular functions that are essential for the proper balance between self-renewal and differentiation of tissue-specific and embryonic stem cells (SCs). However, the roles of Akt and its downstream signaling in SC regulation are rather complex, as Akt activation can either promote SC self-renewal or depletion in a context-dependent manner. In this review we have evidenced three "modes" of Akt-dependent SC regulation, which can be exemplified by three different SC types. In particular, we will discuss: 1) the integration of Akt signaling within the "core" SC signaling circuitry in the maintenance of SC self-renewal and pluripotency (embryonic SCs); 2) quantitative changes in Akt signaling in SC metabolic activity and exit from quiescence (hematopoietic SCs); 3) qualitative changes of Akt signaling in SC regulation: signaling compartment-talization and isoform-specific functions of Akt proteins in SC self-renewal and differentiation (limbal-corneal keratinocyte SCs). These diverse modes of action are not to be intended as mutually exclusive. Rather, it is likely that Akt proteins participate with multiple parallel mechanisms to regulation of the same SC type. We propose that under specific circumstances dictated by distinct developmental stages, differentiation programs or tissue culture conditions, one mode of Akt action prevails over the others in determining SC fates.
Collapse
Affiliation(s)
- Enzo Calautti
- University of Turin, Department of Molecular Biotechnology and Health Sciences, Turin, Italy
| |
Collapse
|
43
|
Moore A. A twist in the FOXO tale: edging closer to revealing the secrets of unlimited tissue renewal. Bioessays 2013; 35:1015-6. [PMID: 24242096 DOI: 10.1002/bies.201370123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Schaible R, Sussman M. FOXO in aging: did evolutionary diversification of FOXO function distract it from prolonging life? Bioessays 2013; 35:1101-10. [PMID: 24142536 DOI: 10.1002/bies.201300078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper we contrast the simple role of FOXO in the seemingly non-aging Hydra with its more diversified function in multicellular eukaryotes that manifest aging and limited life spans. From this comparison we develop the concept that, whilst once devoted to life-prolonging cell-renewal (in Hydra), evolutionary accumulation of coupled functionality in FOXO has since 'distracted' it from this role. Seen in this light, aging may not be the direct cost of competing functions, such as reproduction or growth, but the result of a shift in emphasis in a protein, which is accompanied by advantages such as greater organismal complexity and adaptability, but also disadvantages such as reduced regeneration capacity. Studying the role of FOXO in non-aging organisms might, therefore, illuminate the path to extend life span in aging organisms.
Collapse
Affiliation(s)
- Ralf Schaible
- Max Planck Institute for Demographic Research, Rostock, Germany
| | | |
Collapse
|
45
|
Boehm AM, Rosenstiel P, Bosch TCG. Stem cells and aging from a quasi-immortal point of view. Bioessays 2013; 35:994-1003. [PMID: 24037777 DOI: 10.1002/bies.201300075] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Understanding aging and how it affects an organism's lifespan is a fundamental problem in biology. A hallmark of aging is stem cell senescence, the decline of functionality, and number of somatic stem cells, resulting in an impaired regenerative capacity and reduced tissue function. In addition, aging is characterized by profound remodeling of the immune system and a quantitative decline of adequate immune responses, a phenomenon referred to as immune-senescence. Yet, what is causing stem cell and immune-senescence? This review discusses experimental studies of potentially immortal Hydra which have made contributions to answering this question. Hydra transcription factor FoxO has been shown to modulate both stem cell proliferation and innate immunity, lending strong support to a role of FoxO as critical rate-of-aging regulator from Hydra to human. Constructing a model of how FoxO responds to diverse environmental factors provides a framework for how stem cell factors might contribute to aging.
Collapse
Affiliation(s)
- Anna-Marei Boehm
- Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | | |
Collapse
|
46
|
van den Berg MCW, van Gogh IJA, Smits AMM, van Triest M, Dansen TB, Visscher M, Polderman PE, Vliem MJ, Rehmann H, Burgering BMT. The small GTPase RALA controls c-Jun N-terminal kinase-mediated FOXO activation by regulation of a JIP1 scaffold complex. J Biol Chem 2013; 288:21729-41. [PMID: 23770673 DOI: 10.1074/jbc.m113.463885] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FOXO (forkhead box O) transcription factors are tumor suppressors and increase the life spans of model organisms. Cellular stress, in particular oxidative stress caused by an increase in levels of reactive oxygen species (ROS), activates FOXOs through JNK-mediated phosphorylation. Importantly, JNK regulation of FOXO is evolutionarily conserved. Here we identified the pathway that mediates ROS-induced JNK-dependent FOXO regulation. Following increased ROS, RALA is activated by the exchange factor RLF (RalGDS-like factor), which is in complex with JIP1 (C-Jun-amino-terminal-interacting protein 1) and JNK. Active RALA consequently regulates assembly and activation of MLK3, MKK4, and JNK onto the JIP1 scaffold. Furthermore, regulation of FOXO by RALA and JIP1 is conserved in C. elegans, where both ral-1 and jip-1 depletion impairs heat shock-induced nuclear translocation of the FOXO orthologue DAF16.
Collapse
Affiliation(s)
- Maaike C W van den Berg
- Molecular Cancer Research, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Barve A, Ghaskadbi S, Ghaskadbi S. Conservation of the nucleotide excision repair pathway: characterization of hydra Xeroderma Pigmentosum group F homolog. PLoS One 2013; 8:e61062. [PMID: 23577191 PMCID: PMC3620063 DOI: 10.1371/journal.pone.0061062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/05/2013] [Indexed: 01/09/2023] Open
Abstract
Hydra, one of the earliest metazoans with tissue grade organization and nervous system, is an animal with a remarkable regeneration capacity and shows no signs of organismal aging. We have for the first time identified genes of the nucleotide excision repair (NER) pathway from hydra. Here we report cloning and characterization of hydra homolog of xeroderma pigmentosum group F (XPF) gene that encodes a structure-specific 5' endonuclease which is a crucial component of NER. In silico analysis shows that hydra XPF amino acid sequence is very similar to its counterparts from other animals, especially vertebrates, and shows all features essential for its function. By in situ hybridization, we show that hydra XPF is expressed prominently in the multipotent stem cell niche in the central region of the body column. Ectoderm of the diploblastic hydra was shown to express higher levels of XPF as compared to the endoderm by semi-quantitative RT-PCR. Semi-quantitative RT-PCR analysis also demonstrated that interstitial cells, a multipotent and rapidly cycling stem cell lineage of hydra, express higher levels of XPF mRNA than other cell types. Our data show that XPF and by extension, the NER pathway is highly conserved during evolution. The prominent expression of an NER gene in interstitial cells may have implications for the lack of senescence in hydra.
Collapse
Affiliation(s)
- Apurva Barve
- Division of Animal Sciences, Agharkar Research Institute, Pune, India
| | - Saroj Ghaskadbi
- Department of Zoology, University of Pune, Ganeshkhind, Pune, India
| | | |
Collapse
|
48
|
Abstract
Forkhead box O (FOXO) transcription factors are involved in the regulation of the cell cycle, apoptosis and metabolism. In model organisms, FOXO activity also affects stem cell maintenance and lifespan as well as age-related diseases, such as cancer and diabetes. Multiple upstream pathways regulate FOXO activity through post-translational modifications and nuclear-cytoplasmic shuttling of both FOXO and its regulators. The diversity of this upstream regulation and the downstream effects of FOXOs suggest that they function as homeostasis regulators to maintain tissue homeostasis over time and coordinate a response to environmental changes, including growth factor deprivation, metabolic stress (starvation) and oxidative stress.
Collapse
|
49
|
Correction for Boehm et al., FoxO is a critical regulator of stem cell maintenance in immortal
Hydra. Proc Natl Acad Sci U S A 2013. [DOI: 10.1073/pnas.1221369110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Hedrick SM, Hess Michelini R, Doedens AL, Goldrath AW, Stone EL. FOXO transcription factors throughout T cell biology. Nat Rev Immunol 2012; 12:649-61. [PMID: 22918467 PMCID: PMC3875397 DOI: 10.1038/nri3278] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The outcome of an infection with any given pathogen varies according to the dosage and route of infection, but, in addition, the physiological state of the host can determine the efficacy of clearance, the severity of infection and the extent of immunopathology. Here we propose that the forkhead box O (FOXO) transcription factor family--which is central to the integration of growth factor signalling, oxidative stress and inflammation--provides connections between physical well-being and the form and magnitude of an immune response. We present a case that FOXO transcription factors guide T cell differentiation and function in a context-driven manner, and might provide a link between metabolism and immunity.
Collapse
Affiliation(s)
- Stephen M Hedrick
- University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0377, USA.
| | | | | | | | | |
Collapse
|